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Two-dimensional electron self-energy: Long-range Coulomb interaction
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The electron self-energy for long-range Coulomb interactions plays a crucial role in understanding the
many-body physics of interacting electron systems (e.g., in metals and semiconductors) and has been studied
extensively for decades. In fact, it is among the oldest and the most-investigated many-body problems in
physics. However, there is a lack of an analytical expression for the self-energy Re �(R)(ε, T ) when energy
ε and temperature kBT are arbitrary with respect to each other (while both being still small compared with
the Fermi energy). We revisit this problem and calculate analytically the self-energy on the mass shell for a
two-dimensional electron system with Coulomb interactions in the high density limit rs � 1, for temperature
r3/2

s � kBT/EF � rs and energy r3/2
s � |ε|/EF � rs. We provide the exact high-density analytical expressions

for the real and imaginary parts of the electron self-energy with arbitrary value of ε/kBT , to the leading order
in the dimensionless Coulomb coupling constant rs, and to several higher than leading orders in kBT/rsEF and
ε/rsEF. We also obtain the asymptotic behavior of the self-energy in the regimes |ε| � kBT and |ε| � kBT . The
higher-order terms have subtle and highly nontrivial compound logarithmic contributions from both ε and T ,
explaining why they have never before been calculated in spite of the importance of the subject matter.

DOI: 10.1103/PhysRevB.102.085145

I. INTRODUCTION

In Landau’s Fermi liquid theory, an interacting Fermi sys-
tem, at low excitation energies and temperatures, is described
by long-lived excitations called “quasiparticles” which evolve
adiabatically from the corresponding excitations of the non-
interacting Fermi gas as the interactions are turned on [1].
The quasiparticle is well defined only when the damping
of the single particle state is small, which happens at low
temperatures close to the Fermi surface. In other words,
the imaginary part of the retarded self-energy Im �(R)(k, ε)
should be much smaller compared with ε + Re �(R)(k, ε) at
low energy ε in order to have well-defined quasiparticles,
satisfying the Landau Fermi liquid paradigm. The electron
self-energy is a crucial quantity, which determines not only
the lifetime of the quasiparticles [2–16] but also their effective
mass [17–25], the renormalization factor, and many other
single particle properties [26–29]. It is well established that
for low T (�TF) and |ε| (�EF), Im �(R)(ε) goes as T 2 and ε2

(up to logarithmic corrections) in three-dimensional (3D) and
two-dimensional (2D) Fermi systems, leading to the existence
of well-defined 2D and 3D Landau Fermi liquids. By contrast,
in 1D interacting Fermi systems, quasiparticles do not exist,
and the one to one correspondence with the Fermi gas picture
is destroyed even for infinitesimal interactions.

The calculation of the self-energy of an interacting electron
system is a condensed matter problem that has been exten-
sively studied for decades [1,13,24,25,30–33]. In fact, this
is among the oldest many-body problems in physics, dating
back to the 1950s, when field theoretic Feynman diagram
techniques were first used in calculating properties of simple

metals within the 3D interacting electron liquid model [1,34].
Later, similar many-body techniques were used to study the
properties of 2D interacting electron liquids in various artifi-
cial semiconductor structures [35]. Most of these calculations,
where the interelectron interaction is the long-range Coulomb
coupling, are either completely numerical, dubbed “GW”
approximation [36], or just leading order theories in ε or T . To
the best of our knowledge, the expression for the self-energy
�(R)(k, ε) with arbitrary ε/kBT is unknown for such an
interacting system with Coulomb interactions. For this reason,
we revisit the problem and calculate analytically the on-shell
self-energy using the random phase approximation (RPA).
In the leading order rs expansion, where rs is the standard
dimensionless Coulomb coupling parameter, we obtain the
real and imaginary parts of the self-energy up to the next to the
leading order (min(|ε|, T )/EFrs)3. We also extract from these
expressions the asymptotic behavior of �(R)(ε, T ) in the low
energy |ε| � kBT and low temperature kBT � |ε| limits, with
the leading order terms consistent with previous studies [5].
The higher-order generalization of the analytical self-energy
expressions for the 2D electron liquid is the main result of the
current work.

For the long-range Coulomb coupling, it is well known
that an asymptotically exact many-body description for the
interacting self-energy is available in the high-density limit,
rs � 1, where only the infinite series of polarization diagrams
(see Fig. 1) involving the electron-hole “bubbles” (or “rings”)
need to be kept in the theory. This bubble diagram description
of the system is equivalent (see Fig. 1) to a theory involving
the leading-order self-energy calculation in the dynamically
screened Coulomb coupling (instead of the bare Coulomb
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FIG. 1. (a) The RPA self-energy diagram for a system of in-
teracting electrons. (b) The diagrammatic definition of the RPA
dynamically screened interaction. In both panels, the black line
represents the bare electron Green’s function, while the red wavy
line with a solid (open) dot corresponds to the RPA dynamically
screened interaction (bare interaction). The RPA interaction is the
dressed Green’s function for the Hubbard-Stratonovich field that
decouples the interactions, and is given by the infinite Dyson series
with repeated insertion of the polarization bubbles, as shown in
panel (b).

coupling appearing in the Hamiltonian), where the dynamical
screening is approximated by RPA. We therefore refer to the
self-energy theory in this leading order dynamical screening
approximation itself as the RPA self-energy. Such an RPA
self-energy is exact to the leading order in rs and is extensively
used in materials physics, where, for historical reasons, it
is universally called the “GW” approximation. Our goal is
to analytically calculate the interacting 2D self-energy to
the leading order in rs (where it is exact for the interacting
problem) and to nonleading orders in ε and T .

We emphasize that what we call RPA here is sometimes
referred to as the “GW approximation” in numerical band
structure theories, where W refers to the dynamically RPA-
screened Coulomb interaction (see Fig. 1 below) and G refers
to the Green’s function, i.e., our Fig. 1(a) is precisely the GW
approximation of band structure theories within the leading
order in rs approximation of interest in the current work. We
prefer the terminology RPA because it is the original terminol-
ogy for the analytical theory and also because RPA manifestly
emphasizes that the approximation involves keeping only the
ring or bubble diagrams [Fig. 1(b)] in the screened interaction
(“W ” in band structure computations). The theory involves
neglect of vertex corrections. Indeed electron self-energy has
never been calculated analytically keeping vertex corrections
in the theory and it is unknown how to do it correctly and
consistently. But the issue of vertex correction is moot since
our goal is to calculate the analytical self-energy in the leading
order in the coupling constant rs, which is exactly given just
by RPA. So, for obtaining the correct terms up to leading
order in rs, vertex corrections can be neglected as we do. The
same consideration applies in terms of whether one should
use the full Green’s function G self-consistently in Fig. 1 or
just the noninteracting Green’s function G0 in calculating the
diagrams of Fig. 1—up to O(rs) these two approximations
give the same result. The GW approximation, which uses
the full Green’s function G instead of the noninteracting G0

done in our theory, is perturbatively mixing orders since, in
each order, vertex diagrams are left out. Thus, the GW ap-
proximation, in spite of its widespread numerical use in band
structure theories, is not a consistent many-body perturbative

approximation. In addition, using the self-consistent Green’s
function G, instead of noninteracting G0, does not change the
leading-order rs result. Up to the leading order in rs, the two
theories are identical, only to higher orders in rs, these two
approximations, GW and G0W , differ. The current theory, an
expansion in ring or bubble diagrams, is the appropriate theory
for an expansion in the coupling constant rs. Our interest
is obtaining the exact analytical leading order rs result, and
therefore RPA and GW are the same theory for us, although in
detailed numerical simulations, where higher-order terms are
mixed in, the two theories would differ. Our results are exact
up to the leading order in rs, no approximation whatsoever—
we have kept all the diagrams necessary for the leading order
in rs theory for long-range Coulomb coupling. It has been
known for a long time that the ring or bubble diagrams give
the correct leading-order rs results [37].

The rest of this paper is organized as follows. In Sec. II,
we present the general formulas for the self-energy of
a 2D electron system with Coulomb interactions. Using
these formulas, in Sec. III, we derive analytically the ex-
pressions for the imaginary and real parts of the electron
self-energy in the high density (rs � 1), low temperature
(kBT/EF � rs), and low energy (|ε|/EF � rs) limit for ar-
bitrary value of ε/kBT . The asymptotic expressions for
|ε|/kBT � 1 and |ε|/kBT � 1 are also presented in this
section. In Sec. IV, we conclude with a brief discussion.
Finally, Appendices are devoted to some technical details:
In Appendix A, the self-energy formulas shown in Sec. II
are derived using the Keldysh technique. We provide in
Appendix B the evaluation of the momentum integrals ap-
pearing in the self-energy formulas, and in Appendix C
the frequency integrals involving hyperbolic tanh and coth
functions.

