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Symmetry-protected trivial phases and quantum phase transitions in an anisotropic
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The ground-state phase diagram is obtained for an antiferromagnetic spin-1 anisotropic biquadratic model.
With the help of symmetry and duality transformations, three symmetry-protected trivial phases and one
dimerized symmetry-breaking phase are found. Local and nonlocal order parameters are identified to characterize
these phases. Quantum phase transitions between the symmetry-protected phases belong to the Gaussian
universality class with central charge c = 1, and quantum phase transitions from the symmetry-protected trivial
phases to the dimerized phase belong to the Ising universality class with central charge c = 1/2. In addition, the
model admits three characteristic lines of factorized ground states, which are located in the symmetry-protected
trivial phases instead of a symmetry-breaking phase, in sharp contrast to other known cases.
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I. INTRODUCTION

Much attention has been focused on critical phenomena in
quantum many-body systems with an aim towards a complete
classification of quantum states of matter. In this regard,
significant progress has been made for quantum spin systems
in one dimension, resulting in the introduction of novel con-
cepts, such as symmetry-protected topological order [1] and
symmetry-protected trivial (SPt) order [2]. A SPt phase is a
symmetric phase connected adiabatically to a product state
and is characterized in terms of a nonlocal order parameter
defined by the combined operation of the site-centered inver-
sion symmetry with a π rotation around the z axis in the spin
space. As a consequence, such a SPt phase is different from
a symmetry-protected topological phase [1]. Therefore, it is
expected to also play an important role in classifying quantum
states of matter [2,3]. However, it remains unclear whether or
not the current characterization of SPt phases in terms of the
nonlocal order parameter is generic enough for any possible
SPt phases.

On the other hand, dualities, symmetries, and factorized
ground states combine to play a significant role in char-
acterizing physical properties for quantum many-body sys-
tems [4]. An intriguing question is how then to demon-
strate the powerfulness of all these concepts in one single
illustrative example. In this paper, we investigate the nature
of SPt phases appearing in the ground-state phase diagram
for an anisotropic generalization of the spin-1 biquadratic
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model [5,6], which is known to be in a dimerized phase.
The more general model proposed here is described by the
Hamiltonian,

H = −
∞∑

i=−∞

(
JxSx

i Sx
i+1 + JySy

i Sy
i+1 + JzS

z
i Sz

i+1

)2
, (1)

where Sα
i (α = x, y and z) denote spin-1 operators at site i on

an infinite-size chain with Jx, Jy, and Jz the spin couplings
describing the interactions among the x, y, and z compo-
nents. The model is antiferromagnetic, in the sense that it
becomes the antiferromagnetic spin-1/2 XYZ model, which
itself is an exactly solvable model [7], if Sα

i ’s are spin-1/2
operators.

The model Hamiltonian (1) reduces to the spin-1 SU(2)-
invariant biquadratic model when Jx = Jy = Jz. The spin-
1 biquadratic model has been extensively investigated. It
can be either mapped to the nine-state Potts model [5] or
solved directly in terms of Bethe ansatz or functional re-
lations [6]. It is, thus, known to be in a dimerized phase
with a relatively small spectral gap. The Hamiltonian (1)
of the anisotropic generalization of this model commutes
with the three operators �x = �i(−1)i[(sy

i )2 − (sz
i )2], �y =

�i(−1)i[(sz
i )2 − (sx

i )2], and �z = �i(−1)i[(sx
i )2 − (sy

i )2]. In
particular, these three commuting operators, combining with
Sα

i , generate a SU(3) symmetry when Jx = Jy = Jz [8]. It is the
staggered nature of the symmetry operators which explains
why spontaneous dimerization occurs in the spin-1 SU(2)-
invariant biquadratic model [5].
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TABLE I. The six symmetry and duality transformations for the
biquadratic Hamiltonian (1) defined in relation (2).

