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Unraveling non-Hermitian pumping: Emergent spectral singularities and anomalous responses
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Within the expanding field of non-Hermitian physics, non-Hermitian pumping has emerged as a key
phenomenon, epitomized through the skin effect via extensive boundary mode accumulation modifying the
conventional Bloch picture. Beyond redefining bulk-boundary correspondences, we show that non-Hermitian
pumping induces an unprecedented type of spectral topology: It admits a classification in terms of graph
topology, which is distinct from conventional topological classifications of the eigenstate or energy Riemann
surface. Each topological class is characterized by a conformally invariant configuration of spectral branching
singularities, with gap-preserving transitions giving rise to emergent band geometry and Berry curvature
discontinuities physically manifested as anomalous response kinks. By placing all Hermitian and non-Hermitian
lattice Hamiltonians on equal footing, our comprehensive framework also enables the first analytic construction
of topological phase diagrams in the presence of multiple nonreciprocal coupling scales, as prototypically
demonstrated for the extended non-Hermitian Chern and Kitaev models. Based on general algebraic geometry
properties of the energy dispersion, our framework can be directly generalized to multiple bands, dimensions,
and even interacting systems. Overall, it reveals the conspiracy of band representations, spectral topology, and
complex geometry as it unfolds in directly measurable quantities.
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I. INTRODUCTION

The realm of non-Hermiticity harbors a variety of spectac-
ular yet nonintuitive phenomena. Novel Fermi surface prop-
erties such as enhanced amplification emerge when energy
bands intersect along highly degenerate exceptional manifolds
[1–17], and likewise new topological classes appear when the
constraints of Hermiticity are relaxed [18–27]. Capturing the
attention of much recent theoretical and experimental effort
is the phenomenon of non-Hermitian pumping (skin effect)
[28–39], where eigenmodes are relentlessly “pumped” to-
wards the boundaries due to effectively asymmetric gain/loss
[40]. As intuitively expected, this pumping results in extreme
sensitivity to finite-size and boundary effects, as well as the
intensely studied modifications of topological bulk-boundary
correspondences (BBCs).

The physical and formal implications of non-Hermitian
pumping, however, extend far beyond modified band struc-
tures or topological descriptions. As we shall reveal, non-
Hermitian pumping also leads to a new type of classification in
terms of graph topology, marked by physical signatures such
as response kinks. It generically deforms the complex band
structure into a graphlike structure with characteristic branch-
ing singularities, with topological transitions corresponding
to unconventional anomalous linear responses. Characterized
by a graph-theoretic spectral classification, this newly-defined
type of topology is distinct from conventional topological
characterizations [8,18], i.e., winding properties of either the
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eigenstates or the energy Riemann surface, which in the
simplest instances give rise to Z windings and vorticities.
Transitions between our topological singularities manifest as
discontinuities in the Fubini Study metric of the eigenbands,
whose imaginary part corresponds to the Berry curvature.
Adding to their enigmatic allure is that such complex sin-
gularity transitions, which can result in anomalous response
behavior, do not necessitate band gap closures, unlike con-
ventional topological transitions which rely on gap closures
for any discontinuous evolution of the bands.

With the rise of experimental platforms such as topological
lasers, photonic crystals, mechanical frameworks and circuits
for non-Hermitian phenomena [41–53], and non-Hermitian
pumping in particular [50–53], a comprehensive understand-
ing of these exotic singularities and responses is of practical
and theoretical exigence. As such, we devise a universal
framework that puts generic non-Hermitian lattice Hamilto-
nians on equal footing as their Hermitian counterparts, which
are immune to the skin effect. Specifically, we formulate a
unitary restoration procedure that maps any non-Hermitian
model to a quasireciprocal surrogate Hamiltonian at the op-
erator level, such that the effectively restored bulk Hilbert
space allows topological invariants and metrics to faithfully
predict topological phase boundaries just like in genuinely
reciprocal or Hermitian systems. Literally, this procedure “un-
ravels” non-Hermitian pumping through a redefined nonlocal
basis where the accumulated eigenmodes appear equilibrated
[Fig. 1(a)]. Figuratively, it illuminates the deeper implica-
tions of non-Hermitian pumping beyond what can be pre-
dicted from simply defining a generalized Brillouin zone (BZ)
[28,34–38]. Most salient are the nonperturbative effects
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FIG. 1. (a) Construction of quasireciprocal Hamiltonians
H̄1(k), H̄2(k), H̄12(k) (right column) from various physical
Hamiltonians H1(k), H2(k), H12(k) (left column) which are afflicted
by non-Hermitian pumping. With nonreciprocal couplings across
only one distance scale (top or middle row, corresponding to NNs
in H1 or NNNs in H2), spatial eigenmode accumulation can be
nullified with a simple spatial basis rescaling corresponding to a
constant κ = κ1 or κ2. But the equilibration of the combination of
two or more pumping length scales in H12 = H1 + H2 (bottom row)
requires a nonlocal basis redefinition (bottom center) dictated by
nonconstant κ (k) which is not equivalent to κ1 or κ2, resulting in a
nonlocal H̄12(k). (b), (c) PBC ε(k) (red), OBC ε̄(k) = ε(k + iκ (k))
(black) spectra and their interpolations ε(k + irκ (k)) (various shades
of brown) where r = 0.4, 0.8, 1. (b) and (c) depict E = 2z + 1

2z and
E = z2 + 10

z where z = eik , representing cases with one and two
pumping scales, respectively. Background light green curves are
contours of constant κ . (d), (e) κ (k) for cases (b) and (c), contrasting
the constant κ = log 2 ≈ 0.69 cases (d) with a nonconstant κ (k)
with cusps that indicate emergent nonlocality (e).

implied by additional couplings: While we ordinarily expect
weak couplings across distant sites to at most trivially modify
the band structure, they, no matter how weak, can generically
produce more complex topological singularities when non-
Hermitian pumping is present. Such enigmatic behavior is a
consequence of the emergent nonlocality that also underscores
Berry curvature discontinuities in the absence of band touch-
ings.

For concreteness, we shall illustrate our findings with
two quintessential non-Hermitian models that have so far
eluded rigorous characterization: the extended non-Hermitian
Kitaev chain and the extended non-Hermitian Chern insu-
lator. To explore the interesting singularities, we introduce
in both models asymmetric couplings beyond nearest neigh-

bors (NNs), which are also physically relevant in realistic
photonics and plasmonics setups governed by noncompact
orbitals or long-ranged Coulomb forces. In the minimal de-
scription of the extended non-Hermitian Kitaev chain, which
is of D†-class topology [54] [Z2 with conjugated particle-hole
symmetry (cPHS) and a real line-gap] [19,22], both NN and
next-nearest-neighbor (NNN) couplings are in fact necessary
and hence essential aspects of this non-Hermitian topological
class. Our extended non-Hermitian Chern insulator, which is
pedagogically designed to reduce to a minimal 1D descrip-
tion with two effective nonreciprocal couplings, describes the
only other known singularity class (besides the well-known
NN non-Hermitian Chern insulator [30]) where the surrogate
Berry curvature, which reliably predicts Chern edge modes,
can be analytically computed.

This paper is organized as follows. In Sec. II, we
review known properties of non-Hermitian pumping and
subsequently introduce the concept of a quasireciprocal sur-
rogate Hamiltonian that implements the generalized BZ at
the operator level. The consequent emergent nonlocality of
the surrogate basis will be a recurring theme of this work.
In Sec. III, we continue with a detailed treatment of a few
common spectral singularities, followed by a discussion of
their classification and topological transitions. In particular,
we illustrate our formalism with two detailed examples: the
1D non-Hermitian extended Kitaev model and the 2D ex-
tended non-Hermitian Chern model, where the construction of
the surrogate basis with nontrivial generalized BZ proves cru-
cial for topological characterization and extraction of Berry
curvature discontinuities. In Sec. IV, we elaborate on such
discontinuities and their role as phase transitions that occur
without any gap closure. Finally, we conclude in Sec. V that
we have developed the appropriate classification scheme of
non-Hermitian physics from the viewpoint of non-Hermitian
pumping, which elucidates and encodes interesting princi-
pal phenomena expected to emanate from non-Hermitian
systems.

II. UNRAVELING NON-HERMITIAN PUMPING

A. Preliminaries

We first briefly review the rudiments of non-Hermitian
pumping in non-Hermitian lattices. Consider a 1D effective
Hamiltonian described by

H =
∑
i j;αβ

hαβ
i j c†

iαc jβ =
∑
k;αβ

Hαβ (k)c†
kα

ckβ, (1)

where hαβ
i j and Hαβ (k) are its real space and momentum

space representations, and i j, k, αβ indexes unit cells, mo-
mentum, and intracell orbitals, respectively. Non-Hermitian
pumping, also known as the non-Hermitian skin effect, is an
extensive accumulation of eigenmodes that occurs when all
eigenmodes are “pumped” towards the boundaries under open
boundary conditions (OBCs). Intuitively, it occurs when the
1D effective description contains gain/loss terms that couple
asymmetrically in real space. Indeed, it can be shown that
[34] the necessary condition for non-Hermitian pumping is
that the effective 1D description H is simultaneously non-
Hermitian and nonreciprocal [55], which can be, respectively,
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expressed as the first and second of the following inequalities:
hβα

ji �= hαβ
i j �= [hβα

ji ]∗. In momentum space, these conditions
take the form HT (−k) �= H (k) �= H†(k). In other words, there
must either exist coupling terms whose magnitudes are direc-
tion dependent, or there must be the simultaneous presence
of magnetic flux and onsite gain/loss [56]. In 2D or higher,
H (k) also implicitly contain momentum parameters in other
directions perpendicular to the boundary, and it is possible
that a fully reciprocal (but still non-Hermitian) lattice can
still exhibit nonreciprocity in the effective 1D description [51]
(HT (−k) �= H (k)). Thereafter, we shall refer to this mode ac-
cumulation only as non-Hermitian pumping, with the implicit
understanding that it occurs only when the 1D description is
also nonreciprocal.

