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Finite-temperature spectroscopy of dirty helical Luttinger liquids

Tzu-Chi Hsieh ,1,* Yang-Zhi Chou,2,1,† and Leo Radzihovsky1,‡

1Department of Physics and Center for Theory of Quantum Matter, University of Colorado Boulder, Boulder, Colorado 80309, USA
2Department of Physics, Condensed Matter theory center and the Joint Quantum Institute, University of Maryland,

College Park, Maryland 20742, USA

(Received 12 May 2020; accepted 18 August 2020; published 27 August 2020)

We develop a theory of finite-temperature momentum-resolved tunneling spectroscopy (MRTS) for dis-
ordered, interacting, two-dimensional, topological-insulator edges. The MRTS complements conventional
electrical transport measurement in characterizing the properties of the helical Luttinger liquid edges. Using
the standard bosonization technique, we study low-energy spectral function and the MRTS tunneling current,
providing a detailed description controlled by disorder, interaction, and temperature, taking into account
Rashba spin-orbit coupling, interedge interaction, and distinct edge velocities. Our theory provides a systematic
description of the spectroscopic signals in the MRTS measurement we hope will stimulate future experimental
studies on the two-dimensional time-reversal invariant topological insulator.
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I. INTRODUCTION

Topology has become an important component of and has
revolutionized modern condensed matter physics over the
past few decades. Strikingly, topological condensed matter
phenomena are robust to local heterogeneities (disorder), sam-
ple geometry, and other low-energy microscopic details. A
paradigmatic example is the chiral edge state of the integer
quantum Hall effect, which gives a quantized e2/h Hall con-
ductance per channel, robust to local perturbations. Another
significant advance is the prediction of a time-reversal (TR)
symmetric topological insulators (TI) [1–5] and more gen-
erally symmetry-protected TIs [6] that stimulated numerous
theoretical [7–12] and experimental investigations [13–30]
(also see reviews and references therein [4–6,31–33]).

A 2D time-reversal symmetric TI [1–3] (of class AII
[4]) is a fully gapped bulk insulator with its edge hosting
counterpropagating Kramers pairs of electrons. The time-
reversal symmetric disorder cannot backscatter in the absence
of interactions (though it can for an interacting edge, e.g.,
via a two-particle backscattering [7,8,34]) with edge electrons
propagating ballistically, thus avoiding Anderson localization.
Such an ideal topologically protected helical Luttinger liquid
(hLL) edge [7,8] is expected to exhibit a quantized e2/h zero-
temperature conductance, controls the low-energy properties
of the TI, and provides a new platform for studying and testing
the low-energy Luttinger liquid (LL) theory of interacting
one-dimensional electronic systems.

In contrast to the quantum Hall edges, a transport in 2D
TR symmetric TI edges is sensitive to a set of microscopic
details. At the simplest level a hLL is predicted to ex-
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hibit interaction strength-dependent power laws in frequency,
voltage, and temperature [10,35–38]. In a more detailed anal-
ysis, the primary finite-temperature conductance correction
is believed to come from charge puddles near the edge
[12,39]. The charge puddles can behave like Kondo impurities
[10,35,39] and can generate insulatorlike finite-temperature
conductivity [40]. External noise [41] and intraedge inelastic
interaction [10,11,37,38] are also predicted to give nontrivial
conductance corrections. To our knowledge, however, the ex-
isting experiments have not systematically demonstrated the
finite-temperature conductivity predicted by any of the above
theories. Among various other potential explanations (see,
e.g., [34,42–46]) is a novel spontaneous symmetry-breaking
localization due to an interplay of TR symmetric disorder and
interaction [34], in contrast to Anderson localization due to a
magnetic ordering of an extensive number of the Kondo impu-
rities [47,48]. Generally, one expects that disorder with weak
interactions does not modify the edge state DC conductance
[2,49]. In light of the above puzzling transport measurements,
an independent experimental probe of the helical Luttinger
liquid (hLL) edges is highly desirable.

V

I

FIG. 1. A schematic of an experimental setup for momentum-
resolved tunneling spectroscopy, with dashed lines indicating the
single particle tunneling between two separated topological insulator
edges, and momentum transfer tuned with an out-of-plane magnetic
field applied to the yellow shaded region.
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In the present study we calculate a spectral function of a
disordered, finite-temperature hLL, and based on it developed
a theory of the finite-temperature momentum-resolved tunnel-
ing spectroscopy (MRTS) [50–55] between two (TR symmet-
rically) disordered, interacting TI helical edges. Such a MRTS
setup thereby provides an independent spectral characteriza-
tion of the hLLs, complementary to conventional transport. In
contrast to earlier work [56], which focused on clean short
zero-temperature hLLs, we study disordered interacting long
TI edges at finite temperatures. In the absence of interedge
interaction, the tunneling current spectroscopy is simply re-
lated to a convolution of two fermionic edge spectral functions
that we compute in a detailed closed form. An interedge
interaction requires a nonperturbative treatment. Utilizing
bosonization, perturbatively in the tunneling we derive the
disorder-averaged, finite temperature MRTS tunneling current
that depends sensitively on mismatch of edge velocities. In
contrast to conventional LL edges [57], TR symmetric disor-
der does not backscatter helical edge electrons. Thus our low-
energy analysis makes predictions that are nonperturbative in
interaction and disorder, providing a detailed characterization
of a hLL that should be experimentally accessible.

Before delving into details of the analysis, we summarize
our results in Sec. II. Then, in Sec. III, utilizing bosonization
we study the finite-temperature spectral function of a helical
edge of a TR invariant TI in the presence of symmetry-
preserving disorder and interactions. In Sec. IV, building on
the single-edge analysis, we study the interedge tunneling,
showing that it can be used as a momentum-resolved spectro-
scopic probe of helical edges, with momentum and frequency
tuned by an external magnetic field and interedge voltage,
respectively, as illustrated in Fig. 1. We conclude in Sec. V
with a discussion of using this momentum-resolved tunneling
spectroscopy to unambiguously experimentally identify TI
edges that have resisted clear identification in conventional
transport measurements. We relegate much of our somewhat
technical analysis to numerous Appendixes.

II. SUMMARY OF MAIN RESULTS

We briefly summarize the key results of our study, detailed
in subsequent sections of the paper. Utilizing bosonization, we
studied finite temperature spectral properties of an interacting
helical edge of a TR invariant TI in the presence of symmetry-
preserving disorder. Although a number of similar analyses
have appeared in the literature [58–61], to the best of our
knowledge our computation is the most detailed and complete
at finite temperature. Inside the hLL phase [7,8,34], the edge is
fully characterized by a Luttinger parameter K and exponent
γ ≡ 1

4 (K + K−1) − 1
2 , with K = 1 (γ = 0) in a noninteract-

ing limit and K < 1 (γ > 0) for repulsive interaction.
We derive a detailed expression for the disorder-averaged,

low-temperature spectral function Eq. (30) that in the limit of
strong disorder � is given by

A(ω, q) ≈ T 2γ ξ/π

(qξ )2 + 1
fγ
(ω

T

)
, (1)

where ξ = 2v2/K2� is a disorder length scale, v is the edge
velocity, and T is temperature (with β = T −1 the inverse
temperature). For convenience we set h̄ = kB = 1 throughout
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FIG. 2. Single helical edge, disorder-averaged spectral function,
illustrated for a set of temperatures (characterized by a thermal
length λ = vβ), disorder length ξ = 30, vq = 0.1, and interaction
parameter γ ≡ 1

4 (K + K−1) − 1
2 taken to be 0.1. The black dashed

line denotes the zero temperature (λ = ∞) spectral function. The
inset shows the details of thermal rounding of the zero-bias anomaly.
The frequency and the length are in units of vα−1 and α, respectively.

this paper. Above,

fγ (x) ∼
{

x2γ , for x � 1,

1, for x � 1
(2)

is a scaling function, with the exact form given by the Euler
Beta function derived in the main text, Eq. (28). The com-
plete expression for a right-mover A(ω, q), characterized by
a broad peak at ω = vq and a zero-bias anomaly at ω = 0, is
illustrated for a set of temperatures in Fig. 2. The broadening
of the quasiparticle peak is described by the full-width at
half-maximum (FWHM) 4πγ T + 2vξ−1, which suggests that
a probe of the momentum-resolved spectral function can
be used to quantify the interaction and (forward-scattering)
disorder strength.

We note that although generically one expects sample het-
erogeneity to smear out sharp features of a clean system, here
disorder average of the finite-momentum spectral function
A(ω, q) brings out the sharp zero-bias anomaly that is other-
wise absent at finite momentum. This counterintuitive effect
arises due to impurities providing the momentum needed to
shift the q = 0 zero-frequency anomaly to a finite momentum
q, as shown in Fig. 2. All figures in this paper are plotted in
the units of vα−1 and α for frequency and length, respectively,
where α is the ultraviolet cutoff length scale in LL theory.

Our second key prediction is that of the finite-temperature
momentum-resolved interedge tunneling current J (ω =
eV/h̄, Q = 2πBd/φ0) in the presence of disorder and in-
teraction, and tunable by an external magnetic field B and
voltage bias V , as illustrated in a schematic setup of Fig. 1.
In the above, d denotes the distance between two edges and
φ0 = h/e is the magnetic flux quantum. Importantly, Q is the
momentum shift between the energy bands of the two edges
controlled by the external magnetic field. The representative
predictions for the tunneling current, computed perturbatively
in the tunneling, are given by the following analytical ex-
pressions. For the vertical geometry (Fig. 10) with identical
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edges (same velocity and interaction but different Fermi wave
vectors kF,1 �= kF,2), the tunneling current in the absence of
disorder and interedge interaction is well approximated by
JRR(ω, Q + kF,1 − kF,2) + JLL(ω, Q − kF,1 + kF,2), where

JLL(ω, q) = −2et2
0

(
2πα

βv

)4γ 1

4π2v
sin(2πγ )

× Im

{
B

[
β(−iω + ivq)

4π
+ γ + 1,−1 − 2γ

]

× B

[
β(−iω − ivq)

4π
+ γ , 1 − 2γ

]}
, (3)

and JRR(ω, q) = JLL(ω,−q). For the horizontal geometry
(Fig. 16) with identical edges, the tunneling current is given
by JRL (ω, Q + kF,1 + kF,2) + JLR(ω, Q − kF,1 − kF,2) where

JRL/LR(ω, q) = −2et2
0

(
2πα

βv

)4γ 1

4π2v
sin(2πγ )

× Im

{
B

[
β(−iω + ivq)

4π
+ γ + 1

2
,−2γ

]

× B

[
β(−iω − ivq)

4π
+ γ + 1

2
,−2γ

]}
. (4)

The effects of forward-scattering disorder can be included
through a convolution with a Lorentzian (with width ξ−1,
where ξ is the disorder length). With Eqs. (3) and (4), the
differential tunneling conductance can be derived. The differ-
ential tunneling conductance for both vertical and horizontal
geometries are plotted in Fig. 3. We discuss the more generic
case (e.g., including interedge interaction, distinct edge veloc-
ities, etc.) in Sec. IV.

A map of tunneling current can be constructed by tuning
B and V independently. In the absence of the interaction,
the tunneling currents are nonzero only in the kinematically
allowed regions [57] illustrated in Fig. 4. The interactions
modify the kinematically allowed region as we discuss in the
main text.

We now turn to the detailed analysis that leads to the
above results, as well as exploration of a number of different
parameters and experimental geometries.

III. SINGLE EDGE: MODEL AND SPECTRAL FUNCTION

The edge states of a two-dimensional time-reversal sym-
metric topological insulator exhibit a counterpropagating
fermion Kramers pair. In contrast to a conventional Luttinger
liquid, the TR symmetry on the edge constrains relevant
interactions and disorder perturbations to be forward scat-
tering only. The absence of Anderson localization is the
manifestation of the topological protection of the TI edges.
The gapless insulating localized states can still appear through
spontaneous TR symmetry breaking for K < 3/8 [7,8] due to
an interplay of interaction and disorder [34]. In this work we
exclusively focus on the K > 3/8 hLL phase. We next intro-
duce the minimal model for such disordered hLL and then
study its finite-temperature spectral function using bosoniza-
tion [62,63].
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FIG. 3. Finite-temperature differential tunneling conductance
dJ (ω = eV/h̄, Q = 2πBd/φ0)/dω in the presence of forward-
scattering disorders (with disorder length ξ = 20) around (a) two left
Fermi points and (b) right and left Fermi points, illustrated for a range
of temperatures characterized by the thermal length λ = vβ. Velocity
and interaction are taken to be identical for the two edges, with
the more generic expression given in the main text. The interaction
parameter γ ≡ 1

4 (K + K−1) − 1
2 is taken to be 0.05 and vq = −0.1.

The left inset is the magnification of the zero-bias anomaly. The right
insets show linear temperature dependence of (a) the distance (in ω)
between the left-positive and right-negative peaks (wpp) and (b) the
half-width at half-maximum (HWHM), respectively, for T < |vq|
(red dashed lines). The frequency and the length are in units of vα−1

and α, respectively.

A. Weakly interacting generic hLL

A helical edge is characterized by a Kramers pair of right-
moving c+(k) and left-moving c−(k) fermions at each quasi-
momentum k. Under an antiunitary TR operation T , the TR
symmetric partners are related to each other by T c±(k)T −1 =
±c∓(−k) (T 2 = −1). To describe low energy physics around
Fermi points ±kF , the field operators can be expressed in
terms of the slowly varying fermionic degrees of freedom R
and L near kF and −kF , respectively,

c+(x) =
∫

dk

2π
eikxc+(k) ≈ eikF xR(x),

c−(x) =
∫

dk

2π
eikxc−(k) ≈ e−ikF xL(x). (5)
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FIG. 4. Schematic diagram of momentum-resolved tunneling
current for two noninteracting TI edges. There are four tunneling
regions (gray color, labeled by Jαα′ ) for low bias V ≈ 0, corre-
sponding to tunneling between α (of edge 1) and α′ (of edge 2)
Fermi points. The current flows from edge 1 to 2 (positive current)
and from edge 2 to 1 (negative current) for positive and negative
bias voltages, respectively. The black regions indicate that tunneling
happens between two pairs of Fermi points. Inset: Energy bands of
edge 1 (dashed line) and edge 2 (solid line) used for generating the
main figure. The red line denotes the Fermi energy at equilibrium
(V = 0).