II. GENERAL FORMULAS

This section summarizes the general formulas for the
electron self-energy. The results provided in this section are,
in principle, known, but we give them here for the sake of
completeness because we have not seen them written down
anywhere in the literature in the precise form necessary for
our calculations. In addition, this section provides a context
and serves the useful purpose of explaining our notations and
the actual calculations as well as the analytical results. We
consider a clean 2D electron system with Coulomb interac-
tions, a parabolic energy dispersion, and a spin degeneracy
factor of 2, and from now on adopt the units kB = h̄ = 1.
(Spin is an implicit variable since we only consider a paramag-
netic situation with no explicit spin-dependent scattering—the
only interaction in the problem is the long-range Coulomb
coupling, which is spin independent.) The detailed derivation
of these formulas is presented in Appendix A, while an
alternative Matsubara approach can be found in Ref. [1].

To the lowest order in the dynamically screened interac-
tion, the retarded electron self-energy is given by

�(R)(k, ε) = i

2

∫
q,ω

{
D(K )(q, ω)G(R)

0 (k + q, ε + ω)

+ D(A)(q, ω)G(K )
0 (k + q, ε + ω)

}
, (1)
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and the corresponding self-energy diagram in plotted in
Fig. 1(a). Here we have employed the shorthand notation∫

q ≡ ∫
d2q/(2π )2 and

∫
ω

≡ ∫ ∞
−∞ dω/2π .

G0 denotes the noninteracting fermionic Green’s function
and is represented diagrammatically by the black line in
Fig. 1. Its retarded (advanced) component acquires the form

G(R)/(A)
0 (k, ε) = [ε − ξk ± iη]−1. (2)

η is a positive infinitesimal, and ξk ≡ k2/2m − μ, with μ ≡
EF, where EF is the noninteracting Fermi energy, being the
chemical potential. We use kF for the Fermi momentum,
defined by EF = k2

F/2m. We note that the dimensionless
Coulomb coupling (or the effective fine structure constant)
is simply given by rs = √

2e2/vF, where the Fermi velocity
vF = kF/m. The Keldysh Green’s function is related to its
retarded and advanced counterparts through the fluctuation-
dissipation theorem (FDT):

G(K )
0 (k, ε) = [

G(R)
0 (k, ε) − G(A)

0 (k, ε)
]

tanh(ε/2T ), (3)

and, unlike the other two components, depends on the oc-
cupation number. Hereafter, superscripts (R), (A), and (K )
stand for the retarded, advanced, and Keldysh components,
respectively.

In Eq. (1), D indicates the RPA dynamically screened
interaction, which is represented by the red wavy line with a
solid dot in Fig. 1. It can be considered as the dressed Green’s
function for the bosonic field that, through the Hubbard-
Stratonovich (H.S.) transformation, decouples the interactions
(see Appendix A for details). In Fig. 1(b), the RPA interaction
D is defined diagrammatically by the infinite Dyson series of
the polarization bubble diagrams where the red wavy line with
an open dot stands for the 2D bare Coulomb potential V (q) =
2πe2/q, and the black bubble corresponds to the polarization

operator whose retarded component is given by

�(R)(q, ω) = −i
∫

k,ε

[
G(R)

0 (k + q, ε + ω)G(K )
0 (k, ε)

+ G(K )
0 (k + q, ε + ω)G(A)

0 (k, ε)
]
. (4)

It is therefore straightforward to see that the retarded RPA
dynamically screened interaction can be extracted from the
following Dyson equation

D(R)(q, ω) = [V −1(q) − �(R)(q, ω)]−1, (5)

while its advanced and Keldysh components are related to the
retarded one through

D(A)(q, ω) = [D(R)(q, ω)]∗, (6a)

D(K )(q, ω) = [D(R)(q, ω) − D(A)(q, ω)] coth (ω/2T ), (6b)

as expected for a bosonic propagator. Here the last equation
constitutes the FDT relation between the components of the
RPA interaction D.

In the static limit ω � kFq/m, −�(R)(q, ω) is well approx-
imated by ν = m/π , the density of states at the Fermi level.
As a result, D(R)/(A)(q, ω) is reduced to the static screened
interaction

Ṽ (q) ≡ 1

V −1(q) + ν
= 1

ν

kTF

q + kTF
, (7)

with kTF ≡ 2πe2ν being the Thomas-Fermi screening wave
vector.

Inserting the explicit expression for the noninteracting
electron Green’s function G0 [Eq. (2)] into Eq. (1), and utiliz-
ing the FDT relation as well as the Kramers-Krönig relation
[Eq. (A24)] for both G0 and D, one finds that the imaginary
and real parts of the electron self-energy are given by

Im �(R)(k, ε) = m

4π2k

∫ ∞

−∞
dω

[
coth

( ω

2T

)
− tanh

(
ω + ε

2T

)] ∫ q+(ω)

q−(ω)
dq

Im D(R)(q, ω)√
1 − [

m
kq (ω + 
ε)

]2
, (8a)

Re �(R)(k, ε) = m

4π2k

∫ ∞

−∞
dω tanh

(
ε + ω

2T

) ∫ q+(ω)

q−(ω)
dq

Re D(R)(q, ω)√
1 − [

m
kq (ω + 
ε)

]2

− m

4π2k

∫ ∞

−∞
dω coth

( ω

2T

)(∫ q−(ω)

0
dq +

∫ ∞

q+(ω)
dq

)
Im D(R)(q, ω)

sgn (ω + 
ε)√[
m
kq (ω + 
ε)

]2 − 1
. (8b)

For simplicity, here we have defined


ε ≡ ε − ξk − q2/2m, (9a)

q±(ω) ≡ | ± k +
√

k2 + 2m(ω + ε − ξk )|. (9b)

Equations (8a) and (8b) can be directly numerically cal-
culated for arbitrary rs, ε, and T to provide the self-energy
function of a 2D interacting electron liquid. Our goal is to
obtain the analytical expressions for small values of rs, ε,
and T as described in the next section. We note that formally
Eqs. (8a) and (8b) appear to be 2D integrals over ω and q, but
this is misleading since the screened interaction D itself [see
Eqs. (4)–(6) above] is formally a 3D integral. Thus, Eq. (8)

in general defines a highly singular five-dimensional integral,
which is not easy to handle directly numerically although
its T = 0 version has been calculated numerically [12] and
crude numerical calculations have also been performed for
the temperature dependent 2D self-energy by approximating
the dynamically screened interaction D as a simple function
with poles within the so-called plasmon pole approximation
[38]. There had also been an early purely numerical attempt
to calculate the 2D self-energy at very high (T � EF) tem-
peratures, where the static screening approximation was used
to replace the dynamically screened interaction [39]. Such
numerical self-energy calculations carried out with simplistic
and uncontrolled approximations fail to provide any analytical
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insight into the low-temperature quasiparticle properties of the
interacting 2D Fermi liquid, which is the goal of our study.

III. RESULTS

In the previous section, the real and imaginary parts of the
electron self-energy �(R)(k, ε) are expressed as two-variable
integrals in terms of the retarded RPA interaction D(R)(q, ω)
given by Eq. (5). Having these formulas, we now calculate
analytically the on-shell (ε = ξk) self-energy �(R)(k, ε) close
to the Fermi surface (k ≈ kF) in the high density limit (rs �
1), where the RPA ring diagram approximation should be
exact for the Coulomb coupling. We work in the regime
where r3/2

s EF � 
 � rsEF, with 
 = {T, |ε|}, and obtain the
electron self-energy up to the order of (
/EFrs)3 and the
leading order in rs.

