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Implementing radial anisotropy with self-similar structures
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Radial anisotropy in small objects has been linked to exotic optical properties. It can be implemented with a
spherical inclusion that manifests self-similarity. We show that, when a self-similar, onion-like structure with
alternating layers is homogenized by using an effective material approximation, the homogenized material
becomes uniaxially anisotropic with the axis of anisotropy pointed radially outward from the center of the
inclusion. This radial anisotropy becomes exact in the limit of a dense set of layers. The exact equivalence
of the layered self-similar inclusion and the radially anisotropic inclusion manifests itself both in the effective
permittivities of the two inclusions—when homogenized over the entire volumes—and in the internal potentials.
Because the layered sphere and the radially anisotropic sphere are analogous, it is possible to study some of the
interesting scattering features of radially anisotropic spheres in a realistic configuration. In particular, we show
that the outcome of homogenizing the self-similar inclusion, and consequently the electric response, depends
on what the core material at the center of the inclusion is and that a continuous transition between the two
homogenization models is possible. The findings suggest intriguing applications in nanophotonics.
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I. INTRODUCTION

Spherical inclusions that manifest radial anisotropy (RA)
have been a focus of recent research because they support
exotic interactions with light, including the possibility of
cloaking an object or magnifying it [1–4], and because prac-
tical implementations of the inclusion exist [5,6]. In the elec-
trostatic limit—i.e., when the object is much smaller than the
wavelength—the material of the radially anisotropic sphere is
sufficiently defined by its two permittivity components—the
radial permittivity ε‖ and the tangential permittivity ε⊥—
which are both constant throughout the volume of the in-
clusion (Fig. 1). The two components, ε‖ and ε⊥, define the
uniaxial permittivity

¯̄ε = ε‖urur + ε⊥( ¯̄I − urur ), (1)

where ur is the radial unit vector of the spherical coordinate
system (r, θ, ϕ) that has its origin at the center of the in-
clusion. The anisotropy axis of the material varies between
points, so that the preferred direction is always pointed in
the direction of the local normal vector except in the singular
point at the center of the inclusion where the axis of anisotropy
is indeterminate.

The radially anisotropic sphere was first studied in its
punctured form, where a spherical radially anisotropic coat-
ing is taken to envelop a homogeneous spherical core. The
punctured radially anisotropic sphere was studied by Roth and
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Dignam [7] (1973), who based their approach on Güttler’s
derivation for the locally homogeneous core-shell structure
[8]. Schulgasser [9] (1983) discussed the intact radially
anisotropic sphere, in which the homogeneous core is absent.
This seminal work has been followed by research on the
exotic scattering response of these structures [10–14]. In
subsequent work, the spherical geometry has been generalized
into a spheroidal one [15,16] and the uniaxial material has
been generalized into biaxial [17,18]. Another flavor of radial
anisotropy is the cylindrical anisotropy. Infinitely long cylin-
ders with cylindrical anisotropy have been studied [19–21].

This article studies a way to implement the radially
anisotropic sphere by using a set of layers that are both homo-
geneous and isotropic (Fig. 1). In this implementation, a uni-
axial medium results when the layers are locally homogenized
by using an effective medium approximation at some small
neighborhood around each given point inside the inclusion. If
the chosen neighborhoods are taken to be sufficiently small,
the layers may be regarded as being planar within the given
neighborhood. Furthermore, if the set of layers is sufficiently
dense and sufficiently regular, the volume fractions of each
specific type of layer or the total volume of the neighborhood
are predictable.

The main contribution of this article consists in analytically
solving the electrostatic problem that involves an onion-like,
self-similar structure, consisting of an indefinitely dense set of
infinitesimally thin layers (Fig. 1). The material parameter of
the layers alternates between ε1 and ε2. In the given idealistic
model, this alternating pattern is imagined to continue indefi-
nitely toward the center of the inclusion. The fraction an+1/an

between the outer radii of any subsequent spherical layers is
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FIG. 1. (a) Radially anisotropic sphere and (b) its approximate
implementation with a self-similar sphere. A radially anisotropic
sphere results when a sufficiently dense layered structure is locally
homogenized.

taken to have a fixed value within the whole set of layers.
When the limit an+1/an → 1− of vanishingly thin layers is
taken, all finite domains inside the sphere contain material
with ε1 and material with ε2 in equal proportions.

A homogenization may be performed locally, at each given
small subdomain of the inclusion to establish an analogy
between the radially anisotropic sphere in the upper panel
of Fig. 1 and the self-similar sphere in the lower panel. The
material of the inclusion may be locally modeled as consisting
of a set of planar layers, alternating between the material
parameters ε1 and ε2 so that the thickness of each layer
remains constant throughout the entire volume. This local
homogenization gives the values [22, Eq. 8.8–8.9]

ε‖ = 2ε1ε2

ε1 + ε2
, ε⊥ = ε1 + ε2

2
(2)

to the parallel permittivity component ε‖ and the perpendicu-
lar permittivity component ε⊥ of the anisotropic permittivity
¯̄ε in Eq. (1). It seems clear that, when the two kinds of
components of the material parameters are related by Eq. (2),
the local homogenization establishes an analogy between a
given radially anisotropic sphere and the corresponding self-
similar sphere. Our goal is to rigorously prove this analogy.

We establish the analogy in two parts. First, we show that
the radially anisotropic sphere and the self-similar sphere
have the same electrostatic response outside the sphere. The

electrostatic response of the radially anisotropic sphere is
characterized by its effective permittivity, which is the effec-
tive permittivity of the inclusion when a homogenization is
performed over the entire inclusion, i.e., not merely over a
small local subdomain, like above. The effective permittivity
of a radially anisotropic sphere is known in the literature [4]
and is

εeff = ε‖
2

(
±

√
1 + 8

ε⊥
ε‖

− 1

)
. (3)

Despite the local anisotropy of the material, the inclusion
as a whole is isotropic because of its spherical symmetry.
Therefore, a simple scalar quantity suffices to represent the
effective permittivity. When we, in Sec. III A, derive the effec-
tive permittivity of the self-similar sphere, we again arrive at
Eq. (3), proving that the effective permittivities are the same.
Second, in Sec. III C, we show that the internal potentials
of the self-similar sphere and the radially anisotropic sphere
coincide.

