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η-pairing in Hubbard models: From spectrum generating algebras to quantum many-body scars

Sanjay Moudgalya,1 Nicolas Regnault,1,2 and B. Andrei Bernevig1

1Department of Physics, Princeton University, New Jersey 08544, USA
2Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris–Diderot,

Sorbonne Paris Cité, Paris, France

(Received 25 May 2020; accepted 6 August 2020; published 20 August 2020)

We revisit the η-pairing states in Hubbard models and explore their connections to quantum many-body scars
to discover a universal scars mechanism. η-pairing occurs due to an algebraic structure known as a spectrum
generating algebra (SGA), giving rise to equally spaced towers of eigenstates in the spectrum. We generalize the
original η-pairing construction and show that several Hubbard-like models on arbitrary graphs exhibit SGAs,
including ones with disorder and spin-orbit coupling. We further define a restricted spectrum generating algebra
(RSGA) and give examples of perturbations to the Hubbard-like models that preserve an equally spaced tower of
the original model as eigenstates. The states of the surviving tower exhibit a subthermal entanglement entropy,
and we analytically obtain parameter regimes for which they lie in the bulk of the spectrum, showing that they are
exact quantum many-body scars. The RSGA framework also explains the equally spaced towers of eigenstates
in several well-known models of quantum scars, including the Affleck-Kennedy-Lieb-Tasaki model.
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I. INTRODUCTION

The study of ergodicity and its breaking in isolated quan-
tum systems has been a growing branch of research in quan-
tum many-body physics. In particular, novel mechanisms
for the violation of the eigenstate thermalization hypothesis
(ETH) [1–4] have gained attention recently, particularly a
mechanism known as quantum many-body scarring. Unlike
other mechanisms of ETH violation, such as integrability
and many-body localization (MBL) [5], where the entire
spectrum of a Hamiltonian violates the ETH, quantum scarred
models consist of some ETH-violating eigenstates in an oth-
erwise ETH-satisfying spectrum. Hamiltonian systems cur-
rently known to exhibit quantum scars can be roughly clas-
sified into three categories. The first category contains models
that exhibit an analytically solvable equally spaced tower of
eigenstates. This line of study was initiated by the discovery
of an ETH-violating tower of states in the celebrated Affleck-
Kennedy-Lieb-Tasaki (AKLT) model [6–8]. Similar towers of
eigenstates were subsequently discovered in several families
of models [9–14]. Second, ETH-violating eigenstates can be
systematically embedded within an otherwise nonintegrable
model, as first illustrated in Ref. [15]. This formalism can
be used to explain the existence of scars in several models
[9,16–18]. The third category contains approximate quantum
scars that manifest in the dynamics of simple initial states, first
found in the PXP model [19–24]. A similar phenomenology
has also been found in a variety of models in one [25–34] and
higher [35–37] dimensions. Unlike the other two categories
of quantum scars, the towers of states in these models are
not exactly solvable, although some different eigenstates can
be analytically obtained in some cases [36–40]. However,
this latter situation is the only case in which the effect of
quantum scars has been experimentally observed—in a cold-
atom experiment [41].

In this work, we focus on the analytically tractable quan-
tum scars of the first category, i.e., equally spaced towers
of states. All the known examples of such towers exist in
hard-core bosonic spin models, which are hard to realize
naturally in experiments. It is thus highly desirable to look
for similar phenomena in more physically relevant electronic
systems. Equally spaced towers of states have been known
to occur in the celebrated Hubbard models since the seminal
work of Yang that introduced the mechanism of η-pairing
[42]. The existence of η-pairing and the related off-diagonal
long-range order (ODLRO) is attributed to the understanding
of pseudospin SU(2) symmetry of the Hubbard model [43,44].
There has since been a vast amount of literature studying the
existence and properties of η-pairing and its generalizations
to a wide range of models [45–54]. Despite this large body
of literature, the natural connection between the η-pairing
states and the infinite-temperature quantum dynamics of the
Hubbard models has not been extensively explored apart from
the one-dimensional case, where the Hubbard model is fully
integrable [55]. Notable exceptions include Ref. [56], which
computed the entanglement of some analytically tractable
eigenstates [44] of the D-dimensional Hubbard models, and
Ref. [57], where the effect of η-pairing on many-body lo-
calized Hubbard models was numerically explored. However,
the analytically tractable η-pairing states in the D-dimensional
Hubbard models [44] are not examples of quantum scars even
though some of them have low entanglement since it was
proven that they are the only eigenstates in their respective
quantum number sectors [56]. That is, they do not appear to
be mixed with ETH-satisfying states in the spectrum with the
same set of quantum numbers.