In TI samples without mirror symmetry, the Rashba spin-
orbit coupling (RSOC) is generically present. The primary
effect of the RSOC is to induce momentum-dependent spin
rotation [11,64]. As a result, the field operators with a definite
spin projection ↑ and ↓ are a linear combination of chiral
fields [49] (also see Appendix A for a derivation),

c↑(x) ≈eikF xR(x) − iζe−ikF x∂xL(x),

c↓(x) ≈e−ikF xL(x) − iζ ∗eikF x∂xR(x), (6)

where length ζ encodes the degree of “spin rotation texture.”
In a simple model discussed in [11], ζ = 2kF /k2

0 , where
k0 characterizes the strength of RSOC. In Eq. (6), the spin
quantization axis is chosen such that ↑ and ↓ match the spins
at Fermi points ±kF , respectively. Next, we construct the
low-energy Hamiltonian for the helical edge.

The kinetic part of the Hamiltonian is given by

H0 = vF

∫
dx[R†(−i∂xR) − L†(−i∂xL)], (7)

where vF is the Fermi velocity. The interaction and disorder
parts of the Hamiltonian couple to the electron density, given
by

ρ(x) = R†R + L†L − {iζe−i2kF x[R†(∂xL) − (∂xR†)L] + H.c.},
(8)

where only terms up to O(ζ ) are kept. The low-energy ex-
pansion of the electron density contains a slowly varying
(low momentum transfer) and a fast varying (2kF momentum
transfer) contribution. It is important to note that Eq. (8) is
invariant under TR operation (R → L, L → −R, and i → −i).

It is instructive to consider a chemical potential shift cou-
pled to the density ρ(x) given by (8) in the presence of RSOC.
The key observation is that the shifted Hamiltonian can be
brought back to the original gapless form (7):

H ′
0 ≡ H0 − δμ

∫
dx ρ(x) (9)

= v′
F

∫
dx[R′†(−i∂xR′) − L′†(−i∂xL′)], (10)

with kF -dependent rotation of the quantization axis of the
helical fermions,[

R′(x)
L′(x)

]
= e−iσ̂zk′

F xe−iσ̂yθ/2eiσ̂zkF x

[
R(x)
L(x)

]
, (11)

characterized by θ = tan−1 (2δμ ζ/vF ), k′
F = vF kF +δμ

v′
F

, and

v′
F =

√
v2

F + (2δμ ζ )2 (to simplify the expression we have
taken ζ to be real). The gapless helical edge remains topo-
logically protected against uniform RSOC as long as the bulk
gap is finite [1].

The key qualitative distinguishing feature of hLL is that TR
invariance forbids Anderson localization of the edge Kramers
pairs by nonmagnetic impurities. In the absence of RSOC this
is manifest as the density operator, R†R + L†L is only forward
scattering. In the presence of both RSOC and the TR sym-
metric disorder, a position-dependent rotation can again map
the theory to the 1D massless Dirac Hamiltonian in a fixed
realization of disorder [49]. Thus, low-energy effects of TR
invariant disorder on the helical edges of a TI are qualitatively
captured by random forward-scattering perturbation,

Hdis =
∫

dx V (x)[R†R + L†L]. (12)

Without loss of generality, we take the random potential V (x)
to have zero mean and Gaussian statistics characterized by
disorder average

V (x)V (y) = �δ(x − y), (13)

with variance amplitude �.
Within the stable hLL phase, the interaction is dominated

by forward scattering, given by

Hint =
∫

x
: [UR†R(x + α)R†R(x)

+ U ′R†R(x + α)L†L(x) + (R → L) :], (14)

where U and U ′ are the screened short-range components
of Coulomb interaction and α is the ultraviolet cutoff length
scale. We neglect the backscattering components (in the pres-
ence of RSOC) [11,37,38] since they are subdominant in the
regime studied in this work.

The Hamiltonian HhLL = H0 + Hint + Hdis given by
Eqs. (7), (12), and (14) is the minimal model of the
interacting, dirty helical edge of a topological insulator
protected by TR symmetry. As we will see next, the model is
exactly solvable by bosonization, allowing a nonperturbative
description of TI’s helical edge.
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B. Bosonization

To treat Luttinger interaction and disorder Hint + Hdis non-
perturbatively we utilize a standard bosonization analysis
[62,63], summarized in Appendix B. Using the imaginary-
time path-integral formalism, the disordered helical Luttinger
liquid is characterized by the imaginary-time action S =
ShLL + Sdis, where

ShLL =
∫

τ,x

{
i

π
(∂xθ )(∂τφ) + v

2π

[
K (∂xφ)2 + 1

K
(∂xθ )2

]}
,

(15)

Sdis =
∫

τ,x
V (x)

1

π
∂xθ, (16)

with θ the phononlike boson field and φ the phase boson
field. The number density and number current operators are
given by ρ = 1

π
∂xθ and J = − 1

π
∂tθ , respectively. Although

the action ShLL takes the form of a conventional spinless Lut-
tinger liquid (LL) [63], the physics of this helical LL differs
significantly because of distinct TR transformations of θ and
φ here, due to nontrivial spin content of the corresponding
helical edge fermions (see Appendix B). As noted above, this
latter property has important physical manifestations, as for
example forbidding potential impurity backscattering in the
absence of umklapp interactions.

We note that the forward-only scattering disorder can be
fully nonperturbatively taken into account by shifting V (x)
from the action via a linear transformation on θ , ShLL[θ, φ] +
Sdis[θ ] → ShLL[θ̃ , φ] + const., where

θ̃ (τ, x) = θ (τ, x) + K

v

∫ x

−∞
V (y)dy. (17)

Under this shift, the correlation functions of θ transform
covariantly. For instance,

〈e−inθ (τ,x)einθ (0,0)〉 = e−i nK
v

∫ x
0 V (y)dy〈e−inθ̃ (τ,x)einθ̃ (0,0)〉 (18)

shifts by a V (x)-dependent phase factor that now allows for
an exact disorder average of the correlation function. In the
above, n is a constant controlling the scaling dimension of the
operator. Gaussian statistics of V (x), with variance (13), then
gives

〈e−inθ (τ,x)einθ (0,0)〉 = e− n2K2�

2v2 |x|〈e−inθ̃ (τ,x)einθ̃ (0,0)〉. (19)

Forward-scattering disorder thus suppresses power-law Lut-
tinger liquid correlations, cutting them off exponentially
beyond a correlation length ξ = 2v2/(n2K2�), that in mo-
mentum space corresponds to smearing the disorder-free
power-law peak via a convolution with a Lorentzian, with
width set by 1/ξ .

C. Spectral function

1. Clean spectral function

In the clean limit, the imaginary time-ordered, single par-
ticle space-time Green function at finite temperature is well
known for a spinless LL [63]. Although physically hLL and
LL are quite distinct, because the actions of the two systems
are identical at a leading order, we find that the single-edge

spectral function for a hLL is identical to that of a spinless
LL. The calculation can be carried out at zero temperature
followed by a conformal mapping [a mapping from a (τ, x)
2D plane to a cylinder in the space-imaginary time domain] to
get the finite temperature expression. The finite temperature
Green function can be also obtained directly through the
Matsubara technique. We provide a complemented deriva-
tion using the latter approach in Appendix C. Both analyses
consistently give the single particle imaginary time-ordered
Green function for the right and left movers,

GR(τ, x) = −〈T̂τ R(τ, x)R†(0, 0)〉

= − i

2πα

(
πα
βv

)2γ+1

[
sinh

(
π (x+ivτ )

βv

)]γ+1[
sinh

(
π (x−ivτ )

βv

)]γ ,

(20)

GL(τ, x) = −〈T̂τ L(τ, x)L†(0, 0)〉

= i

2πα

(
πα
βv

)2γ+1

[
sinh

(
π (x+ivτ )

βv

)]γ [
sinh

(
π (x−ivτ )

βv

)]γ+1 ,

(21)

where α is the ultraviolet cutoff length scale, γ = 1
4 (K +

K−1) − 1
2 , and T̂τ denotes imaginary-time ordering. The

spectral function can be computed in the standard way by
Fourier transforming the imaginary time-ordered Green func-
tion GR/L(τ, x) and then analytically continuing to real fre-
quencies iωn → ω + iη, where η → 0+. The disorder-free
(“clean”) spectral function Acl(ω, q) is then given by

Acl
R/L (ω, q) = − 1

π
Im
[
Gret

R/L(ω, q)
]
, (22)

where the retarded Green function Gret
R/L(ω, q) is computed

using standard analysis, detailed in Appendix D,

Gret
R/L(ω, q) = i

β
(

2πα
βv

)2γ

4π2
sin (πγ )

× B

[
−i

β(ωη ∓ vq)

4π
+ γ

2
, 1 − γ

]

× B

[
−i

β(ωη ± vq)

4π
+ γ + 1

2
,−γ

]
, (23)

with q = k ∓ kF for the right (subscript R) and left (subscript
L) movers, respectively. In Eq. (23), B is the Euler Beta func-
tion and ωη ≡ ω + i0+. To the best of our knowledge, the full
expression of Gret

R/L(ω, q) has not appeared in the literature,
with only the imaginary part (or the greater/lesser Green
functions) given in Ref. [61]. A few remarks of our results: (i)
In doing Fourier transformation, we consider the approximate
space-time Green function valid for vτ, x > α. (ii) The zero
temperature limit of Eq. (23) is in good agreement with the
result in Ref. [59] (both real and imaginary parts) for γ <

0.5 at low energy ω/v, q < 1/α. (iii) The finite temperature
spectral function derived from Eq. (23) is consistent with the
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FIG. 5. Zero-temperature spectral function along the cut through
k = −kF + q indicated by a dashed line in the inset with full (dashed)
curve for disordered (clean) case. The interaction parameter γ ≡
1
4 (K + K−1) − 1

2 is set to 0.1. Inset: The spectral function in the
vicinity of the left Fermi point. The yellow shaded region indicates
finite weight of the clean spectral function. The width of the blue
double arrow is the inverse length scale (ξ−1) set by the strength of
forward-scattering disorder.

result in Ref. [61]. (iv) Our expression satisfies the Kramers-
Kronig relation for γ < 0.5.

We first discuss the clean spectral function. At zero tem-
perature, the spectral weight is constrained within the “light
cone” (the yellow shaded region in the inset of Fig. 5). The
quasiparticle peak is a power-law singularity located at ω =
−vq for the left mover, and at ω = vq for the right mover, with
the exponent γ = 1

4 (K + K−1) − 1
2 , as illustrated in Fig. 5

[58–60,65]. We plot in Fig. 6(a) the nonzero temperature,
disorder-free (left) spectral function for different values of
thermal length λ = vβ and vq = −0.1, illustrating thermal
broadening of the light cone constraint. Throughout this paper
we plot the spectral function (and the momentum-resolved
tunneling spectroscopy in the next section) in the low-energy
regime ω/v, q < α−1 (note α = 1), where our low-energy
Hamiltonian is valid.

The power-law threshold singularity is smeared at finite
temperature, displaying low temperature λ−1 � |q| (quan-
tum) and high temperature λ−1 � |q| (classical) regimes.
For the former, the quasiparticle peak remains asymmetric,
while for the latter, the smeared peak approaches a Lorentzian
at high temperature. The broadening of the peak is nicely
captured by a 2πγ T inelastic rate as discussed by Le Hur
[66,67]. We note that the linear in T and γ broadening
is very robust starting from low temperature until T be-
comes comparable to the ultraviolet cutoff, as illustrated in
Fig. 6(b).

The features discussed above can be understood in the
following. The Beta functions in the exact expression (23) can
be expressed through an integral identity,

B

(
−i

κ

2
+ C

2
, 1 − C

)
= 2

∫ ∞

0
dξeiκξ (2 sinh ξ )−C, (24)
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FIG. 6. Finite-temperature clean (disorder-free) spectral function
for a set of temperatures characterized by thermal de Broglie length
λ = vβ. (a) The interaction parameter γ = 0.1 and vq = −0.1.
(b) Quasiparticle peak width as a function of temperature T and
γ . The linear dependence on T and γ shows FWHM ≈ 4πγ T . The
frequency and the length are in units of vα−1 and α, respectively.

which gives the retarded Green function expressed as integrals
over the light-cone coordinates ξ± = vt ± x (τ ∼ it ),

Gret
R/L (ω, q) = i

2βv2
sin (πγ )

(
πα

βv

)2γ

×
∫ ∞

0
dξ±ei(ω∓vq)ξ±/2v sinh

(
πξ±
βv

)−γ

×
∫ ∞

0
dξ∓ei(ω±vq)ξ∓/2v sinh

(
πξ∓
βv

)−γ−1

.

(25)

The low-temperature (ω ∓ vq � 1
β

) power-law and high-

temperature (ω ∓ vq � 1
β

) Lorentzian forms of the quasipar-
ticle peak respectively correspond to the two different limits
of integral representation in Eq. (24): sinh(x) ≈ x for |x| � 1
and sinh(x) ≈ sgn(x)e−|x|/2 for |x| � 1.

2. Disorder-averaged spectral function

In the presence of disorder, the momentum is no longer
a good quantum number. However, generic spectroscopic ex-
periments probe the disorder-averaged spectral function, anal-
ysis of which we discuss next. As emphasized in Sec. III, TR
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FIG. 7. Zero-temperature spectral function with forward-
scattering disorder. The interaction parameter γ = 0.1 and
vq = −0.1. (a) Zero bias anomaly (ZBA) appears at ω = 0 for all
disorder strengths ξ−1, with the same exponent 2γ (inset), where
ξ = 2v2

K2�
. (b) The quasiparticle peak is broadened by disorders with

a (half-) width ξ−1 for FWHM < |vq| (dashed red line), beyond
which ZBA modifies the linear dependence. Inset: The slope = 2
in the noninteracting limit and the disorder-strength dependence
becomes more sensitive for stronger interaction. The frequency and
the length are in units of vα−1 and α, respectively.

invariance constrains heterogeneities to nonmagnetic impuri-
ties that can only forward scatter. The resulting disorder can
thus be treated exactly and in real space is given by Eq. (19).
In momentum space, disorder thus smears the disorder-free
spectral function through its convolution with a Lorentzian,
and is given by

AR/L (ω, q) =
∫ ∞

−∞
dk

ξ−1/π

(k − q)2 + ξ−2
Acl

R/L(ω, k), (26)

illustrated in Fig. 5, where ξ = 2v2

K2�
is the mean-free path

set by the forward-scattering disorder. Despite this ex-
pected smearing of sharp features by disorder, we observe
that disorder-averaged spectral function AR/L(ω, q), illus-
trated in Fig. 7(a), in fact exhibits (even at finite mo-
mentum q) a disorder-induced zero-bias anomaly (ZBA)
AR/L (ω, q) ∝ C|ω|2γ [63], with exponent γ and amplitude

C = 1
π2v

sin (2πγ )|�(−2γ )|( α
v

)2γ ξ−1

q2+ξ−2 that is independent
of disorder strength. The origin of this finite q ZBA is most
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FIG. 8. Finite-temperature spectral function with forward-
scattering disorder. (a) High temperature regime λ � ξ . (b) Low
temperature regime λ � ξ . The disorder length ξ = 30, the inter-
action parameter γ = 0.1 and vq = −0.1. The frequency and the
length are in units of vα−1 and α, respectively.

transparent in the strong disorder limit (ξq � 1), where we
can approximate the Lorentzian in Eq. (26) simply by a
constant ξ/π , with the convolution thereby reducing to an
integral over k, giving a local density of states, which is known
to exhibit a ZBA [63]. Physically, this counterintuitive effect
is due to impurities providing the momentum needed to shift
the q = 0 zero-frequency anomaly to a finite momentum q.