A few approaches on the implementation of radial
anisotropy have been discussed in the literature [5,9,19]. In
particular, Mangini et al. [6] discussed an implementation that
uses a set of equidistant layers—keeping the layer thickness
an − an+1 rather than the fraction an+1/an fixed between the
layers. The advantage of the presently introduced method,
which keeps the radius fraction fixed, is that the chosen im-
plementation allows one to explicitly use the self-similarity of
the onion-like structure as a tool for analysis. Also, the chosen
implementation does not approximate radial anisotropy less
accurately near the center of the inclusion than near the
surface, as is the case with a structure of uniformly thick
layers.

The method that is presented in this article is conceptually
similar to the way in which an infinite geometric series may be
evaluated by employing its self-similarity. For a geometric se-
ries s = �qn, there exists a nontrivial function f (s) = 1 + qs
that leaves the series unchanged. We then refer to the value
of the sum as the fixed point of the function. The fixed-point
condition f (s) = s, when solved for s, gives the value of the
series, s = 1/(1 − q).

In the same way, it follows from the self-similarity of the
onion-like inclusion that, if εeff is the effective permittivity of
the inclusion as a whole, then εeff is also the effective permit-
tivity of the inclusion from which the two outer layers have
been removed (Fig. 2). Section II B introduces the coating
function c(ε2, ε1), which gives the effective permittivity of
a spherical inclusion whose core has the permittivity ε2 and
that is coated by a spherical layer with the permittivity ε1.
Because adding two extra coatings on the self-similar sphere
does not affect the effective permittivity, the effective permit-
tivity satisfies a fixed-point condition εeff = c(c(εeff , ε2), ε1).
In Sec. III A, the equation that results from the fixed-point
condition provides an analytic expression for the effective
permittivity εeff .

The coating function c(ε2, ε1) concisely encapsulates re-
sults that are provided by the theory of core-shell structures,
which has been richly studied [8,23,24]. Section II A revis-
its the theory of core–shells to derive the coating function
by using a homogenization principle. Section II B uses the
coating function in an inside-out approach that derives an
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FIG. 2. Analysis of intact self-similar inclusion. If we have
guessed the effective permittivity εeff right, coating a homogeneous
inclusion of ε = εeff with a layer doublet of ε1 and ε2 leaves the
effective permittivity of the coated inclusion unchanged. This gives
a condition from which εeff can be calculated.

expression for the effective permittivity of a multilayered
sphere. This incremental method of internal homogenization
[23–25] has been found to have great parsimony because it
avoids explicitly using a cascade of propagation matrices.
Compared with the homogenization approach, the method of
propagation matrices is arguably less intuitive, but it relies
less on physical insight and therefore generalizes more readily
[26,27].

This article chooses to treat the two branches of Eq. (3)
without dismissing one of the branches a priori. When two
separate branches εα and εβ exist and have different absolute
values, we refer to εα as the primary branch and εβ as
the secondary branch when |εα| < |εβ |. Although Sec. IV A
presents an argument against εβ in an intact inclusion, the
same section shows that εβ has relevance when the inclusion
is punctured.

Regardless of the physical relevance of the secondary
branch εβ , we gain mathematical insight by formally treating
εβ as if it had an equal standing with εα . Section III D es-
tablishes a duality between the effective permittivities εα and
εβ and the ordinary layer permittivities ε1 and ε2. Dualities
that transpose two intrinsic permittivities are known in the
literature [28–30]. However, we present here a duality that
interchanges a pair of intrinsic permittivities with a pair of
effective permittivities.

This article discusses both the intact self-similar inclusion
and the punctured inclusion. Although self-similarity is bro-
ken in a punctured inclusion, the deviation from self-similarity
diminishes when the core that intervenes the self-similar
pattern of alternating layers is made smaller. In Sec. III B, the
branches εα and εβ of the intact inclusion allow us to write the
effective permittivity εeff of a punctured inclusion in a concise
form that generalizes an existing result.

The final part of the article discusses the implications of
the layer implementation on the theory of radially anisotropic
spheres. Sections IV A–IV B show that the effective permittiv-

ε1
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ε2
ε1

+2
〈E1〉

εeff

a1

a2

FIG. 3. Core–shell. To homogenize the inclusion, it suffices to
find the volume-averaged fields.

ity εeff of a punctured inclusion smoothly transitions between
εα and εβ when the core permittivity εc is adjusted gradually.
The sections conceptually discuss possible applications of the
phenomenon.

A particularly paradoxical implication of the two-branched
indeterminacy of the radially anisotropic sphere and the con-
trasting determinacy of the punctured sphere is that there are
small inclusions that can resist cloaking and remain visible
even when a radially anisotropic cloak is applied. Section IV B
discusses the paradox and its explanation.

II. PRELIMINARIES

A. Core–shell

Let us first consider a core-shell inclusion that consists of
a spherical, homogeneous core with a permittivity ε2 and a
radius a2 coated with a spherical, homogeneous shell with a
permittivity ε1 and an outer radius a1 (Fig. 3).