Given the similarity with quantum scars, it is natural to
explore the precise connection of these η-pairing towers of
states and quantum many-body scars. In particular, we ask
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if it is possible to deform the Hubbard model such that the
pseudospin (η) symmetry is broken (and hence most of the
η-pairing eigenstates would cease to be eigenstates) while
preserving a subset of the analytically tractable eigenstates of
the Hubbard model, which would then become examples of
quantum many-body scars. To do so, we first recast η-pairing
as a real-space phenomenon in contrast to the momentum-
space approach employed in most of the literature. This makes
clear the minimal conditions necessary for the existence of
η-pairing, and it unravels a large class of Hubbard models with
disorder and/or spin-orbit coupling that exhibit η-pairing.
We refer to this algebraic structure as a spectrum generating
algebra (SGA). We then introduce the concept of a restricted
spectrum generating algebra (RSGA), and we show that per-
turbations can be added to the Hubbard models that enable
some of the analytically tractable η-pairing towers of the
Hubbard models to survive as eigenstates of the perturbed
models. We show analytically that these states, which have a
low entanglement entropy [56], lie in the bulk of the spectrum
of their quantum number sectors, and thus form examples of
quantum many-body scars. We show that these RSGAs also
appear in existing models of quantum scars in the literature,
for example the AKLT model [7] and the spin-1 XY model
[9]. We note that related algebraic structures have appeared in
the literature in the past in the context of generalized Hubbard
models [48], and more recently in the context of unifying
formalisms for quantum scarred models [13,26].

This paper is organized as follows. In Sec. II we review the
Fermi-Hubbard model and the existence of a SGA, i.e., the η-
pairing states. In Sec. III, we illustrate the generalization of the
η-pairing states to Hubbard models on arbitrary graphs with
disorder in the hopping terms and with spin-orbit coupling.
We discuss some examples in Sec. IV. In Sec. V, we introduce
the concept of an RSGA, which captures the behavior of
several known quantum scarred models, and we introduce
perturbations to the (generalized) Hubbard models that realize
an RSGA. There, we analytically show that the tower of eigen-
states realized by the RSGA is quantum many-body scars
of the perturbed Hamiltonians by deriving the conditions for
which the states are in the bulk of the spectra of their quantum
number sectors. In Sec. VI, we comment on connections
between the RSGA formalism and quantum scarred models
in the literature. We conclude with a discussion of future
directions in Sec. VII.

II. REVIEW OF η-PAIRING IN THE HUBBARD MODEL

We review the construction of η-pairing states in the Fermi-
Hubbard model (which we also refer to as the “Hubbard
model”), first obtained in Refs. [42–44]. The Hubbard Hamil-
tonian is given by

HHub =
∑

σ∈{↑,↓}

⎡⎣−t
∑
〈r,r′〉

(c†
r,σ cr′,σ + H.c.) − μ

∑
r

c†
r,σ cr,σ

⎤⎦
+U

∑
r

n̂r,↑n̂r,↓, (1)

where n̂r,σ ≡ c†
r,σ cr,σ , {r} is the set of sites on an arbi-

trary graph (in D dimensions), and 〈r, r′〉 denotes nearest-

neighboring sites. On a D-dimensional hypercubic lattice
with periodic boundary conditions and even lengths in all
directions, the Hubbard model admits translation invariance,
charge and spin SU(2) symmetries, and lattice mirror symme-
tries. In that case, the Hubbard Hamiltonian can be written as

HHub =
∑

k

∑
σ∈{↑,↓}

Ekc†
k,σ

ck,σ + U
∑

r

n̂r,↑n̂r,↓, (2)

where

Ek ≡ −μ − 2t
D∑

i=1

cos ki, (3)

where ki is the momentum in the ith direction. For these
Hamiltonians, Refs. [42,43] showed that there exists an op-
erator η† defined as

η† ≡
∑

k

c†
k,↑c†

π−k,↓ =
∑

r

eiπ·rc†
r,↑c†

r,↓, (4)

where π ≡ (π, π, . . . , π ), which satisfies the relation

[HHub, η
†] = (U − 2μ)η†. (5)