The conditions of nonreciprocity and non-Hermiticity,
which lead to non-Hermitian pumping, also have intuitive
interpretations in terms of the energy spectrum. In Hermitian
cases, the periodic boundary condition (PBC) spectrum ε(k),
k ∈ [0, 2π ) is confined to the real line, and in reciprocal
cases, ε(k0 − k) = ε(k0 + k) mandates a degenerate loop, k0

a fixed system-dependent parameter. But the simultaneous
presence of nonreciprocity and non-Hermiticity relaxes both
of these constraints, allowing ε(k) to generically trace closed
loops with nonvanishing areas in the complex energy plane
[Figs. 1(b) and 1(c)]. Since k is a periodic parameter label,
these loops are necessarily closed even if the eigenenergy
bands switch partners after every period [22,34,37,57].

Non-Hermitian pumping under OBCs causes extensive
boundary accumulation which is not in line with the conven-
tional Bloch picture. As such, we expect the OBC spectrum
to deviate considerably from the PBC spectrum, which corre-
sponds to Bloch-type eigensolutions at real momenta (Fig. 1).
This ostensible breakdown of BBC is the hallmark of non-
Hermitian pumping [34]. Mathematically, it can be expressed
as the extensive spectra flow ε(k) → ε̄(k) into the interior
of PBC loop/s {ε(k)} as we interpolate between PBCs and
OBCs (or, more generally, by adding spatial nonuniformity).
In the thermodynamic limit, ε̄(k), k ∈ [0, 2π ) converges to
the OBC spectrum, excluding its topological modes which
are isolated protected eigensolutions [34]. Although we have
explicitly referred to H (k) and ε(k), ε̄(k) as the Hamiltonian
and eigenenergies, the above conceptual review and most of
the rest of this paper applies equally well to generic operators,
i.e., also the circuit Laplacian and their eigenspectra.

B. Quasireciprocal surrogate Hamiltonian

To study the effects of non-Hermitian pumping, we intro-
duce the surrogate Hamiltonian

H̄ (k) = H (k + iκ (k)), (2)

where κ (k) is defined such that the H̄ (k) eigenstate of
interest experiences no non-Hermitian pumping when it is
put under OBCs—our so-called property of quasireciprocity
[58] (Fig. 1). To be specific, κ (k) is given by the smallest
(magnitude-wise) complex deformation of the momentum k
such that the eigenvalues ε̄(k) of H̄ (k) lie at the endpoint
of the PBC-OBC spectral flow. This formalism fully encodes
the effects of non-Hermitian pumping at the operator level,
beyond existing works [28,34–38] that introduce a general-

ized BZ (complex analytic continuation of the momentum)
for finding the skin eigenmodes. In other words, given any
physical Hamiltonian H (k), we define a surrogate Hamilto-
nian H̄ (k) possessing almost identical OBC spectra [59] but
avoids the complications of non-Hermitian pumping. This is
further elaborated on in Sec. II C. Physically, H̄ (k) provides
an effective description of the OBC system after the nonrecip-
rocally pumped modes have “equilibrated” at the boundaries.
Most importantly, it experiences no further pumping and is
hence characterizable by all approaches valid for reciprocal
or Hermitian systems which obey the BBC.

By representing the effects of non-Hermitian pumping as
a generically nonanalytic momentum deformation κ (k), we
shall soon uncover manifold exotic nonanalytic behavior not
present in the simplest case of constant κ as in commonly
studied models [28,30]. We emphasize that the OBC and PBC
systems possess their own distinct eigenspaces, and it has to
be the OBC H̄ (k), not the PBC H (k), that determines all
physical responses of a bounded system (which is under OBCs
by definition), even those concerning “bulk” properties such
as the Berry curvature.

We now describe how the quintessential complex deforma-
tion κ (k) can be computed. Intuitively, it is the k-dependent
deformation of the PBC spectral loops [60] ε(k) → ε(k +
iκ (k)) = ε̄(k) such that ε̄(k), k ∈ [0, 2π ) collapses into one
or more arcs or lines [Figs. 1(b) and 1(c)] which cannot
be contracted even further. More precisely, κ (k) can be de-
termined from the characteristic Laurent polynomial of the
eigenenergy equation Det [H (z) − E I] = 0, which generi-
cally can be written as a bivariate polynomial P(E , z) = 0.
We shall use E to refer to the energy as an algebraic variable,
and use ε(k), ε̄(k) when it is also an eigenenergy of the
original/surrogate Hamiltonian. For particle-hole symmetric
two-component Hamiltonians with only off-diagonal entries
for instance, the eigenenergy equation assumes the form

E2 =
lR∑

n=−lL

tnzn (3)

with z = ei(k+iκ (k)) and lL, lR the sum of the maximal ranges
of the left/right couplings over both components/sublattices.
While the tn’s coincide with the physical couplings in single-
component systems, they are sums of product of the cou-
plings. In more general cases, tn also depends on E , and
thus does not directly correspond to any particular group of
couplings.

For each k, κ (k) is thus the smallest complex deformation
for which there exists another momentum k′ such that both
z = eike−κ (k) and z′ = eik′

e−κ (k) are roots satisfying the same
eigenenergy E . In other words, κ (k) = κ (k′) are the symmet-
ric deformations necessary to make the eigenenergies of H̄ (k)
and H̄ (k′) coincide, as geometrically evident from Figs. 1(b)
and 1(c). The loci of E where this occurs precisely constitute
the OBC pumped spectra ε̄(k).

Note that while H̄ (k) is quasireciprocal, i.e., immune to
non-Hermitian pumping, it is not necessarily reciprocal. Reci-
procity requires symmetric physical couplings (hαα

i j = hβα
ji )

for all pairs i j and αβ, and is a stronger condition than
quasireciprocity, which requires κ (k) = 0 ∀k, a constraint
[61] on the relatively small number of tn coefficients from
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Eq. (3) formed by products and sums of the physical
couplings.

An important point that will be shortly elaborated on is that
κ (k) has nontrivial k dependence whenever couplings exist
across a range of distances such that tn �= t−n for more than
one n. This is actually the case in most realistic systems, since
non-Hermiticity from just one type of coupling is enough to
cause tn �= t−n for many different n. Such κ (k) dependences
are nonanalytic in general and lead to various forms of spectral
singularities depending on the algebraic form of the character-
istic polynomial.

C. Surrogate nonlocal basis

We next discuss the physical interpretation of the k →
k + iκ (k) deformation in terms of the Hilbert space basis,
going beyond existing generalized BZ descriptions. A central
motivation of our framework is that this deformation can
be regarded not just as an esoteric BZ redefinition but as a
physical change of basis orbitals. This is because OBCs allow
for much greater freedom in basis transforms than PBCs,
which require the Bloch nature (translation invariance) to
be preserved. More precisely, the surrogate Hamiltonian H̄
[its PBC version was defined in Eq. (2)] admits a similarity
transform S such that

HOBC = S−1H̄OBCS 	 S−1H̄PBC(k)S, (4)

where S undoes, or “unravels,” the complex deformation by
implementing the complex gauge transform associated with
k → k − iκ (k). In terms of eigenenergies, we have

{εOBC} = {ε̄OBC} 	 {ε̄PBC(k)}, (5)

where the 	 sign denotes an approximate equivalence that
projects out, i.e., excludes isolated topological eigenmodes.
In other words, spectrum of HOBC, which is an OBC spectrum
of a system that has been subject to non-Hermitian pumping,
is exactly equivalent to the spectrum of H̄OBC without the
pumping, which is further equivalent up to a set of measure
zero (in the thermodynamic limit) to that of H̄PBC. The upshot
of this discussion is that, due of the existence of S, the
surrogate Hamiltonian H̄ (k) describes a bona-fide physical
lattice system whose bulk properties are not susceptible to
non-Hermitian pumping and can be used to predict the topol-
ogy and responses of the original Hamiltonian H (k). Note that
this procedure is not applicable to disordered systems which
also experience non-Hermitian pumping due to spatial non-
homogeneity, since the pumping can no longer be “gauged”
away by a unique κ (k).