U Spin transformation k(X,Y ) X ′ Y ′

Ua Sx
2i → −Sy

2i, Sy
2i → −Sx

2i, 1 −Y −X
Sz

2i → −Sz
2i, Sx

2i+1 → Sy
2i+1,

Sy
2i+1 → Sx

2i+1, Sz
2i+1 → −Sz

2i+1

Ub Sx
i ↔ Sy

i , Sz
i → −Sz

i 1 Y X
U1 Sx

i → −Sx
i , Sy

i → Sz
i , Sz

i → Sy
i Y 2 X 1/Y

U2 Sx
2i → −Sx

2i, Sy
2i → −Sz

2i, Y 2 −X/Y −1/Y
Sz

2i → −Sy
2i, Sx

2i+1 → −Sx
2i+1,

Sy
2i+1 → Sz

2i+1, Sz
2i+1 → Sy

2i+1

U3 Sx
i → Sz

i , Sy
i → −Sy

i , Sz
i → Sx

i X 2 1/X Y/X
U4 Sx

2i → −Sz
2i, Sy

2i → −Sy
2i, X 2 −1/X −Y/X

Sz
2i → −Sx

2i, Sx
2i+1 → Sz

2i+1,
Sy

2i+1 → −Sy
2i+1, Sz

2i+1 → Sx
2i+1

II. DUALITY TRANSFORMATIONS

Key information about the nature of the phase diagram
can be obtained from duality relations among the spin cou-
plings. Here, quantum duality is represented by a local unitary
transformation U acting on Hamiltonian (1). For convenience
and simplicity, we define the variables X = Jx/Jz and Y =
Jy/Jz and consider H (X,Y ). In general, if H (X ′,Y ′) is dual
to H (X,Y ), there should exist a unitary transformation U
satisfying

H (X,Y ) = k(X,Y )UH (X ′,Y ′)U †. (2)

The coupling parameters X ′ and Y ′ are functions of X and Y
with k(X,Y ) being positive.

For Hamiltonian (1), there are two symmetry transforma-
tions and four duality transformations as presented in Table I.
These symmetry and duality transformations imply six self-
dual lines defined by X = ±1, Y = ±1, and Y/X = ±1.

III. GROUND-STATE PHASE DIAGRAM

To obtain the phase diagram, we consider the self-dual
lines Jx/Jz = 1, Jy/Jz = 1, and Jy/Jx = 1, which delineate
the six regions shown in Fig. 1(a). Because of the various
symmetries and dualities, we only need to focus on one of
these six regions with the whole phase diagram following
by mapping with the help of the duality transformations.
We, thus, define region I as the principal regime. To deter-
mine the phase boundary in region I, we examine order param-
eters based on numerical simulations in terms of the infinite
time-evolving block decimation (iTEBD) algorithm [9] and
the infinite density-matrix renormalization-group (iDMRG)
algorithm [10]. In both algorithms, ground-state wave func-
tions are represented in terms of infinite matrix product states
(iMPS). We will also make use of the von Neumann entropy.
Figure 1(b) shows the ground-state phase diagram determined
in this way as discussed in detail below.

IV. FACTORIZED STATES

When Jx = 0, the system is in a factorized ground state.
The wave function of this factorized state can be written as a
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FIG. 1. (a) The six dual regions in the Jx/Jz � 0 and Jy/Jz � 0
parameter space of the spin-1 biquadratic anisotropic model. Region
I is the principal regime. (b) The phase diagram characterized by
three Z2 combined symmetry operations K = (Kx, Ky, Kz ) and order
parameters D = (Dx, Dy, Dz ). The inset shows a magnification of the
tiny region defining the dimerized phase. The dashed-dotted paths
labeled by (i)–(iii) are sample lines discussed in the text to show how
to characterize these phases.

simple product of the vector 1√
2
(1, 0,−1). The corresponding

factorized energies are given by e = −(J2
y + J2

z ). Similarly,
the system is also in a factorized state when Jy = 0 or Jz =
0, respectively, as follows from the duality transformations.
The wave functions can then be written as products of the
vector 1√