In the low temperature regime, the polarization operator
�(R)(q, ω) can be approximated by its zero temperature result,
whose explicit form has been calculated in Ref. [40] and may

be expressed in terms of two dimensionless variables: q/kF
and mω/kFq [see Eq. (B5)]. Because of the RPA interaction
and the thermal factors, the most significant contribution to the
integrals in Eq. (8) comes from the region q � kTF = √

2rskF
and ω � max(T, |ε|). As a result, terms of higher orders
in q/kF and mω/kFq in the integrands lead to, respectively,
higher order terms in rs and max(T, |ε|)/EFrs in the electron
self-energy �(R)(k, ε) and are negligible in the high density
(rs � 1), low temperature (T/EF � rs), and small energy
(|ε|/EF � rs) limit. It is therefore only necessary to keep the
first few leading terms in q/kF and mω/kFq in the integrals to
obtain the leading results of interest to us.

A. Imaginary part of the self-energy

To calculate the imaginary part of the self-energy on the
mass shell (ε = ξk), we insert the expression for the polariza-
tion operator [40] into Eq. (8a) and set 
ε = −q2/2m. After
the momentum integration, this yields

Im �(R)(ε) =
∫ ∞

0

dω

2π

[
2 coth

( ω

2T

)
− tanh

(
ω + ε

2T

)
− tanh

(
ω − ε

2T

)]
Im I (ω), (10a)

Im I (ω) = −
{

1

4

|ω|
EF

[
ln

(
2
√

2rsEF

|ω|

)
− 1

]
+ 1

2
√

2rs

(
ω

EF

)2
}

sgn ω. (10b)

Here I (ω) is defined as the integral

I (ω) ≡ m

2πk

∫ q+(ω)

q−(ω)
dq

D(R)(q, ω)√
1 − [

m
kq

(
ω − q2

2m

)]2
. (11)

Its detailed calculation is shown in Appendix B.
The frequency integration in Eq. (10a) can be done by

expressing the hyperbolic functions as infinite exponential
series:

tanh(x) = 1 + 2
∞∑

k=1

(−1)ke−2kx, x > 0,

coth(x) = 1 + 2
∞∑

k=1

e−2kx, x > 0. (12)

We evaluate integrals of such forms in Appendix C, and use
the results [Eq. (C3)] to obtain the imaginary part of the self-
energy on the mass shell

Im �(R)(ε) = −T 2

EF
ln

(√
2rsEF

T

)
g1

(
ε

T

)

− T 2

EF
g2

(
ε

T

)
− T 3

rsE2
F

g3

(
ε

T

)
, (13)

where

g1

(
ε

T

)
≡ 1

8π

(
π2 + ε2

T 2

)
,

g2

(
ε

T

)
≡ − π

24

(
6 − γE − ln

2

π2
− 24 ln A

)

− (2 − γE − ln 2)

8π

ε2

T 2

+ 1

4π
[∂s Lis(−e−ε/T ) + ∂s Lis(−eε/T )]|s=2,

g3

(
ε

T

)
≡

√
2

π

[
ζ (3) − 1

2
Li3(−eε/T ) − 1

2
Li3(−e−ε/T )

]
.

(14)

Here Lis(z) = ∑∞
k=1 zk/ks denotes the polylogarithm function

and ζ (s) = Lis(1) represents the Riemann zeta function. γE ≈
0.577216 is the Euler’s constant and A ≈ 1.28243 is the
Glaisher’s constant. Following a straightforward calculation,
we find from Eq. (13) the asymptotic behavior of Im �(R)(ε)
in the regime |ε| � T :

Im �(R)(|ε| � T ) = −π

8

T 2

EF
ln

(√
2rsEF

T

)

+ π

24
(6 + ln 2π3 − 36 ln A)

T 2

EF

− 7ζ (3)

2
√

2π

T 3

rsE2
F

. (15)
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Equation (13) can be rewritten as

Im �(R)(ε) = − ε2

EF
ln

(√
2rsEF

|ε|

)
g̃1

(
ε

T

)
− ε2

EF
g̃2

(
ε

T

)

− |ε|3
rsE2

F

g̃3

(
ε

T

)
, (16)

where we have defined

g̃1

(
ε

T

)
≡ T 2

ε2
g1

(
ε

T

)
,

g̃2

(
ε

T

)
≡ ln

( |ε|
T

)
T 2

ε2
g1

(
ε

T

)
+ T 2

ε2
g2

(
ε

T

)
,

g̃3

(
ε

T

)
≡ T 3

|ε|3 g3

(
ε

T

)
. (17)

This leads to the following asymptotic expression for
Im �(R)(ε) when |ε| � T :

Im �(R)(|ε| � T ) = − ε2

8πEF
ln

(√
2rsEF

|ε|

)

− ε2

8πEF

(
ln 2 − 1

2

)
− 1

6
√

2π

|ε|3
rsE2

F

.

(18)

We note that the leading order terms (i.e., the first terms on
the right hand sides) in the asymptotic expressions Eqs. (15)
and (18) are consistent with the results in Ref. [5], which
obtained the correct leading order T 2 ln T and ε2 ln ε forms

for the 2D imaginary self-energy. We note that in spite of
the additional logarithmic factors compared with the cor-
responding 3D self-energy [1,2], the imaginary self-energy
has the quadratic dependence on T and/or ε, indicating that
the interacting 2D system is a Landau Fermi liquid at low
temperatures and excitation energies. Our results in Eqs. (15)
and (18) provide the full analytical form for the 2D imaginary
self-energy including the next to leading order terms in the
excitation energy and temperature.

In Fig. 2(a) [Fig. 2(b)], we plot the imaginary part of the
on-shell self-energy given in Eqs. (13) and (14) as a function
of ε/EF (T/EF) for different values of T/EF (ε/EF), together
with the asymptotic expression for T � ε (ε � T ) given in
Eq. (18) [Eq. (15)]. The solid curves from top to bottom
are associated with ε/EF (T/EF) equal to 0.1, 0.2, and 0.5.
As the value of ε/EF (T/EF) decreases, the corresponding
solid curve approaches the dashed one, which represents the
analytical asymptotic result for T � ε (ε � T ) as given in
Eq. (18) [Eq. (15)].

B. Real part of the self-energy

Compared with the imaginary part of the self-energy, the
calculation of the real part is much more difficult since it
requires one more integration involving a branch cut. For the
real part of the self-energy on the mass shell (ε = ξk), the
second integral in Eq. (8b) vanishes to the leading order in rs,
while the first integral, after the momentum integration (for
details, see Appendix B), is further reduced to

Re �(R)(ε) =
∫ ∞

0

dω

2π

[
tanh

(
ω + ε

2T

)
− tanh

(
ω − ε

2T

)]
Re I (ω), (19a)

Re I (ω) = rs√
2

[
ln

(
2
√

2

rs

)
− π

4
√

2rs

|ω|
EF

+ 5

16r2
s

ω2

E2
F

ln

(
4
√

2rsEF

|ω|

)
− 17

32r2
s

ω2

E2
F

]
. (19b)

We then evaluate the ω integration in Eq. (19a) by uti-
lizing the exponential expansion of the hyperbolic func-
tion [Eq. (12)]. The detailed calculation is relegated to
Appendix C. From Eq. (C6), we find that the real part of
the on-shell self-energy has the following asymptotic form for
low energies and temperatures

Re �(R)(ε) = h0ε + T ε

EF
h1

( ε

T

)
+ T 2ε

rsE2
F

ln

(
rsEF

T

)
h2

( ε

T

)

+ T 2ε

rsE2
F

h3

( ε

T

)
,

(20)

where

h0 ≡ rs√
2π

ln

(
2
√

2

rs

)
,

h1

( ε

T

)
≡ −1

8

T

ε
[Li2(−e− ε

T ) − Li2(−e
ε
T )],

h2

( ε

T

)
≡ 5

48
√

2π

(
π2 + ε2

T 2

)
,

h3

( ε

T

)
≡ − 1

96
√

2π
(32 − 10γE − 25 ln 2)

(
ε2

T 2
+ π2

)

− 5

8
√

2π

T

ε
[∂s Lis(−e− ε

T ) − ∂s Lis(−e
ε
T )]|s=3.

(21)

The subleading term T εh1( ε
T )/EF in Eq. (20) is of a form

similar to the result obtained for a model with short-range
interaction in Refs. [24,25]. Our system is completely dif-
ferent, i.e., an electron system with the realistic long-range
Coulomb interaction, so it is important that long-range and
short-range interactions lead to similar subleading terms in
the self-energy. We emphasize that we also obtain additional
terms of higher orders in T/EF or ε/EF, which was not done
in Refs. [24,25].
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(a)

(b)

FIG. 2. Imaginary part of the on-shell electron self-energy
Im � (R)(ε, T ). In panel (a) [(b)], Im � (R)(ε, T )/EF given by Eq. (13)
is plotted as a function of ε/EF (T/EF) for different values of T/EF

(ε/EF) and is compared with the asymptotic result for T � ε (ε �
T ) given by Eq. (18) [Eq. (15)]. Solid curves from top to bottom
correspond to Im � (R)(ε, T )/EF at T/EF (ε/EF) equals to 0.1, 0.2,
and 0.5, while the dashed curve represents the the asymptotic result
for T � ε (ε � T). In both panels, rs is set to be 1.