In fact, for a system with L sites in each dimension, the η† and
η operators, along with

ηz ≡ 1

2
[η†, η] = 1

2

(∑
r,σ

n̂r,σ − LD

)
, (6)

constitute a full (pseudospin) SU(2) symmetry of the Hubbard
model [43]. That is,

[ηz, η
†] = η†, [ηz, η] = −η,

(7)
[HHub, ηz] = 0, [HHub, η

2] = 0,

where η2 is the total pseudospin operator

η2 ≡ 1
2 (η†η + ηη†) + (ηz )2. (8)

Equation (5) is said to be an example of a SGA [58,59],
when an operator satisfying1

[H, η†] = Eη† (9)

generates a series of equally spaced energy eigenstates. In-
deed, if |ψ0〉 is an eigenstate of H with energy E0, η†|ψ0〉
is also an eigenstate with energy E0 + E (see Appendix C).
Iterating this idea until (η†)N+1|ψ0〉 vanishes (which it does,
as η† increases the number of fermions by 2), we obtain an
equally spaced tower of states given by

{|ψ0〉, η†|ψ0〉, . . . , (η†)N |ψ0〉} (10)

1We note that the terms “spectrum generating algebra” and “dy-
namical symmetry” have been used to denote a variety of related
(but subtly distinct) concepts in the literature [60–63]. In this work,
we will only use SGA to refer to Eq. (9).
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with corresponding energies given by

{E0, E0 + E, E0 + 2E, . . . , E0 + NE}. (11)

In the case of the Hubbard model, E = (U − 2μ) [see
Eq. (5)].

Although Eq. (9) leads to the existence of a tower of
states starting from |ψ0〉, it does not imply that the expres-
sions of any of the eigenstates can be obtained analytically.
However, for the Hubbard Hamiltonian of Eq. (2) in any di-
mensions, several U -independent eigenstates can be obtained
analytically [43]. Note that the vacuum state |�〉 and the
spin-polarized eigenstates of the hopping operator are also
ferromagnetic eigenstates of the Hubbard Hamiltonian. As a
consequence of the spin SU(2) symmetry, multiplet eigen-
states can be obtained by applying spin raising and lowering
operators on these eigenstates. Further, several more eigen-
states are obtained applying the η† operator repeatedly on
those eigenstates, although not all of the resulting eigenstates
are independent [43].

III. η-PAIRING ON ARBITRARY GRAPHS

To unravel the most general necessary conditions for hav-
ing a spectrum generating algebra, we break several symme-
tries of the Hubbard Hamiltonian HHub. We consider much
more general Hubbard Hamiltonians with disorder and spin-
orbit coupling on arbitrary graphs. This forces us to obtain a
real-space understanding of η-pairing, unlike the momentum
space derivations used in most of the literature. We consider
the generalized Hubbard Hamiltonian

Hgen = −
∑
σ,σ ′

∑
〈r,r′〉

(
tσ,σ ′
r,r′ c†

r,σ cr′,σ ′ + tσ ′,σ
r′,r c†

r′,σ ′cr,σ
)︸ ︷︷ ︸

≡T̂ σ,σ ′
r,r′

−
∑
r,σ

μr,σ n̂r,σ +
∑

r

Ur̂nr,↑n̂r,↓, (12)

where σ, σ ′ denotes the spin, 〈r, r′〉 denote nearest-
neighboring sites r and r′ on the graph, {tσ,σ ′

r,r′ } are spin- and
position-dependent hopping strengths satisfying hermiticity
(tσ,σ ′

r,r′ = tσ ′,σ�
r′,r ), and {μr,σ } are spin-dependent real chemical

potentials. Note that since we are considering the Hamilto-
nian Eq. (12) on arbitrary graphs, we can without loss of
generality consider the hopping terms tσ,σ ′

r,r′ to be nonvanish-
ing on nearest-neighboring sites on the graph. Note that the
Hamiltonian of Eq. (12) breaks all the usual symmetries of
the original Hubbard model of Eq. (1) except the charge U(1)
symmetry. Despite breaking these symmetries, we find that
Hgen admits an SGA (and hence preserves the pseudospin “η”
symmetry) provided the hopping strengths {tσ,σ ′

r,r′ } and {μr,σ }
are appropriately chosen. We define the η† operator to be

η† ≡
∑

r

qrη
†
r ≡

∑
r

qrc
†
r,↑c†

r,↓, (13)

and we derive conditions on {qr} and {tσ,σ ′
r,r′ } such that the

Hamiltonian of Eq. (12) admits an SGA.