While S can be numerically computed by taking the
quotient of the matrices that diagonalize HOBC and H̄OBC,
insight into its physical ramifications can be gleaned from
Fourier expanding the rescaling factor e−κ (k). A nonconstant
κ (k) renders the eigenequation nonanalytic in eik , leading to
emergent nonlocality in real space that is difficult to realize in
models with few hoppings [62]. To see that, note that at each
x site, k → k + iκ (k) replaces the Bloch prefactor eikx by

(eike−κ (k) )x ≈
⎛
⎝eik

lm∑
l=−lm

�l e
ilk

⎞
⎠

x

=
lmx∑

l ′=−lmx

�′
l ′ (x)ei(l ′+x)k, (6)

with �l denoting the Fourier coefficients of e−κ (k) and �′
l (x)

their multinomial sum. �l are generically power-law decaying
[63] due to the nonanalyticity, which we can truncate at
large orders ±lm for convenient numerical treatment. Hence
we can alternatively interpret the complex deformation as a
nonlocal basis redefinition, where H̄ (k) is reinterpreted as the
nondeformed H (k) acting in a nonlocal basis with each site
replaced by a linear combination of sites according to Eq. (6),
each rescaled by �′

l ′ (x) [Fig. 1(a)].

III. QUASIRECIPROCAL SOLUTIONS FOR MULTIPLE
NONRECIPROCAL LENGTH SCALES

Having discussed the formal aspects of our framework, we
next provide a few canonical illustrations on how to solve
the surrogate Hamiltonian for systems with multiple nonre-
ciprocal length scales, where specific singularities emerge in
the OBC ε̄(k). We shall connect their branching patterns with
the number of coexisting nonreciprocal length scales. On the
other hand, the quasireciprocal surrogate Hamiltonians we
obtain are also essential for locating topological phase tran-
sitions featuring topological boundary modes, as we illustrate
with two concrete examples below.

A. One nonreciprocal length scale

As a warmup, we consider the simplest case where the
characteristic polynomial P(E , z) can be separated into parts
containing E and z separately:

F (E ) = t+z + t−
z

+ t0, (7)

with t+ �= t−, and t0 denoting an unimportant energy offset.
We refer to this as the case with one nonreciprocal length scale
because asymmetry only occurs in the z, z−1 terms and no
other higher powers. F (E ) is an arbitrary function of E which
will turn out to have no nontrivial bearing on the singularity.
For single-component models, F (E ) = E , and t+, t− are the
asymmetric (nonreciprocal) right and left couplings. Note,
however, that for multiband models, t+, t− may not directly
correspond to the bare couplings. More complicated models
that possess one nonreciprocal length scale can be described
by Eq. (7) with modified F (E ), i.e., the non-Hermitian SSH
model HSSH(z) = (t− + z)σ+ + (t+ + z−1)σ−, where σ± =
(σx ± iσy)/2 are linear combinations of the Pauli matrices. For
HSSH(z), the characteristic polynomial reads E2 = t+z + t−

z +
t+t− + 1, such that F (E ) = E2 − t+t− − 1.

To determine κ (k), we transform Eq. (7) to a more con-
venient form by substituting z = e−κ (k)w, |w| = 1, such that

F (E ) = w e−κ (k)

√
t+
t−

+ w∗eκ (k)

√
t−
t+

, (8)

where F (E ) = E2−t0√
t+t−

. Evidently, w = eik and w∗ = e−ik will
take symmetrical roles if κ (k) is equal to a constant κ0 defined

by eκ0 =
√

t+
t−

. In this case, both z = w e−k0 and z′ = w∗e−k0

are simultaneously roots of Eq. (7) for the same E . As such,
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FIG. 2. (a) OBC spectra of various Hamiltonians with characteristic polynomials related by complex mappings. Starting from E = z2 + 1
2z

in (i), the branching number is increased to 3 + 2 = 5 in (ii), whose spectrum is then split into N = 2 and then N = 3 with EN = −1 + z3 + 2
z2

(iii and iv). However, mappings of E that also contain z lead to much more complicated OBC spectral graphs, as in (v) with a graph cycle and
7 three-fold singularities. (b) Illustration of singularity transitions with E = az2 + b/z, where the OBC spectra ε̄ shrinks to a point and morphs
into possibly different shapes or orientations along lines a = 0 and b = 0.

we obtain a constant complex deformation k → k + iκ0 with

κ (k) = κ0 = log

√
t+
t−

. (9)

From Eq. (6), we find that there exists only one nonzero basis
redefinition coefficient �0 = e−κ0 resulting from one nonre-
ciprocal length scale. This simple result can be visualized as
a spatial exponential rescaling [28] ∼e−κ0x that counteracts
the non-Hermitian pumping [Fig. 1(a)], which geometrically
takes the form of a nonconformal contraction of the spectral
loop in the complex energy plane [Fig. 1(b)].

B. Multiple nonreciprocal length scales
and spectral singularities

(1) Two nonreciprocal length scales: Going beyond an-
alytic characterizations in the existing literature [28,34,38],
we consider the next simplest characteristic polynomial with
broken reciprocity at two scales (two different powers of
z, z−1), where P(E , z) takes the form:

F (E ) = z2 + b

z
, (10)

which is also schematically illustrated in the bottom row of
Fig. 1(a). Equation (10) represents the simplest classes of non-
Hermitian Hamiltonians with couplings beyond NNs, as in our
two illustrative models presented later. As before, we have
collected all dependence on E in the function F (E ), whose
detailed form will be irrelevant for the branching topology of
ε̄(k). To find the ε̄(k) spectral loci and hence κ (k), we search
for E = ε̄(k) where there exist roots z, z′ of Eq. (10) with the
same κ (k), i.e., satisfying |z| = |z′|. By analytically solving
the cubic polynomial as detailed in Appendix A3, one obtains

the ε̄(k) loci as values of E satisfying

F (E ) ∝
(

b

2

)2/3

ω j, (11)

i.e., three straight lines radiating from the origin of the
complex F (E ) plane aligned along the cube roots of unity
ω j , j = 0, 1, 2 [Figs. 1(c) and 2(a)]. To find the deforma-
tion κ (k) needed to bring ε(k) to ε̄(k), we particularize
the eigenenergy equation Eq. (10) to the F (ε̄(k)) loci we
have just derived [Eq. (11)]. The resultant expression can be
elegantly expressed as Im[(e2κ (k)e2ik + b e−κ (k)e−ik )ω− j] = 0,
which yields

κ (k) = −1

3
log

∣∣∣∣ b

2 cos (k − 2π j/3)

∣∣∣∣, (12)

where j is chosen to give the branch the smallest complex
deformation |κ (k)| [Fig. 1(c)]. Notably, the form of F (E )
explicitly appears neither in the OBC ε̄(k) loci nor even
κ (k); our procedure of restoring reciprocity is only aware of
the structure of the couplings as reflected in the eigenenergy
Laurent polynomial, rendering other information from F (E ),
e.g., the number of bands irrelevant. What F (E ) controls is
the explicit energetics, which can be recovered by conformally
mapping the actual ε̄(k) loci onto the equally spaced Y -shaped
junction [Eq. (11)] that forms the signature OBC spectral
singularity of a Hamiltonian with two nonreciprocal length
scales [Eq. (10)].

(2) Generic nonreciprocal couplings: By generalizing the
above arguments, it can be shown that for characteristic
polynomials of the form

EN = azp + b

zq
, (13)

085151-5



LEE, LI, THOMALE, AND GONG PHYSICAL REVIEW B 102, 085151 (2020)

where p, q > 0, the OBC ε̄(k) spectrum takes the shape of
a N (p + q)-pointed star, generalizing the above-mentioned
p = 2, q = 1 case which gives a three-pointed OBC star
[Fig. 2(a ii)]. This result can also be intuitively obtained by
regarding p + q as the number of times the BZ is folded.

Most generally, the characteristic polynomial is a bivariate
polynomial [64]

P(E , z) =
∑
m,n

pm,nEmzn = 0 (14)

that contains multiple coefficients of m and n, and may not
be separable into parts that depend separately on E and z,
as in Eqs. (7) and (10). The exact correspondence between
the graph topology of the OBC singularity and the algebro-
geometric properties of its associated P(E , z) is an open
problem. However, from a single well-understood case, one
can already understand that all other cases relate to each
other via a conformal transformation of E . As illustrated
in Fig. 2(a ii) to 2(a iv), E → E2 + 1 = (E + i)(E − i) splits
the five-pointed OBC star into two stars centered at E = ±i,
while E2 → E3 produces three images of the star from two.
These mappings can be easily implemented by increasing
the number of components. For instance, to map an arbitrary
single-component (band) E = E0(z) into E2 + 1 = E0(z), one
turns to the Hamiltonian H (z) = (0 E0(z) − 1

1 0 ). Likewise, to

map it to E3 + 1 = E0(z), one can enlarge the Hamiltonian

to H (z) = (
0 0 E0(z) − 1
1 0 0
0 1 0

). More generally, given a Hamil-

tonian with complicated P(E , z), the trick will be to attempt
to bring it into a simpler known form through a conformal
transformation of E , with branch cuts introducing multiple
Riemann sheets corresponding to multiple images of the
original (both OBC and PBC) spectrum.