Because the impinging excitation field Ep is assumed static
and uniform, it follows from the orthogonality of the spheri-
cal harmonics that the full solution of the Laplace equation
∇2φ = 0 in the coating reduces to just two terms—the dipole
term and the term that gives a uniform field—of which the
dipole term vanishes in the core region. When we take the ori-
gin of the spherical coordinates at the center of the inclusion,
the potentials are

φ1 = −C1Ep · r + a3
1D1

Ep · r
r3

,

φ2 = −C2Ep · r, (4)

where U0 = a1Ep.We apply at the interface the continuity of
the potential and the continuity of the normal component of
the electric flux density. In terms of potentials, these condi-
tions are given for the spherical surface at r = a2 as

φ1 = φ2,

ε1
∂φ1

∂r
= ε2

∂φ2

∂r
. (5)

When we substitute Eq. (4) and eliminate D1, we get

C2

C1
= 3

ε2
ε1

+ 2
. (6)
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The equation is just the textbook formula [31, Sec. 3.24] for a
homogeneous sphere in a homogeneous background because
the essentials of the two problems are the same.

To get the effective permittivity, we need to know the frac-
tion A = Ē2/Ē1 between the volume-averaged fields 〈E1〉 =
Ē1uz and 〈E2〉 = Ē2uz. The fraction A is a simple scalar
because the field averages turn out to be parallel. We may
parametrize the geometry of the self-similar inclusion by the
volume fraction d of the coating, so that

d = 1 −
(

a2

a1

)3

.

As for the fields, the dipole field may be disregarded in
the volume average because the volume integral of a dipole
field vanishes over a volume that is bound by two concentric
spheres [25, Eq. 20]. That leaves

A = C2

C1
= 3

ε2
ε1

+ 2
. (7)

The effective permittivity is defined by 〈D〉 = εvacεeff〈E〉,
where εvac is the vacuum permittivity and the volume average
extends over the entire inclusion, including both the core and
the coating. For the chosen parametrization of the core-shell,
the definition becomes

dε1Ē1 + (1 − d )ε2Ē2 = εeff [dĒ1 + (1 − d )Ē2],

which yields a scalar effective permittivity

εeff = ε2 + d
ε1 − ε2

A + d (1 − A)

= ε2 + d
ε2 + 2ε1

(3 − d )ε1 + dε2
(ε1 − ε2). (8)

We may check that εeff = ε2 when d = 0. This corresponds to
the special case where the coating does not contribute because
its thickness vanishes. Also, we may check that εeff = ε2

when ε1 = ε2. This corresponds to the special case where the
coating does not contribute because its material matches that
of the core. We may also check that if ε1 �= ε2 the contribution
of the coating increases together with the volume fraction d of
the coating. This too coincides with the expectation.

A different parametrization has also been used in the litera-
ture [24,32]. When the volume fraction of the core g = 1 − d
is used in Eq. (8) instead of the volume fraction d of the
coating, the equation takes the form

εeff = ε1 + 3gε1
ε2 − ε1

(ε2 + 2ε1) − g(ε2 − ε1)
, (9)

which is exactly the form of the Maxwell-Garnett equation in
the theory of electromagnetic mixing formulas. The Maxwell-
Garnett equation is a mean-field approximation for the effec-
tive permittivity of a random dielectric mixture [22, Sec. 3.1].
However, in the particular case of a core-shell, the mean-field
approach does not involve an approximation and the result
applies exactly.

B. Multilayered sphere

To accommodate multiple layers of coating in the theory,
we may repeat the homogenization process of Sec. II A multi-
ple times, starting from the coating that is directly on the core

and proceeding outward. For a convenience of notation, we
introduce the coating function, defined by

cd (ε2, ε1) = ε2 + d
ε2 + 2ε1

(3 − d )ε1 + dε2
(ε1 − ε2), (10)

so that, for a core-shell of a core ε2 and a coating ε1, the
effective permittivity is εeff = cd (ε2, ε1), by Eq. (8). Let us
consider a spherical, multilayered inclusion that has the per-
mittivities ε1, ε2, . . . , εN proceeding from the outmost layer
toward the core. Homogenizing from the core outward, we
find that the effective permittivity is

εeff = cd1

(
cd2

(
. . .

(
cdN−1 (εN , εn−1), . . .

)
, ε2

)
, ε1

)
, (11)

where the self-similarity is not yet assumed, so that the
volume fractions

dn = 1 −
(

an+1

an

)3

may take separate values.

III. SELF-SIMILARITY

A. Intact inclusion

The multilayered sphere can have any positive values of the
parameters dn and any complex permittivities εn. However, the
self-similar sphere is a special case where the parameters dn =
d are kept fixed between layers and where the permittivities εn

follow a repeating pattern. For simplicity, we take this pattern
to be the pattern of Fig. 1, so that the permittivity alternates
between ε1 and ε2. By self-similarity,

εeff = cd (cd (εeff , ε2), ε1), (12)

so that εeff is the fixed point of the function cd (cd (·, ε2), ε1).
We now proceed to find the fixed point. It is possible

to directly solve the equation that results when Eqs. (10)
and (12) are combined. However, it is easier to proceed by first
effecting a suitable limit. Because the goal is to implement the
radially anisotropic sphere and because the self-similar sphere
becomes the analog of the radially anisotropic sphere in the
limit d → 0+, we assume d to be sufficiently small so that
higher-order terms of d may be omitted. When the assumption
of a thin layer is made, we denote the volume fraction d of
the coating by the Greek letter δ. The approximation δ2 = 0
is assumed implicitly throughout the article. Likewise, γ is
introduced in place of the volume fraction g of the core when
the fraction is close to unity.