2
(1, 0, 1) or (0,1,0) with energies e = −(J2

x + J2
z )

or e = −(J2
x + J2

y ), respectively. These three factorized states
are dual to each other. Note that, if we choose Jz as an
energy scale, then, Jz = 0 is equivalent to saying that both
Jx and Jy approach infinity with a fixed ratio Jx/Jy. We also
note that, when Jx = Jy = 0, the model has 2N degeneracies
with entanglement varying between 0 and ∞, consistent with
previous results for systems with largely degenerate ground
states [11].

V. SYMMETRY-PROTECTED TRIVIAL PHASES

Spontaneous symmetry breaking (SSB) occurring in quan-
tum many-body systems implies the existence of long-range
order which can be characterized by local-order parameters.
Significantly, there exist other concepts of order in quantum
many-body systems which are beyond Landau theory due to
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FIG. 2. Graphical representation of non-local-order parameters
in the MPS picture. �A and �B are three-index tensors; λA and λB

are Schmidt decomposition coefficients. These four tensors with a
two-site translation invariance form the ground-state wave-function
|ψ〉 of the infinite-size spin chain.

the absence of any SSB. Examples are the three SPt phases
mentioned above, which cannot be successfully characterized
by local-order parameters. Fortunately, appropriate non-local-
order parameters can be used to characterize such order,
which may be regarded as a natural extension of the SPt
order introduced in Ref. [2]. Indeed, distinct non-local-order
parameters can successfully distinguish various symmetry-
protected phases and are effective for symmetry-protected
gapped phases with partial symmetry breaking [12,13].

For a given ground-state wave function |ψ〉 of an infinite-
size spin chain represented by the iMPS, the site-centered
non-local-order parameters can be written based on reversing
an odd-sized segment of the chain and, then, calculating the
resulting overlap [2,14]. This can be defined in terms of the
inversion operator,

Oα
L = 〈ψ |I(1,L)�

α
(1,L)|ψ〉

tr
(
λ2

Aλ2
B

) , (3)

where Oα
L is the inversion on the segment from 1 to L with

internal symmetry operations �α
(1,L) acting on the physical

indices. Here, �α
(1,L) is exp(iπSα ) with Sα a spin-1 matrix and

α = x, y, or z. The segment length L is odd. λA and λB are
Schmidt decomposition coefficients.

This definition respects two-site translation invariance due
to the fact that it can work on non-SSB and SSB wave
functions directly. In the absence of SSB, Oα

L gives a ±1 value.
Conversely, Oα

L gives a 0 value for SSB. Figure 2 shows the
graphical representation of non-local-order parameters in the
MPS framework. Each SPt phase can then be characterized by
the values of (Ox

L, Oy
L, Oz

L ) of the non-local-order parameters.
When L approaches the thermodynamic limit, the non-local-
order parameters (Ox

L, Oy
L, Oz

L ) obtain the exact values of
(Kx, Ky, Kz ). We denote these three Z2 combined symmetry
operations by K = (Kx, Ky, Kz ).

We employ the definition of non-local-order parameters (3)
on the three sample lines: (i) Jx/Jz = 0.4, (ii) Jx/Jz = 0.6, and
(iii) Jy/Jz = 0.988 as indicated in the phase diagram Fig. 1(b).
First consider lines (i) and (ii). In Fig. 3, we plot Ox

L, Oy
L,

and Oz
L as functions of Jy/Jz for fixed Jx/Jz = 0.4 and fixed

Jx/Jz = 0.6 with truncation dimension χ = 100. Quantum
phase transition (QPT) points are located at Jc

x /Jz = 0.4 and
Jc

x /Jz = 0.6, respectively. Increasing the inversion block size
L from L = 101 to L = 201, Ox

L reaches the saturation value
of −1 most efficiently when Jy/Jz is away from the QPT point
Jc

y /Jz. In contrast, Ox
L saturates much slower in the vicinity of

Jc
y /Jz. The values of Oy

L and Oz
L behave similarly.