Still, there of course exist many exotic possibilities not
transformable to simple star patterns. Consider going from the
model in Fig. 2(a i) to 2(a v) via a mapping E2 → E2 − 0.7

z2 E
which involves z = eik as well. Since that modifies κ (k), the
OBC spectrum of Fig. 2(a v) cannot be understood in terms
of that in Fig. 2(a i), and in fact forms a different pattern,
containing even a closed graph cycle. The resultant character-
istic polynomial P(E , z) = E2 − 0.7

z2 E − z2 − 1
2z = 0 can be

obtained, for instance, from a Hamiltonian of the form H (z) =
(0.7/z2 z2 + 1/(2z)

1 0 ), which also includes a term on the diagonal.
Note, however, that graph cycles in the OBC spectrum ε̄

do not necessary require complete E dependence and can in
fact arise in single-component models with multiple powers
of z, for instance E = (z3 + 2z2 + z + z−1 + 4z−2)/2 from
Ref. [37]. We conclude this discussion by reiterating that
the graph topology of the OBC spectrum is, in its essence,
a property of the characteristic polynomial P(E , z), not the
Hamiltonian per se, with the exact nature of this graph topol-
ogy being an open topic for future studies.

C. Singularity transitions

We have just seen how the OBC spectral graph can be
drastically modified as the characteristic polynomial P(E , z)
varies. When the spectral graph topology changes discontinu-
ously, at least part of the OBC spectrum shrinks to a point, i.e.,

assumes a complex “flat-band.” The tuning of physical param-
eters that affect such transitions will generate a phase diagram
containing regions of different spectral graph topologies, as in
Fig. 2(b) where E = az2 + b/z. Singularity transitions occur
when a = 0 or b = 0, since the OBC spectrum shrinks to
a point and, optionally, flips across these transitions. More
sophisticated transitions are possible in other models, like in
those appearing in Fig. 2(a).

Notably, these topological transitions of the OBC spec-
tral graph generically do not coincide with OBC band-gap
closures, which occur when two or more components of the
graphs [i.e., stars in Fig. 2(a)] intersect. Yet, because of the
emergent nonlocality, the eigenstates get to converge non-
analytically and mix at the transition degeneracy, eigenstate
properties like the Berry curvature can still change discontin-
uously, as elaborated later in Sec. IV.

D. Topological phase boundaries

We next elaborate on two models where our surrogate
Hamiltonian formalism is essential for locating the topo-
logical phase boundaries associated with in-gap boundary
modes. While the presence of topological boundary modes is
conceptually unrelated to the OBC spectral graph topology,
topological phase boundaries are determined by gap clo-
sures (intersections) of these OBC spectral graphs. As such,
we emphasize that it is the OBC quasireciprocal surrogate
Hamiltonian H̄ (k), not the PBC H (k), that should be used to
compute topological invariants which then correctly predict
the presence of boundary modes.

1. 1D: Non-Hermitian extended Kitaev chain

Our first example is a non-Hermitian version of the ex-
tended Kitaev model [65,66], with a minimal model Hamil-
tonian given by HD = h(k) · σ, where

hx = �2 sin φ sin 2k + igx

hy = �2 cos φ sin 2k + �1 sin k + igy

hz = m − t1 cos k − t2 cos 2k. (15)

Note that this model Hamiltonian minimally contains both
NN and NNN coupling terms. As explained below, the nec-
essary presence of both NN and NNN couplings results in
a complicated characteristic polynomial with more than one
nonreciprocal length scale, whose identification of topological
phase diagram requires our surrogate Hamiltonian formalism.
These couplings contain unequal phase factors to break its
chiral symmetry into particle-hole symmetry (PHS) described
by CHT (k)C−1 = −H (−k) with C a unitary matrix, such that
Z topology is broken into Z2 (D-class) topology [66]. As com-
plex conjugation does not coincide with transposition for non-
Hermitian systems, one can alternatively define a conjugated
PHS (cPHS) as CH∗(k)C−1 = −H (−k) [19]. Here we shall
consider an example with cPHS belonging to the D† class,
as PHS does not allow non-Hermitian pumping with simple
constant non-Hermitian terms [22]. In particular, the cPHS
define here enforces σxH∗(k)σx = −H (−k), allowing only
two types of constant [67] non-Hermitian terms: igxσx and
igyσy, so that cPHS would be broken if any of the parameters
m, t1, t2, gx, gy become complex. Unlike in the SSH model,
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both the igxσx and igyσy terms can separately lead to the skin
effect, since sin 2k from the NNN couplings appear in both hx

and hy.
In principle, there is no further restriction on the parameters

of HD [Eq. (15)], whose characteristic polynomial generically
takes the form E2 = P8(z)/z4, with P8(z) an eighth-order
polynomial in z. However, for the purpose of analytically
obtaining κ (k) and hence the surrogate Hamiltonian H̄D(k),
we shall normalize m = 1 and impose the conditions t1 =
�1 cos φ, t2 = �2, and

�2
1 = −2�2

[
2Agy + (

g2
y + A2

)
(gy cos φ + gx sin φ)

]
gyA sin2 φ

(16)

with A = (�2 − 1) cos φ. Collectively, these constraints allow
the characteristic polynomial to take a simple quadratic form
as detailed in Appendix B, with only �2, φ, gx, and gy as
independent parameters. With them, the surrogate Hamilto-
nian H̄D(k) = HD(k + iκ (k)) can be defined via the constant
complex deformation k → k + iκ (k) with

κ (k) = κ = − log

∣∣∣∣− (�2 − 1) cos φ − gy

(�2 − 1) cos φ + gy

∣∣∣∣. (17)

Since PHS still holds after the complex deformation,
the topology of this non-Hermitian extended Kitaev model
can be characterized by its surrogate pseudospin expectation
vectors at the high symmetric points k = 0, π . As a two-
level non-Hermitian system, it possesses two qualitatively
distinct pseudospin vectors for each eigenenergy band Ē (k):
the physical pseudospin expectation [68] S̄RR

μ = 〈ψ̄R|σμ|ψ̄R〉
and the biorthogonal pseudospin S̄LR

μ = 〈ψ̄L|σμ|ψ̄R〉, where

μ = x, y, z and H̄D|ψ̄R〉 = Ē |ψ̄R〉, H̄†
D|ψ̄L〉 = Ē∗|ψ̄L〉. Taking

both of the bands into consideration, PHS ensures that the
trajectories of S̄RR

(k) are mirror symmetric about the equator
of the Bloch sphere. Furthermore, each band of H̄D can
either be mirror symmetric with itself or both bands can form
mirror-symmetric partners of each other. In Appendix B, these
two possible types of configurations are shown to correspond
to (spectrally) topologically distinct cases with imaginary
[Fig. 3(b)] and real line gaps [Figs. 3(a) and 3(c)], respec-
tively.

To furthermore predict the presence of topological bound-
ary modes, we turn to the biorthogonal pseudospin S̄LR(k).
In the cases with imaginary line gap, Ē (0) and Ē (π ) are
imaginary and so are S̄LR

z (0) and S̄LR
z (π ). The case when

Ē (0) and Ē (π ) are both real, i.e., with real line gap, is more
interesting, containing the possibility of hosting topological
modes. It can be shown that Sign[S̄LR

z (0)] = ε Sign[S̄LR
z (π )],

with ε = 1(−1) corresponding to the scenario without (with)
topological edge states [Figs. 3(b) and 3(c)]. All in all, there
are three distinct phases ν = 1, 0,−1 characterized by the
topological invariant [22]

ν = Sign
{[

Re
[
S̄LR

z (0)
]
Re

[
S̄LR

z (π )
]}

, (18)

as mapped out by the phase diagram of Fig. 3(d):
(i) Case (i), the ν = 1 phase with real line gap and no

topological boundary mode.
(ii) Case (ii), the ν = 0 phase with imaginary line gap and

no topological boundary mode.

FIG. 3. (a)–(c) OBC spectra (blue) enclosed by the PBC spectra
(gray) of HD for cases (i) to (iii) corresponding to parameters
φ = 0.45π , gx = gy = 0.6 and �2 = 0.1, 0.3 and 0.9 respectively.
These three cases respectively possess a real line gap, imaginary
line gap and real line gap with topological modes, as classified by
their distinct topological invariants ν = 1, 0, −1 defined by Eq. (18).
(d) Phase diagram of HD with gx = gy = 0.6 kept constant, with
phase boundaries analytically solvable via the surrogate pseudospin
we introduced. The PHS broken regime occurs when some of the
other parameters in HD take complex values, as mandated by the
constraints given by Eq. (16) and its preceding discussion.

(iii) Case (iii), the ν = −1 phase with real line gap and
isolated topological boundary modes.

These three phases ν = −1, 0, 1 are all the possible gapped
phases of this PH-symmetric system, since Ē (0), Ē (π ) must
be both real or both imaginary. We would like to highlight
that in computing ν, we have made crucial use of the κ (k)
deformation introduced by our formalism, without which it
is difficult to obtain the surrogate S̄RR(k) and S̄LR(k) that
correctly predict the OBC behavior. As a final note, NNN
couplings here and hence two or more nonreciprocal length
scales are necessary for realizing the variety of topological
configurations afforded by the symmetry class considered
here.