When we linearize Eq. (10), the result is

cδ (ε2, ε1) = ε2 + δ
ε2 + 2ε1

3ε1
(ε1 − ε2). (13)

Therefore

cδ (cδ (εeff , ε2), ε1) = εeff + δ
εeff + 2ε2

3ε2
(ε2 − εeff )

+ δ
εeff + 2ε1

3ε1
(ε1 − εeff ). (14)

Now Eq. (12) reduces to the quadratic equation

ε2
eff + 2ε1ε2

ε1 + ε2
εeff − 2ε1ε2 = 0, (15)
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FIG. 4. Punctured inclusion. The self-similarity of the punctured
inclusion is only approximate because the pattern of alternating
layers is interrupted near the center. Unlike the intact inclusion, the
punctured inclusion has a unique effective permittivity εeff , without
indeterminacy.

the solution

εeff = ε1ε2

ε1 + ε2

⎛
⎝±

√
1 + 2

(ε1 + ε2)2

ε1ε2
− 1

⎞
⎠ (16)

of which gives the effective permittivity of the self-similar
sphere. The expression is, in general, two-valued because of
the two branches of the square root. The present derivation
therefore allows two solutions for the effective permittivity
and does not fix the electric potential inside the inclusion
uniquely.

We may test Eq. (16) by comparing it with the expressions
that the literature gives for the radially anisotropic sphere.
The capacitor equations (2) transform Eq. (16) into Eq. (3),
which is the expression that is already known in the literature
[4, Eq. 15].

B. Punctured inclusion

The result (16) in Sec. III A manifests indeterminacy
because the quadratic equation from which the result was
derived has two solutions. However, because the coating
function has a unique value for a given triplet δ, ε1, ε2 of
arguments, we can use the function to construct a unique
solution. In this approach, we first choose an arbitrary value
εc for a finite-size core and add an even number N layers
of coating, so that the permittivity again alternates between
ε1 and ε2, starting with ε1 at the outmost layer (Fig. 4). A
finite inclusion is not strictly self-similar, but if δ is fixed
between layers, the finite inclusion approaches the self-similar
inclusion when the number N of the coatings increases.

The effective permittivity of the finite inclusion is

εeff,n =
n︷ ︸︸ ︷

cδ (cδ (. . . (cδ (εc, ε2), . . . ), ε2), ε1). (17)

If the sequence εeff,n converges to a value, it follows that the
limit

εeff = lim
n→∞ εeff,n

must be a fixed point of cδ (cδ (·, ε2), ε1) and that it must
thus satisfy Eq. (12). Therefore, if the sequence converges, it
converges to Eq. (16). Also, because the solution is given by
a cascade of single-valued functions cδ and because the only
parameter that is chosen arbitrarily is the core permittivity εc,
the sequence must converge in such a manner that the relevant
branch of the square root in Eq. (16) is uniquely determined
by the choice of the core permittivity εc.

To see when the sequence (17) converges and to find the
limit of the sequence, we assume that the layers are suffi-
ciently thin and numerous to be treated as if they constituted
a continuum. When we use this assumption to justify the
substitution

cδ (cδ (ε, ε2), ε1) − ε = �ε
1
2�n

→ dε

d
(

1
2 n

) .

The difference equation (14) then transforms into the differ-
ential equation

dε

d
(

1
2 n

) = δ
ε + 2ε2

3ε2
(ε2 − ε) + δ

ε + 2ε1

3ε1
(ε1 − ε). (18)

Here ε stands for the effective permittivity that is accumulated
when n layers are added on the core. We denote by εα and
εβ the two solutions of Eq. (15), and only permit εα = εβ in
the degenerate case where Eq. (15) has a double root. Then
Eq. (18) becomes

dε

dn
= −δ

1

3ε‖
(ε − εα )(ε − εβ ), (19)

where ε‖ is defined by the capacitor equation (2). The solution
for the first-order differential equation is

ε(n) = εβ + εα − εβ

1− εc−εα

εc−εβ
exp

(
− (εα−εβ )nδ

3ε‖

) , (20)

where the factor (εc − εα )/(εc − εβ ) in the denominator en-
sures that ε = εc when n = 0. If we let b stand for the radius
of the core, the number n of the accumulated layers is related
to the distance r from the center of the inclusion by

n = 3

δ
ln

(
r

b

)
. (21)

This result, together with the difference

εα − εβ = ε‖
(α)

√
1 + 2

(ε1 + ε2)2

ε1ε2
≡ ε‖ (α)

√·

between the two solutions to Eq. (16) simplifies the exponen-
tial in Eq. (20) to

exp

(
− (εα − εβ )nδ

3ε‖

)
=

(
b

r

) (α)√·
,

where the notation (α)
√· refers to the branch of the square root

in Eq. (16) that gives εα as the effective permittivity. Finally,
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we can set r equal to the outer radius a of the entire inclusion
to get

εeff = εβ + εα − εβ

1 − εc−εα

εc−εβ

(
b
a

) (α)√· , (22)

or the alternative form

εeff = ε‖
2

⎛
⎝ (α)

√·
⎛
⎝1 + εc−εα

εc−εβ

(
b
a

) (α)√·

1 − εc−εα

εc−εβ

(
b
a

) (α)√·

⎞
⎠ − 1

⎞
⎠,

which generalizes an earlier result [4, Eq. 23] that assumes
a perfectly electrically conducting (PEC) core. As one might
expect, εeff is determined by the intrinsic material parameters
and the core-shell ratio b/a.

The sequence (17) converges to the value given by Eq. (22)
in the limit b/a → 0 when the limit exists. It follows from
the properties of the exponent function that the limit exists
whenever the square root (α)

√· has a nonvanishing real part. If
the square root

√· has a nonvanishing real part, we can choose
the labels α and β so that the real part of (α)

√· is positive. This
is because the order of labels for the permittivities εα and εβ

have so far been arbitrary. With this convention, (α)
√· is just

the canonical square root. It can be seen from Eq. (22) that εα

now refers to the stable fixed point and εβ to the unstable one
and that both of these cannot be stable at the same time. We
will hereafter adopt the convention that εα always stands for
the stable fixed point when one exists.