For |ε| � T , Eq. (20) becomes

Re �(R)(|ε| � T )

= rs√
2π

ln

(
2
√

2

rs

)
ε − ln 2

4

T ε

EF
+ 5π

48
√

2rs

T 2ε

E2
F

ln

(
rsEF

T

)

+ T 2ε

E2
Frs

[
− π

96
√

2
(32 − 10γE − 25 ln 2)

− 5

8
√

2π

(
ζ ′(2) + π2

6
ln 2

)]}
. (22)

We note that the quasiparticle effective mass obtained from
this asymptotic expression is consistent with the result in
Ref. [17].

We then rewrite Eq. (20) as

Re �(R)(ε) = h0ε + ε|ε|
EF

h̃1

( ε

T

)
+ ε3

rsE2
F

ln

(
rsEF

|ε|
)

h̃2

( ε

T

)

+ ε3

rsE2
F

h̃3

( ε

T

)
, (23)

where

h̃1

( ε

T

)
≡ T

|ε|h1

( ε

T

)
, h̃2

( ε

T

)
≡

(
T

ε

)2

h2

( ε

T

)
,

h̃3

( ε

T

)
≡

(
T

ε

)2

ln

( |ε|
T

)
h2

( ε

T

)
+

(
T

ε

)2

h3

( ε

T

)
. (24)

(a)

(b)

FIG. 3. Real part of the on-shell electron self-energy
Re � (R)(ε, T ). In panel (a) [(b)], Re � (R)(ε, T )/ε given by
Eq. (20) is plotted as a function of ε/EF (T/EF) at various T/EF

(ε/EF) which admits the values of 0.1, 0.2, and 0.5 (correspond
to solid curves from top to bottom) and is compared with the
asymptotic result for T � ε (ε � T ) given by Eq. (25) [Eq. (22)]
represented by the dashed curve. rs = 1 in both panels.

From this equation above, we arrive at the asymptotic form of
Re �(R)(ε) for |ε| � T :

Re �(R)(|ε| � T ) = rs√
2π

ln

(
2
√

2

rs

)
ε − 1

16

ε|ε|
EF

+ 5

48
√

2π

ε3

rsE2
F

ln

(
rsEF

|ε|
)

+ −41 + 75 ln 2

288
√

2π

ε3

rsE2
F

. (25)

We note that, although the leading-order dependence of
the real part of the self-energy on the excitation energy and
temperature manifests the expected linear-in-ε behavior, the
next-to-leading-order terms as shown in Eqs. (22) and (25) are
nontrivial and impossible to guess because of the logarithmic
factors which disallow for a simple dimensional argument.
The analytical result of the real part of the on-shell self-energy
given by Eqs. (20) and (21) is presented in Fig. 3. Since
the leading order term in Re �(R)(ε) scales as ε, here we
plot the ratio Re �(R)(ε)/ε instead of Re �(R)(ε) itself. In
Fig. 3(a) [Fig. 3(b)], Re �(R)(ε)/ε is shown as a function
of ε/EF (T/EF) for different value of T/EF (ε/EF) and is
compared with the corresponding asymptotic expression for
T � ε (ε � T ) as given in Eq. (25) [Eq. (22)].

In Fig. 4, the leading order self-energy is compared with
the higher order terms, in the limits of ε/T � 1 and ε/T � 1.
As is apparent in this figure, for low enough energy ε and
temperature T , the leading term is much larger compared
with the remaining higher order terms, and our analytical
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FIG. 4. Comparison between the leading order term and the higher order terms for (a) Re �(R)(ε, T )/ε in the limit of ε � T [Eq. (25)],
(b) Re � (R)(ε, T )/ε in the limit of T � ε [Eq. (22)], (c) Im � (R)(ε, T ) for ε � T [Eq. (18)], and (d) Im � (R)(ε, T ) for T � ε [Eq. (15)]. The
leading order self-energy is represented by the black solid curve, while the red dotted, blue dashed, and green dash-dotted curves correspond
to the remaining terms from lower to higher orders in ε or T . rs is set to 1 in this figure.

expressions remain valid as long as this is true. The explicit
range of validity depends on the value of rs.

IV. CONCLUSION

In this paper, we present the calculation of the on-shell
(ε = ξk) self-energy �(R)(k, ε) of a 2D electron system with
Coulomb interactions in the high density limit rs � 1. We
work in the regime where the temperature T and the energy
ε are arbitrary with respect to each other but both are small
and satisfy r3/2

s � 
/EF � rs, 
 = {T, |ε|}. Thus, we are in
the low-energy quasiparticle limit, but we keep the next-to-
leading-order terms involving both energy and temperature
together. We obtain analytically the real and imaginary parts
of the self-energy for arbitrary values of ε/T up to the
order (min(|ε|, T )/rsEF)3 and to the leading order in rs. The
asymptotic behaviors of the electron self-energy in the low
energy |ε| � T and low temperature T � |ε| limits are also
discussed.

To calculate the electron self-energy, we employ the RPA
approximation which is exact in the high-density (rs � 1)
limit, but is often found to be reliable even outside the high
density regime. Our results may therefore remain valid even
at moderate densities outside the strict high-density limit. It
is well known that using the noninteracting Green’s function
G0 to calculate the self-energy instead of the full Green’s
function G does not change the results in the leading order
rs expansion. The GW approximation and RPA are equivalent
to the leading order in rs but not in higher orders. We believe
that RPA is a more consistent approximation because it keeps
only the most divergent diagrams in each order whereas GW
mixes orders by using the interacting G, but at the same

time, neglecting vertex corrections. Our work is theoretically
motivated, providing the analytical expression for the 2D
self-energy going beyond the simple leading-order linear in
ε for the real part and quadratic in T (or in ε) for the
imaginary part of the self-energy. The next to the leading
order terms involve both energy and temperature combined
into nontrivial multiplicative forms, which cannot be guessed
from dimensional arguments, showing the subtle and intricate
nature of the many body problem even for a system which has
been extensively studied for seventy years. The experimental
implications of our work arise in the context of 2D tunneling
measurements as carried out in Ref. [41] where the quasipar-
ticle spectral function is measured directly for interacting 2D
electrons as a function of temperature and energy (tuned by
the bias voltage). Since the quasiparticle spectral function is
determined directly by the real and imaginary parts of the 2D
self-energy through the formula that the spectral function is
proportional to the imaginary part of the interacting Green’s
function, such a tunneling spectroscopic measurement can
be directly compared with our theory. We mention that the
original experiment was compared with the leading-order
theory of Ref. [5], and therefore, it will be interesting to
compare future such measurements with our analytical theory
which goes beyond the leading order self-energy in energy and
temperature. One caveat here is that the typical experimental
rs parameter here is rs ∼ 1, which does not satisfy the high-
density (rs � 1) RPA requirement. We note, however, that
3D metals have rs ∼ 5, and RPA theories have had great
success in describing metallic properties and band structures
through the “GW” approximation, most likely because of the
cancellation of higher-order vertex diagrams as discussed in
Ref. [23]. Thus, there is hope that a comparison between our
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improved analytical 2D self-energy results with future 2D
tunneling measurements could lead to a deeper understanding
of the Fermi liquid renormalization effects in 2D Coulomb
interacting systems.