In contrast, the power-law peak at ω = vq is indeed broad-
ened by disorder, with the width ∝K2�/v, decreasing with
stronger repulsive interactions, in contrast to thermal effects
in disorder-free system discussed above [see Fig. 7(b)].

In the presence of both finite temperature and disorder one
expects a broadening of the disorder-free, zero-temperature
spectral function. Indeed, we find that at high temperature,
such that λ � ξ , the broadening of the quasiparticle peak is
dominated by thermal effect, with spectral function reducing
to the finite T clean case [see Fig. 8(a)]. In particular, the
quasiparticle peak approaches a Lorentzian with a (half-)
width ≈2πγ T + vξ−1, corresponding to temporal exponen-
tial decay rate of the momentum-time Green function [read
by a replacement τ → it and x → −vt in Eq. (21)] [67] at
high temperature. As we will show below, the prediction of the
peak width in the high temperature limit works surprisingly
well even at low temperature.
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Instead, at low temperatures, such that λ � ξ , the spec-
tral peak broadening is dominated by disorder as is clearly
reflected in Fig. 8(b). We note the ZBA at ω = 0 is thermally
rounded for ω � ω∗(T ) = v/λ ≈ T . This can be understood
in the following way: the disorder-induced exponential decay
results in an effective constraint |x| = |ξ+ − ξ−|/2 ≈ 0 in
Eq. (25), giving

Gret
dis,R(L)(ω, q) ≈ i

βv
sin (πγ )

(
πα

βv

)2γ

×
∫ ∞

−∞
dxe−iqxe− |x|

ξ

×
∫ ∞

0
dteiωηt sinh

(
πt

β

)−2γ−1

, (27)

working in the strong disorder limit, so the integral domain
of x may be extended to infinity. Using the definition of Beta
function in Eq. (24) then gives

Gret
dis,R(L)(ω, q) ≈ i

πv
sin (πγ )

(
2πα

βv

)2γ 2ξ−1

q2 + ξ−2

× B

(
−i

βωη

2π
+ 2γ + 1

2
,−2γ

)
(28a)

∝
{
ω2γ , for ω � ω∗,
T 2γ , for ω � ω∗. (28b)

The full Beta function encodes the crossover between ω2γ

for high frequency ω � ω∗ (low T ) and T 2γ at low frequency
ω � ω∗ (high T ). The former is precisely the ZBA discussed
above; the latter is consistent with the result previously re-
ported by Le Hur [67].

3. Asymptotic expression

In the low-temperature limit, the convolution expression
(26) for the spectral function at a finite temperature and
disorder can be simplified by using the Stirling formula for
the single-particle Green function. We thereby obtain the
following asymptotic form:

Gret
L (ω, q) ∼ − i

( α

2v

)2γ �(1 − γ )

�(1 + γ )
[−i(ω + vq) + 2πγ T ]γ−1

× [−i(ω − vq) + 2π (γ + 1)T ]γ (29)

that allows us to carry out the convolution in Eq. (26) and ob-
tain the asymptotic expression for the disorder-averaged low-
temperature Green function (see Appendix E). By choosing a
complex contour on the upper complex plane, the disordered
Green function is given by

Gret
dis,L(ω, q) ∼ Gret

L (ω, q + iξ−1) + Gret
2,L(ω, q), (30)

where the first term on the right-hand side is the residue
from the Lorentzian function and the second term comes from
the integral around the branch cut, evaluated in Appendix E
with the result given in Eq. (E5). From this asymptotic ex-
pression, we expect the quasiparticle peak to be located at
ω = −vq with an exponent γ − 1 broadened by thermal and
disorder effects to a width ≈2πγ T + vξ−1. The zero bias
anomaly at ω = 0 has exponent 2γ and is rounded only by the
thermal effects with a scale 2π (2γ + 1)T . As shown in Fig. 9,
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FIG. 9. Finite-temperature spectral function with forward-
scattering disorder plotted using the exact (solid line) and the
asymptotic (dashed line) Green functions. (a) Spectral function at
low (λ = 1000) and high (λ = 10) temperatures. Inset: Asymptotic
spectral function for λ = 1000, 2000, 4000 and the exact spectral
function for λ = 1000. (b) Quasiparticle peak width as a function of
temperature T and ξ−1 (inset). In the above, the interaction parameter
γ = 0.1 and vq = −0.1. The frequency and the length are in units of
vα−1 and α, respectively.

the asymptotic formula gives a good approximation to the
exact spectral function, especially at low temperature where
Stirling formula approximation is valid. At zero temperature,
this asymptotic prediction becomes exact as Eq. (29) is exact
under such condition. However, this analytical expression
only asymptotically captures the low temperature behavior
of the zero-bias anomaly [inset of Fig. 9(a)]. Nevertheless,
the quasiparticle peak is well described by the asymptotic
formula, showing a peak width ≈2πγ T + vξ−1 in Fig. 9(b).

As we have seen above, the spectral function of a single
helical edge reveals the fractionalized properties of the hLL.
However, (except for absence of Anderson localization due
to the forbidden disorder elastic backscattering) it fails to
distinguish the helical edge of a TI from a conventional LL
as for example describing a spin-polarized one-dimensional
conductor.

To bring out special properties of the hLL, we thus next
turn to the analysis of the momentum and energy resolved
inter-helical-edge tunneling, developing the theory of MRTS.

085152-8



FINITE-TEMPERATURE SPECTROSCOPY OF DIRTY … PHYSICAL REVIEW B 102, 085152 (2020)

FIG. 10. Vertical setup of two topological insulators in the quan-
tum spin Hall limit. In both edges, right movers carry up spin and left
movers carry down spins. The tunneling matrix elements between
the two edge forbid any mixing of L†

2R1 or R†
2L1 (i.e., tRL = t LR = 0).

The tunneling current is govern by the momentum transfer of order
|kF,1 − kF,2|.

IV. TWO EDGES: MOMENTUM-RESOLVED TUNNELING

We study the momentum and energy resolved interedge
tunneling spectroscopy, which, as we will show, exhibits
distinctive signatures of the hLL, characterizing an edge of
a time-reversal invariant topological insulator with K > 3/8
[7,8,34]. A schematic of a vertical (coplanar) geometry of
an experimental setup that we study is illustrated in Fig. 10
(Fig. 16). This is the TI edge counterpart of the setup stud-
ied for a conventional LL in [57] and demonstrated exper-
imentally [50–55]. In such a setup, the momentum transfer
Q = 2πBd/φ0 and frequency ω = eV/h̄ can be independently
tuned by a transverse magnetic field B and interedge source-
drain bias V . In the above, d denotes the distance between
two edges, φ0 = h/e is the magnetic flux quantum, and e > 0
is the elementary charge.

In the rest of the section we first derive the tunneling
current from linear response theory. Then, bosonization is
employed to anticipate both the intraedge and the interedge
interactions. We discuss various situations ranging from the
quantum spin Hall limit (Sz spin conservation) to the generic
situations (i.e., Rashba spin orbit coupling, disorder, distinct
edge velocities, and interaction strengths). The analytical
expressions for the finite-temperature tunneling currents (with
the same edge velocity) are the main new results of this work.

A. Tunneling current

Following Ref. [57] we consider two parallel quantum
edges with a separation that allows weak interedge tunneling
current. The coupled edges Hamiltonian is given by H =
H1 + H2 + Hint + Htun, where

Ha =
∑
α=±

∫
k
[εaα (k) − μa]c†

aα (k)caα (k), (31)

Hint =U12

∫
x
ρ1(x)ρ2(x) +

∑
a=1,2

Ua

∫
x
ρa(x)ρa(x), (32)

Htun = − t0
∑
s=↑↓

∫
x
[c†

1s(x)c2s(x) + c†
2s(x)c1s(x)]. (33)

In the above expressions, εaα (k) = εaα (k) − εaα (kF,aα ) with
εaα (k) the band dispersion for edge a = 1, 2, Ua > 0 (U12 >

0) is the intraedge (interedge) Coulomb interaction (screened
by a gate), ρ1 (ρ2) is the density of edge 1 (edge 2), t0 is the
interedge tunneling amplitude, caα is the annihilation operator
for the chiral fermion with chirality α = +/− (not to be
confused with the ultraviolet length scale) on the edge a, and
cas is the annihilation operator for the physical fermion with
spin s on the edge a. We will consider the electrochemical
potentials μ1 = eV (e > 0) and μ2 = 0 such that current
flows from edge 1 to 2 (2 to 1) for positive (negative) interedge
source-drain bias V . Importantly, caα (k) and cas(k) are related
to each other via Eqs. (5) and (6), detailed in Appendix A.

In the presence of an external magnetic field applied
transversely to the plane defined by the two edges, tunneling
electrons experience a Lorentz force, included through the
Peierls substitution c†

2c1 → c†
2c1ei(−e/h̄)

∫ d
0 dyAy (x,y), where d is

the interedge y separation. For magnetic field �B = −Bẑ, we
choose the Landau gauge �A = −Bxŷ in which the associ-
ated Berry phase is included via the replacement c1(x) →
c1(x)eiQx, where Q = 2πBd/φ0. As a result, H1, H2, Hint

remain unchanged and the tunneling operator Htun is replaced
by

HQ
tun = − t0

∑
s=↑↓

∫
x
[c†

1s(x)c2s(x)e−iQx + H.c.], (34)

where H.c. denotes the Hermitian conjugate.
We are interested in the tunneling current from edge 1 to

edge 2. This can be derived by computing the time derivative
of the charge in edge 1, Îtun = − 1

i [eN1, H] = ∫
dxĴ (x), where

Ĵ (x) = iet0
∑

s

[c†
2s(x)c1s(x)eiQx − c†

1s(x)c2s(x)e−iQx] (35)

is the tunneling current density. For the clean case, the ex-
pectation value of the tunneling current density is position
independent, and thus the tunneling current Itun is proportional
to the length of the tunneling region. For disordered case that
we treat below, we will study disordered averaged current that
is again x independent.

To compute the expectation value of the tunneling current
density, we work in interaction representation with respect to
perturbation HQ

tun. We select H12 = H1 + H2 + Hint and HI =
HQ

tun. The expectation value of the tunneling current density at
time t is given by

J = 1

Z
Tr[e−βH12Û †(t )Ĵ (x)Û (t )], (36)

where Û (t ) = Û12(t )ÛI (t ), Û12(t ) = e−iH12t , ÛI (t ) =
T̂ exp [−i

∫ t
−∞ dt ′HI

tun(t ′)] (T̂ the time-ordering operator),

HI
tun(t ) ≡ eiH12t HQ

tune−iH12t , and β is the inverse temperature.
Importantly, Z ≡ Tr[e−βH12 ] is the “unperturbed” partition
function, with two edges in thermal equilibrium at the
same temperature (due to interedge interaction), but kept at
the electrochemical potential difference μ1 − μ2 = eV .
Equation (36) gives the expectation of the tunneling
current density at time t corresponding to turning on the
single-particle tunneling in the infinite past. The tunneling
current J is in the steady state, i.e., t (and x) independent, and
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clearly vanishes to O(t0). Relegating the details to Appendix
F, standard analysis perturbative in t0 to leading O(t2

0 ) order
gives

J (ω = eV/h̄, Q) ≈ et2
0 [J1→2(ω, Q) − J2→1(ω, Q)], (37)

where

J1→2(ω, Q) =
∑
s,s′

∫ ∞

−∞
dt ′
∫ ∞

−∞
dx′ eiωt ′

e−iQx′

× 〈c†
1s′c2s′ (t ′, x′)c†

2sc1s(0, 0)〉, (38)

J2→1(ω, Q) =
∑
s,s′

∫ ∞

−∞
dt ′
∫ ∞

−∞
dx′ eiωt ′

e−iQx′

× 〈c†
2sc1s(0, 0)c†

1s′c2s′ (t ′, x′)〉. (39)

We calculate the tunneling current (36) using bosoniza-
tion and utilizing imaginary time and Matsubara analytic
continuation (see Appendix G). To this end, using spectral
decomposition, we relate physical current J to the Matsubara
correlator J (iωn, Q),

J = 2et2
0 Im[J (iωn → ω + iη, Q)], (40)

where J (iωn, Q) is a Fourier transform of the imaginary-time
ordered correlator defined by

J (iωn, Q) =
∫ β

0
dτ

∫ ∞

−∞
dxei(ωnτ−Qx)J (τ, x), (41)

with the space-imaginary time correlation function given by

J (τ, x) =
∑

s,s′=↑↓
〈T̂τ c†

1s′c2s′ (τ, x)c†
2sc1s(0, 0)〉. (42)

B. Bosonization

As we have done in Sec. III B for the single-edge, here too
we utilize standard bosonization to treat Luttinger interaction
and disorder to compute the interedge tunneling current.
The imaginary-time action of the two-edge setup (without
interedge tunneling) is given by S = S12 + Sdis, where

S12 =
∑

a=1,2

∫
τ,x

{
va

2π

[
Ka(∂xφa)2 + 1

Ka
(∂xθa)2

]

+ i

π
(∂xθa)(∂τφa)

}
+ U12

π2

∫
τ,x

[∂xθ1(x)][∂xθ2(x)],

Sdis =
∫

τ,x

[
V1(x)

1

π
∂xθ1 + V2(x)

1

π
∂xθ2

]
. (43)

Because they appear on distinct edges, we take the disor-
der potentials Va(x) to be independent, zero-mean Gaussian
fields with Va(x)Va′ (y) = �aδaa′δ(x − y). We ignore interedge
backscattering interactions that are only relevant under certain
commensurate conditions [68]. The bosonized action S12 (43)
is quadratic and therefore can be written in diagonalized
form. We provide the details of the explicit transformation in
Appendix H analogous to Ref. [69]. After diagonalizing S12,
the forward-scattering disorder, Sdis can be taken into account
via a linear transformation on the θa fields. For instance, in the
limit U12 = 0, where the action S12 is in its diagonalized form,

the disorder-averaged correlation function is given by

〈e−in1θ1(τ,x)ein2θ2(τ,x)e−in2θ2(0,0)ein1θ1(0,0)〉

= e
−∑a

n2
aK2

a �a
2v2

a
|x|

× 〈e−in1 θ̃1(τ,x)ein2 θ̃2(τ,x)e−in2 θ̃2(0,0)ein1 θ̃1(0,0)〉. (44)

We note that this is a generalized version of Eq. (19). For
U12 �= 0, one has to first diagonalize the two-edge problem
(see Appendix H), and then average over disorder to obtain
the disorder-averaged correlation function.