2. 2D: Extended non-Hermitian Chern insulator

We now illustrate the use of quasireciprocal surrogate
quantities in a 2D setting, where quantities like band geometry
and Berry curvature can be modified by non-Hermitian pump-
ing through the nonanalytic complex deformation. In the case
of cylindrical boundary conditions, we have without loss of
generality OBCs in the x direction and PBCs in the y direction,
such that ky is still a well-defined parameter. For each ky

slice, the surrogate Hamiltonian is defined by H̄ (kx; ky) =
H (kx + iκx(k), ky). In the case of OBCs in both directions,
which we shall not consider in-depth here, quasireciprocity
also has to be restored in the y direction, giving rise to ¯̄H (k) =
H̄ (kx + iκx(k), ky) = H (kx + iκx(k), ky + iκy(k)) where κx is
taken as a spectator parameter in the second iteration, and

085151-7



LEE, LI, THOMALE, AND GONG PHYSICAL REVIEW B 102, 085151 (2020)

FIG. 4. x-OBC spectra of HCh for (a) a topologically nontrivial case M = 0.5, μ = 0.3, v0 = 2 with c̄ = 1 edge mode and (b) a gapless
case M = 1, μ = 0.5, v0 = 1.5 without well-defined separate bands. (c) Phase diagram for v0 = 1.3, with black gapless regions separating
phases with topologically nontrivial edge modes (green), trivial edge modes (blue) and no edge modes (pink). The stars denote representative
cases presented in the following figure.

κy determined by how H depends on ky both explicitly and
through κx(k).

Focusing on cylindrical boundary conditions from now on,
we see that different ky slices of the same system can possess
different OBC spectral graph topologies, with discontinuous
gapped transitions between them as further discussed in the
next section. Below, we introduce a minimal and analytically
tractable example of such a non-Hermitian model with both
Chern topology and signature Y-shaped spectral topology:

HCh(k) = (v + z−1)σ+ + (u + z − v z2)σ− + sin ky σz, (19)

where z = eikx and u = M + cos ky − μ and v = v0(M +
cos ky + μ). As contrasted with the NN non-Hermitian Chern
model commonly studied in the literature [30], our model
Eq. (19) contains fundamentally asymmetric couplings (de-
tailed in Appendix C) and is not adiabatically connected to
any Hermitian Chern model. In other words, the role of its
NNN couplings in the x direction (coefficient of z2) is not
just to perturb away from the known phase of the NN Chern
model but to define a new Chern phase existing on a Y-shaped
spectral graph.

By design, the characteristic polynomial of HCh with x-
OBCs assumes the classic form of Eq. (10):

FCh(E ) = z2 + b/z, (20)

with FCh(E ) = (1 + sin2 ky + uv − E2)/v2 and b = −u/v2.
Hence, as in Fig. 1(c), each ky slice of the OBC skin spectrum
ε̄(kx; ky) consists of two cubic singularities, with the size and
origin of each Y-shaped star controlled by the ky-dependent b
and FCh(E ), respectively (Figs. 4 and 5). Additionally, isolated
in-gap topological modes can also exist. Their existence in
each 1D ky slice can be predicted by the generalized topo-
logical criterion of Ref. [34] or chiral-symmetric winding
number of H̄Ch(kx; ky) over kx. However, most important for
our context is whether they traverse the gap over a full
cycle of ky, and that is determined by the Chern number
c̄ = 1

2π

∫
�̄xyd2k, where �̄xy = Im �̄xy is the biorthogonal

Berry curvature corresponding to the imaginary part of the

gauge-invariant quantity

�̄μν = 〈∂μψ̄L|Q̄|∂νψ̄R〉. (21)

Here Q̄ = I − P̄ where P̄ = |ψ̄R〉〈ψ̄L| the biorthogonal pro-
jector onto the band of lower Re E that is biorthogonally
spanned [69,70] by left/right eigenvectors ψ̄L, ψ̄R.

Since our H̄Ch is quasireciprocal, the Chern number of
its occupied eigenstate must always be a quantized inte-
ger corresponding to the number of gap-traversing topolog-
ical edge modes, at least when the gap is well defined.
Figure 4(a) shows a gapped case with c̄ = 1 topological edge
mode (yellow curve), while Fig. 4(b) shows a gapless case
with no well-defined edge mode. Note that gapless cases can
occur as typically as gapped cases in non-Hermitian systems,
as illustrated by their extended black regions in the phase
diagram of Fig. 4(c).

IV. DISCONTINUOUS BERRY CURVATURE
AND BAND METRIC

Very interestingly, we observe discontinuities in both the
Berry curvature �̄xy and the trace of the Fubini-Study (FS)
metric Tr ḡ = Re �̄, as shown for three contrasting cases in the
center and right columns of Fig. 5, respectively. Both of these
quantities are derived from �̄, which contain momentum-
space derivatives that pick up qualitative transitions in the
behavior of the eigenstate. Since the branching behavior of the
OBC spectrum ε̄(k) is controlled by κ (k) [i.e., in Eq. (12)]
which in turn enters the eigenstate, a singularity transition
will qualitatively modify the form of κ (k) and lead to nonan-
alytic discontinuities. Physically, these nonanalyticities arise
from the emergent nonlocality induced by the non-Hermitian
pumping.

Note that because κ (k) is continuous at its kinks, �̄μν do
not diverge at its discontinuities. How discontinuities of �̄μν

arise from κ(k) discontinuities can be understood from the
functional dependence of the momenta through κ(k):

|ψ̄R〉 = |ψ̄R(k + iκ(k))〉 (22)
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FIG. 5. x-OBC spectra (left), surrogate Berry curvature (center), and FS metric trace Tr g (right) of HCh for parameters in three different
regimes: M = 0.7, μ = 0.4, v0 = 1.3 (top), M = 0.2, μ = 1.8, v0 = 1.3 (middle), and M = 0, μ = 0.4, v0 = 1.3 (right). While all three
scenarios contain cubic singularities, only the top scenario is topologically nontrivial. The middle scenario also contains edge modes (yellow)
but is deformable to the trivial case. While all three scenarios exhibit Berry curvature of FS metric discontinuities at kx = 0, ±2π/3, only the top
and bottom cases possess discontinuities at ky = ± cos−1(μ − M ) (the middle case admits no such ky solutions). Despite their discontinuities,
the Berry curvatures integrate to quantized Chern numbers 1,0 and 0, respectively.

and likewise for the left eigenvector. As such, writing
p = k + iκ(k),

|∂νψ̄R〉 = d

dkν

|ψ̄R(p)〉

= d|ψ̄R(p)〉
d p

· d

dkν

(k + iκ(k))

= d|ψ̄R(p)〉
d pν

+ i
d|ψ̄R(p)〉

d p
· dκ (k)

dkν

. (23)

The notation above is somewhat subtle: In line one, the partial
derivative ∂ν on the LHS refers to a derivative with respect
to kν that treats other momenta as independent. However,
on the RHS, we have rewritten it as a total derivative in
kν to emphasize its total derivative nature with respect to
p = k + iκ(k).

The key takeaway from Eq. (23) is that |∂νψ̄R〉 contains dis-
continuities from dκ(k)

dkν
, which is discontinuous whenever there

is a kink κ(k), i.e., as depicted in Fig. 1. Yet, the gradient dκ(k)
dkν
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never diverges as long as there are no essential singularities in
the complex band structure. This finiteness is inherited in the
OBC response quantities from �̄μν = 〈∂μψ̄L|Q̄|∂νψ̄R〉.

For our model Eq. (19), singularity transitions occur at
b = −u/v2 = 0 [Eq. (20)], i.e., at ky = cos−1(μ − M ). Fur-
thermore, κ (k) also exhibits kinks at kx = 0,±2π/3, where
the OBC spectrum jumps from one branch to the next. Indeed,
these two sets of lines exactly correspond to the discon-
tinuities in �̄xy and Tr ḡ in Fig. 5. In the c̄ = 1 case of
the top row (M = 0.7, m = 0.4, v0 = 1.3), the discontinuities
along ky are also seen to correspond to flips (reflections) in
the Y-shaped spectra, corroborating with results depicted in
Fig. 2(b). No true flips and hence discontinuities along ky exist
for the center row case (M = 0.2, m = 1.8, v0 = 1.3), for
which ky = ± cos−1(μ − M ) admits no real solution. Despite
the discontinuities, it is remarkable that the Berry curvature in
all gapped cases integrate to integer multiples of 2π .

Discontinuous transitions between different spectral singu-
larity classes do not close the gap and represent a new type of
transition that can still be physically detected through observ-
ables that depend on the momentum-space gradients of eigen-
states. The simplest examples are the gauge-invariant quantity
�̄μν = 〈∂μψ̄L|Q̄|∂νψ̄R〉, Q = I − |ψ̄R〉〈ψ̄L| introduced earlier,
whose real and imaginary parts, respectively, correspond to
the FS metric trace Tr ḡ = Re Tr Q̄ which controls the locality
of effective interactions and nonlinear response [71–73] and
the Berry curvature which appears in the Kubo formula for
linear response. In PT-symmetric quantum mechanics, the
symmetrized form 1

2 (�̄μν + �̄νμ) has also been proposed as a
quantum geometric tensor [74]. Quantities containing higher
order gradients correspond to higher-order cumulants in the
noise spectrum and are expected to exhibit discontinuities
too. As such, we expect to see kinks in various responses of
the system that depend on the momentum-space derivatives
of the eigenstates, perhaps qualitatively resembling certain
dynamical signatures found in systems with nonlocal in-
teractions [75,76]. But while the cusps therein result from
physical nonlocal couplings, our response discontinuities are
consequences of emergent nonlocality due to non-Hermitian
pumping in purely local systems.