Before concluding, it may be useful for us to emphasize
some of the salient features of our analytical self-energy
results. The leading-order 2D imaginary self-energy is al-
ready known to have the T 2 ln T (for T � |ε|) or ε2 ln ε

(for ε � T ) behavior, with the logarithmic part a special
2D feature not arising in 3D systems. Our work establishes
the next-to-leading-order terms going as O(T 2 or ε2) and
O(T 3 or ε3), respectively, in the 2D imaginary self-energy
for T � ε or T � ε as the case may be. No additional
logarithms arise in these higher-order terms. On the Fermi
surface, where ε = 0, the quasiparticle broadening therefore
goes as O(T 2 ln T ) + O(T 2) + O(T 3). The real part of the
2D self-energy is even more subtle in our theory because
of the nonanalytical contributions arising from the special
form of the 2D polarization bubble (with a kink at k = kF).
In particular, the leading order results is the usual O(ε) for
T � ε and ε � T , which provides the quasiparticle effective
mass renormalization to the electronic specific heat. The
next-to-the-leading order terms in the real 2D self-energy
are O(εT ) + O(εT 2 ln T ) + O(εT 2) for T � |ε|, indicating a
linear-in-T correction to the usual specific heat coefficient in
violation of the Sommerfeld expansion. For ε � T , the higher
order self-energy corrections to the real part of the 2D self-
energy go as O(ε2) + O(ε3 ln ε) + O(ε3)—the appearance of
the log here is again special to 2D systems. We also note
that the full RPA low-energy and low-temperature self-energy
expression derived by us in this work does not suffer from the
leading-order logarithmic corrections found in the Hartree-
Fock theories [10,28]. The full analytical expressions (when
ε ∼ T ) for the imaginary and real parts of the 2D self-energy,
given in Eqs. (13) and (20), respectively, are very complex and
do not allow for a simple discussion.
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APPENDIX A: DERIVATION OF THE GENERAL
FORMULAS FOR THE FERMI LIQUID SELF-ENERGY

1. Keldysh formalism for interacting electrons

In this Appendix, we derive the self-energy formulas pre-
sented in Sec. II using the Keldysh technique. We start from
the partition function of a 2D system of interacting electrons:

Z =
∫

D(ψ̄, ψ ) exp (iS0 + iSint),

S0 =
∫

r,r′,t,t ′
ψ̄ (r, t ) Ĝ−1

0 (r, t ; r, t ′) ψ (r′, t ′),

Sint = − 1

2

∑
a=1,2

ζa

∫
t,r

ψ̄a,σ (r, t )ψ̄a,σ ′ (r′, t )

× V (r − r′)ψa,σ ′ (r′, t )ψa,σ (r, t ). (A1)

Here ψa,σ (r, t ) is a Grassmann field that carries a spin index
σ ∈ {↑,↓} and a Keldysh label a ∈ {1, 2}. a = 1 (2) indicates
the forward (backward) part of the Keldysh contour, and the
corresponding sign factor ζa assumes the value of +1 (−1).
V (r) = e2/r is the bare Coulomb interaction potential, and
G0 denotes the noninteracting Green’s function defined on the
Keldysh contour:

Ĝ0(r, t ; r′, t ′) ≡ −i〈Tc ψ (r, t ) ψ̄ (r′, t ′)〉0. (A2)

Tc is the Keldysh contour ordering operator, and the angular
bracket with subscript “0” stands for the functional averaging
over the noninteracting action.

We then introduce an auxiliary bosonic field φ =
[φcl φq]T to Hubbard-Stratonovich (H.S.) decouple the in-
teraction:

eiSint =
∫

Dφ exp

[
i
∫

q,ω

φcl(q, ω)V −1(q)φq(−q,−ω)

− i√
2

∫
k,ε,q,ω

φcl(q, ω) ψ̄ (k + q, ε + ω)τ̂ 3ψ (k, ε)

− i√
2

∫
k,ε,q,ω

φq(q, ω) ψ̄ (k + q, ε + ω) ψ (k, ε)

]
.

(A3)

τ̂ here represents the Pauli matrix acting on the Keldysh space.
To further simplify the calculation, we apply the Keldysh

rotation to the fermionic field

ψ (k, ε) → τ̂ 3ÛKψ (k, ε), ψ̄ (k, ε) → ψ̄ (k, ε) Û †
K, (A4)

where ÛK ≡ (1̂ + iτ̂ 2)/
√

2. After the rotation, the noninter-
acting fermionic Green’s function Ĝ0 assumes the following
structure in the Keldysh space

Ĝ0(k, ε) =
[

G(R)
0 (k, ε) G(K )

0 (k, ε)

0 G(A)
0 (k, ε)

]
, (A5)

with the components given by Eqs. (2) and (3).
The Keldysh rotation is then followed by a distribution

function dependent transformation

ψ (k, ε) → M̂F (ε) ψ (k, ε), ψ̄ (k, ε) → ψ̄ (k, ε) M̂F (ε),
(A6)

where M̂F (ε) acquires the following form in the Keldysh
space

M̂F (ε) =
[

1 tanh (ε/2T )
0 −1

]
. (A7)

After the combined transformation, the bare fermionic
Green’s function Ĝ0 becomes diagonal in the Keldysh space
and distribution function independent,

Ĝ0(k, ε) =
[

G(R)
0 (k, ε) 0

0 G(A)
0 (k, ε)

]
, (A8)
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and the partition function is now given by

Z =
∫

D(ψ̄, ψ )Dφ exp(iSψ + iSφ + iSc),

Sφ =
∫

q,ω

φcl(q, ω)V −1(q)φq(−q,−ω),

Sψ =
∫

k,ε

ψ̄ (k, ε)[ε − ξk + iητ̂ 3]ψ (k, ε),

Sc = −
∫

k,k′,ε,ε′

φcl(k − k′, ε − ε′)√
2

ψ̄ (k, ε)M̂F (ε)M̂F (ε′)ψ (k′, ε′)

−
∫

k,k′,ε,ε′

φq(k − k′, ε − ε′)√
2

ψ̄ (k, ε)M̂F (ε)τ̂ 1M̂F (ε′)ψ (k′, ε′). (A9)

2. Dressed propagator for the H.S. field

It is clear from Eq. (A9) that the bare propagator of the
H.S. field is

D̂0(q, ω) ≡ −i 〈φ(q, ω)φT(−q,−ω)〉0 =
[

0 V (q)
V (q) 0

]
.

(A10)

To obtain its dressed RPA propagator, we integrate out the
fermionic field ψ and arrive at an effective action iSφ +
ln 〈exp(iSc)〉ψ . Here the angular bracket with subscript ψ

denotes the functional integration over the field ψ with weight
exp (iSψ ),

〈exp(iSc)〉ψ ≡
∫

D(ψ̄, ψ ) exp(iSψ + iSc). (A11)

To the leading order in the cumulant expansion, which
is equivalent to the random phase approximation (RPA),
ln 〈exp(iSc)〉ψ ≈ 〈 1

2 (iSc)2〉
ψ

and can be expressed as a
quadratic form〈

1

2
(iSc)2

〉
ψ

= − i

2

∫
q,ω

φT(−q,−ω)�̂(q, ω)φ(q, ω),

(A12)

where the kernel �̂(q, ω) is the self-energy for the H.S. field
φ, with components

�ab(q, ω) = −i
∫

k,ε

Tr

{[
1 + ζa

2
+ 1 − ζa

2
τ̂ 1

]

× M̂F (ε + ω)G0(k + q, ε + ω)M̂F (ε + ω)

×
[

1 + ζb

2
+ 1 − ζb

2
τ̂ 1

]
M̂F (ε)G0(k, ε)M̂F (ε)

}
.

(A13)

Inserting Eqs. (A8) and (A7) into the equation above and
using the causality relation∫

k,ε

G(R)
0 (k + q, ε + ω)G(R)

0 (k, ε) = 0, (A14)

we find that �̂(q, ω) possesses the standard causality structure
of a bosonic self-energy

�̂(q, ω) =
[

0 �(A)(q, ω)

�(R)(q, ω) �(K )(q, ω)

]
. (A15)

Its retarded component is given by Eq. (4) which can be
further simplified to

�(R)(q, ω) =
∫

k

tanh(ξk+q/2T ) − tanh(ξk/2T )

ω + ξk − ξk+q + iη
, (A16)

and is related to its advanced and Keldysh components
through:

�(A)(q, ω) = [�(R)(q, ω)]∗,

�(K )(q, ω) = [�(R)(q, ω) − �(A)(q, ω)] coth
( ω

2T

)
.

(A17)

We then combine the actions iSφ [Eq. (A9)] and 〈 1
2 (iSc)2〉

ψ

[Eq. (A12)] and obtain the dressed propagator for the H.S.
field φ

D̂(q, ω) ≡ −i 〈φ(q, ω)φT(−q,−ω)〉=[D̂0(q, ω) − �̂(q, ω)]−1.

(A18)

In Fig. 1(b), we show the diagrammatic representation of the
Dyson equation above. Red wavy lines with open and solid
dots are used to indicate, respectively, the bare propagator
D0(q, ω) and dressed propagator D(q, ω), while the black
bubble represents the bosonic self-energy �(q, ω).