−1

0

1
L=101
L=151
L=201

−1

0

1 L=101
L=151
L=201

0.58 0.59 0.6 0.61 0.62

−1.1

−1.05

−1

J
y
/J

z

L=101
L=151
L=201

(d) O
L
x J

x
/J

z
=0.6

(e) O
L
y

(f) O
L
z

−1

0

1
L=101
L=151
L=201

−1

0

1 L=101
L=151
L=201

0.38 0.39 0.4 0.41 0.42

−1.1

−1.05

−1

J
y
/J

z

L=101
L=151
L=201

O
L
x

O
L
y

(c) O
L
z

(a)

(b)

J
x
/J

z
=0.4

FIG. 3. Non-local-order parameters Oα
L as a function of coupling

Jy/Jz with truncation dimension χ = 100 for fixed Jx/Jz = 0.4 (top)
and 0.6 (bottom). The parameter L shown is the inversion block size.
QPT points are identified as Jc

y /Jz = 0.4 and 0.6. For each panel the
symmetry parameter values of K = (−1, 1, −1) for the left side and
K = (1, −1, −1) for the right side of the QPT point. The data sets
correspond to lines (i) and (ii) in Fig. 1(b).

In this way, the SPt phase on the left-hand side of the
QPT points Jc

y /Jz is characterized by K = (1,−1,−1), which
corresponds to the SPt phase above (PA) diagonal phase
boundaries. Similarly, the phase on the right-hand side of the
QPT points Jc

y /Jz is characterized by K = (−1, 1,−1), which
corresponds to the SPt phases below (PB) diagonal phase
boundaries. Based on the dual regions in Fig. 1(a), the SPt PA
phase is in region I and the SPt PB phase is in region VI. These
two phases are, thus, dual to each other, separated by the
self-dual line Jy = Jx. The values of K = (1,−1,−1) of the
non-local-order parameters in region I and K = (−1, 1,−1)
in region VI foretell their duality. Based on duality, one
knows, e.g., that the non-local-order parameters of the SPt
phase in regions III and IV can be written as K = (−1,−1, 1).

Turning to line (iii) in Fig. 1(b), we plot Ox
L, Oy

L, and Oz
L

as a function of Jx/Jz for fixed Jy/Jz = 0.988 with truncation
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FIG. 4. (Top) Non-local- and (bottom) local-order parameters
as a function of control parameter Jx/Jz with truncation dimension
χ = 100 for fixed Jy/Jz = 0.988. Two QPT points are detected at
Jc1

x /Jz = 0.9799 and Jc2
x /Jz = 1.003. Here, K = (1,−1, −1) on the

left-hand side of Jc1
x /Jz and K = (−1, 1, −1) on the right-hand side

of Jc2
x /Jz. In the region between Jc1

x /Jz and Jc2
x /Jz, K = (0, 0, 0)

where the dimerized phase is characterized by the combined local
order parameter D = (Dx, Dy, Dz ). The data sets correspond to line
(iii) in Fig. 1(b).

dimension χ = 100 in Fig. 4. Here, two QPT points are
located at Jc1

x /Jz = 0.9799 and Jc2
x /Jz = 1.003. The SPt phase

on the left-hand side of Jc1
x /Jz corresponding to PA is char-

acterized by K = (1,−1,−1). The SPt phase on the right-
hand side of Jc2

x /Jz corresponding to PB is characterized by
K = (−1, 1,−1). We note that the saturation rate of Ox

L, Oy
L,

and Oz
L at Jc1

x /Jz = 0.9799 and Jc2
x /Jz = 1.003 is much slower

than the rate at Jc
y /Jz = 0.4 and 0.6.