V. DISCUSSION

In our quest for a quasireciprocal picture of non-Hermitian
systems where non-Hermitian pumping is eliminated, nonlo-
cality and its concomitant nonanalyticity emerge as unavoid-
able consequences. These effects lead to enigmatic properties
such as discontinuous Berry curvature and band geometry,
which can result in anomalous transport and noise responses
in generic systems with non-Hermitian descriptions. It would
be fascinating to actually observe the physical consequences
of discontinuous Berry curvatures discovered in this work.

At the level of formalism, we developed a restoration
procedure to map any non-Hermitian model to its quasire-
ciprocal surrogate model with reinstalled bulk-boundary cor-
respondence, from where its topological nature unfolds un-
ambiguously. By encoding the equilibration behavior of accu-
mulated pumped states as nonholomorphic complex momen-
tum deformations, the effective nonlocality leads to not only
gap-preserving topological transitions, but also ultimately a

topological classification of OBC spectra related to the classi-
fication of algebraic varieties.

Our approach applies universally to any system whose
characteristic polynomial (energy dispersion) admits a sur-
rogate nonlocal basis construction. Tailored for realistic se-
tups with multiple effective components and long-ranged
couplings, it uncovers possibly nonperturbative topological
contributions, unique to non-Hermitian systems, that would
not be revealed by oversimplified short-ranged representa-
tions. Through analogous considerations repeatedly applied
to each dimension, it can be extended to higher dimensional
lattices which support exceptional nodal structures and gener-
alized skin-topological modes [11,77]. Being based on unitary
transformations, our formalism remains valid in the realm
of interacting systems and can shed light on the interesting
interplay between the non-Hermitian skin effect and many-
body phenomena such as emergent Fermi surfaces [4,78,79].

Note added. Recently, we learned of a new tangentially
related paper Ref. [38]. While Ref. [38] focused on the math-
ematical construction of the generalized BZ for models with
multiple hoppings and bands, our work focuses on the novel
physical consequences of such systems, such as discontinuous
Berry curvature, response kinks, and emergent spectral classi-
fication in terms of graph topology.
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APPENDIX A: VARIOUS OBC SINGULARITY TYPES VS
NONRECIPROCAL LENGTH SCALES

Here, we supplement the main text discussions of the
various OBC singularity classes with more details.

1. Reciprocal (tn = t−n) case

Consider a characteristic polynomial (eigenenergy equa-
tion) of the form

F (E ) =
∑

n

tnzn + t−nz−n, (A1)

z = eik . It is instructive to first prove the absence of non-
Hermitian pumping, i.e., the skin effect when tn = t−n for
all n. Recall that non-Hermitian pumping occurs when |z1| =
|z2| �= 1, where z1, z2 are the pair of roots of Eq. (A1) closest
to the unit circle. When tn = t−n for all n, one can always turn
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Eq. (A1) into a simpler polynomial through the substitution

u = z + 1

z
. (A2)

Assuming nonvanishing terms from only a single n, doing so
gives z1, z2 = (−u ± √

u2 − 4)/2, which are of equal magni-
tude iff u and

√
u2 − 4 differ by a phase of π/2, i.e.,√

u2 − 4 = i ru (A3)

where r is a real multiplier. This implies that u = 2√
1+r2 or

0 < u < 2. Evidently then, z + 1
z = 2 cos k = u will always

have a real k solution, thereby obviating any skin effect. In
the case of multiple n, a similar analysis applies for the more
complicated resultant polynomial in u.

2. One length scale

For completeness, we review and elaborate on the sim-
plest case where non-Hermitian pumping affects only NN
couplings. Due to the presence of only one length scale,
non-Hermitian pumping can be completely “gauged away”
with a k-independent κ .

With only one length scale, the RHS of Eq. (A1) con-
tains only two dissimilar terms t±, in addition to a constant
term containing t0. To be concrete, consider the nonrecip-
rocal SSH model with HSSH(z) = (t− + z)σ+ + (t+ + z−1)σ−
where t± = t ± γ . Equation (A1) takes the form

E2 = t+z + t−
z

+ t+t− + 1 (A4)

which can be expressed as

E2

√
t+t−

− 2 cosh log
√

t+t− = u′ = z′ + 1

z′ , (A5)

where z′ =
√

t+
t−

z, i.e., k′ = k + i log
√

t−
t+

. This is mani-

festly of the form Eq. (A2) with u′ defined as E2√
t+t−

−
2 cosh log

√
t+t−, except that k is now deformed into k′ by a

constant imaginary displacement i log
√

t−
t+

.

Note that this result applies to any system obeying Eq. (A4)
and not just the nonreciprocal SSH model. Physically, the
complex deformation of k (or rescaling of z) corresponds
to a spatial exponential rescaling that counteracts the mode
accumulation from the pumping. Evidently, it will no longer
work when more than one nonreciprocal length scale is at
play, as studied below.

3. Two length scales

A minimal characteristic polynomial with more than one
length scale is given by

F (E ) = z2 + b

z
. (A6)

Here F (E ) is a function of E that absorbs the constant term, if
any, and rescales the coefficient of z2 to unity. Its exact form is
immaterial for the branching topology of the skin spectrum—
it is the algebraic form of the polynomial in z that matters.

Using Cardano’s formula, the three roots of Eq. (A6) are

z1,2 = 2
√

3F (E ) + 3
√√

12D2 ± i( 3
√

18D2 − 6F (E ))

−2
3
√

36
√

3D
,

z3 =
3
√

12F (E ) + 3
√

D2

3
√

18D
, (A7)

where D =
√

81b2 − 12F (E )3 − 9b. Again, to obtain the
OBC modes ε̄(k), we need |z1| = |z2| (and permutations),
which occur when

3
√

18D2 − 6F (E ) = re(2
√

3F (E ) + 3

√√
12D2), (A8)

with r being a real multiplier. This can be inverted to yield

F (E ) = r2 − 3
3
√

(1 + r2)2

(
b

2

)2/3

ω j, (A9)

where ω3 = 1. The three branches with j = 0, 1, 2 are se-
lected such that they are indeed the solution to Eq. (A6) closest
to the unit circle. Note that the precise functional dependence
on r is not important, r being an auxiliary multiplier. Rather,
what is important is the maximal and minimal range of F (E );
in this case, the main observation is that F (E ) fans out as
three straight lines from the origin, as illustrated in Fig. 6
for F (E ) = E2 (the power of 2 gives 2 × 3 = 6 straight skin
mode branches.) Given the genericity of Eq. (A6), we have
established that the cubic (Y-shaped) junction of OBC skin
modes as a hallmark of non-Hermitian pumping with two
length scales.

a Deformation of the momentum

Now that we have established the skin spectrum which
describes a bona-fide quasireciprocal lattice by virtue of
its imperviously to non-Hermitian pumping, we shall ob-
tain the complex momentum deformation that transforms
the PBC spectrum in the the OBC skin spectrum. In gen-
eral, this can be done by substituting z → |z|eiθ for fixed
real momentum θ ∈ R in the characteristic polynomial.
This will yield κ = − log |z|. From Eq. (A6), we solve for
Im[(|z|2e2iθ + b

|z|e
−iθ )ω− j] = 0 to obtain

z → z

√
b

2
sec (k − 2π j/3) (A10)

or

k → k − i

3
log

∣∣∣∣ b

2 cos (k − 2π j/3)

∣∣∣∣. (A11)

This is illustrated in Fig. 1(e) of the main text. Note that
the form of F (E ) does not have to explicitly appear in this
deformation.

b Coupling approximation to deformed basis

To relate the above k-dependent deformation to an ef-
fective physical coupling lattice, one can perform a Fourier
decomposition of the characteristic polynomial in terms of
the deformed z → ze−κ (k) = ze−κ (−i log z). For instance, with
b = 0.5, an approximation of Eq. (A6) up to five Fourier
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FIG. 6. (a) Distribution of Fourier coefficients in the coupling approximation to the deformed (surrogate) OBC spectrum [Eqs. (A11) and
(A12)] with b = 0.5, showcasing the real-space distribution of the nonlocal change of basis. (b)–(e) Corresponding approximations of the OBC
spectrum with 3,5,10, and 100 harmonics, respectively.

harmonics via Eq. (A11) gives

F (E ) = −0.051z5 + 0.492z2 + 0.700

z
− 0.047

z4
. (A12)

Further physical understanding can be obtained by studying
the modification to a single NN coupling z: In the above
example,

z → z

[
0.677 − 0.030

(
z3 + 1

z3

)
+ 0.010

(
z6 + 1

z6

)]
(A13)

up to six additional harmonics. This is a real-space rescaling
consisting of multiple scales: For instance, a coupling over X
sites is not just suppressed by a factor of 0.677X but is also
approximately equivalent to the superposition of many other
terms with different rates of exponential suppression with X .
Shown in Fig. 6 is an illustration of the Fourier approximation,
where one sees that the spectrum converges to the quasire-
ciprocal OBC spectrum as more harmonics are added. The
convergence is power law due to the nonanalyticity of κ (k).