Using Eq. (A10) and (A15), one can easily see that D(q, ω)
admits the following form in the Keldysh space

D̂(q, ω) =
[

D(K )(q, ω) D(R)(q, ω)
D(A)(q, ω) 0

]
, (A19)

in accordance with the causality structure for a bosonic prop-
agator, and its components are given by Eqs. (5) and (6a).
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3. Electron self-energy

The RPA self-energy diagram for the fermionic field ψ is plotted in Fig. 1(a), where the red wavy and black solid lines
represent, respectively, the dressed H.S. propagator D and the bare fermionic propagator G0. The corresponding self-energy
expression is

�̂(k, ε) = i

2

∫
q,ω

D(K )(−q,−ω)M̂F (ε)M̂F (ε + ω)Ĝ0(k + q, ε + ω)M̂F (ε + ω)M̂F (ε)

+ i

2

∫
q,ω

D(R)(−q,−ω)M̂F (ε)M̂F (ε + ω)Ĝ0(k + q, ε + ω)M̂F (ε + ω)τ̂ 1M̂F (ε)

+ i

2

∫
q,ω

D(A)(−q,−ω)M̂F (ε)τ̂ 1M̂F (ε + ω)Ĝ0(k + q, ε + ω)M̂F (ε + ω)M̂F (ε). (A20)

Making use of the causality relation ∫
q,ω

G(R)
0 (k + q, ε + ω)D(R)

0 (q, ω) = 0, (A21)

as well as the FDT relations Eqs. (3) and (6b), we find that �(k, ε)’s off-diagonal components vanish in the Keldysh space,

�̂(k, ε) =
[
�(R)(k, ε) 0

0 �(A)(k, ε)

]
. (A22)

The retarded component �(R)(q, ω) = [�(A)(k, ε)]∗ is given by Eq. (1), which may be rewritten as

�(R)(k, ε) = −2
∫

q,ω,ω′
Im D(R)(q, ω) Im G(R)

0 (k + q, ε + ω′)
1

ω′ − ω − iη

[
coth

( ω

2T

)
− tanh

(
ε + ω′

2T

)]
. (A23)

Here we have employed the Kramers-Krönig relation

f (R)(k, ε) =
∫ ∞

−∞

dε′

π

Im f (R)(k, ε′)
ε′ − ε − iη

, (A24)

for both the bosonic propagator D and the fermionic propagator G0.
Inserting the explicit expression for G0 [Eq. (2)] into Eq. (A23), and performing the angular integration, we arrive at

�(R)(k, ε) = m

πk

∫
ω,ω′

∫ ∞

0
dq�

(
1 −

∣∣∣∣mω′

kq

∣∣∣∣
)

Im D(R)(q, ω)√
1 − (

mω′
kq

)2

1

ω′ − 
ε − ω − iη

[
coth

( ω

2T

)
− tanh

(
ε + ω′ − 
ε

2T

)]
, (A25)

where 
ε is defined in Eq. (9a). Equation (8a) which gives Im �(R)(k, ε) can be deduced directly from Eq. (A25). To obtain
Re �(R)(k, ε), we first rewrite Eq. (A25) as

�(R)(k, ε) = m

4π2k

∫ ∞

0
dq

∫ ∞

−∞
dω′ tanh

(
ε + ω′ − 
ε

2T

)
1√

1 − (
mω′
kq

)2
D(A)(q, ω′ − 
ε)�

(
1 −

∣∣∣∣mω′

kq

∣∣∣∣
)

+ m

4π3k

∫ ∞

−∞
dω coth

( ω

2T

) ∫ ∞

0
dq Im D(R)(q, ω)

∫ kq
m

− kq
m

dω′ 1√
1 − (

mω′
kq

)2

1

ω′ − 
ε − ω − iη
, (A26)

with the help of the Kramers-Krönig relation [Eq. (A24)]. It is then straightforward to see that Re �(R)(k, ε) equals the principal
integral of Eq. (A26) and is given by Eq. (8b).

4. Kramers-Krönig relation

In this subsection, we show that the integral for Re �(R)(k, ε) [Eq. (8b)] can also be obtained directly from that of
Im �(R)(k, ε) [Eq. (8a)] via the Kramers-Krönig transformation [Eq. (A24)]. Inserting Eq. (8a) into Eq. (A24), we have

Re �(R)(k, ε) = m

4π3k

∫ ∞

−∞

dε′

ε′ − ε

∫ ∞

−∞
dω coth

( ω

2T

) ∫ ∞

0
dq

Im D(R)(q, ω)√
1 − [

m
kq (ω + 
ε′)

]2
�

(
1 −

∣∣∣∣m(ω + 
ε′)
kq

∣∣∣∣
)

− m

4π3k

∫ ∞

−∞

dε′

ε′ − ε

∫ ∞

−∞
dω tanh

(
ω + ε′

2T

)∫ ∞

0
dq

Im D(R)(q, ω)√
1 − [

m
kq (ω + 
ε′)

]2
�

(
1 −

∣∣∣∣m(ω + 
ε′)
kq

∣∣∣∣
)

, (A27)

where 
ε′ ≡ ε′ − ξk − q2/2m.

085145-10



TWO-DIMENSIONAL ELECTRON SELF-ENERGY: … PHYSICAL REVIEW B 102, 085145 (2020)

One can apply the transformation ε′ → ε′ − ω + ξk + q2/2m to the first term in the equation above, which reduces to the real
part of the second term in Eq. (A26). After integrating out ε′, we obtain the second term in the integral for Re �(R)(k, ε)
[Eq. (8b)]. On the other hand, for the second term in Eq. (A27), we first shift ω by ω → ω − ε′ + ε and then make the
transformation ε′ → −ε′ + ε + ω, which leads to

−m

4π3k

∫ ∞

−∞
dω tanh

(
ω + ε

2T

) ∫ ∞

0
dq�

(
1 −

∣∣∣∣m(ω + 
ε)

kq

∣∣∣∣
)

1√
1 − [

m
kq (ω + 
ε)

]2

∫ ∞

−∞
dε′ Im D(R)(q, ε′)

−ε′ + ω
. (A28)

Using the Kramers-Krönig relation for dressed H.S. propagator D(R)(q, ε), it is straightforward to see that the integration over ε′
yields a factor of −π Re D(R)(q, ω) and Eq. (A28) reduces to the first term in Eq. (8b).

APPENDIX B: MOMENTUM INTEGRALS

This Appendix is devoted to the evaluation of the integral defined in Eq. (11). For convenience, we introduce the following
dimensionless quantities:

δ = ω

4EF
, x = q

2kF
, α = rs√

2
. (B1)

The integral I (ω) then reduces to the form

I = m

π

∫ x2

x1

dx D(R)(x, δ)

[
1 −

(
x − δ

x

)2]−1/2

= m

π

∫ x2

x1

dx D(R)(x, δ) x
[(

x2
2 − x2

)(
x2 − x2

1

)]−1/2
, (B2)

where x1,2 ≡ q±/2kF satisfies the equation (x − δ/x)2 = 1 and is given by:

x1 = 1
2 |1 − √

1 + 4δ | ≈ |δ| − δ2 sgn δ + O(δ3), x2 = 1
2 (1 + √

1 + 4δ) ≈ 1 + δ + O(δ2). (B3)

Using the variables defined in Eq. (B1), D(R) is given by:

D(R)(x, δ) = ν−1α
(x − α Re �0ν

−1) + i(α Im �0ν
−1)

(x − α Re �0ν−1)2 + (α Im �0ν−1)2
. (B4)

Here �0 is the zero-temperature polarization bubble [40] and is given by:

Re �0ν
−1 = −1 + 1

2x2
sgn

(
1 − δ

x2

)
Re

√
−(

x2
2 − x2

)(
x2 − x2

1

) + 1

2x2
sgn

(
1 + δ

x2

)
Re

√
4δx2 − (

x2
2 − x2

)
(x2 − x2

1 ),

(B5a)

Im �0ν
−1 = − 1

2x2
Re

√(
x2

2 − x2
)(

x2 − x2
1

) + 1

2x2
Re

√(
x2

2 − x2
)(

x2 − x2
1

) − 4δx2. (B5b)

For this calculation, we will work in the regime where
|δ| � α � 1. Additionally, we will assume α � (|δ|/α)2,
and therefore, we will calculate results to leading order in α,
but to several orders in |δ|/α. Specifically, we note that since
|δ| is smaller than α, we need only keep leading order terms
in δ. We wish to evaluate integral (B2) as an expansion in α

and |δ|/α. To do so, it is necessary to expand the integrand in
terms of x/α, α/x, x1/x, or x/x2. These ratios are all small
in some regimes of integration but become large in other
regimes, and therefore the integrand cannot be expanded in
any of these ratios across the entire region of integration. To
proceed, we must divide the region of integration into three
subregions and then expand in terms of the appropriate ratios
in each subregion. Thus we define the boundaries between
the subregions l1 and l2 such that x1 � l1 � α � l2 � x2.
Since we will be dividing up the region of integration, for
convenience define I (a, b) to be the contribution to the integral
I from the interval (a, b). This lack of a single small parameter
over the whole integration region is the key technical difficulty
hindering the analytical evaluation of the self-energy in the

next to the leading order, explaining why it has not been
achieved in spite of the long history of the subject.