We first explicitly compute the following commutators of
η† with the on-site terms of the Hamiltonian:[∑

r,σ

μr,σ n̂r,σ , η†

]
=
∑

r

qrμr,σ [̂nr,σ , η†
r ]

=
∑

r

qr

(∑
σ

μr,σ

)
η†

r ,[∑
r,σ

Ur̂nr,↑n̂r,↓, η†

]
=
∑

r

qrUr [̂nr,↑n̂r,↓, η†
r ]

=
∑

r

qrUrη
†
r , (14)

where we have used Eq. (A4). Thus, by choosing on-site
chemical potentials and interactions that satisfy

Ur − μr,↑ − μr,↓ = E, (15)

we obtain[∑
r,σ

μr,σ n̂r,σ +
∑
r,σ

Ur̂nr,↑n̂r,↓, η†

]
= Eη†. (16)

Note that Eq. (15) allows for the addition of disordered on-site
magnetic fields; see Ref. [57] for an example of η-pairing in
such a setting. We only require that E does not depend on r.

We now move on to the hopping term in Eq. (12). In
Appendix B, we show the following [see Eq. (B2)]:[∑

σ,σ ′
T̂ σ,σ ′

r,r′ , qrη
†
r + qr′η

†
r′

]
= 0 (17)

provided {tσ,σ ′
r,r′ } and {qr} satisfy [see Eq. (B6)]

qrt
σ ′,σ
r′,r sσ + qr′t σ̄ ,σ̄ ′

r,r′ sσ ′ = 0 ∀σ, σ ′, ∀〈r, r′〉, (18)

where we have defined

sσ ≡
{+1 if σ =↑,

−1 if σ =↓,
σ̄ ≡

{↓ if σ =↑,

↑ if σ =↓ .
(19)

Using Eqs. (16) and (17), we obtain

[Hgen, η
†] = Eη†, (20)

illustrating the generality of η-pairing.

IV. EXAMPLES OF η-PAIRING

We now discuss a few examples of η-pairing with and
without spin-orbit coupling.

A. Without spin-orbit coupling

We first consider the case without spin-orbit coupling. That
is, we set

t↑,↓
r,r′ = t↓,↑

r,r′ = 0, ∀〈r, r′〉. (21)

Equation (18) reads

qrt
σ,σ
r′,r + qr′t σ̄ ,σ̄

r,r′ = 0, σ ∈ {↑,↓}, ∀〈r, r′〉, (22)
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leading to

qr

qr′
= − t↓,↓

r,r′

(t↑,↑
r,r′ )∗

= − t↑,↑
r,r′

(t↓,↓
r,r′ )∗

. (23)

Using Eq. (23), we obtain

|t↓↓
r,r′ | = |t↑,↑

r,r′ | ⇒ |qr|
|qr′ | = |t↓,↓

r,r′ |
|t↑,↑

r,r′ | = 1. (24)

Without loss of generality, as the norm of qr is site-
independent, we can set |qr| = 1 and choose

qr = eiφr , t↑,↑
r,r′ = tr,r′eiθ↑,↑

r,r′ , t↓,↓
r,r′ = tr,r′eiθ↓,↓

r,r′ , (25)

where tr,r′ is a positive real number, and

θ
↑,↑
r,r′ + θ

↓,↓
r,r′ + π = φr − φr′ . (26)

We now illustrate some examples of an SGA in a disor-
dered system. For a one-dimensional chain of length L, 1 �
r � L, the choice of hoppings

θ
↑,↑
r,r′ = θ

↓,↓
r,r′ = 0 (27)

corresponds to the usual Hubbard model of Eq. (1). Thus,
according to Eq. (26), we see that we can choose qr = eiπ·r
when L is even for periodic boundary conditions or any L for
open boundary conditions, recovering the standard η† operator
of Eq. (4). In fact, for bipartite graphs with sublattices A
and B, η† operators can be found for Hubbard models on by
choosing

qr =
{+1 if r ∈ A,

−1 if r ∈ B,
(28)

which has also been derived in Ref. [45].
To obtain η-pairing states on non-bipartite lattices, we

could choose qr = ±1, but we would necessarily have some
pairs of nearest-neighboring sites r and r′ such that φr = φr′ .
Equation (25) for such r and r′ can be satisfied by the choice