The solution (22) oscillates indefinitely when the discrim-
inant under the square root (α)

√· is real and negative. The
condition Im{·} = 0 is met when ε1/|ε1| = ±ε2/|ε2| or |ε1| =
|ε2|. The last alternative is only compatible with Re{·} > 0
and therefore only yields convergent solutions. Indefinite os-
cillations then require that the complex permittivities ε1 and
ε2 have parallel or opposite direction factors. The necessary
and sufficient condition turns out to be that ε2/ε1 ∈ R \ {0}
and

ε2

ε1
< −2 or

ε1

ε2
< −2. (23)

It may be noted that this condition does not preclude indef-
inite oscillations of the solution (22) when one of the layer
materials is lossy and the other material is active.

Condition (23) may also be stated in terms of the pa-
rameters of a radially anisotropic coating. It follows from
the capacitor equations (2) that, when the layer permittivities
are multiplied by some scalar factor k, so that ε1 → kε1

and ε2 → kε2, the components of the radially anisotropic
permittivity get multiplied by the same scalar, i.e., ε‖ → kε‖
and ε⊥ → kε⊥. It follows from this that ε⊥/ε‖ is real at the
same time with ε2/ε1—barring singularities. It then follows
from Eq. (23) that a necessary condition for the indefinite
oscillations is ε⊥/ε‖ < −1/8, where the fraction must be real.
The sufficiency of the condition can be seen by replacing
the square root (α)

√· with the one in Eq. (3). In conclusion,
condition (23) accords with the literature [4, Sec. 2.4.].

C. Internal field

Let us resume the discussion of the intact inclusion, so that
the self-similarity is again exact. The introduction stated that

Ē3

Ē2

Ē1

< En >= Ēnuz

uz

ε′eff

εeff

FIG. 5. Average fields of outer layers. The average fields are
all oriented along the z axis. The effective permittivity may change
infinitesimally from εeff to ε ′

eff when the outmost layer is peeled from
the inclusion.

the analogy between the self-similar sphere and the radially
anisotropic sphere requires both the external and the internal
potentials to coincide. The external potentials coincide be-
cause these potentials are determined by the effective permit-
tivities in Eqs. (3) and (16) and because Sec. III A found these
to be equivalent. We may now consider the internal potentials,
starting with the corresponding fields.

Two different effective permittivities εeff and ε′
eff are rel-

evant. Of these two, εeff refers to the effective permittivity
of the entire inclusions and is, by self-similarity, also to the
effective permittivity of every inner sphere that starts with
an outer layer of permittivity ε1. Likewise, ε′

eff refers to the
effective permittivity of each inner sphere that starts with
an outer layer of permittivity ε2. Although the difference
ε′

eff − εeff is, by Eq. (13), of order δ and cannot therefore
be neglected in general, the derivation (24)–(26) below only
features ε′

eff in the product δε′
eff , in which context the two

effective permittivities can be regarded as equal.
Let 〈E〉 = Ēuz be the average field of the entire inclusion,

apart from the three outmost layers. The field averages Ē1, Ē2,
and Ē3 of the three outmost layers (Fig. 5) are then

Ē3 = εeff + 2ε1

3ε1
Ē , (24)

Ē2 = ε′
eff + 2ε2

3ε2
(δĒ3 + γ Ē ), (25)

Ē1 = εeff + 2ε1

3ε1
(δĒ2 + δγ Ē3 + γ 2Ē ), (26)

where again γ = 1 − δ. When we substitute Eqs. (24) and (25)
into Eq. (26), we get

Ē1

Ē3
= 1 + δ

(
εeff + 2ε1

3ε1
+ εeff + 2ε2

3ε2
− 2

)
,

where again the terms with δ2 have been omitted. It follows
that

Ē3

Ē1
= 1 − δ

(
εeff + 2ε1

3ε1
+ εeff + 2ε2

3ε2
− 2

)

= 1 − 2

3
δ

(
εeff

ε‖
− 1

)
.
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εeff

ε2

ε1

∂B(r)

r

a

FIG. 6. Partly homogenized self-similar sphere. The potential is
affected by the homogenization only inside the homogenized region.

Then, because by self-similarity all such fractions between
proximate odd layers are the same, for an odd layer n

Ēn

Ē1
=

[
1 − 2

3
δ

(
εeff

ε‖
− 1

)]n/2

= exp

[
−1

3
δ

(
εeff

ε‖
− 1

)
n

]
. (27)

For the punctured inclusion, the respective n is given by
Eq. (21). However, the indexing, in the present context, starts
from the outmost layer and not from a core, as was the
case with the punctured inclusion. Therefore, Eq. (21) gets
modified into

n = 3

δ
ln

(
a

r

)
, (28)

which with Eq. (27) and with an analogous derivation for the
even layers gives

Ēodd(r) = Ē1

(
r

a

) εeff
ε‖ −1

, Ēeven(r) = Ē2

(
r

a

) εeff
ε‖ −1

. (29)

Let us now consider a spherical volume B(r) that is con-
centric with the inclusion and has its radius r inside the radius
a of the inclusion (Fig. 6). When the material is homogenized
over B(r) the potential φ(r, θ ) inside the inclusion remains
unaffected at the surface ∂B(r) of the homogenized region
and outside it. However, inside B(r) the potential is that
of a uniform electric field. If the homogenized region B(r)
were chosen to cover the entire inclusion, so that r = a, the
homogenized potential would be

φ(r)|r=a = − 3

εeff + 2
Ep · r,

at the surface [31, Sec. 3.24.]. It follows from the propor-
tionalities (29) that, for a smaller homogenized region B(r)
with r < a, a scaling must be introduced. The potential at the
surface ∂B(r) of the homogenized region in this case is then

φ(r) = − 3

εeff + 2

(
r

a

) εeff
ε‖ −1

Ep · r. (30)

But this is also the potential inside the original self-similar
inclusion, without the homogenization, because the potential

εα εβ

ε1ε2ε1

→

,

−2ε1 −2ε2

εαεβεα

→

,

⇐⇒

FIG. 7. Duality. The layer permittivities ε1 and ε2 are inter-
changeable with the effective permittivities εα and εβ , apart from an
extra factor −2.

at the surface ∂B(r) remains unchanged by the homoge-
nization. The result in Eq. (30) gives the same potential
that the literature gives for the radially anisotropic sphere
[4, Eqs. 9,12].