1. Simplification of �0

Inside the region of integration, the second term of Eq.
(B5a) vanishes, since the radical is purely imaginary for x
between x1 and x2. Likewise, the third term also vanishes
so long as x is not too close to the endpoints, specifically
if x1[1 + 2δ + O(δ2)] < x < x2[1 − 2δ + O(δ2)]. In order to
simplify Re �0, we must exclude the portion of the region
of integration that lies outside this interval. Additionally, as
we shall show later, in order to simplify Im �0, we will need
to exclude a slightly larger region around x1. Thus for some
β between 0 and 1, we define a1 = x1[1 + O(|δ|1−β )] and
a2 = x2[1 − O(|δ|)]. We will show that the contribution to the
integral from the excluded regions near the endpoints is higher
order in |δ| than the rest of the integral.

Consider the contribution to the integral from the re-
gion x1 < x < a1. For this region, we introduce the change
of variables z2 = x2 − x2

1. The upper bound of integration
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becomes
√

a2
1 − x2

1 = O(|δ|(3−β )/2), and the lower bound is
zero. We then need to find an upper bound for |D(R)| in
this region. The points where |D(R)| becomes the largest
are z → 0 and z ∼ |δ|3/2. When z → 0, Im �0ν

−1 → 0,
and Re �0ν

−1 → −1 + Re
√

δ/x1. For z ∼ |δ|3/2, there is a
point where (x − α Re �0ν

−1) → 0 if δ > 0. At this point,
Im �0ν

−1 = O(|δ|1/2). For all cases, |D(R)| � ν−1α O(α−1).
The integral then becomes:

I (x1, a1) =
∫ O(|δ| 3−β

2 )

0
dz D(R)(z)

[
x2

2 − z2 − x2
1

]−1/2

= O(|δ| 3−β

2 ). (B6)

Now consider the region a2 < x < x2. For this region, we
introduce the change of variables u2 = x2

2 − x2. With this
transformation, the limits of integration become 0 to O(|δ|1/2).
It is easy to see that in this region, |�0ν

−1| = O(|δ|1/2) and
thus |D(R)| = ν−1O(α). Then the integral becomes:

I (a2, x2) =
∫ O(|δ|1/2 )

0
du D(R)(u)

[
x2

2 − u2 − x2
1

]−1/2

= α O(|δ|1/2). (B7)

For a1 < x < a2, both the second and the third term of Eq.
(B5a) vanish, and so in this region we have exactly:

Re �0ν
−1 = −1. (B8)

For a1 < x < l2, we again use the variable transforma-
tion z2 = x2 − x2

1. The upper bound of this region be-

comes
√

l2
2 − δ2 = l2[1 + O(δ2/l2

2 )], and the lower bound is
O(|δ|(3−β )/2), as discussed previously. Specifically, we note
that δx2

1/z2 is of order O(|δ|β ). Then we simplify Im �0 as
follows:

Im �0ν
−1 = − zx2

2
(
z2 + x2

1

)[
1 −

√
1 − 4δ

(
z2 + x2

1

)
z2x2

2

+O

(
l2
2

x2
2

)]

= − zx2

2
(
z2 + x2

1

) × 4δ
(
z2 + x2

1

)
2z2x2

2

[1 + O(|δ|β )]

= −δ

z
[1 + O(|δ|β )]. (B9)

For l2 < x < a2, all that is required for the computation is the
following, which can be shown easily:

Im �0ν
−1 = O

(
|δ|1/2,

δ

l2

)
. (B10)

2. The Re I integral

For x between a1 and l1, we again use z2 = x2 − x2
1, and

Re D(R) is given by:

Re D(R) = ν−1 1 + x
α(

1 + x
α

)2 + δ2

z2 + O
(|δ| 3β−1

2
)

= ν−1 1 + x
α

1 + δ2

z2

[
1 −

2x
α

+ x2

α2

1 + δ2

z2

+
( 2x

α

1 + δ2

z2

)2

+ O

(
x3

α3

)]
.

(B11)

This can be integrated, giving:

Re I (a1, l1)

= ν

∫ l1−δ2/(2l1 )

O(|δ| 3−β
2 )

dz Re D(R)(z)
[
1 + O

(
l2
1

)]

= α

[
z

α
− z(5δ2 + z2)

2α2
√

δ2 + z2
− δ

α
arctan

z

δ

+ 5δ2

2α2
log(z +

√
δ2 + z2)

]∣∣∣∣
l1−δ2/(2l1 )

O(|δ| 3−β
2 )

= α

[
− π |δ|

2α
+ l1

α
− 7δ2

4α2
+ 5δ2

2α2
log

2l1
|δ|

+ δ2

2αl1
− l2

1

2α2
+ O

(
l3
1

α3
,

δ3

l3
1

,
|δ| 3−β

2

α
, |δ| 3β−1

2

)]
.

(B12)

For x between l1 and l2, we can expand in |δ|/x and x but
can no longer expand Re �0 in terms of x/α, thus we simply
use:

Re D(R) = ν−1 1 + x
α(

1 + x
α

)2 + δ2

x2 + O
(|δ| 3β−1

2 , δ4

x4

) . (B13)

Integrating gives:

Re I (l1, l2) = ν

∫ l2

l1

dx Re D(R)(x)

[
1 + δ2

2x2
+ O

(
δ3

x3
, x

)]

= α

[
− l1

α
− 5δ2

2α2
+ 5δ2

2α2
log

α

l1
− δ2

2αl1
+ l2

1

2α2

+ log
l2
α

+ O

(
l3
1

α3
,

δ3

l3
1

,
α

l2
, l2

)]
. (B14)

For x between l2 and 1, we need only the leading order term
in α/x, and thus we can simply use:

D(R)(x) = ν−1

[
α

x
+ O

(
α2

x2

)]
. (B15)

Then integrating, we obtain:

Re I (l2, a2) =
∫ 1+O(δ)

l2

dx

[
α

x
+ O

(
α2

x2

)]
(1 − x2)−1/2

= α

[
log

2

l2
+ O

(
α

l2
, l2

)]
. (B16)

Therefore, combining these results, we have:

Re I = α

[
log

2

α
− π |δ|

2α
+ δ2

α2

(
− 17

4
+ 5

2
log

2α

|δ|
)

+ O

(
δ3

α3
, α, |δ| 1−β

2 , |δ| 3β−1
2

)]
, (B17)

which is equivalent to Eq. (19b).
Once we have Re I , we can proceed to calculate the real

part of self-energy using

Re �(R)(ε) =
∫ ∞

−∞

dω

2π
tanh

(
ω + ε

2T

)
Re I (ω), (B18)
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which can be rewritten as Eq. (19a) after a change of variable
ω → −ω for negative ω. However, we note that it might seem
at first that Eqs. (19a) and (B18) give rise to different results.
Consider as an example the leading order term in Re �(R)

which is proportional to the following integral∫ ∞

−∞
dω tanh [(ω + ε)/2T ]. (B19)

Applying the transformation ω → ω − ε leads to 0, while
rewriting the integral as∫ ∞

0
dω{tanh [(ω + ε)/2T ] − tanh [(ω − ε)/2T ]} (B20)

yields a nonvanishing result. This discrepancy is due to the
fact that integral Eq. (B19) is not well defined, and the
accurate way to carry out the integration is to rewrite it
as Eq. (B20) instead of making the shift for the following
reasons. First of all, tanh [(ω + ε)/2T ] has an effective dis-
continuity at ω = −ε, which cannot be simply transferred
to ω = 0 since “ε” has a physical meaning. Furthermore,
when deriving Eq. (B18), we performed a small ω expansion
and kept only the leading order terms. This means that the
integration possesses a cutoff which leads to a nonzero result
after the shift. In other words, the small ω (or δ) expansion
is only justified because of the factor tanh [(ω + ε)/2T ] −
tanh [(ω − ε)/2T ] which restricts the integration to the region
|ω| � max(|ε|, T ).