C. Sz-conserved edge: Quantum spin Hall limit

For a 2D TI with an out-of-plane reflection symmetry
(z → −z), the spin quantization axis of the helical edge is
generally along this z axis due to spin-orbit coupling of the
form ( �p × �E ) · �σ , where electrons with in-plane momentum
�p feels an out-of-plane (z-axis directed) effective magnetic
field due to the in-plane electric field (or crystal field polar-
ization) �E , by symmetry transverse to the TI edge. Such Sz-
conserved topological insulator features quantized spin-Hall
conductance. It is important to note that Sz conservation is
not robust as RSOC generically breaks any spin conservation.
However, it is helpful to first consider this technically simpler
special case. More generic non-spin-conserving case can be
built from the results derived in this section.

We first consider idealized case of Sz-conserved edges in
the absence of disorder or Zeeman field. At low source-drain
bias, we decompose the fermion fields so that the imaginary-
time tunneling current correlator in Eq. (42) is written in terms
of tunneling processes between different Fermi points

J (τ, x) = tRRJRR + tLLJLL + tRLJRL + tLRJLR, (45)

where tRR, tLL, tRL, tLR are constants proportional to the square
of the tunneling matrix elements and

JRR(τ, x) = e−iδkF x〈T̂τ R†
1R2(τ, x)R†

2R1(0, 0)〉,
JLL(τ, x) = eiδkF x〈T̂τ L†

1L2(τ, x)L†
2L1(0, 0)〉,

JRL(τ, x) = e−ikF,T x〈T̂τ R†
1L2(τ, x)L†

2R1(0, 0)〉,
JLR(τ, x) = eikF,T x〈T̂τ L†

1R2(τ, x)R†
2L1(0, 0)〉. (46)

In the above, δkF = kF,1 − kF,2 and kF,T = kF,1 + kF,2 (kF,a =
kF,a± as we assume TR symmetry holds on each edge). The
physical tunneling current J can then be obtained via the
standard analytic continuation (40).

1. Vertical geometry

For vertical geometry illustrated in Fig. 10, two Sz con-
served edges have exactly the same spin orientation. The
low-energy expressions of the fermionic Sz eigenstate fields
(Appendix A with k0 → ∞) are given by

ca↑ ≈ eikF,axRa(x), ca↓ ≈ e−ikF,axLa(x). (47)

Plugging the expression above into the imaginary-time corre-
lator in Eq. (42), we obtain

JQSH,⊥(τ, x) = JRR(τ, x) + JLL(τ, x). (48)
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Thus, indeed, there is no tunneling current contributions cor-
responding to backscattering between the right and left Fermi
points (tRL = tLR = 0). These are forbidden by the Sz con-
serving U (1) spin-rotational symmetry, as such contribution
requires a spin flip ↑↔↓, whose matrix element identically
vanishes in the presence of TR symmetry and in the absence
of Rashba spin-orbit interaction. The momentum-resolved
tunneling current is given by

J (ω, Q) ≈ JRR(ω, Q + δkF ) + JLL(ω, Q − δkF ). (49)

Below we will focus on JLL(V, Q) because the other term
can be obtained via the relation JRR(ω, q) = JLL(ω,−q) if we
assume TR symmetry holds independently on each edge.

The space imaginary-time correlator can be calculated for
generic intraedge LL interactions (see Appendix H), given by

〈T̂τ L†
1L2(τ, x)L†

2L1(0, 0)〉

= − 1

(2πα)2

∏
b=±

×
(

πα
βvb

)2γb+1

[
sinh

(
π (x+ivbτ )

βvb

)]γb− b
2 γ12
[

sinh
(

π (x−ivbτ )
βvb

)]γb+ b
2 γ12+1

,

(50)

where v± encodes the velocity in the diagonal basis, and γ±,
γ12 are the anomalous exponents. The explicit forms of v±,
γ±, and γ12 are given in Appendix H. Notice that γ12 < 0
(γ12 > 0) for repulsive (attractive) interedge interaction. In
particular, for U12 = 0, JLL simply reduces to a product of
two single-particle Green functions with the parameters given
by γ12 = 0, γ± = γ1,2, and v± = v1,2. For identical edges
(v1 = v2 and K1 = K2), v+ (v−) is associated with the velocity
of symmetric (antisymmetric) interedge degrees of freedom.

In evaluating JLL(ω, q), we use two different ways (de-
tailed in Appendix F): (i) evaluate the tunneling current as
a convolution of two spectral functions if U12 = 0, and (ii)
analytically continue to real time and Fourier transform. In
particular, method (i) works well if we assume one of the
edges is noninteracting and therefore the corresponding spec-
tral function is just a delta function. On the other hand, method
(ii) works well at T = 0 since one integral variable can be
integrated over analytically in that situation.

a. Zero-temperature, clean case. We start with the simplest
case: zero temperature, no disorder and no interaction. In this
case, the tunneling current is simply given by a box function

J0
LL(ω, q) = et2

0 sgn(ω)

|v1 − v2| �[−(ω + v2q)(ω + v1q)]. (51)

In the limit v1 → v2 ≡ v, the tunneling current becomes a
delta function J0

LL(ω, q) = −et2
0 qδ(ω + vq). Similar to the

spectral function, the presence of interaction makes the tun-
neling peak less sharp and display power-law features as
illustrated in Fig. 11 (et2

0 = 1 hereafter). In the presence of
interedge interaction, the eigenmodes are antisymmetriclike
(subscript −) and symmetriclike (subscript +) linear combi-
nations of the two edges. As illustrated in the inset of Fig. 11,
strong repulsive interedge interaction (U12 � v1 − v2) makes
the tunneling current diverge at ω = −v−q.

(
,q
ω
)

J L
L

ω 0.100.05
0

4
-
-

(
,q
ω
)

J L
L

- - -

FIG. 11. Zero-temperature clean (disorder-free) tunneling cur-
rent with different velocities for a set of interaction parameters. The
edge velocities and momentum (magnetic field) are set to v1q =
−0.1 and v2q = −0.05. et2

0 = 1. The black dashed line indicates
the noninteracting case (γ1 = γ2 = 0). The red (blue) curve denotes
the case of interacting edge 1 (edge 2), where finite current appears
for ω < v1q (ω < v2q) due to fractionalization in chiral degrees
of freedom. The inset shows the effects of repulsive interedge
interaction. The interaction parameters and edge velocities are set
to γ+ = γ− = 0.05, v+q = −0.1, and v−q = −0.05. The frequency
and the length are in units of v1α

−1 and α, respectively.

b. Finite-temperature, clean case. Now we discuss the
finite-temperature tunneling current in the absent of disorder.
For the special case v1 = v2 and U12 = 0, we can perform
Fourier transform analytically [using Eq. (D8)]. The finite-
temperature clean tunneling current is given by

Jcl
LL(ω, q) = − 2et2

0

(
2πα

βv

)4γ 1

4π2v
sin(2πγ )

× Im

{
B

[
β(−iω + ivq)

4π
+ γ + 1,−1 − 2γ

]

× B

[
β(−iω − ivq)

4π
+ γ , 1 − 2γ

]}
, (52)

where γ = (γ1 + γ2)/2 is the average interaction parameter.
In the noninteracting limit (i.e., γ = 0 and U12 = 0), the
tunneling current becomes temperature independent as the
strict kinematic constraint of two equal velocity, in contrast to
the distinct velocity case discussed below. For identical edges
(K1 = K2 = K and v1 = v2 = v), we can also obtain analyti-
cal expression for U12 �= 0 because the space-time correlator
in Eq. (50) only depends on the velocity of antisymmetric
mode v−. The resulting clean tunneling current takes the
same form as Eq. (52) but with the replacement v → v− =
v
√

1 − U12K/2π2v and γ → (K− + K−1
− )/4 − 1/2, where

K− = K/
√

1 − U12K/2π2v. At zero temperature, the tunnel-
ing current exhibits a power singularity at ω = −vq, which
becomes two peaks (or one antisymmetric peak) for the dif-
ferential tunneling conductance as shown in Fig. 12. Remark-
ably, the peak-to-peak distance is captured by wpp ≈ 7.5γ T
for wpp < |vq|. For wpp > |vq|, the broadening of the left
(positive-valued) peak is dominated by the thermal excitation
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FIG. 12. Finite-temperature clean (disorder-free) differential
tunneling conductance for identical edge velocities with vq = −0.1.
(a) At zero temperature, a positive delta function (negative power-law
singularity) is located at ω = −vq ± 0+. At finite temperatures, the
two peaks are broadened and move towards the left and the right,
respectively. The intraedge interaction parameter is set to 2γ =
γ1 + γ2 = 0.1. (b) Peak-to-peak distance (wpp) as a function of T
and γ . The linear dependence on T and γ shows wpp ≈ 7.5γ T for
wpp < |vq| (red dashed line). The frequency and the length are in
units of vα−1 and α, respectively.

around the Fermi point and the linear dependence breaks
down.

c. Disordered case. Now we discuss the effects of forward-
scattering disorder (evaluated through a convolution with a

Lorentzian characterized by a disorder strength ξ−1 = K2
1 �1

2v1
+

K2
2 �2

2v2
). At zero temperature, exact analytical expression is

derived in Eq. (I11). Similar to spectral function in a sin-
gle edge, the differential tunneling conductance features a
disorder-induced ZBA in a power-law form dJLL/dω ∝ |ω|4γ ,
independent of disorder strength, as shown in Fig. 13(a). The
peak-to-peak distance exhibits a linear dependence on ξ−1 for
wpp < |vq| as illustrated in Fig. 13(b). Different from thermal
broadening, the disorder can smear out the peak even at zero
temperature (see the inset). For wpp > |vq|, tunneling weights
from opposite momentum (i.e., having different sign of q)
will start to contribute, which gives opposite currents, and
the linear dependence fails. At finite temperature, wpp still
depends linearly on T despite the presence of finite disorder

(a)

(b)
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ω
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ω
-

FIG. 13. Zero-temperature differential tunneling conductance
with forward-scattering disorders for identical edge velocities. The
momentum is taken to be vq = −0.1. (a) Zero bias anomaly appears
at ω = 0 for all disorder strengths ξ−1, with the same exponent

4γ (inset), where ξ−1 = K2
1 �1

2v1
+ K2

2 �2

2v2
. The interaction parameter

γ = 0.05. (b) Peak-to-peak distance (wpp) as a function of ξ−1 and
γ . wpp is proportional to ξ−1 for wpp < |vq| (red dashed line). The
disorder-strength dependence becomes more sensitive for stronger
interaction (inset). The frequency and the length are in units of vα−1

and α, respectively.

[see Fig. 14(a)], which suggests that the disorder strength ξ−1

and interaction strength γ can both be quantified through a
temperature dependence measure on wpp. Figure 14(b) shows
that ZBA gets rounded at finite temperature. The thermal
rounding takes the similar form as Eq. (28).

d. Distinct velocity. When U12 > 0, the system is in gen-
eral characterized by two distinct velocities v± with v− < v+
(even for identical edges) and an exponent γ12 [given by
Eq. (H4)], encoding the correction due to the interaction be-
tween the two edges (U12). The interaction-driven inequality
of velocities v− < v+ has qualitatively important effects on
the tunneling current. This is in contrast to nonvanishing γ12

that does not modify the tunneling current qualitatively. We
therefore take γ12 = 0 for simplicity. With such an approx-
imate, the effects of interedge interaction U12 still enter by
modifying v± and γ±. The γ12 = 0 approximation affects
the analytical form of the tunneling peak in the clean limit
(see the inset of Fig. 11) but does not change the thermal
broadening rate because the exponential decay factor at large
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FIG. 14. Finite-temperature differential tunneling conductance
with forward-scattering disorders for dentical edge velocities.
(a) High temperature regime λ � ξ . Inset: The peak-to-peak distance
wpp depends linearly on T for wpp < |vq| (red dashed line). (b) Low
temperature regime λ � ξ . The momentum is taken to be vq =
−0.1. The intraedge interaction parameter is set to γ = 0.05 and
disorder length ξ = 20. The frequency and the length are in units
of vα−1 and α, respectively.

time does not depend on γ12 [see Eq. (50)]. Also, in the
presence of the disorders, by power counting in Eq. (50) we
expect that the ZBA of the differential tunneling conductance
to be characterized by a power-law exponent 2γ+ + 2γ−,
which is also independent of γ12 (but does depend on U12). At
zero temperature, the clean differential tunneling conductance
is featured by two singularities located at ω = −v+q and
ω = −v−q. One prominent effect of v+ �= v−, as illustrated
in Fig. 15(a), is on thermal broadening of the tunneling peak,
even in the noninteracting limit. The absence of thermal
broadening in the same velocity case is due to the strict kine-
matic constraint which is fine tuned. Remarkably, the thermal
broadening (due to distinct velocities) is linear in T at high
temperature [see inset of Fig. 15(a)]. The temperature depen-
dence should also be proportional to the velocity difference,
i.e., ∝(v+ − v−)T , if v+ − v− � v+ + v−. In the presence
of interaction, with or without disorders, the peak-to-peak
distance still exhibits a considerable linear in T regime [see
Figs. 15(b) and 15(c)]. However, the zero temperature peak
width (or wpp) is now determined by both the disorder strength
ξ−1 and (v+ − v−)q. In evaluating Figs. 15(b) and 15(c), we

(a)

(b)

(c)

T
0.0 0.2

0.0
0.1

0.1

dJ
LL
/d
ω

ω-

-

dJ
LL
/d
ω

ω--

-

T
0.0 0.2

0.0

0.2

0.1

0.1

T
0.0 0.2

0.0

0.2

0.1

0.3

0.1
T

dJ
LL
/d
ω

ω

-
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FIG. 15. Differential tunneling conductance for distinct edge
velocities. The edge velocities and momentum are set to v+q = −0.1
and v−q = −0.08. (a) Thermal broadening of the noninteracting
clean tunneling peak. (b) Thermal broadening of the interacting
(γ+ = 0.1, γ− = 0, γ12 = 0) clean tunneling peak. (c) Thermal
broadening of the interacting (γ+ = 0.1, γ− = 0, γ12 = 0) tunneling
peak in the presence of forward-scattering disorders ξ = 30. The
frequency and the length are in units of v1α

−1 and α, respectively.

set one of the interaction parameter to zero γ− = 0 and use
the asymptotic expression in Eq. (30) for the symmetriclike
branch for computational convenience. More generally, we
expect the interaction facilitated thermal broadening rate is
determined by γ+ + γ−.
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FIG. 16. Horizontal setup of two topological insulators in the
quantum spin Hall limit. The two comoving edges have opposite spin
orientations. As a result, the tunneling matrix element forbids the
mixing of R†

2R1 and L†
2L1 (i.e., tRR = t LL = 0). The tunneling current

is govern by the momentum transfer of order |kF,1 + kF,2|.