D. Duality

The two pairs of material parameters, ε1, ε2 and εα, εβ ,
stand in an almost symmetric relation with one another. An
inexact duality exists between the two pairs (Fig. 7). The
approximate duality can be shown by a direct substitution.
Let εα and εβ again be the two branches of the effective
permittivity and assume that εα �= εβ if two distinct branches
exist. By Eq. (16), the condition

εα = cδ (cδ (εα, ε2), ε1),

εβ = cδ (cδ (εβ, ε2), ε1) (31)

is fulfilled if and only if

εα, εβ = ε1ε2

ε1 + ε2

⎛
⎝ (α,β )

√
1 + 2

(ε1 + ε2)2

ε1ε2
− 1

⎞
⎠. (32)

By direct substitution, it can be checked that, with εα and εβ

given by Eq. (32), the equations

−2ε1 = cδ (cδ (−2ε1, εβ ), εα ),

−2ε2 = cδ (cδ (−2ε2, εβ ), εα ) (33)

are satisfied. One may repeat the process, starting from
Eq. (33) and arriving at Eq. (31). The two pairs of equations,
(31) and (33), are therefore equivalent. The result says that
the roles of the layer permittivities ε1, ε2 and the effective
permittivities εα, εβ can be interchanged, apart from a factor
−2 which multiplies the novel effective permittivities (Fig. 7).

The duality property becomes useful when we want to find
layer permittivities ε1 and ε2 that fix the effective permittiv-
ities εα and εβ at specified values. By Eq. (33), it suffices to
find the two fixed points of cδ (cδ (·, εβ ), εα ) and divide by −2.
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Therefore,

ε1,2 = −1

2

εαεβ

εα + εβ

(
(1,2)

√
1 + 2

(εα + εβ )2

εαεβ

− 1

)
(34)

gives the desired layer permittivities.

IV. IMPLICATIONS

A. Branch hopping

Section III B demonstrated—in agreement with foregoing
research of radial anisotropy [4, Sec. 2.4]—that the ambiguity
in Eq. (16) for the effective permittivity of the intact self-
similar inclusion may be removed by puncturing the inclusion
with a spherical homogeneous core. The effective permittivity
εeff of the punctured inclusion is unique. It also converges to
a limit when b/a → 0, unless condition (23) for the indefinite
oscillations is fulfilled. If the effective permittivity does ap-
proach a limit, the limit is εeff → εα apart from the unusual
situation where the core permittivity is given by εc = εβ .
When the core permittivity εc takes this special value, Eq. (19)
implies that the effective permittivity is unaffected by the
layers that are added on the core and is therefore independent
of the core-shell ratio b/a. In this case, εeff = εβ holds even
when the core is arbitrarily small compared with the entire
inclusion.

It follows that the intact inclusion can be implemented
with a punctured inclusion in two essentially different ways,
εc �= εβ or εc = εβ , when the core of the punctured inclusion
is infinitesimally small, and that the electric response of
the inclusion depends on the chosen implementation. What
makes this conclusion surprising is that the more special
implementation, εc = εβ , corresponds to an intact inclusion
that withholds an infinite energy in its internal field. To show
that the energy of the internal field really does become infinite
when the secondary branch εβ of the effective permittivity εeff

is chosen, we can find the energy inside a given infinitesimal
layer of the inclusion and then aggregate the energy over the
layers.

Some preliminary results are needed. Let us denote
f (r, θ ) ∼ g(r, θ ) when a non-negative real number A(θ ) exist
for each θ so that f (r, θ ) = A(θ )g(r, θ ). The coefficient of
proportionality, A(θ ), can vanish for a given θ but it must be fi-
nite. Because the proportionality is defined more loosely than
what is customary, the relation f (r, θ ) ∼ g(r, θ ) is reflexive
and transitive but not symmetric.

The dipole field Ed(r) observed at r and generated by the
part of the self-similar inclusion that falls inside the radius r
has the proportionality

‖Ed(r)‖ ∼
∥∥∥∥3(p(r) · ur )ur − p(r)

r3

∥∥∥∥ ∼ |p(r)|
r3

∼ |Ē (r)|, (35)

where p(r) is the dipole moment inside the radius r. The last
proportionality follows from self-similarity because, by self-
similarity, the polarizability of any subset of the inclusion that
is spherically symmetric about the origin must be the same
when scaled by the volume inside its radius r.

The field in each layer is a combination of a uniform field
and a dipole field, so that in a given layer at distance r from
the center the field is E(r) = Ē (r)uz + Ed(r). The square of

the field is

‖E(r)‖2 = |Ē (r)|2 + ‖Ed(r)‖2

+ 2|Ē (r)|‖Ed(r)‖ cos
[
∠(Ed, uz )

]
,

which with Eq. (35) gives ‖E(r)‖ ∼ |Ē (r)|.
Next, we may calculate the energy. The energy density in a

homogeneous medium is [31, Sec. 2.8.]

u = 1
2εvacε‖E‖2,

where εvac is the vacuum permittivity. The absolute value of
the energy is given by∣∣∣∣

∫
V

udV

∣∣∣∣ =
∣∣∣∣
∫
V

εvacε1

2
E2

odd
dV

2
+

∫
V

εvacε2

2
E2

even
dV

2

∣∣∣∣
∼

∫
V

|Ē (r)|2dV ∼
∫
V

∣∣∣∣∣
(

r

a

) εeff
ε‖ −1

∣∣∣∣∣
2

dV

∼
∫ a

0

∣∣∣∣∣
(

r

a

) εeff
ε‖

∣∣∣∣∣
2

dr =
∫ a

0

(
r

a

)2Re{ εeff
ε‖ }

dr.