VI. DIMERIZED PHASE

We, now, concentrate on the dimerized phase in the vicin-
ity of the isotropic point Jx = Jy = Jz for which long-range

order exists. With fixed Jy/Jz = 0.988, SSB occurs when con-
trol parameter Jx/Jz crosses the points Jc1

x /Jz = 0.9799 and
Jc2

x /Jz = 1.003. To characterize the long-range order in the
region between these two points, we consider dimerized local
order parameter 〈SiSi+1 − Si+1Si+2〉 [5]. Unfortunately, this
definition only fits the system with SU(2) symmetry. However,
a systematic method based on tensor network representations
to derive local-order parameters has been established [15].
Following this method, we analyze the combined dimer-
ized local-order parameters D = (Dx, Dy, Dz ), with Dα =
〈Sα

i Sα
i+1 − Sα

i+1Sα
i+2〉. Figure 4 shows plots of these dimerized

local-order parameters as a function of control parameter
Jx/Jz with truncation dimension χ = 100 for fixed Jy/Jz =
0.988. The dimerized long-range-order D is clearly evident
between Jc1

x /Jz = 0.9799 and Jc2
x /Jz = 1.003. Figure 4 clearly

demonstrates the complementarity between the local- and
non-local-order parameters.

VII. VON NEUMANN ENTROPY AND CENTRAL CHARGE

To examine the nature of the QPT between SPt and
dimerized phases, we first discuss the definition of von
Neumann entropy as a measure of bipartition entanglement.
Consider state |ψ〉 as being composed of two semi-infinite
chains L(−∞, . . . , i) and R(i + 1, . . . ,+∞), connected by
the Schmidt decomposition coefficient λα . This implies |ψ〉
can be expressed as |ψ〉 = ∑χ

α=1 λα|φL
α 〉|φR

α 〉, where |φL
α 〉

and |φR
α 〉 are the Schmidt bases of the two semi-infinite

chains L and R. Consequently, the von Neumann entropy can
be defined as [16] S = −Tr ρL ln ρL = −Tr ρR ln ρR, where
ρL = TrR ρ and ρR = TrL ρ are the reduced matrices of the
subsystems of L and R, respectively, with density matrix ρ =
|φ〉〈φ|. For the semi-infinite chains L and R of iMPS, the von
Neumann entropy S is written as

S = −
χ∑

α=1

λ2
α ln λ2

α. (4)

At a critical point in a one-dimensional system, the
semilogarithmic scaling of the von Neumann entropy versus
truncation dimension χ follows from conformal invariance
with scaling ruled by the central charge of the underlying
conformal field theory. In addition, the correlation length ξ of
the iMPS exhibits a power scaling with truncation dimension
χ . These two scaling relations can be written as [17–20]

Sχ ∝ cκ

6
ln χ, ξχ ∝ ξ0 χκ. (5)

Here, c denotes the central charge, and κ is a finite entangle-
ment scaling exponent. ξ0 is a constant. For a given χ , the
correlation length ξ can be obtained by the largest and the
second largest eigenvalues D0(χ ) and D1(χ ) of the transfer
matrix with ξχ = 1/ ln |D0(χ )/D1(χ )|. By making use of
the relations (5), one can obtain numerical estimates for the
central charge on the phase boundary between SPt phases and
between SPt and dimerized phases.

For this purpose, we choose Jy/Jz = 0.4 with fixed Jc
x /Jz =

0.4 and choose Jy/Jz = 1 with QPT points Jc
x /Jz ranging

from 0.986 30 to 0.98 804 as the truncation dimension χ

increases from 75 to 600. Figure 5 shows a corresponding
plot of the von Neumann entropy and correlation length as

085146-4



SYMMETRY-PROTECTED TRIVIAL PHASES AND QUANTUM … PHYSICAL REVIEW B 102, 085146 (2020)

4.5 5 5.5 6

1.2

1.3

1.4

1.5

1.6

lnχ

S  Data 1
 Fitting 1
 Data 2
 Fitting 2

(a)