2. Horizontal geometry

As a complementary experimental setup, we consider hor-
izontal geometry illustrated in Fig. 16, where the right/left
movers of the two edges have opposite spins. In this case, the
low-energy expressions of the fermionic fields are given by

c1↑ ≈ eikF,1xR1(x), c1↓ ≈ e−ikF,1xL1(x),

c2↑ ≈ e−ikF,2xL2(x), c2↓ ≈ eikF,2xR2(x). (53)

The imaginary-time correlator is now given by

JQSH,‖(τ, x) = JRL(τ, x) + JLR(τ, x), (54)

where tRR = tLL = 0, by Sz conserving U (1) spin rota-
tional symmetry. The momentum-resolved tunneling current
is given by

J (ω, Q) ≈ JRL(ω, Q + kF,T ) + JLR(ω, Q − kF,T ). (55)

Below we will focus on JRL(ω, q) because the reverse current
contribution can be obtained via the relation JLR(ω, q) =
JRL (ω,−q), if we assume that TR symmetry holds indepen-
dently on each edge (i.e., small Zeeman field).

The space imaginary-time correlator can be calculated
with both the intraedge and interedge LL interactions (see
Appendix H), given by

〈T̂τ L†
1R2(τ, x)R†

2L1(0, 0)〉

= 1

(2πα)2

∏
b=±

×
(

πα
βvb

)2γb+1

[
sinh

(
π (x+ivbτ )

βvb

)] 1+2γb+bγ̄12
2

[
sinh

(
π (x−ivbτ )

βvb

)] 1+2γb−bγ̄12
2

,

(56)

where γ̄12 are the anomalous exponents. Note that γ̄12

is different from γ12; the explicit expression is given in
Appendix H. For U12 = 0, JRL simply reduces to a product of
two single-particle Green functions with the parameters given
by γ̄12 = 1, γ± = γ1,2, and v± = v1,2.

-

- -
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FIG. 17. Zero-temperature clean (disorder-free) tunneling cur-
rent for a set of intraedge interaction parameters. The interedge inter-
action is ignored in this plot. The edge velocities and momentum are
set to v1q = −0.1 and v2q = −0.05. The black dashed line indicates
the noninteracting case (γ1 = γ2 = 0). The red (green) line denotes
the case that edge 1 (edge 2) becomes interacting, where finite current
appears for ω < v1q (ω > −v2q) due to fractionalization in chiral
degrees of freedom. The inset shows the corresponding differential
tunneling conductance. The frequency and the length are in units of
v1α

−1 and α, respectively.

a. Zero-temperature, clean case. In the zero temperature,
noninteracting, and clean limit, the tunneling current is simply
given by a step function

J0
RL(ω, q) = et2

0 sgn(ω)

|v1 + v2| �[(ω − v2q)(ω + v1q)]. (57)

As shown in Fig. 17, the presence of interaction smears out
the steps and generates finite tunneling weights at opposite
momentum, i.e., ω > −v2q (ω < v1q) for γ2 > 0 (γ1 > 0).
We also plot the differential tunneling conductance in the inset
of Fig. 17.

b. Finite-temperature, clean case. For the special case v1 =
v2 and U12 = 0, we can derive the finite-temperature clean
tunneling current [using Eq. (D8)], given by

Jcl
RL (ω, q) = − 2et2

0

(
2πα

βv

)4γ 1

4π2v
sin(2πγ )

× Im

{
B

[
β(−iω + ivq)

4π
+ γ + 1

2
,−2γ

]

× B

[
β(−iω − ivq)

4π
+ γ + 1

2
,−2γ

]}
. (58)

In this case, the tunneling current (differential tunneling con-
ductance) is an odd (even) function in ω. With increasing
temperature, the two peaks of the differential tunneling con-
ductance at ω = ±vq are broadened, move toward the center
and merge into a single peak at ω = 0 [see Fig. 18(a)]. The
thermal broadening of the peaks is quantified by the half-
width at half-maximum (HWHM). Specifically, we calculate
the distance between the positions of the right peak and
its right half-maximum. The peak width is proportional to
the temperature until the two (left and right) peaks start to
merge [see Fig. 18(b)]. Although the magnitude of the two
edge velocities are identical, the kinematic constraint on the
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FIG. 18. Finite-temperature clean (disorder-free) differential

tunneling conductance for identical edge velocities with vq = −0.1.
(a) At zero temperature, two power-law singularities are located at
ω = ±vq. At finite temperature, the two peaks get broadened and
merge into a single peak at ω = 0 with increasing temperature.
The intraedge interaction parameter is set to 2γ = γ1 + γ2 = 0.1.
(b) Half-width at half-maximum versus temperature. The linear
dependence on T holds for HWHM < |vq| (red dashed line) and
the slope has an offset ≈3.5 in the noninteracting limit (inset). The
frequency and the length are in units of vα−1 and α, respectively.

tunneling current is weaker than that in the left-to-left tunnel-
ing discussed previously. As a result, there is a strong thermal
broadening even in the noninteracting limit [see the inset in
Fig. 18(b)].

c. Disordered case. Now we discuss the effects of
forward-scattering disorder. At zero temperature, the in-
creasing strength of forward-scattering disorder smears out
the power-law peak but the position of the peaks do not
move much (comparing to the thermal effect) as shown
in Fig. 19(a). Again, a ZBA appears with an exponent
2γ1 + 2γ2 independent of the disorder strength. The disorder-
induced peak broadening is proportional to the strength ξ−1

for HWHM < |vq|. For HWHM > |vq|, the linear depen-
dence on ξ−1 still roughly holds since the two peak do not
merge [see Fig. 19(b)]. At finite temperatures, there is a
crossover between the zero-temperature disordered and the
finite-temperature clean behaviors [see Fig. 20(a)] with the
peak width increased linearly with temperature for HWHM <

|vq|. Figure 20(b) shows that ZBA gets rounded at finite

(a)

(b)

ω

dJ
RL
/d
ω

- -

-

FIG. 19. Zero-temperature differential tunneling conductance
with forward-scattering disorders for identical edge velocities. The
momentum is taken to be vq = −0.1. (a) Zero bias anomaly appears
at ω = 0 for all ξ−1, with the same exponent 4γ , where ξ−1 =
K2

1 �1

2v1
+ K2

2 �2

2v2
characterizing the strength of disorder. The interac-

tion parameter γ = 0.05. (b) Half-width at half-maximum versus
temperature. HWHM is proportional to ξ−1 for HWHM < |vq| (red
dashed line). Inset: The slope ≈1 in the noninteracting limit and the
disorder-strength dependence becomes more sensitive for stronger
interaction. The frequency and the length are in units of vα−1 and α,
respectively.

temperatures. The effect due to thermal rounding is similar
to Eq. (28).

d. Distinct velocity. For distinct edge velocities, the zero-
temperature clean tunneling current is qualitatively modified
from the case of identical velocities, as shown in Fig. 17.
However, in the presence of forward-scattering disorders,
the power-law peaks become rounded and a ZBA appears
characterized by a modified exponent 2γ+ + 2γ−. The linear
dependence of the peak width still holds and can be used for
quantifying the disorder and interaction strengths.

3. Misaligned spin quantization axes

As discussed above, for the ideal cases where the two spin
quantization axes are parallel, some of the tunneling processes
vanish identically in the TR symmetric limit. However, when
the two 2D TI layers are misaligned such that the quantiza-
tion axes differ by an angle φ12 ∈ [0, π/2], all the tunneling
amplitudes in Eq. (45) are expected to be nonzero. To O(t2

0 )
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FIG. 20. Finite-temperature differential tunneling conductance
with forward-scattering disorders for identical edge velocities. The
momentum is taken to be vq = −0.1. The intraedge interaction
parameter is set to γ = 0.05 and disorder length ξ = 30. (a) Thermal
broadening of the tunneling peak. Inset: Half-width at half-maximum
depends linearly on T for HWHM < |vq| (red dashed line) (b) Ther-
mal rounding of zero-bias anomaly. The frequency and the length are
in units of vα−1 and α, respectively.

order, the tunneling constants obey the sum rule∑
α′=R,L

tαα′ = 1, (59)

and the ratio tRL/tRR = tan2 φ12 (= cot2 φ12) for the vertical
(coplanar) setup. Also, tRR = tLL and tRL = tLR due to the
time-reversal symmetry on the edges, which will be broken
if we consider Zeeman effect discussed in the next section.

D. Other subleading corrections

1. Zeeman effect

With Zeeman effect, for vertical geometry �B ⊥ ẑ, we note
there will be finite tunneling current between right and left
Fermi points and a gap will open at the charge neutral point.
In contrast, for the coplanar geometry �B ‖ ẑ, the spin quan-
tization axis will remain along the z axis in the presence of
the magnetic field and tunneling current contribution between
the two right/left Fermi points will remain zero. The charge
neutral point in this case remains gapless but moves away
from the time-reversal point in the Brillouin zone.

FIG. 21. Bands, spin textures, and single-particle tunnelings be-
tween TI edges, illustrated with the horizontal setup in Fig. 16.
(a) Generic TI edges include Rashba spin-orbit coupling, leading
to the illustrated momentum-dependent spin texture. Despite a non-
conservation of Sz, TR symmetry protects a degenerate pair of
Kramer states at every energy. The tunnelings can be classified by
small momentum transfer (yellow solid arrows) and large momentum
transfer (yellow dashed arrows). (b) Sz conserving TI edges. Due
to the additional conservation of Sz, the small momentum transfer
tunneling is forbidden.

2. Rashba spin-orbit coupling

The effects of Rashba spin-orbit coupling on MRTS is a bit
more complicated, but as we discuss below, is subleading for
a large bare (without RSOC) tunneling amplitude. We expect
the RSOC effects to be manifest for the right-to-right (right-
to-left) tunneling process for the perfectly aligned horizontal
(vertical) geometry, where bare tunneling vanishes otherwise.
For concreteness, here we briefly discuss the perfectly aligned
horizontal geometry with identical edges [see Fig. 21(a)],
focusing on tunneling current between two right Fermi points.
The analysis for the right-to-left tunneling current and for the
vertical geometry are quite similar.

Using chiral decomposition in Eqs. (A3) and (A4) we
express the “hopping term” as follows:

∑
s=↑↓

c†
1sc2s ≈ e−iδkF x

{
δkF kF,T

k2
0

R†
1R2 + i

kF,T

k2
0

∂x(R†
1R2)

+ i
δkF

k2
0

[∂x(R†
1)R2 − R†

1∂x(R2)]

}

+ (hopping between other Fermi points), (60)

where δkF = kF,1 − kF,2, kF,T = kF,1 + kF,2. We assume that
kF,T � δkF , so only the first two terms in Eq. (60) are con-
sidered. The imaginary-time correlator for the right-to-right
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tunneling current is given by

J RSOC
RR (τ, x) = e−iδkF x[α12〈T̂τ R†

1R2(τ, x)R†
2R1(0, 0)〉

+ α′
12〈T̂τ [∂xR†

1R2](τ, x)[R†
2R1](0, 0)〉.

− α′
12〈T̂τ [R†

1R2](τ, x)[∂xR†
2R1](0, 0)〉.

+ α′′
12〈T̂τ [∂xR†

1R2](τ, x)[∂xR†
2R1](0, 0)〉],

(61)

where α12 = (δkF kF,T )2/k4
0 , α′

12 = iδkF k2
F,T /k4

0 , and α′′
12 =

k2
F,T /k4

0 .
For distinct edges we typically expect that α12 � α′

12, α
′′
12,

and thus the momentum-resolved tunneling current is qual-
itatively the same as that in the quantum spin Hall limit.
However, for the identical edges considered here, the α12

term becomes less important as δkF → 0, for which additional
contributions coming from the derivative terms in Eq. (61)
are manifest. Despite the complicated structures in the tun-
neling currents, we argue that there are still universal features
whether RSOC is included or not. First, we expect the “single-
peak” (“no-peak”) feature of JLL (JRL) still remains for the
derivatives on the space-time correlation functions change the
exponent by “−1,” which, by dimensional analysis, make the
tunneling current less divergent. Another observation is that
the linear-T thermal broadening of the tunneling peak should
be robust against RSOC, since the derivatives on the space-
time correlation functions does not change the exponential
decay factors at large vτ, x. The correlation function can in
principle be calculated by bosonization, but we do not pursue
this analysis here.

3. Interedge backscattering

Besides the correction in the tunneling current matrix
element, the RSOC also enables backscattering interactions
[11,37,38], contributing to the finite-temperature broadening.
The most relevant (in renormalization group analysis) pertur-
bations involve both edges. For strong interaction K± < 3/4
(identical edges), instabilities appear [68] due to interplay
of interedge interactions and forward-scattering disorder, the
tunneling current of the resulting phase is beyond the scope of
present work, but would be of interest to study in the future in
a context of specific experiments.

V. CONCLUSION

In this paper we developed a finite-temperature spec-
troscopy of a hLL as realized on the boundary of the 2D
time-reversal symmetric TI. In our analysis we utilized stan-
dard bosonization which enabled analytical progress in the
presence of interactions. Moreover, because TR symmetry
forbids backscattering components of disorder, allowing only
forward-scattering nonmagnetic impurities, enabled us to treat
disorder in a hLL exactly. We focused on the weakly inter-
acting regime (K > 3/8), thereby avoiding edge instability
[7,8,34]. We thereby analyzed in great detail various lim-
its of finite-temperature spectral functions and the interedge
tunneling currents in the momentum-resolved tunneling spec-
troscopy. For MRTS we explored the vertical and horizontal
geometries with long edges, detailing effects of TR invariant

disorder, interaction, and temperature. We studied how the
product expression for the tunneling current (valid in the non-
interacting limit between edges) is qualitatively modified by
the interedge interaction and distinct edge velocities. Our the-
ory thus provides a detailed characterization of the emergent
hLL, complementary to the standard transport measurements.