The proportionality, as it is defined in this section, does not
preclude a situation where the two energy integrals over the
two types of layers diverge while their integrands cancel out
one another so that sum of the integrals vanishes. However,
let us assume that the energy does not vanish in this way. In
this case, it follows that the energy remains finite if and only
if Re{εeff/ε‖} > −1/2, i.e., if and only if the primary branch
εα of the effective permittivity εeff exists and is chosen.

The energy condition is commonly used to remove inde-
terminacy, following Meixner’s (1972) treatment of singular
fields at edges [33]. Even when the energy condition precludes
intact inclusions that manifest the secondary branch εβ of
the effective permittivity, the secondary branch can be im-
plemented with a punctured inclusion. This conclusion shows
that even the solutions that the energy condition would ex-
clude can have physical significance. The punctured inclusion
with εc = εβ , however, does not violate the energy condition
in general because the punctured inclusion is obtained from
the intact inclusion by homogenizing a small spherical region
around the center and this process does not generally preserve
energy.

To establish the physical significance of the secondary
branch εβ more firmly, we show that the effective permittivity
εeff of a punctured inclusion continuously transitions from εα

to εβ when the core permittivity εc varies around εβ (Fig. 8).
Let us employ Eq. (34) to find the layer permittivities ε1

and ε2 that place the stable and unstable fixed points at
suited locations in the complex plane. We place the unstable
fixed point εβ = 1 at unity, so that the inclusion becomes
transparent under favorable circumstances. Also, we place the
other fixed point εα = 0.1 inside the unit circle to make it
stable. The real part of the core permittivity εc is taken to
coincide with εβ , so that only the imaginary part Im{εc} varies.
In this numerical example, the effective permittivity εeff of
the punctured inclusion is calculated by using Eq. (22). The
transition of εeff between the branches εα and εβ is smooth,
in the mathematical sense, but becomes increasingly abrupt
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FIG. 8. Branch hop from scattering to transparency. The stable
and unstable fixed points are εα = 0.1 and εβ = 1. The core permit-
tivity is εc = 1 + Im{εc} j. Transparency results for a narrow range
of the core permittivity. The transition between the fixed points
becomes sharper when the core-shell ratio diminishes.

when the core-shell ratio b/a diminishes. We refer to the
transition between the branches as branch hopping.

Because the inclusion tends to normally scatter an incident
electric field and because the inclusion abruptly becomes
transparent when Im{εc} = 0, the inclusion can theoretically
serve as an optical bandpass filter of a Q factor that can
be made as high as needed by diminishing the core-shell
ratio b/a sufficiently. If we assume the idealization that the
layer permittivities ε1 and ε2 are nondispersive so that the
angular frequency ω affects only the core permittivity εc of
the inclusion and if we further assume that the ω dependence
is linear and pure imaginary, so that εc = εβ + jω�εc, the
dispersion curve εeff (ω) of the effective permittivity of the
punctured inclusion follows the trajectory shown in Fig. 8,
apart from the scaling of the x axis.

B. Emergent scattering

A special case of branch hopping is a response from
an inclusion that would normally cloak its core but fails
to achieve the cloaking effect because the carefully tailored
core activates the secondary branch of the inclusion’s effec-
tive permittivity, making the inclusion visible. It might be
somewhat unexpected that the core, regardless of its possibly
infinitesimal size, should be able to enact this transformation
because the cloaking effect of the inclusion tends to strongly
deviate electric-field lines from its center so that only a very
small electric field is incident on the core initially [4, Fig. 4].
However, the literature presents cases where it is precisely the
small scale of a geometric feature that enhances scattering or
absorption by more strongly localizing electric interactions.
In particular, enhanced scattering and absorption have been

−0.1 −0.05 0 0.05 0.1
−1.5

−1

−0.5

0

0.5

1

1.5

�{εc}

�{
ε e

ff
}

b/a = 0.8
b/a = 0.7

FIG. 9. Emergent scattering from a transparent, cloaking inclu-
sion. The stable and unstable fixed points are εα = 1 and εβ = −1.1.
The core permittivity is εc = −1.1 + Im{εc} j. The transition be-
tween the fixed points is abrupt even when the core constitutes a
substantial part of the inclusion’s volume.

associated with a high curvature in the corner of a slightly
blunted wedge [34]. Analogously, here the high curvature
of the surface of a small core of a punctured self-similar
inclusion has a localizing effect that enhances scattering to
an extent that overwhelms the cloaking effect.

To demonstrate emergent scattering from a cloaked core,
we would like to interchange the roles of the stable and
unstable fixed points εα and εβ in Sec. IV A so that εα = 1
is the primary branch and the inclusion transitions from trans-
parency to scattering. However, there is no way to interchange
the roles of εα and εβ without moving one or both of them
because the priority of a given branch is determined by its
location in the complex plane in relation to the other branch.

More specifically, we will now show that |εα| < |εβ | when
a stable fixed point exists. Let us denote (α)

√· = a + bi and
(β )
√· = −a − bi, where (α)

√· is the canonical square root, so
that a � 0. Stability requires that, more strictly, a > 0. By
Eq. (16), we now have

|εα| = C|(a − 1) + bi| = C
√

(a − 1)2 + b2,

|εβ | = C|(a + 1) + bi| = C
√

(a + 1)2 + b2,

where C = |ε1ε2/(ε1 + ε2)|. The conclusion follows from
(a − 1)2 < (a + 1)2.