3. The Im I integral

We now consider the imaginary part of I . For a1 < x < l1,
we use the same transformation z2 = x2 − δ2 as above. Then
we have (to the same order as in the previous section):

Im I (a1, l1)

= −
∫ l1−δ2/(2l1 )

O(|δ| 3−β
2 )

dz
δ/z(√

z2+δ2

α
+ 1

)2 + (δ/z)2

= −
∫ l1−δ2/(2l1 )

O(|δ| 3−β
2 )

dz
δ

z

(
1 +

(δ

z

)2
)−1

×
[

1 − 2
√

z2 + δ2

α

(
1 +

(δ

z

)2
)−1]

= −α

[
δ

α
log

l1
|δ| + 4

δ2

α2
sgn δ − 2

l1δ

α2

]
. (B21)

For l1 < x < l2:

Im I (l1, l2) = −
∫ l2

l1

dx
δα2

x(x + α)2

= −α

[
− δ

α
+ δ

α
log

α

l1
+ 2

l1δ

α2

]
. (B22)

For l2 < x < a2, there is no contribution to zeroth order in α,
since the integrand is of order α. Then we have:

Im I = −α

[
δ

α

(
− 1 + log

α

|δ|
)

+ 4
δ2

α2
sgn δ

]
, (B23)

which leads to Eq. (10).

4. Higher order terms in α

We also calculate Re I to first order in α but to only first
order in δ/α. This means that we must keep terms of order
|δ|. Additionally, we also keep second order terms in α but
zeroth order in δ/α. In other words, we now consider the
region where T/EF and |ε|/EF are of the order of r2

s , unlike
in the previous sections. Then I (x1, a1) is still of higher order;
however, we do need to include I (a2, x2). Again using u2 =
x2

2 − x2, we find:

Re I (a2, x2) = ν

∫ √
x2

2−a2
2

0
du D(R)(u)

[
x2

2 − u2 − x2
1

]−1/2

= α
[√

x2
2 − a2

2 + O
(
α|δ|1/2

)]
. (B24)

To first order in δ/α, there are no additional terms in
Re I (a1, l1), and thus we use the result from Eq. (B12) above:

Re I (a1, l1)

= α

[
−π |δ|

2α
+ l1

α
+ O

(
l2
1

α2
,

δ2

l2
1

,
|δ| 3−β

2

α
, |δ| 3β−1

2

)]
.

(B25)

For Re I (l1, l2), we find:

Re I (l1, l2) = α

∫ l2

l1

dx

x2

1

x + α

[
1 + x2

2x2
2

+ O

(
δ2

x2
, x3

)]

= α

[
− l1

α
+ α

l2
+ (1 − δ) log

l2
α

− α2

2l2
2

− αl2
2

+ l2
2

4
+ α2

2
log l2 + O

( l2
1

α2
,

δ2

l2
1

,
α3

l3
2

, l3
2

)]
.

(B26)

Finally, we calculate Re I (l2, a2):

Re I (l2, a2)

= α

∫ a2

l2

dx
1

x

[
1 − α

x
+ O

(
α2

x2

)](
x2

2 − x2
)−1/2

= α

[
− α

l2
+ (1 − δ) log

2(1 + δ)

l2
−

√
x2

2 − a2
2 − α2

4

+ α2

2l2
2

+ αl2
2

− l2
2

4
+ α2

2
log

2

l2
+ O

(
α3

l3
2

, l3
2

)]
.

(B27)

Thus, including our result in the previous section, to com-
bined order in α and δ/α no more than 2, Re I is given by:

Re I = α

[
log

2

α
− π |δ|

2α
+ δ

(
1 − log

2

α

)

+ α2

4
(−1 + 2 log 2) + δ2

α2

(
− 17

4
+ 5

2
log

2α

|δ|
)]

.

(B28)

We emphasize that this is only the higher order in α (i.e., in
rs) contribution arising from the ring diagrams (and in fact,
just from the Re I integral). There are other contributions to
the higher-order terms in α which are beyond the scope of
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the current work where our interest is to get the exact leading
order result in α (i.e., rs). We in fact expect the last term in
Eq. (B28) to be canceled by a contribution coming from one
of our neglected effects. We show the result in Eq. (B28) for
the sake of completeness in providing the structure of Re I
only and do not use this form in the main part of our paper
where our interest is the leading order in rs exact theory.

To obtain the real part of the electron self-energy
Re �(R)(ε, T ) when T/EF and |ε|/EF are of the same order as
r2

s , we need to insert Eq. (B28) into the first term in Eq. (8b)
and carry out the frequency integration. We also emphasize
that the second term in Eq. (8b) might be nonvanishing in this
case and contributes to Re �(R)(ε, T ) as well. This is clearly
beyond the scope of the current work.

APPENDIX C: INTEGRALS WITH HYPERBOLIC FUNCTIONS tanh AND coth

In this Appendix, we evaluate the integrals which appear in the calculation of the electron self-energy and involve the
hyperbolic functions tanh(x) and coth(x). We first consider an integral of the following form

I1(a) ≡
∫ ∞

0
dx f (x)[2 coth(x) − tanh(x + a) − tanh(x − a)]. (C1)

Expressing the hyperbolic functions in terms of exponential series as in Eq. (12) separately for the regimes a > x � 0 and x � a,
we arrive at

I1(a) = 2
∞∑

k=1

∫ ∞

0
dx f (x)e−2kx[2 − (−1)ke−2ka − (−1)ke2ka] + 4

∞∑
k=1

∫ a

0
dx f (x)(−1)k cosh (2kx − 2ka) + 2

∫ a

0
dx f (x)

= 2
∞∑

k=1

∫ ∞

0
dx f (x)e−2kx[2 − (−1)ke−2ka − (−1)ke2ka], (C2)

where in the second equality we have used the fact that
∑∞

k=1(−1)k cosh(2kx − 2ka) = −1/2.
We then evaluate the integral

∫ ∞
0 dx f (x)e−2kx for different f (x), insert the result back into Eq. (C2), and then perform the

summation. This leads to∫ ∞

0
dx[2 coth (x) − tanh (x + a) − tanh (x − a)]x = π2

4
+ a2,

∫ ∞

0
dx[2 coth (x) − tanh (x + a) − tanh (x − a)]x ln x = (1 − γE − ln 2)a2 + π2

12

(
3 − γE − ln

2

π2
− 24 ln A

)

− 1

2
[∂s Lis(−e−2a) + ∂s Lis(−e2a)]|s=2,∫ ∞

0
dx[2 coth (x) − tanh (x + a) − tanh (x − a)]x2 = ζ (3) − 1

2
[Li3(−e−2a) + Li3(−e2a)]. (C3)

Here γE and A represent, respectively, the Euler’s constant and Glaisher’s constant. Lis(z) and ζ (z) denote the polylogarithm
function and the Riemann zeta function.

Similarly, making use of the expansion in Eq. (12), the integral

I2(a) =
∫ ∞

0
dx f (x)[tanh(x + a) − tanh(x − a)] (C4)

can be rewritten in the form

I2(a) = 2
∞∑

k=1

∫ ∞

0
dx f (x)e−2kx (−1)k[e−2ka − e2ka]. (C5)

It is then straightforward to show that∫ ∞

0
dx[tanh(x + a) − tanh(x − a)] = 2a,

∫ ∞

0
dx[tanh(x + a) − tanh(x − a)]x = 1

2
[Li2(−e−2a) − Li2(−e2a)],

∫ ∞

0
dx[tanh(x + a) − tanh(x − a)]x2 = 2

3
a3 + π2

6
a,

∫ ∞

0
dx[tanh(x + a) − tanh(x − a)]x2 ln x = (3 − 2γE − ln 4)

(
1

3
a3 + π2

12
a

)
+ 1

2
[∂s Lis(−e−2a) − ∂s Lis(−e2a)]|s=3. (C6)
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