4.5 5 5.5 6
3

4

5

6

lnχ

ln
ξ

Data 1
Fitting 1
Data 2
Fitting 2

(b)

FIG. 5. The scaling of (a) von Neumann entropy S and (b) cor-
relation length ξ with the truncation dimension χ . (i) For fixed
Jx/Jz = 0.4 with Jc

y /Jz = 0.4, shown in purple and labeled as Fitting
1, the central charge is estimated to be c1 = 0.997. (ii) For fixed
Jy/Jz = 1 with QPT points Jc

x /Jz ranging from 0.986 30 to 0.988 04
as the truncation dimension χ increases from 75 to 600, shown in
red and labeled as Fitting 2, the central charge is estimated to be
c2 = 0.5463.

a function of truncation dimension χ ranging from 75 to
600. Both the von Neumann entropy and correlation length
diverge with increasing truncation dimension χ . To extract the
central charge, we use the fitting functions Sχ = cκ

6 ln χ + a
and ln ξχ = κ ln χ + b and consider two cases. (i) For the
case of fixed Jx/Jz = 0.4 with Jc

y /Jz = 0.4, shown in purple
in Fig. 5 and labeled as Fitting 1, the fitting coefficients are
given by c1κ1/6 = 0.209 68, a1 = 0.245 27, b1 = −2.6563,
and κ1 = 1.2619. The central charge is estimated to be c1 =
0.997. This is consistent with a general argument that a
phase transition between SPt phases belongs to the Gaussian
universality class [2]. (ii) For the case of fixed Jy/Jz = 1 with
QPT points Jc

x /Jz ranging from 0.986 30 to 0.988 04 as the
truncation dimension χ increases from 75 to 600, shown in
red in Fig. 5 and labeled as Fitting 2, the fitting coefficients are
given by c2κ2/6 = 0.129 29, a2 = 0.757 42, b2 = −3.2471,
and κ2 = 1.4199. As a result, the central charge is estimated

to be c2 = 0.5463. This indicates that the phase transition falls
into the Ising universality class as anticipated from the fact
that a Z2 symmetry is spontaneously broken in the dimerized
phase.

VIII. SUMMARY

We have investigated the nature of quantum SPt phases
and quantum phase transitions in the spin-1 antiferromagnetic
anisotropic biquadratic model (1) by making use of quantum
duality and symmetry transformations, along with iTEBD and
iDMRG algorithms. The concept of SPt phases, originally
defined through the combined operation of the site-centered
inversion with the π rotation around the z axis in the spin
space [2] is extended in order to keep consistency with the
duality transformations, which themselves are induced from
the symmetric group S3 with respect to x, y, and z.

The ground-state phase diagram in Fig. 1(b) has been
determined by studying the principal regime, which can be
mapped to the other five regions of the phase diagram via
the quantum duality and symmetry transformations summa-
rized in Table I. The phase boundaries are determined by
calculating the non-local- and local-order parameters of the
principal regime. To illustrate our strategy, three sample lines,
Jx/Jz = 0.4, Jx/Jz = 0.6, and Jy/Jz = 0.988 are studied in
detail. The phase diagram is shown to be composed of four
phases characterized by the non-local-order parameters K =
(1,−1,−1), K = (−1, 1,−1), and K = (−1,−1, 1), and a
combined dimerized local-order parameter. In addition, the
von Neumann entropy and correlation length have been used
to estimate the central charge c = 0.5463 on the boundary
between SPt and dimerized phases. This value is suggestive
of the Ising-type universality class. The central charge value
of c = 0.997 is extracted on the phase boundary between
SPt phases, corresponding to the Gaussian-type universality
class. We have also identified three characteristic lines of
factorized ground states, which are located in the SPt phases
instead of a symmetry-breaking phase, in sharp contrast to
other known cases [21,22]. Our results suggest the importance
and potential generality of SPt phases in a classification of
quantum states of matter.
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