Our analysis was limited to the hLL phase that appears in
the weakly interacting (K > 3/8) regime of TI edges. How-
ever, as discussed in [34], TI edge states can become glassy
and localized due to an interplay of disorder and interaction
for K < 3/8 [7,8]. This scenario might be relevant to the
earlier InAs/GaSb experiments [16,17]. A detailed character-
ization of the finite-temperature spectroscopy in this regime is
beyond present work, but in light of various experiments is of
interest to explore by methods developed here. Here we only
speculate about some qualitative zero-temperature features
inside this glassy edge states. The localized edges for K <

3/8 spontaneously break time-reversal symmetry and exhibit
half-charge excitations, corresponding to domain walls or
equivalently the Luther-Emory fermions. We expect that this
time-reversal breaking eliminates sensitivity of the response
to an applied magnetic field. We thus expect that the localized
nature of the glassy edge will lead to only weakly momentum-
dependent tunneling spectroscopy, contrasting to that found
above for hLL. It might be challenging to distinguish the
single-particle Anderson localization (i.e., trivial edge state)
and the unconventional half-charge localization (i.e., TI edge
with K < 3/8). Exploring the unique spectroscopic signatures
for the nontrivial half-charge localization is an interesting
future direction.

We conclude by noting that momentum in MRTS setup
is tuned by a magnetic field B that explicitly breaks TR
symmetry. Quite generally, we expect TI phase and the as-
sociated hLL edges to be stable as long as the Zeeman energy
associated with this TR breaking is weak enough to be below
the bulk gap. Nevertheless, the bottleneck of our theory is set
by the magnetic field induced disorder backscattering with
a localization length lloc(B). Although, as we discussed in
Sec. IV D 1, the effect of magnetic field may vary based on
the specific setup, we still expect our theory to be valid in a
sufficiently weak magnetic field such that the length of hLL
edge ledge � lloc(B). As illustrated in Fig. 4, the momentum
transfer Q = 2πBd/φ0 required to access the low-bias tun-
neling region between the same (JRR/JLL) and the opposite
(JRL/JRL) chiral movers are given by the Fermi wave vector
difference |kF,1 − kF,2| and the sum |kF,1 + kF,2|, respectively.
Clearly then, a typical wave vector range we want to explore
is set by the scale of Fermi wave vector, e.g., for Q = |kF,1 −
kF,2| = 0.01 nm-1 and tunneling distance d = 15 nm, the cor-
responding magnetic flux density B ∼ 1 T. In principle, the TI
materials with larger bulk gap (e.g., WTe2 [27], WSe2 [28,29],
and BiSiC [30]) are best suited for MRTS experiments due to
the suppression of backscattering generated by, e.g., charge
puddles [12] and Zeeman gap of edge bands [45].
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APPENDIX A: CHIRAL DECOMPOSITION
OF GENERIC HLL

In the presence of the Rashba spin-orbit coupling (RSOC),
the spin is no longer a good quantum number, and the single
particle band develops a momentum-dependent spin texture.
The orientation of the spin quantization axis at momentum k
relative to the one at k = 0 (denoted by ↑ and ↓) is given as
follows [11]: [

ck↑
ck↓

]
= Bk

[
ck+
ck−

]
, (A1)

where (with the convention k in x direction and the normal
vector of the 2D TI plane in z direction)

Bk = e−iσ2θk =
[

cos(θk ) − sin(θk )
sin(θk ) cos(θk )

]
≈
[

1 − k2

k2
0

k2

k2
0

1

]
. (A2)

The form of Bk , encoding the spin texture, is determined by
the unitarity and the time-reversal symmetry (in a particular
phase convention) with spin orientation at momentum k obey-
ing θk = θ−k . In the last equality in (A2), we use θk ≈ (k/k0)2

for small k, where k0 is a parameter characterizing the scale of
spin rotation across the band. To study the low-energy physics
around Fermi points, we can expand k ≈ ±kF + q for the
right (+) and left (−) movers, respectively. The field operator
for spin up is then given by

c↑(x) =
∫

k
eikxc↑(k)

≈ eikF x
∫

|q|�kF

eiqxc↑(kF + q)

+ e−ikF x
∫

|q|�kF

eiqxc↑(−kF + q)

≈ eikF x
∫

|q|�kF

eiqxc+(kF + q)

− e−ikF x
∫

|q|�kF

eiqx

[
k2

F

k2
0

− 2kF q

k2
0

]
c−(−kF + q)

= eikF x
∫

|q|�kF

eiqxc+(kF + q)

− e−ikF x

[
k2

F

k2
0

+ i
2kF

k2
0

∂x

] ∫
|q|�kF

eiqxc−(−kF + q)

= eikF xR(x) − e−ikF x

[
k2

F

k2
0

+ i
2kF

k2
0

∂x

]
L(x), (A3)

Similarly, the field operator for spin down can be expressed as

c↓(x) =
∫

k
eikxck↓

≈ eikF x

[
k2

F

k2
0

− i
2kF

k2
0

∂x

]
R(x) + e−ikF xL(x). (A4)

APPENDIX B: BOSONIZATION CONVENTION

To treat interaction and disorder nonperturbatively we uti-
lize standard bosonization method [62] (with the convention
consistent with Refs. [34,68]), where left (L) and right (R)
moving fermionic low-energy excitations can be represented
through the bosonic fields φR,L, according to

R(x) = 1√
2πα

eiφR (x) = 1√
2πα

ei[φ(x)+θ (x)],

L(x) = 1√
2πα

eiφL (x) = 1√
2πα

ei[φ(x)−θ (x)], (B1)

where α is the ultraviolet cutoff length scale below which
the low-energy description breaks down. The “phaselike” (φ)
and the “phononlike” (θ ) bosonic fields obey the following
commutation relation:

[∂xθ (x), φ(x′)] = iπδ(x − x′). (B2)

The commutation relations of the right and left bosons are
given by

[φR(x), φR(x′)] = iπ sgn(x − x′),

[φL(x), φL(x′)] = −iπ sgn(x − x′),

[φR(x), φL(x′)] = iπ. (B3)

The key characteristic of a helical Luttinger liquid (as
contrasting with superficially similar, spinless fermions) is the
anomalous time-reversal operation T , with R → L, L → −R,
and i → −i, and T 2 = −1, akin to spin-1/2 fermions. On the
corresponding bosonic operators T acts according to φ →
−φ + π

2 , θ → θ − π
2 , and i → −i. One of the immediate

consequence of the anomalous time-reversal symmetry is the
absence of elastic backscattering (i.e., forbidding L†R and
R†L) that clearly breaks it. As discussed in the main text,
the forward-scattering nonmagnetic disorder (allowed by T )
alone cannot result in Anderson localization, and thus TI hLL
edge is stable to nonmagnetic impurities in the absence of
strong interactions.

APPENDIX C: DERIVATION OF CLEAN IMAGINARY
TIME-ORDERED GREEN FUNCTION

In this Appendix we provide a step-by-step derivation of
imaginary time-ordered single fermion Green function in τ, x
domain at finite temperature using the bosonization formal-
ism. The generalization to multiparticle Green function for a
harmonic bosonized model is straightforward utilizing Wick’s
theorem. With the helical edge Hamiltonian HhLL = H0 + Hint

given by Eqs. (7) and (14), the bosonized imaginary-time
action reads

ShLL =
∫

τ,x

{
i

π
(∂xθ )(∂τφ) + v

2π

[
K (∂xφ)2 + 1

K
(∂xθ )2

]}
.

(C1)

Using the chiral decomposition �(x) = eikF xR(x) +
e−ikF xL(x) of fermionic field at low energy, the imaginary
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time-ordered single fermion correlation function is given by

G(τ, x) = 〈�(τ, x)�†(0, 0)〉τ
= eikF x〈R(τ, x)R†(0, 0)〉τ + e−ikF x〈L(τ, x)L†(0, 0)〉τ ,

(C2)

where the subscript τ denotes imaginary time-ordered aver-
age, and for forward scattering only, appropriate to the hLL

studied in this paper, the cross term vanishes. We calcu-
late the left mover contribution and then deduce the right
mover component using the time-reversal operation according
to the relation 〈R(τ, x)R†(0, 0)〉τ = 〈L(τ, x)L†(0, 0)〉∗τ . Using
the bosonization representation Eq. (B1) and Wick’s theorem
for the Gaussian bosonic phase fields, the left-moving part is
given by

〈L(τ, x)L†(0, 0)〉τ = 1

2πα
e− 1

2 〈[φ(τ,x)−θ (τ,x)−φ(0,0)+θ (0,0)]2〉τ = 1

2πα
e− 1

2 (K+K−1 )F1(τ,x)+F2(τ,x), (C3)

where

F1(τ, x) = 2K[〈φ(0, 0)φ(0, 0)〉τ − 〈φ(τ, x)φ(0, 0)〉τ ] = 2K−1[〈θ (0, 0)θ (0, 0)〉τ − 〈θ (τ, x)θ (0, 0)〉τ ],

F2(τ, x) = 2〈θ (τ, x)φ(0, 0)〉τ = 2〈φ(τ, x)θ (0, 0)〉τ (C4)

and 〈φ(0, 0)θ (0, 0)〉τ = 0. The correlators F1(τ, x) and F2(τ, x) are easily computed with a quadratic imaginary-time bosonic
action (C1) that in Fourier domain is given by

ShLL = 1

2

∫
ωn,k

(
φ∗

ωn,k
θ∗
ωn,k

)
M−1

(
φωn,k

θωn,k

)
, (C5)

where

M = π

k2
(
v2k2 + ω2

n

)( vk2

K ikωn

ikωn vk2K

)
. (C6)

By rewriting the bosonic fields of Eq. (C4) in Fourier space and performing standard Gaussian integral, we obtain the following
integral expressions:

F1(τ, x) = 1

β

∞∑
n=−∞

∫ ∞

0
dk

2v[1 − cos(kx)e−iωnτ ]

v2k2 + ω2
n

, F2(τ, x) = − 1

β

∞∑
n=−∞

∫ ∞

0
dk

2ωn sin(kx)e−iωnτ

k
(
v2k2 + ω2

n

) . (C7)

The Matsubara sum can be carried out by using Poisson summation formula
∑∞

n=−∞ δ(x − nT ) = T −1∑∞
m=−∞ ei2πmx/T :

F1(τ, x) = 1

β

∫ ∞

−∞
dω

∞∑
n=−∞

δ(ω − ωn)
∫ ∞

0
dk

2v[1 − cos(kx)e−iωτ ]

v2k2 + ω2
= 1

β

∫ ∞

−∞
dω

∞∑
m=−∞

β

2π
eimβω

∫ ∞

0
dk

2v[1 − cos(kx)e−iωτ ]

v2k2 + ω2

= v

π

∫ ∞

0
dk

∞∑
m=−∞

π

vk
[e−|mβ|vk − cos(kx)e−|mβ−τ |vk]

=
∫ ∞

0
dk

2nB(βvk)

k
[1 − cos(kx) cosh(τ̃vk)] +

∫ ∞

0
dk

1

k
[1 − cos(kx)e−τ̃vk], (C8)

where τ̃ ≡ mod(τ, β ) ∈ [0, β ).
Similarly,

F2(τ, x) = − 1

β

∫ ∞

−∞
dω

∞∑
n=−∞

δ(ω − ωn)
∫ ∞

0
dk

2ω sin(kx)e−iωτ

k(v2k2 + ω2)
= − 1

β

∫ ∞

−∞
dω

∞∑
m=−∞

β

2π
eimβω

∫ ∞

0
dk

−2iω sin(kx)e−iωτ

k(v2k2 + ω2)

= −i
∫ ∞

0
dk

sin(kx)

k

∞∑
m=−∞

sgn(mβ − τ )e−|mβ−τ |vk = i
∫ ∞

0

dk

k
sin(kx)[e−τ̃vk − 2nB(βvk) sinh(τ̃vk)] (C9)

The integrals are over k, with the convergence factor e−α|k| then gives

F1(τ, x) =
∫ ∞

0
dke−αk 2nB(βvk)

k
[1 − cos(kx) cosh(τ̃vk)] +

∫ ∞

0
dke−αk 1

k
[1 − cos(kx)e−τ̃vk]

= −
∫ ∞

0
dk

e−
(
α+ βv

2

)
k

k sinh
(

βvk
2

)[sinh2

[
(vτ̃ − ix)k

2

]
+ sinh2

[
(vτ̃ + ix)k

2

]]
−
∫ ∞

0
dk

e−αk

k

[
ei(iτ̃v−x)k

2
+ ei(iτ̃v+x)k

2
− 1

]

≈ 1

2
ln

[
β2v2

π2α2
sinh

(
π (x + ivτ )

βv

)
sinh

(
π (x − ivτ )

βv

)]
, (C10)
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where we have assumed α � x, vτ, βv and used the following integral identities:∫ ∞

0
dx

e−x sinh2(λx)

x sinh(x)
= 1

2
ln

[
λπ

sin(λπ )

]
, for Re(λ) < 1, (C11)

∫ ∞

0
dx

e−αx (eiλx − 1)

x
= ln

[
α

α − iλ

]
. (C12)

In the last line of Eq. (C10) we make a replacement τ̃ → τ using the identity sin(x + nπ ) sin(y − nπ ) = sin x sin y for n ∈ Z.
Similarly,

F2(τ, x) = i
∫ ∞

0

dk

k
e−αk sin(kx)[e−τ̃vk − 2nB(βvk) sinh(τ̃vk)]

= i
∫ ∞

0

dk

k
e−αk

{[
ei(iτ̃v+x)k − ei(iτ̃v−x)k

2i

]
− i

e− βvk
2
[

sinh2
[ (vτ̃−ix)k

2

]− sinh2
[ (vτ̃+ix)k

2

]]
sinh

(
βvk

2

)
}

≈ −iArg

[
−i sinh

(
π (x + ivτ̃ )

βv

)]
, (C13)

where we have used iArg(z) = [ln(z) − ln(z∗)]/2 and assumed α � x, vτ . As discussed in Ref. [63], the expression of F2(τ, x)
above is not quite correct since it is bosonic time ordered. To calculate fermionic correlation function, we need to add an
additional minus sign for τ < 0, which can be taken into account by replacing τ̃ → τ in the last line of Eq. (C13). Following a
similar procedure, the zero temperature results are given by

F T =0
1 (τ, x) = 1

2
ln

[
x2 + (v|τ | + α)2

α2

]
, F T =0

2 (τ, x) = iArg[vτ + α sgn(τ ) + ix], (C14)

where we have taken replacements τ̃ → |τ | for F T =0
1 (τ, x) since β = ∞ and vτ̃ + α → vτ + α sgn(τ ) for F T =0

2 (τ, x) for the
reason of restoring fermionic time ordering.