θ
↑,↑
r,r′ = θ

↓,↓
r,r′ = π

2
. (29)

For example, on a triangular lattice, for every triangle with
vertices denoted by r1, r2, r3 we could, for example, choose
φr1 = φr3 = 0 and φr2 = π . In such a case, we need to
choose, for example, tr1,r2 = tr2,r3 = +t and tr3,r1 = it to sat-
isfy Eq. (26), which corresponds to the addition of a π/2 flux
[53].

B. With spin-orbit coupling

We now explore the case when hopping terms with spin-
orbit coupling are added to the generalized Hubbard Hamil-
tonian of Eq. (12). In addition to Eq. (21), from Eq. (18) we
obtain

qrt
σ,σ̄
r′,r − qr′tσ,σ̄

r,r′ = 0, σ ∈ {↑,↓}, ∀〈r, r′〉, (30)

enforcing that

qr

qr′
= t↑,↓

r,r′

(t↓,↑
r,r′ )∗

= t↓,↑
r,r′

(t↑,↓
r,r′ )∗

⇒ |t↑,↓
r,r′ | = |t↓,↑

r,r′ |. (31)

Thus, in addition to Eq. (25) we can choose

t↑,↓
r,r′ = t̃r,r′eiθ↑,↓

r,r′ , t↓,↑
r,r′ = t̃r,r′eiθ↓,↑

r,r′ , (32)

where t̃r,r′ is a positive real number such that

θ
↑,↓
r,r′ + θ

↓,↑
r,r′ = φr − φr′ . (33)

Using Eqs. (26), (27), and (33), we obtain that η-pairing of
the Hubbard model on a bipartite graph is preserved under
the addition of nearest-neighbor hopping terms with spin-orbit
coupling that satisfy

θ
↑,↓
r,r′ + θ

↓,↑
r,r′ = ±π ⇒ t↑,↓

r,r′ = −t↓,↑
r,r′ , (34)

where we have used Eqs. (26), (27), and (33). We can indeed
verify that in this limit, we recover the conditions derived for
η-pairing in translation-invariant spin-orbit coupled Hubbard
models in Ref. [54].

V. QUANTUM MANY-BODY SCARS
FROM THE HUBBARD MODEL

As we showed in the previous sections, the existence of an
SGA in the generalized Hubbard models gives rise to several
towers of η-pairing states. We now ask if perturbations can
be added to those models that preserve some but not all of
the towers generated by η-pairing. We introduce the concept
of a RSGA, a restriction of the SGA discussed in Sec. II,
and we illustrate perturbations that realize those conditions.
These perturbed Hamiltonians hence preserve some towers
generated by η-pairing, and we argue that the resulting towers
of eigenstates become quantum many-body scars in the per-
turbed Hamiltonians. We note that everything we derive here
will apply to both the original Hubbard model of Eq. (2) and
the generalized Hubbard models of Eq. (12), but we focus on
the latter for the sake of generality.

A. RSGA of order 1

A Hamiltonian H is said to exhibit a restricted spectrum
generating algebra of order 1 (RSGA-1) if there exists a state
|ψ0〉 and an operator η† such that η†|ψ0〉 �= 0 that satisfy

(i) H |ψ0〉 = E0|ψ0〉,
(ii) [H, η†]|ψ0〉 = Eη†|ψ0〉,
(iii) [[H, η†], η†] = 0. (35)

As we show in Lemma C.2 in Appendix C, the conditions
of Eq. (35) lead to the existence of an equally spaced tower
of states {(η†)n|ψ0〉} starting from |ψ0〉. We illustrate this
concept by choosing |ψ0〉 = |�〉, the empty vacuum state, and
as a perturbation of the Hamiltonian Hgen, the electrostatic
interaction of the form

Î2 ≡
∑
σ,σ ′

∑
〈〈r,r′〉〉

V σ,σ ′
r,r′ n̂r,σ n̂r′,σ ′ , (36)

where 〈〈r, r′〉〉 runs over some or all pairs of sites on the graph.
Note that this sum can be restricted to only nearest-neighbor
sites for a more physical choice of interaction. Since |�〉 is an
eigenstate of the Hubbard Hamiltonian Hgen and Î2, we obtain