4. Generic cases

The precise prediction of their graph structure of the OBC
spectrum from P(E , z) is an open problem. Generically, the
OBC spectrum lies along intersections of the various solutions
of κ (k) in energy space, as shown in Fig. 7 for two illustrative
cases mentioned in the main text. As we can see, the OBC
spectrum accumulate along branchlike trenches, but their
global topology depends also on the PBC spectral loops. The

reader is encouraged to refer to Refs. [11,34,37] for further
discussions.

APPENDIX B: ANALYTIC TREATMENT OF THE
EXTENDED NON-HERMITIAN KITAEV MODEL

The non-Hermitian extension of the extended Kitaev model
[65,66] realizes a prime example of a non-Hermitian topo-
logical phase (D-class) that minimally require NN and NNN
couplings and hence more than one reciprocal length scales.
The model Hamiltonian is given by H = σ · h, where

hx = dx + igx hy = dy + igy hz = dz, (B1)

with dx = �2 sin φ sin 2k, dy = �2 cos φ sin 2k + �1 sin k,
dz = m − t1 cos k − t2 cos 2k. The two terms igxσx and igyσy

are the only constant non-Hermitian terms that do not violate
particle-hole symmetry (PHS)

σxH∗(k)σx = −H (−k), (B2)

which protects the Z2 topology inherited from the Hermitian
version of this model. To ensure no residual Z topology [66],
we also break chiral symmetry via the parameter φ, which
represents a phase difference between the NN and NNN
pairings �1 and �2.

To analytically solve for its OBC skin modes, one consid-
ers the complex continuation of z = eik and finds values of
E for which the two roots zμ, zν of the eigenenergy equation
E2 = h2

x + h2
y + h2

z nearest to the real circle satisfy |zμ| =
|zν |. The spectrum will converge to these energy loci during

FIG. 7. Density plots of the gap between the second and third smallest κ solutions as a function of E , for (a) E 2 − 0.7E
z2 − z2 − 1

2z = 0 [case
(f) in Fig. 2 of the main text] and (b) E = (z3 + 2z2 + z + z−1 + 4z−2)/2 as in Ref. [37]. Light/dark regions denote small/large gaps. The
OBC spectra coalesce along the lines of vanishing κ (imaginary) gap.
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the PBC-OBC interpolation. Here, the eigenenergy equation
explicitly takes the following form

E = �2
1 + �2

2 + t2
1 + t2

2

2
− g2

x − g2
y + m2

+ t2
2 − �2

2

4

(
z4 + 1

z4

)
+ t1t2 − �1�2 cos φ

2

(
z3 + 1

z3

)

+ t1t2 + �1�2 cos φ − 2mt1
2

(
z + 1

z

)

+�1gy

(
z − 1

z

)
+ t2

1 − �2
1 − 4t2m

4

(
z2 + 1

z2

)

+�2(gy cos φ + gx sin φ)

(
z2 − 1

z2

)
. (B3)

1. Reduction to analytically tractable form for special cases

In order to explore analytic solutions, we shall consider
special cases in which the cubic and quartic terms vanish. That
occurs when the parameters satisfy the constraints t2 = �2

and t1 = �1 cos φ. Also, we shall set m = 1 without loss
of generality, which can always be satisfied via a global
rescaling. Doing so, the above expression simplifies to

E2 = �2
1(1 + cos φ2)

2
− (

g2
x + g2

y − �2
2 − 1

)
+�1(gy − cos φ + �2 cos φ)z

− �1(gy + cos φ − �2 cos φ)

z

+ z2

(
−�2

1

4
sin2 φ − �2 + �2(gx sin φ + gy cos φ)

)

+ 1

z2

(
−1

4
�2

1 sin2 φ − �2 − �2(gx sin φ + gy cos φ)

)
.

(B4)

Although we have reduced the above from an eighth order to a
fourth polynomial in z, an additional constraint is still needed
for a simple analytic solution. We would like to substitute the
terms linear in z and z−1 by a single variable u, i.e.,

u = u+z + u−
z

, u± = �1[(�2 − 1) cos φ ± gy] (B5)

such that u2 = u2
+z2 + u2

−
z2 + 2u+u− reproduces the rest of E2

up to a linear transformation, i.e.,

E2 = �u2 + u + u0, (B6)

where � and u0 will be computed shortly. This is only
possible if �1 is chosen to satisfy(

u−
u+

)2

= − 1
4�2

1 sin2 φ − �2 − �2(gx sin φ + gy cos φ)

− 1
4�2

1 sin2 φ − �2 + �2(gx sin φ + gy cos φ)
(B7)

or, more explicitly, (defining A = (�2 − 1) cos φ)

�2
1 = −2�2

[
2Agy + (

g2
y + A2

)
(gy cos φ + gx sin φ)

]
gyA sin2 φ

. (B8)

In order to avoid complications, we require that �1,�2 are
real. This is possible along some interval within 0 < �2 < 1
giving a positive value to the RHS of Eq. (B8). With some
labor, we can also show that

� = sin2 φ(gy cos φ + gx sin φ)

4(�2 − 1)2 cos2 φ(gx + gy cos φ) + 4gy
(
gxgy + (

g2
y + 2(�2 − 1)

)
cos φ

) , (B9)

u0 = −2gx
(
g2

y + (�2 − 1)2
)
�2 cos φ sin φ + gy sin2 φ

( − 1 + g2
y + g2

x + �2
(
1 + g2

y − g2
x + 3(−1 + �2)�2

)) − 2�2
( − 1 + g2

y + �2
2

)
gy(�2 − 1)

. (B10)

To summarize, if we enforce Eq. (B8) as well as t2 = �2

and t1 = �1 cos φ, the eigenvalue equation (B3) will reduce
to Eq. (B6) with u given in terms of z via Eq. (B5) and � and
u0 given by Eqs. (B9) and (B10), respectively. After adhering
to these constraints we still have four free parameters left:
�2, φ, gx, gy.

2. OBC skin mode solutions of surrogate system

The roots of Eq. (B3) are given via Eq. (B5) as

z± = u ±
√

u2 − 4u+u−
2u+

(B11)

for each u satisfying Eq. (B6). To find the skin mode loci
satisfying |z+| = |z−|, the key observation is that u has to be
purely imaginary if u+, u− are real. This is very similar to
the case of Eq. (A4) considered in the previous section. More
concretely, note that, in the large regime where u± are real and
of opposite signs (indication of large nonreciprocity), |z+| =
|z−| requires 0 > u2 � 4u+u−, which is in the regime of imag-

inary u. Then, enforcing Re u = (u+|z| + u−
|z| ) cos(Re k) = 0

yields the condition

k → k − i log |z| = k − i

2
log

∣∣∣∣−u−
u+

∣∣∣∣, (B12)

where the PBC modes shall be continued into skin modes.
After solving for u, E can be obtained via the additional step
Eq. (B6) (E =

√
u0 + iv − �v2, where v ∈ R), as computed

in Fig. 8.

3. Topological phase transition

Topological phase transitions occur when the OBC skin
modes intersect. Setting E = 0 in Eq. (B6) and noting that
u has to be purely imaginary, it is not hard to see that u0 = 0
is the condition for skin gap closure, i.e.,

−2gx
(
g2

y + (�2 − 1)2
)
�2 cos φ sin φ

+ gy sin2 φ
( − 1 + g2

y + g2
x + �2

(
1 + g2

y − g2
x

+ 3(−1 + �2)�2
)) − 2�2

( − 1 + g2
y + �2

2

) = 0. (B13)
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FIG. 8. OBC skin mode eigenenergies (black) enclosed by PBC eigenenergies (red) for three illustrative cases: (a) imaginary line gap
without topological modes, (c) real line gap with isolated in-gap topological modes, and (b) their intermediate case extremely close to the phase
transition, where the OBC eigenenergies almost touch the E = 0 origin. Parameters used are: (a) �2 = t2 = 0.5, φ = π/3, �1 = 0.64144, t1 =
0.3207, gx = gy = 0.6, (b) �2 = t2 = 0.55 ≈ 0.548, φ = π/3,�1 = 0.8503, t1 = 0.4252, gx = gy = 0.6, (c) �2 = t2 = 0.7, φ = π/3,�1 =
1.664, t1 = 0.832, gx = gy = 0.6. Faint light green curves represent contours of constant κ (k).

For the parameters of Fig. 8, it occurs around �2 = t2 ≈
0.548. For generic parameter cases that are not analytical
tractable, we will need to numerically solve for the skin modes
to find when they intersect.

4. Topological properties from pseudospin vectors

We next characterize the above-mentioned topological
transition in terms of the topological properties of the pseu-
dospin expectation vector. In a non-Hermitian system, one can
construct four possible pseudospin expectations out of the left
(L) and right (R) eigenvectors

S̄αβ
i,± = 〈ψ̄α

±|σi|ψ̄β
±〉, (B14)

where i = x, y, z, ± label the two eigenvectors and α, β

indicate whether the L or R eigenvector was used. Of the four
expectation vectors, only two types are qualitatively distinct:
the expectation S̄RR

± or S̄LL
± of a single R or L eigenvector and

the biorthogonal expectation S̄LR
± (or its conjugate). Since we

are interested in the OBC topological boundary modes, we
shall only work within the eigenspace of the surrogate Hamil-
tonian H̄ (k) = H (k + iκ ) obtained via complex momentum
deformation.