Plugging F1(τ, x) and F2(τ, x) into Eq. (C3), we find a standard result,

〈R(τ, x)R†(0, 0)〉τ = i

2πα

(
πα
βv

)2γ+1

[
sinh

(
π (x+ivτ )

βv

)]γ+1[
sinh

(
π (x−ivτ )

βv

)]γ ,

〈L(τ, x)L†(0, 0)〉τ = − i

2πα

(
πα
βv

)2γ+1

[
sinh

(
π (x+ivτ )

βv

)]γ [
sinh

(
π (x−ivτ )

βv

)]γ+1 . (C15)

APPENDIX D: DERIVATION OF CLEAN RETARDED GREEN FUNCTION IN FOURIER SPACE

Here we provide a detailed derivation of the retarded Green function given by Eq. (23) in the main text. A similar derivation
for density-density correlation function was discussed in Ref. [70]. We first compute the Green function in the Matsubara
frequency-momentum domain and then perform analytic continuation to the retarded Green function at real frequency. Below
we compute the left-mover Greens function, with the extension to the right-mover one is straightforward.

We first rewrite the above imaginary time-ordered Green function in a more convenient form:

GL(τ, x) = −〈L(τ, x)L†(0, 0)〉τ = i

2βv

(√
2πα
βv

)2γ

[
cosh

(
2πx
βv

)− cos
(

2πτ
β

)]γ+1

(
e

πx
βv ei πτ

β − e− πx
βv e−i πτ

β

)
. (D1)

By using the identity z−ν = �(ν)−1
∫∞

0 dλ exp(−zλ)λν−1 (for Re[z] > 0 and Re[ν] > 0), Fourier transform of the Green
function can be written as

GL(iωn, q) =
∫

τ,x
e−i(qx−ωnτ )GL(τ, x)

= − i

(√
2πα
βv

)2γ

2βv�(γ + 1)

∫
τ,x

∫ ∞

0
dλe−λ[cosh( 2πx

βv
)−cos( 2πτ

β
)]
λγ e−i(qx−ωnτ )[e

πx
βv ei πτ

β − e− πx
βv e−i πτ

β ]

= i

(√
2πα
βv

)2γ

2βv�(γ + 1)

β2v

4π2

∫ ∞

0
dλλγ

{∫ ∞

−∞
dx′e[ 1

2 −u]x′
e−λ cosh(x′ )

∫ 2π

0
dθei(n+1)θ eλ cos (θ )

×
∫ ∞

−∞
dx′e[− 1

2 −u]x′
e−λ cosh(x′ )

∫ 2π

0
dθeinθ eλ cos (θ )

}
, (D2)

085152-20



FINITE-TEMPERATURE SPECTROSCOPY OF DIRTY … PHYSICAL REVIEW B 102, 085152 (2020)

where
∫

x ≡ ∫∞
−∞ dx,

∫
τ

≡ ∫ β

0 dτ ,
∫

k ≡ ∫∞
−∞

dk
2π

, ωn = 2π (n + 1/2)/β because of the boundary condition 〈L(τ +
β, x)L†(0, 0)〉τ = −〈L(τ, x)L†(0, 0)〉τ and u = iβvq/2π . � denotes the Gamma function. We can use the following identities to
carry out the integrals:∫ ∞

−∞
dx exp [−bx − a cosh(x)] = 2Kb(a), for |Arg(a)| <

π

2
,

∫ 2π

0
dθ exp [inθ + a cos(θ )] = 2π In(a),

∫ ∞

0
dxJa+b[2λ sinh(x)]e(−a+b)x = Ia(λ)Kb(λ), for λ > 0, Re(a − b) > −1

2
, Re(a + b) > −1,

∫ ∞

0
dxxaJb(x) = 2a �

[
1
2 (b + a + 1)

]
�
[

1
2 (b − a + 1)

] , for Re(a + b) > −1, Re(a) <
1

2
,

∫ ∞

0
dx

e−ax

[2 sinh(x)]b
= 1

2
B

(
a

2
+ b

2
, 1 − b

)
, for Re(a + b) > 0, Re(b) < 1, (D3)

where λ ∈ R, n ∈ Z, a, b ∈ C, and the integral variables x, θ are along the real axis. Ib(x) and Kb(x) are the modified Bessel
function of the first kind and the second kind, respectively. (Not to confuse with the Luttinger parameter K .)

The Green function becomes

GL(iωn, q) = i

(√
2πα
βv

)2γ

2βv�(γ + 1)

β2v

π

∫ ∞

0
dλλγ

[
K− 1

2 +u(λ)In+1(λ) − K 1
2 +u(λ)In(λ)

]

= i
β
(√

2πα
βv

)2γ

2π�(γ + 1)

∫ ∞

0
dλλγ

∫ ∞

0
dzJn+ 1

2 +u(2λ sinh(z))[e−(n+ 3
2 −u)z − e−(n− 1

2 −u)z]

= i
β
(√

2πα
βv

)2γ

2π�(γ + 1)

∫ ∞

0
dz

e−(n+ 3
2 −u)z − e−(n− 1

2 −u)z

[2 sinh(z)]γ+1

∫ ∞

0
dλ′λ′γ Jn+ 1

2 +u

(
λ′)

= i
β
(√

2πα
βv

)2γ

2π�(γ + 1)

1

2

{
B

(
n

2
+ 3

4
− u

2
+ γ + 1

2
,−γ

)
− B

(
n

2
− 1

4
− u

2
+ γ + 1

2
,−γ

)}

× 2γ
�
(

n
2 + 3

4 + u
2 + γ

2

)
�
(

n
2 + 3

4 + u
2 − γ

2

) . (D4)

We note that the individual terms in the z-dependent integrands are individually divergent at z = 0. However, the full integrand
is convergent for γ < 1 by a Taylor expansion.

Now using the properties of Gamma and Beta functions: �(z)�(1 − z) = π/ sin(πz), B(a, b) = �(a)�(b)/�(a + b), and
B(x, y) = B(x + 1, y) + B(x, y + 1), the above expression simplifies to

GL(iωn, q) = i
β
(

2πα
βv

)2γ

4π2
sin (πγ )B

[
β(ωn − ivq)

4π
+ γ

2
, 1 − γ

]
B

[
β(ωn + ivq)

4π
+ γ + 1

2
,−γ

]
. (D5)

Now performing the analytical continuation iωn → ωη ≡ ω + iη (η → 0+) to get the retarded Green function for the left movers:

Gret
L (ω, q) = i

β
(

2πα
βv

)2γ

4π2
sin (πγ )B

[
−i

β(ωη + vq)

4π
+ γ

2
, 1 − γ

]
B

[
−i

β(ωη − vq)

4π
+ γ + 1

2
,−γ

]
. (D6)

Similarly, the retarded Green function for the right movers is given by

Gret
R (ω, q) = i

β
(

2πα
βv

)2γ

4π2
sin (πγ )B

[
−i

β(ωη − vq)

4π
+ γ

2
, 1 − γ

]
B

[
−i

β(ωη + vq)

4π
+ γ + 1

2
,−γ

]
. (D7)

The retarded Green function above is consistent with the finite temperature results in Ref. [61] (imaginary part) and the zero
temperature results in Ref. [59] (both real and imaginary parts) for γ < 0.5 at low energy ω/v, q < 1/α. To the best of our
knowledge, the full expression of Gret

R/L(ω, q) has not appeared in the literature.
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Following similar procedure in this Appendix, we are able to perform the Fourier transform for a generalized Euclidean
function:

F (iωn, q) =
∫

τ,x
e−i(qx−ωnτ )F (τ, x)

= β2v

4π2

(
i

βv

)n+m(2πα

βv

)2γ

sin (πγ )B

[
β(ω − ivq)

4π
+ γ + m

2
, 1 − γ − m

]
B

[
β(ω + ivq)

4π
+ γ + n

2
, 1 − γ − n

]
,

(D8)

where

F (τ, x) =
(

i

2πα

)n( −i

2πα

)m
(

πα
βv

)2γ+n+m

sinh
[

π
β

(
x
v

+ iτ
)]γ+n

sinh
[

π
β

(
x
v

− iτ
)]γ+m . (D9)

APPENDIX E: DERIVATION OF DISORDER-AVERAGED RETARDED GREEN FUNCTION IN FOURIER SPACE

At low temperature, by using Stirling’s approximation on the Beta function, B(x, y) ∼ �(y)x−y, for a fixed y and |x| � 1,
Re(x) > 0, the clean Green function in Eq. (D6) can be written in the following asymptotic form:

Gret
L (ω, q) ∼ −i

( α

2v

)2γ �(1 − γ )

�(1 + γ )
[−i(ω + vq) + 2πγ T ]γ−1[−i(ω − vq) + 2π (γ + 1)T ]γ . (E1)

The disordered Green function, as discussed in the main text, can be calculated via a convolution with a Lorenzian [see
Eq. (26)]. With the asymptotic approximation in Eq. (29), the disordered Green function can be evaluated by residue theorem
and is given by

Gret
dis,L(ω, q) = Gret

L (ω, q + iξ−1) + Gret
2,L(ω, q), (E2)

where Gret
th,L is given by the following integral:

Gret
2,L(ω, q) = − i

2

v
sin (πγ )

(α

2

)2γ �(1 − γ )

�(1 + γ )

∫ ∞

0
dk

ξ−1/π[
k + 2π (γ+1)

βv
− i
(

ω
v

− q
)]2 − ξ−2

[
k + 2π (2γ + 1)

βv
− i

2ω

v

]γ−1

kγ .

(E3)

Using the following identity:∫ ∞

0
dxxγ (x + a)γ−1(x + b)−1 =

(
1 − a

b

)γ−1
b2γ−1 π

sin (2πγ )
+ a2γ b−1B(1 + γ ,−2γ )2F1

(
1, 1 + γ , 1 + 2γ ,

a

b

)
, (E4)

we derive the following expression:

Gret
2,L(ω, q) =

∑
s=±

s
i

π
sin (πγ )

( α

2v

)2γ �(1 − γ )

�(1 + γ )

⎧⎨
⎩ π

sin (2πγ )

[
i(ω + vq) − 2πγ

β
+ svξ−1

−i(ω − vq) + 2π (γ+1)
β

+ svξ−1

]γ−1

×
[
−i(ω − vq)+ 2π (γ + 1)

β
+ svξ−1

]2γ−1

+
[
−i2ω+ 2π (2γ + 1)

β

]2γ[
−i(ω − vq)+ 2π (γ + 1)

β
+ svξ−1

]−1

×B(1 + γ ,−2γ )2F1

(
1, 1 + γ , 1 + 2γ ,

−i2ω + 2π (2γ+1)
β

−i(ω − vq) + 2π (γ+1)
β

+ svξ−1

)}
, (E5)

where 2F1 is the ordinary hypergeometric function.

APPENDIX F: DERIVATION OF THE TUNNELING CURRENT J

In this Appendix we provide the derivation of Eq. (37) in the main text. Working in the interaction representation, the
expectation value of the tunneling current density J , Eq. (36), is given by

J = 1

Z
Tr[e−βH12Û †(t )Ĵ (x)Û (t )], (F1)

where Û (t ) = Û12(t )ÛI (t ), Û12(t ) = e−iH12t , ÛI (t ) = T̂ exp [−i
∫ t
−∞ dt ′HI

tun(t ′)] (T̂ the time-ordering operator), HI
tun(t ) ≡

eiH12t HQ
tune−iH12t , and β is the inverse temperature. Expanding in the weak tunneling matrix element t0, we find the leading
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contribution to J ≈ J (2) is at O(t2
0 ) and is given by

J (2)(t, x) = Tr

⎧⎨
⎩e−βH12

Z
(−i)(−t0)

∑
s′=↑↓

∫ t

−∞
dt ′
∫

x′
[Û †

12(t )Ĵ (x)Û12(t ), c†
2s′ (t ′, x′)c1s′ (t ′, x′)eiQx′ + H.c.]

⎫⎬
⎭

= − et2
0

∑
s,s′=↑↓

∫ t

−∞
dt ′
∫

x′
Tr

{
e−βH12

Z
[c†

2sc1s(t, x)eiQx − c†
1sc2s(t, x)e−iQx, c†

2s′c1s′ (t ′, x′)eiQx′ + H.c.]

}
. (F2)

In the interaction picture, the fermionic creation and annihilation operators have time dependence controlled by the zero-
tunneling Hamiltonian H12. In the weak tunneling setup, we use a source-drain bias to control the electrochemical potential
difference eV (with electron density fixed) between the two edges. We take the two edges to be in thermal equilibrium at a
common temperature T , at densities controlled by kF1 and kF2, and at the fixed electrochemical potential imbalance that drives
a steady-state tunneling current. Accordingly, the effect of the source-drain bias can be included by the substitution cas(t, x) →
cas(t, x)e−iμat/h̄, where μ1 = eV , μ2 = 0. With straightforward algebraic manipulations, at time long since the tunneling was
turned on, we arrive at the steady-state current

J (2) = − et2
0

∑
s,s′=↑↓

∫ 0

−∞
dt ′
∫

x′

⎡
⎢⎢⎢⎢⎣

〈c†
2sc1s(0, 0)c†

1s′c2s′ (t ′, x′)〉eiωt ′
e−iQx′

−〈c†
1s′c2s′ (t ′, x′)c†

2sc1s(0, 0)〉eiωt ′
e−iQx′

−〈c†
1sc2s(0, 0)c†

2s′c1s′ (t ′, x′)〉e−iωt ′
eiQx′

+〈c†
2s′c1s′ (t ′, x′)c†

1sc2s(0, 0)〉e−iωt ′
eiQx′

⎤
⎥⎥⎥⎥⎦

= et2
0

∑
s,s′=↑↓

∫ ∞

−∞
dt ′
∫ ∞

−∞
dx′ eiωt ′

e−iQx′
[〈c†

1s′c2s′ (t ′, x′)c†
2sc1s(0, 0)〉 − 〈c†

2sc1s(0, 0)c†
1s′c2s′ (t ′, x′)〉], (F3)

where ω = eV/h̄ and 〈O〉 denotes the expectation value with respect to H12 under thermal density matrix e−βH12/Z with H12

including the interedge interaction but not the interedge tunneling. We have used translational invariance in the first equality.
The derived expression is Eq. (36) of the main text and coincides with the result in Ref. [57]. We note that this current expression
is quite general, not relying on the linearized band or chiral decomposition.