(Hgen + Î2)|�〉 = 0, (37)
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satisfying condition (i) of RSGA-1 with E0 = 0. Further,
using the commutation relation in Eq. (A4),

[̂nr,σ , η†
r ] = η†

r , (38)

we deduce for r �= r′ that

[̂nr,σ n̂r′,σ ′ , qrη
†
r + qr′η

†
r′] = qrη

†
r n̂r′,σ ′ + qr′ n̂r,σ η

†
r′ . (39)

Using Eq. (39), we note that

[̂nr,σ n̂r′,σ ′ , η†]|�〉 = [̂nr,σ n̂r′,σ ′ , qrη
†
r + qr′η

†
r′]|�〉 = 0 (40)

due to the r and r′ occupations of the vacuum state. As a
consequence, we obtain [̂I2, η

†]|�〉 = 0 and [Hgen + Î2, η
†] =

Eη†, satisfying condition (ii) of RSGA-1. Further, we note that
using Eqs. (38) and (39), we obtain

[[̂nr,σ n̂r′,σ ′ , qrη
†
r + qr′η

†
r′ ], qrη

†
r + qr′η

†
r′ ] = 2qrqr′η†

r η
†
r′ . (41)

Thus, we obtain

[[̂I2, η
†], η†] = 2

∑
〈〈r,r′〉〉

(∑
σ,σ ′

V σ,σ ′
r,r′

)
qrqr′η†

r η
†
r′ . (42)

Setting ∑
σ,σ ′

V σ,σ ′
r,r′ = 0, (43)

and using Eqs. (42) and (20), we obtain

[[Hgen + Î2, η
†], η†] = 0, (44)

satisfying condition (iii) of RSGA-1. Thus, as a consequence
of Lemma C.2, the Hamiltonian (Hgen + Î2) exhibits the tower
{(η†)n|�〉} as eigenstates, although other η-pairing towers
(starting from other states than the vacuum state) of the Hub-
bard Hamiltonian might not be preserved. A simple physical
interaction that satisfies Eq. (43) is the nearest-neighbor Sz-Sz

interaction.

B. RSGA of order M

We now study perturbations to the Hubbard model that
do not satisfy the conditions of RSGA-1 but still preserve a
tower of states. The concept of RSGA-1 can be generalized
straightforwardly as follows. We define a set of states {|ψn〉}
as

|ψn〉 ≡ (η†)n|ψ0〉. (45)

We define a set of operators {Hn} as

H0 ≡ H, Hn+1 ≡ [Hn, η
†], ∀n � 0. (46)

A Hamiltonian H is said to exhibit a restricted spectrum
generating algebra of order M (RSGA-M) if there exists a
state |ψ0〉 and an operator η† such that |ψn〉 �= 0 for n � M
that satisfy

(i) H |ψ0〉 = E0|ψ0〉,
(ii) H1|ψ0〉 = Eη†|ψ0〉,
(iii) Hn|ψ0〉 = 0 ∀ n, 2 � n � M, (47)

(iv) Hn

{�= 0 if n � M,

= 0 if n = M + 1,

where condition (iii) of RSGA-1 of Eq. (35) has been modi-
fied. As we show in Lemma C.3 in Appendix C, the conditions
of Eq. (47) are equivalent to the existence of an equally
spaced tower of states {(η†)n|ψ0〉} starting from |ψ0〉. Note
that conditions (i)–(iii) of RSGA-M lead to the existence of
exact eigenstates {|ψ0〉, η†|ψ0〉, . . . , (η†)M |ψ0〉} with energies
{E0, E0 + E, . . . , E0 + ME}. If we do not add condition (iv),
then these are all the guaranteed eigenstates, for a given M.
Condition (iv) ensures that (η†)n|ψ0〉 is also an eigenstate of
H for any n as long as it does not vanish.