For a geometric interpretation of the topology [68], we
shall first consider the pseudospin expectation of the left
or right eigenvectors, which IS always real. Writing Ē =√

h̄2
x + h̄2

y + h̄2
z , the pseudospin components are given by

S̄RR
x,± = 〈ψ̄R

±|σx|ψ̄R
±〉,∝ ±

(
h̄∗

x + ih̄∗
y

Ē∗ + h̄x − ih̄y

Ē

)
−

(
h̄∗

x + ih̄∗
y

Ē∗
h̄z

Ē
+ h̄x − ih̄y

Ē

h̄∗
z

Ē∗

)
,

S̄RR
y,± = 〈ψ̄R

±|σy|ψ̄R
±〉 ∝ ±

(
−ih̄∗

x + h̄∗
y

Ē∗ + ih̄x + h̄y

Ē

)
−

(
−ih̄∗

x + h̄∗
y

Ē∗
h̄z

Ē
+ ih̄x + h̄y

Ē

h̄∗
z

Ē∗

)
,

S̄RR
z,± = 〈ψ̄R

±|σz|ψ̄R
±〉 ∝ h̄xh̄∗

x + h̄yh̄∗
y − h̄zh̄∗

z

Ē Ē∗ − 1 + i
h̄∗

y h̄x − h̄∗
x h̄y

Ē Ē∗ ±
(

h̄z

Ē
+ h̄∗

z

Ē∗

)
, (B15)

and

S̄LL
x,± = 〈ψ̄L

±|σx|ψ̄L
±〉,∝ ±

(
h̄x + ih̄y

Ē
+ h̄∗

x − ih̄∗
y

Ē∗

)
−

(
h̄x + ih̄y

Ē

h̄∗
z

Ē∗ + h̄∗
x − ih̄∗

y

Ē∗
h̄z

Ē

)
,

S̄LL
y,± = 〈ψ̄L

±|σy|ψ̄L
±〉 ∝ ±

(
−ih̄x + h̄y

Ē
+ ih̄∗

x + h̄∗
y

Ē∗

)
−

(
−ih̄x + h̄y

Ē

h̄∗
z

Ē∗ + ih̄∗
x + h̄∗

y

Ē∗
h̄z

Ē

)
,

S̄LL
z,± = 〈ψ̄L

±|σz|ψ̄L
±〉 ∝ h̄xh̄∗

x + h̄yh̄∗
y − h̄zh̄∗

z

Ē Ē∗ − 1 + i
h̄yh̄∗

x − h̄xh̄∗
y

Ē Ē∗ ±
(

h̄z

Ē
+ h̄∗

z

Ē∗

)
, (B16)

which corresponds to S̄RR
± for H†, which exhibits the same topology.

We next specialize to S̄RR
± without loss of generality and consider its behavior at high symmetric points. Since PHS also holds

for the surrogate Hamiltonian, σxH̄D(k)σx = −H̄∗
D(−k), the right eigenvectors satisfy∣∣ψ̄R

α (k)
〉 = σx

∣∣ψ̄R
α′ (−k)

〉∗
, (B17)
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with eigenenergies

Ēα (k) = −Ē∗
α′ (−k), (B18)

and α, α′ ∈ {+,−} labeling possibly different band indices.
In terms of the pseudospin vector components,

S̄RR
x,α (k) = S̄RR

x,α′ (−k), S̄RR
y,α (k) = S̄RR

y,α′ (−k),

S̄RR
z,α (k) = −S̄RR

z,α′ (−k), (B19)

i.e., the α band at k is symmetric to the α′ band at −k
about the equator of their Bloch sphere. Qualitatively different
possibilities arise depending on whether α is the same as α′ at
the high symmetric points k = 0 and π . At these two points
k = k0, PHS allows only purely imaginary h̄x,y(k0) and real

h̄z(k0), such that the eigenenergy Ē (k0) =
√

h̄2
x + h̄2

y + h̄2
z is

also either real or purely imaginary. As PHS always ensures
that Ē+(k) = −Ē−(k), Eq. (B18) yield two distinct scenarios:

(i) α = α′ when Ēα (k0) is imaginary, suggesting that each
S̄RR

± trajectory is symmetric to itself. In particular, from
Eq. (B15), we have

S̄RR
x,±(k0) ∝ ± 2h̄x

¯E (k0)
− 2ih̄yh̄z

Ē (k0)2
,

S̄RR
y,±(k0) ∝ ± 2h̄y

¯E (k0)
+ 2ih̄xh̄z

Ē (k0)2
,

S̄RR
z,±(k0) = 0, (B20)

indicating that at the high symmetric points k0 = 0 or π , the
pseudospin vectors for both bands lie on the equator but are
not symmetric to each other.

(ii) α �= α′ when Ēα (k0) is real, suggesting that the two
trajectories of S̄RR

± are symmetric to each other. Equation
(B15) yields normalized pseudospin vectors

S̄RR
± (k0) = 1√

1 − 4h̄2
x − 4h̄2

y

(−2ih̄y

Ē (k0)
,

2ih̄x

Ē (k0)
,∓1

)
, (B21)

with the two bands corresponding to two pseudospin vectors
symmetric about the equator.

These two situations are also characterized by imaginary
and real line gaps, respectively. Note that Ē (0) and Ē (π ) must
simultaneously be both imaginary or real, since otherwise the
four eigenenergies at these two points shall lie on each of the
positive and negative branches of the real and imaginary axis,
respectively, giving rise to a full OBC spectrum assuming
a loop enclosing the origin, in contradiction to the quasire-
ciprocity of the surrogate Hamiltonian.

To further determine the existence of topological boundary
modes, we need to turn to the biorthogonal pseudospin expec-

tation vector S̄LR
± defined by

S̄LR
x,± = 〈ψ̄L

±|σx|ψ̄R
±〉 = ±h̄x/Ē ,

S̄LR
y,± = 〈ψ̄L

±|σyψ̄
R
±〉 = ±h̄y/Ē ,

S̄LR
z,± = 〈ψ̄L

±|σz|ψ̄R
±〉 = ±h̄z/Ē , (B22)

which is however generally complex for non-Hermitian sys-
tems and not even directly visualizable on a Bloch sphere.
As discussed in the main text and Ref. [22], it neverthe-
less allows the computation of the topological invariant ν =
Sign{[Re[S̄LR

z (0)]Re[S̄LR
z (π )]}, which takes values of 0,−1,

and 1. As evident from the above argument, the ν = 0 case
is the scenario with imaginary line gap corresponding to
Fig. 8(a) of the main text. The ν = ∓1 cases are scenarios
with real line gaps with/without topological boundary modes
[see Fig. 8(c) as an example].

APPENDIX C: FURTHER DETAILS OF THE EXTENDED
NON-HERMITIAN CHERN MODEL

The Chern model considered in our work is

HCh(k) = (v + z−1)σ+(u + z − vz2)σ− + sin kyσz, (C1)

where u = M + cos ky − μ and v = v0(M + cos ky + μ).
Containing both linear and quadratic terms in z, z−1, it has
both NN and NNN couplings. It is specially designed such
that E2 = (v + z−1)(u + z − vz2) + sin2 ky only has z2, z−1

and constant terms, thereby reducing to Eq. (A6) with ky-
dependent coefficients and amenable to analytic treatment.
Being fundamentally unlike the NN SSH model (in fact
uσ+ + vσ− is equivalent to the non-Hermitian SSH model in
ky), its phase diagram has never been studied. In real space,
its various highly nonreciprocal couplings across −2 sites to
2 sites in both x and y directions are⎛

⎜⎜⎜⎝
0 0 0 0 0
0 0 v0/2 0 0
0 1 Mv0 + μv0 0 0
0 0 v0/2 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠ (C2)

from pseudospin A to B and⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 1/2 0 −v0/2
0 0 M − μ 1 −Mv0 − μv0

0 0 1/2 0 −v0/2
0 0 0 0 0

⎞
⎟⎟⎟⎠ (C3)

from pseudospin B to A. Between the same pseudospin sub-
lattice, we simply have Hermitian NN ±i/2 couplings from
sin kyσz.

The OBC spectrum takes the form of

FCh(E ) = 1 + sin2 ky + uv − E2

v2
= z2 + b

z
, (C4)

where b = −u/v2, with z deformed according to z →
z 3

√
b

2 cos(k−2π j/3) , where j = 0, 1, 2 depends on the branch.
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FIG. 9. |κy| diagrams for (a) v0 = 0.5, (b) v0 = 1.3, and (c) v0 = 2. Gapless regions (black), which demarcate the different topological
phases, can form extended 2D regions, unlike in Hermitian systems where they can only be 1D boundaries separating different phase regions.

Simplifying, we can show that for the OBC gap to close,

4(2 − cos2 ky + v0((M + cos ky)2 − μ2))3

− 27v2
0 ((M + cos ky)2 − μ2)2 = 0. (C5)

Gapless regions correspond to parameter sets where a real ky

exists. If not, the system is gapped, characterized by a nonzero
κy = Im ky, as plotted in Fig. 9.
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