APPENDIX G: ANALYTIC CONTINUATION OF CORRELATION FUNCTION

For notation simplicity, we define O = ∑
s=↑↓ c†

1,sc2,s. We will also drop the spatial argument since the discussion here is
only related to the analytical properties in time. The response function of interest is given by

J (2)
1→2(ω) =

∫ ∞

−∞
dteiωt 〈O(t )O†(0)〉 =

∫ ∞

−∞
dteiωt

∑
n,m

|〈n|O(0)|m〉|2ei(En−Em )t e−βEn

= 2π
∑
n,m

|〈n|O(0)|m〉|2e−βEnδ(ω + En − Em). (G1)

Similarly, the tunneling current from edge 2 to 1 can be written as

J (2)
2→1(ω) =

∫ ∞

−∞
dteiωt 〈O†(0)O(t )〉 = 2π

∑
n,m

|〈n|O(0)|m〉|2e−βEmδ(ω + En − Em)

= 2πe−βω
∑
n,m

|〈n|O(0)|m〉|2e−βEnδ(ω + En − Em). (G2)

The corresponding Matsubara correlation function is given by

J (iωn) =
∫ β

0
dτeiωnτ 〈T̂τ O(τ )O†(0)〉 =

∫ β

0
dτeiωnτ

∑
n

e−βEn〈n|u(τ )O(τ )O†(0) + u(−τ )O†(0)O(τ )|n〉

=
∫ β

0
dτeiωnτ

∑
n,m

e(En−Em )τ [u(τ )e−βEn + u(−τ )e−βEm ]|〈n|O(0)|m〉|2

=
∑
n,m

|〈n|O(0)|m〉|2 [eβ(En−Em ) − 1]e−βEn

iωn + En − Em
. (G3)

By taking the imaginary part of the Matsubara correlator, and do analytic continuation iωn → ω + iη, we obtain the following
fluctuation-dissipation relation:

2Im[J (ω + iη)] = [1 − e−βω]J (2)
1→2(ω) = [eβω − 1]J (2)

2→1(ω) = J (2)
1→2(ω) − J (2)

2→1(ω). (G4)
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APPENDIX H: BOSONIZATION AND DERIVATION OF J (τ, x)

The action S12 in Eq. (43) can be generally written as two decoupled spinless LLs via a basis transformation shown in
Ref. [69]. Here we briefly summarize the result. By the transformation φa = ∑

b=± Pabφb and θa = ∑
b=± Qabθb (a = 1, 2), the

action can be written as

S12 =
∑
b=±

∫
τ,x

{
vb

2π
[(∂xφb)2 + (∂xθb)2] + i

π
(∂xθb)(∂τφb)

}
, (H1)

where

v2
± = v2

1 + v2
2

2
±
√(

v2
1 − v2

2

2

)2

+
(

U12

π

)2

v1K1v2K2, P =
⎛
⎝
√

v+
v1K1

cos θ12
2 −

√
v−

v1K1
sin θ12

2√
v+

v2K2
sin θ12

2

√
v−

v2K2
cos θ12

2

⎞
⎠,

Q =
⎛
⎝
√

v1K1
v+

cos θ12
2 −

√
v1K1
v−

sin θ12
2√

v2K2
v+

sin θ12
2

√
v2K2
v−

cos θ12
2

⎞
⎠, (H2)

with tan θ12 = 2(U12/π )
√

v1K1v2K2/(v2
1 − v2

2 ) (v1 > v2 is assumed without loss of generality). The matrices P and Q are chosen
to decouple the bosonic fields in the edge basis in the presence of interedge interactions, but under constraint to maintain their
canonical commutation relations, which corresponds to requiring PQT = 1 or keeping the Berry phase term diagonal. The
four-point correlation function for tunneling current can be calculated as follows:

〈L†
1L2(τ, x)L†

2L1(0, 0)〉τ = 1

(2πα)2
e− 1

2 〈[φ1(τ,x)−θ1(τ,x)−φ2(τ,x)+θ2(τ,x)−φ1(0,0)+θ1(0,0)+φ2(0,0)−θ2(0,0)]2〉

= 1

(2πα)2
e− 1

2

∑
b=± [(P1b−P2b)2+(Q1b−Q2b)2]F1b(τ,x)−∑b=±(P1b−P2b)(Q1b−Q2b)F2b(τ,x)

= 1

(2πα)2

∏
b=±

e− 1
2 [(P1b−P2b)2+(Q1b−Q2b)2]F1b(τ,x)−(1−P1bQ2b−P2bQ1b)F2b(τ,x)

= − 1

(2πα)2

∏
b=±

(
πα
βvb

)2γb+1

[
sinh

(
π (x+ivbτ )

βvb

)]γb− b
2 γ12
[

sinh
(

π (x−ivbτ )
βvb

)]γb+ b
2 γ12+1

,

〈R†
1R2(τ, x)R†

2R1(0, 0)〉τ = − 1

(2πα)2

∏
b=±

(
πα
βvb

)2γb+1

[
sinh

(
π (x+ivbτ )

βvb

)]γb+ b
2 γ12+1[

sinh
(

π (x−ivbτ )
βvb

)]γb− b
2 γ12

, (H3)

where F1b and F2b are given in Appendix C with v → vb and the interaction parameters are given by

γ12 = −1

2

(√
v2K2

v1K1
+
√

v1K1

v2K2

)
sin θ12, (H4)

γb = 1

4
(P1b − P2b)2 + 1

4
(Q1b − Q2b)2 − 1

2
. (H5)

The tunneling current between right and left Fermi points can also be calculated by similar way:

〈L†
1R2(τ, x)R†

2L1(0, 0)〉τ = 1

(2πα)2
e− 1

2

∑
b=± [(P1b−P2b)2+(Q1b−Q2b)2]F1b(τ,x)−∑b=±(P1b−P2b)(Q1b+Q2b)F2b(τ,x)

= 1

(2πα)2

∏
b=±

e− 1
2 [(P1b−P2b)2+(Q1b−Q2b)2]F1b(τ,x)−bγ̄12F2b(τ,x)

= 1

(2πα)2

∏
b=±

(
πα
βvb

)2γb+1

[
sinh

(
π (x+ivbτ )

βvb

)]γb+ 1
2 − b

2 γ̄12
[

sinh
(

π (x−ivbτ )
βvb

)]γb+ 1
2 + b

2 γ̄12
,

〈R†
1L2(τ, x)L†

2R1(0, 0)〉τ = 1

(2πα)2

∏
b=±

(
πα
βvb

)2γb+1

[
sinh

(
π (x+ivbτ )

βvb

)]γb+ 1
2 + b

2 γ̄12
[

sinh
(

π (x−ivbτ )
βvb

)]γb+ 1
2 − b

2 γ̄12
, (H6)

where

γ̄12 = 1

2

(√
v2K2

v1K1
−
√

v1K1

v2K2

)
sin θ12 + cos θ12. (H7)
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We discuss the simplified special case of K1 = K2 ≡ K and v1 = v2 ≡ v. It is convenient in this case to work with the
symmetric and antisymmetric fields (denoted by subscripts + and −, respectively, not to be confused with the chiral band index
for generic hLL), which are given by

φ± = φ1 ± φ2√
2

, θ± = θ1 ± θ2√
2

. (H8)

In terms of these the Hamiltonian decouples and is given by

H12 =
∑
b=±

vb

∫
x

[
Kb(∂xφb)2 + 1

Kb
(∂xθb)2

]
, Sdis =

∫
τ,x

[
V+(x)

1

π
∂xθ+ + V−(x)

1

π
∂xθ−

]
, (H9)

where v± = v
√

1 ± UK/2π2v and K± = K/
√

1 ± UK/2π2v, V± = (V1 ± V2)/
√

2, satisfying Vb(x)Vb′ (y) = �bb′δ(x − y),
�++ = �−− = (�1 + �2)/2, �+− = �−+ = (�1 − �2)/2. For repulsive interedge density-density interaction U > 0, we
have v− < v+ and K+ < K−. As for a single edge, we can eliminate the disorder potentials via a linear transformation on
the θa fields, S12[θb, φb] + Sdis[θb] → S12[θ̃b, φb] + const., where

θ̃b(τ, x) = θb(τ, x) + Kb

vb

∫ x

−∞
Vb(y)dy. (H10)

With this transformation, the disorder-averaged correlator can then be straightforwardly calculated using Eq. (19).

APPENDIX I: FOUR-POINT CORRELATION FUNCTION FOR TUNNELING CURRENT COMPUTATION

The calculation of tunneling current requires a Fourier transformation of a four-point correlation function with two different
velocities, which is generally quite difficult, even numerically. In this Appendix we consider the following two complimentary
cases, which cover a broad spectrum of situations with significantly simplified calculations: (i) Finite temperature in the absence
of interedge interaction and (ii) zero temperature in the presence of interedge interaction. We will also discuss the special case
of identical edges, where analytical expressions are derived.

1. Finite temperature, no interedge interaction

In the absence of interedge interaction, we consider a space-imaginary time correlation function of the following form:

C(τ, x) = G1(τ, x)G2(τ, x) (I1)

that in Fourier space is a convolution

C(iωn, q) = 1

β

∑
ωm

∫
k
G1(iωn − iωm, q − k)G2(iωm, k), (I2)

where iωn = 2πT n [iωm = 2πT (m + 1/2)] is bosonic (fermionic) Matsubara frequency. To this end, it is convenient to first
trade the Matsubara summation for an integration. Using the standard Lehmann spectral representation

G(iωn, q) = 1

π

∫ ∞

−∞
dz

Im[Gret(z, q)]

z − iωn
, (I3)

we can express C(iωn, q) in terms of the retarded Green functions Gret as follows:

C(iωn, q) = 4

β

∑
ωm

∫
k

∫
z,z′

Im
[
Gret

1 (z, q − k)
]

z − iωn + iωm

Im
[
Gret

2 (z′, k)
]

z′ − iωm

= 4
∫

k

∫
z,z′

Im
[
Gret

1 (z, q − k)
]
Im
[
Gret

2 (z′, k)
]

z + z′ − iωn
[nF (−z) − nF (z′)], (I4)

where
∫

z = ∫∞
−∞ dz/2π and the Matsubara summation was done by, e.g., the Poisson summation formula. After the analytic

continuation iωn → ω + iη, the imaginary part of the correlation function is given by (z′ replaced by �)

Im[C(ω + iη, q)] = 2
∫

�,k
Im
[
Gret

1 (ω − �, q − k)
]
Im
[
Gret

2 (�, k)
]
[nF (� − ω) − nF (�)]. (I5)

Considering a special case that one of the edge is noninteracting, e.g., K2 = 1, the spectral function of edge 2 becomes a delta
function

Im
[
Gret

R(L)(�, k)
] = −πδ(� ∓ vk). (I6)
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After integrating over k, we obtained the following integral expression for the correlation function:

Im[C(ω + iη, q)] = − 1

v

∫
�

Im

[
Gret

1

(
ω − �, q ∓ �

v

)]
[nF (� − ω) − nF (�)]. (I7)

2. Zero temperature, with interedge interaction

The tunneling current can also be directly calculated by Fourier transforming Eqs. (50) and (56) following the approach in
Ref. [57]. Specifically, we rewrite Eq. (37) as an integral from t = 0 to ∞ with the integrand (space-time correlator) obtained by
an analytic continuation τ = it + ε sgn(t ) from the Euclidean correlation function. Below we will discuss the calculation of JLL

and JRL. The tunneling current JLL at zero temperature is given by the following integral:

JLL(V, q) = − 1

2π2
Re
∫ ∞

−∞
dx
∫ ∞

0
dtei(V +iη)t e−iqx

∏
b=±

α2γb

(x − vbt + iε)γb− b
2 γ12 (x + vbt − iε)γb+ b

2 γ12+1

= − �(−2γ+ − 2γ−)

2π2
Re
∫ ∞

−∞
du[η − i(V − qu)]2γ++2γ−

∏
b=±

α2γb

(u − vb + iε)γb− b
2 γ12 (u + vb − iε)γb+ b

2 γ12+1
, (I8)

where in the second equality we change the variable x = ut and integrate over t using the gamma function identity. The tunneling
current JRL can also be calculated with the same procedure, and is given by

JRL(V, q) = �(−2γ+ − 2γ−)

2π2
Re
∫ ∞

−∞
du[η − i(V − qu)]2γ++2γ−

∏
b=±

α2γb

(u − vb + iε)γb+ b
2 γ̄12+ 1

2 (u + vb − iε)γb+ b
2 γ̄12+ 1

2

. (I9)

In evaluation of the integrals in Eqs. (I8) and (I9), one can detour the integration contour [57] to yield accurate numerical results.
The effects of forward-scattering disorders can be included by replacing q in the integrand with q − i sgn(u)/ξ .

3. Identical edges

For identical edges v1 = v2, K1 = K2 and in the absence of interedge interaction, we can derive the exact disordered zero-
temperature expression using similar procedure as in Appendix D. We were not able to derive a low-temperature asymptotic
expression since Stirling approximation gives a qualitatively wrong answer in low temperature in this case. The exact zero-
temperature clean tunneling current is given by

JT =0
LL (ω, q) = − et2

0

2πv

( α

2v

)4γ �(1 − 2γ )

�(2 + 2γ )
Im{[−i(ω + vq) + η]2γ−1[−i(ω − vq) + η]2γ+1},

JT =0
RL (ω, q) = et2

0

2πv

( α

2v

)4γ �(1 − 2γ )

�(2 + 2γ )
Im{[−i(ω + vq) + η]2γ [−i(ω − vq) + η]2γ }. (I10)

The disordered tunneling current can be calculated by Residue theorem and is given by

JT =0
dis,RL/LL(ω, q) = JT =0

1,RL/LL (ω, q + iξ−1) + JT =0
2,RL/LL(ω, q), (I11)

where

JT =0
2,LL (ω, q) = et2

0

2πv

∑
s=±

s
1

π
sin (2πγ )

( α

2v

)4γ �(1 − 2γ )

�(2 + 2γ )

{
π

sin (4πγ )

[
i(ω + vq) + svξ−1

−i(ω − vq) + svξ−1

]2γ−1

×[−i(ω − vq) + svξ−1]4γ − [−i2ω + η]4γ+1[−i(ω − vq) + svξ−1]−1

×B(2 + 2γ ,−1 − 4γ )2F1

(
1, 2 + 2γ , 2 + 4γ ,

−i2ω + η

−i(ω − vq) + svξ−1

)}
,

JT =0
2,RL (ω, q) = et2

0

2πv

∑
s=±

s
1

π
sin (2πγ )

( α

2v

)4γ �(−2γ )

�(1 + 2γ )

{
π

sin (4πγ )

[
i(ω + vq) + svξ−1

−i(ω − vq) + svξ−1

]2γ

×[−i(ω − vq) + svξ−1]4γ − 2−2−4γ [−i2ω + η]4γ+1[−i(ω − vq) + svξ−1]−1

×B(1 + 2γ ,−1/2 − 2γ )2F1

(
1, 1 + 2γ , 2 + 4γ ,

−i2ω + η

−i(ω − vq) + svξ−1

)}
. (I12)
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