We now explicitly construct a perturbation to the general-
ized Hubbard model Hgen that admits an RSGA of order M.
Consider the (M + 1)-body density interaction term

ÎM+1 ≡
∑
{r j}

V
{σ j}
{r j}

M+1∏
j=1

n̂r j ,σ j , (48)

where {r j} represent a (chosen) set of (M + 1) distinct sites
and {σ j} a set of (M + 1) spins. On the vacuum state |�〉, we
obtain

(Hgen + ÎM+1)|�〉 = 0, (49)

satisfying condition (i) of RSGA-M with E0 = 0. Using
Eq. (38), we obtain⎡⎣M+1∏

j=1

n̂r j ,σ j , η
†

⎤⎦ =
M+1∑
k=1

qrk η
†
rk

M+1∏
j=1, j �=k̂

nr j ,σ j , (50)

and thus [̂IM+1, η
†]|�〉 = 0. Using Eq. (20) we further obtain

[Hgen + ÎM+1, η
†]|�〉 = Eη†|�〉, satisfying condition (ii) of

RSGA-M. Similarly, we can compute subsequent commuta-
tors with η†. Since according to Eq. (38) each commutator
replaces an n̂r,σ by η†

r , applying fewer than (M + 1) commu-
tators, we obtain⎡⎣⎡⎣M+1∏

j=1

n̂r j ,σ j , η
†

⎤⎦, η†

⎤⎦ · · ·
]

· · ·
]]

︸ ︷︷ ︸
n times

�= 0 ∀ n, 2 � n � M.

(51)

Furthermore, since the commutator applied less than (M +
1) times necessarily consists of at least one number operators
n̂r,σ in each term, it vanishes on the vacuum state |�〉, i.e.,⎡⎣⎡⎣M+1∏

j=1

n̂r j ,σ j , η
†

⎤⎦, η†

⎤⎦ · · ·
]

· · ·
]]

︸ ︷︷ ︸
n times

|�〉=0 ∀ n, 2 � n � M.

(52)

The interaction ÎM+1 of Eq. (48) along with Eq. (20) thus
satisfies conditions (iii) of Eq. (47) with |ψ0〉 = |�〉. Applying
the commutator (M + 1) times, we obtain⎡⎣⎡⎣M+1∏

j=1

n̂r j ,σ j , η
†

⎤⎦, η†

⎤⎦ · · ·
]

· · ·
]]

︸ ︷︷ ︸
M+1 times

=
M+1∏
j=1

η†
r j
. (53)
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Using Eqs. (48) and (53), we obtain

[[
ÎM+1, η

†
]
, η†

] · · ·
]

· · ·
]]

︸ ︷︷ ︸
M+1 times

=
⎛⎝ ∑

{r j},{σ j}
V

{σ j}
{r j}

⎞⎠ M∏
j=1

η†
r j
. (54)

Condition (iv) of Eq. (47) can be satisfied if∑
{r j},{σ j}

V
{σ j}
{r j} = 0, (55)

and the Hamiltonian (Hgen + ÎM+1) exhibits an RSGA of order
M. Note that while these perturbations preserve the same
tower of states {(η†)n|�〉} as the perturbations illustrated in
Sec. V A, the algebra is different; this allows us to obtain many
different terms that can be added to the Hamiltonian in order
to maintain this tower of states.

C. Connections to quantum scars

We now prove that the towers {(η†)n|�〉} in the Hamilto-
nians (HHub + ÎM+1) discussed as examples in Secs. V A and
V B are the quantum many-body scars for appropriate values
of the Hamiltonian parameters, when it is nonintegrable and
expected to satisfy ETH. Physically, the states of the tower
are composed of doubly occupied quasiparticles “doublons”
dispersing on top of the vacuum state |�〉. The energy of a
doublon is (U − 2μ) under the Hubbard Hamiltonian, hence
the state (η†)n|�〉 has an energy n(U − 2μ), spin Sz = 0,
and charge Q = 2n. The highest state of the tower consists
of all the sites being filled with doublons. As expected for
quasiparticles on top of a low entanglement state [8,9], and as
rigorously computed in Ref. [56], the entanglement entropy S
of the state (η†)n|�〉 scales as the logarithm of the subsystem
volume (S ∼ logV ), in contrast to the volume-law (S ∼ V )
predicted by ETH [4].