The requirement that the inclusion must be transparent
in the steady state fixes the location εα = 1 of the primary
branch. It follows that the other branch εβ must be placed
outside the complex unit circle. We place it at εβ = −1.1,
in conformity with [4, Fig. 4]. For a numerical example, we
calculate the layer permittivities by Eq. (34) and then the
effective permittivity of the punctured inclusion by Eq. (22).
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As in Sec. IV A, we allow the imaginary part Im{εc} of the
core permittivity to vary while keeping all other parameters
fixed. What results is a smooth transition from transparency to
scattering, with a more abrupt transition when the core-shell
ratio is smaller (Fig. 9).

Because the inclusion does not normally create a perturba-
tion field and because it creates one in the special circum-
stance that has the imaginary part of the core permittivity
vanish, Im{εc} = 0, the inclusion can theoretically serve as an
optical bandstop filter. Also, the Q factor of the bandstop filter
can theoretically be made as high as needed by sufficiently
diminishing the core-shell ratio b/a. With the chosen material
parameters, the Q factor will increase steeply when the core
diminishes.

V. CONCLUSION

In this article, we derived the electrostatic response of a
spherical self-similar inclusion and showed that the inclusion
precisely implements a radially anisotropic sphere. In particu-
lar, we showed that both the perturbation field and the internal
field of the self-similar sphere match the corresponding fields
of a radially anisotropic sphere.

In Sec. III A, we used homogenization as the primary tool
to show that the perturbation fields of the self-similar sphere
and the radially anisotropic sphere match. We adopted a per-
turbation approach and required that an infinitesimal double-
layer coating should not affect the effective permittivity of a
self-similar inclusion even infinitesimally. From this condi-
tion, we derived the effective permittivity of the self-similar
inclusion. In Sec. III B, we continued to use homogenization
to show that the internal field of the self-similar sphere
matches the internal field of the radially anisotropic sphere.

Section III D showed that the effective permittivities of
a self-similar inclusion are interchangeable with the layer
permittivities of the inclusion. Whether the duality between
the two pairs of permittivities is accidental or reflects a deeper
underlying principle, remains an open question. In any case,
we found the duality useful when we tuned the material
parameters of the inclusion to meet given specifications in
Secs. IV A and IV B.

Both the radially anisotropic sphere and the self-similar
sphere have an indeterminacy of material parameters in the
center but the character of the indeterminacy varies between
the inclusions. The self-similar inclusion has the indeter-
minacy because the alternating pattern of its layers contin-
ues indefinitely toward the center. In contrast, the radially
anisotropic inclusion has the indeterminacy because the radial
unit vector has no unique orientation in the center. Regard-
less, the analogy between the self-similar inclusion and the
radially anisotropic inclusion holds even in the way that
their respective indeterminacies manifest themselves. In fact,
Sec. III A showed that the self-similar sphere can generally
be homogenized into two distinct homogeneous spheres, with
different material parameters. The conclusion coincides with
the two-valuedness of the homogenized permittivity for the
radially anisotropic sphere. Furthermore, Sec. III B showed
that the indeterminacy of the self-similar inclusion can be
removed by puncturing, i.e., replacing the material inside a
small spherical region around the center by a homogeneous

material. The conclusion generalizes what has been known
about the puncturing of radially anisotropic spheres.

This article has attempted to find the physical significance
for both branches of the two-valued homogenized permittivity
of the self-similar inclusion. Even when Sec. IV A showed
that the secondary branch violates the condition that the en-
ergy will have to remain finite inside the inclusion, the energy
condition is no longer necessarily violated after puncturing.
Therefore, the secondary branch can be implemented with a
punctured inclusion. Section IV A further showed by a nu-
merical example that the transition between the two branches
is continuous and that the continuous transition between the
branches can theoretically be used to implement a bandpass
filter.

Because the two branches result from the indeterminacy
at the center of the inclusion, one could expect that the
significance of the indeterminacy diminishes when the layered
coating only permits a small part of the excitation field to
impinge the center region, as would be the case when the
inclusion is designed to operate as a cloak. However, it
turns out that the difference between the two branches can
be significant, and cloaking merely affects the precision to
which the core must be tuned when puncturing the inclusion.
Section IV B showed that especially a very small core must be
tuned with a pinpoint precision to make the core overcome the
cloaking effect.

To keep the analysis simple, we assumed that the self-
similar inclusion only has two types of layers and that the
two types of layers are equally thick. However, the assumption
does not make the conclusions much less general because an
inclusion with more than two types of layers can be reduced
into an analog that has two types. Also, layers that are not
equally thick can be treated as if they were when the difference
in the relative thicknesses is compensated by adjusting the
permittivities. The more varied set of layers can be useful
when one wants to practically implement a special dispersion
profile. But the goal of the article was to establish concepts.

Because the presently introduced method only applies to
perfectly spherical geometry, it cannot show whether the
branch-hopping effect of Secs. IV A and IV B is sensitive to
small perturbations in the spherical geometry. The question of
small perturbations is critical when one considers the practical
applications of the layered sphere. However, the question can
only be answered by a separate analysis.

We use the self-similarity as a tool for solving an elec-
trostatic scattering problem. It could be possible to employ
the same method to other problems in electrostatics. Hypo-
thetically, one could use the method to derive approximate
solutions for radially anisotropic spheroids and ellipsoids.
Exact solutions could be available for two other important
special cases of spheroids: the flat circular disk and the
infinite circular cylinder. For radially anisotropic spheres,
the solution could be made more general by allowing the
material to be nonlinear. The more general material could then
enable new applications besides the bandpass and bandstop
filters that were demonstrated. Specifically, branch-hopping
can be used to amplify the nonlinearity of a weakly nonlinear
core material so that the effective permittivity of the self-
similar inclusion can be controlled by the field intensity and
the self-similar inclusion functions as an all-optical switch.
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Because the method that the article presented is different from
the customary, the method can suggest concepts that would
otherwise remain elusive. Self-similarity offers a treatment for
a familiar scattering problem in electrostatics.
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