By estimating the energies of the states in the sector with
spin Sz = 0 and charge Q = 2n, we now show that some
states of the tower {(η†)n|�〉} can be in the bulk of the
spectrum of their quantum number sectors. Note that, unlike
in Ref. [56], we have now lost the η-pairing symmetry, and
hence the theorem proven in Ref. [56], that the η-pairing
states are the only ones in their quantum number sectors,
does not apply. For example, consider the Hubbard model
HHub of Eq. (1) in one dimension with an even system size L.
Noninteracting ferromagnetic eigenstates with charge Q = 2n
can be constructed by occupying the single-particle spectrum
of the quadratic part of the Hamiltonian HHub with 2n ↑ spins.
These eigenstates have spin quantum numbers Sz = n, and
the lowest and highest energies E− and E+ of such states are
given by

E± = −2nμ ± 2t
n−1∑
j=−n

cos

(
2π j

L

)

= −2nμ ± 2t cot
(π

L

)
sin

(
2nπ

L

)
. (56)

As a consequence of the spin-SU(2) symmetry of HHub,
eigenstates with the same energies but with spin Sz = 0 can
be constructed by applying the spin lowering operator on

these noninteracting ferromagnetic eigenstates. By adding a
perturbation ÎM+1 that breaks spin-flip symmetry and trans-
lation invariance to HHub, we break the integrability of the
one-dimensional Hubbard model2 and all the symmetries of
HHub except spin Sz and charge U (1). For a small perturbation
strength, we expect the lowest and highest energy eigenstates
of the Sz = 0 and Q = 2n sector to still be upper and lower
bounded by (approximately) E− and E+, respectively. Thus,
we expect the state (η†)n|�〉 to be certainly in the bulk of the
spectrum of its own quantum number sector Sz = 0, Q = 2n
if E− < n(U − 2μ) < E+, or

−2t

n
cot

(
2π

L

)
sin

(
2nπ

L

)
<U <

2t

n
cot

(
2π

L

)
sin

(
2nπ

L

)
,

(57)

which can always be satisfied by an appropriate choice of U
and t . For a finite density of doublons in the thermodynamic
limit (n/L = ρ and n, L → ∞), using Eq. (57) we obtain

− sin (2πρ)

πρ
<

U

t
<

sin (2πρ)

πρ
. (58)

We could also add small spin-orbit coupling and disorder to
HHub to obtain Hgen. This breaks the spin U(1) symmetry,
which combines the quantum number sectors of various Sz’s
with the same Q. The estimate of Eq. (58) is thus a condition
under which some states of the tower {(η†)n|�〉} are quantum
many-body scars of the Hamiltonian (Hgen + ÎM+1). While
we have broken translation invariance here, in Appendix D
we show that these scars are in the bulk of the spectrum
as long as Eq. (58) is satisfied, even when translation, in-
version, and spin-flip symmetries are not broken. Further,
in Appendix E, we obtain similar conditions for the towers
of states in D-dimensional models to lie in the bulk of the
spectrum.

VI. RSGA AND QUANTUM SCARRED MODELS

Exact towers of states as discussed in Sec. V are also
found in several models of exact quantum many-body scars
[7–11,13,14]. In this section, we briefly comment on the
connections between the RSGA formalism introduced here
and quantum scarred models in the literature, and in particular
the unified formalism introduced in Ref. [13]. The theorem
of Eq. (1) in Ref. [13] states that given an eigenstate |ψ0〉 of
Hamiltonian H with energy E0, and a subspace W such that
|ψ0〉 ∈ W , a tower of equally spaced states {(η†)n|ψ0〉} with
energies {E0 + nE} is guaranteed if for any |ψ〉 ∈ W

(i) [H, η†]|ψ〉 = Eη†|ψ〉, (ii) η†|ψ〉 ∈ W. (59)

Since the RSGAs guarantee the existence of a tower of states
{(η†)n|ψ0〉}, they satisfy the conditions of Eq. (59) by choos-
ing the subspace W = span{|ψ0〉, η†|ψ0〉, . . . , (η†)N |ψ0〉},
and they are captured by the formalism of Ref. [13]. However,
since we can obtain RSGAs of any order, they provide a

2We have numerically checked that the Hamiltonians (HHub + Î2)
with nearest-neighbor electrostatic interactions exhibit level repul-
sion and GOE level statistics for generic values of couplings {V σ,σ ′

r,r′ },
even if they satisfy Eq. (43).
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finer classification of quantum scarred models. We illustrate
this connection by focusing on two examples: (i) the spin-1
XY model family studied in Ref. [9], which we find admits
RSGAs of order M = 1, and (ii) the families of spin-1 scarred
Hamiltonians (including the AKLT Hamiltonian) studied in
Refs. [7,13,14], which we find admit RSGAs of order M =
2. For pedagogical purposes, we now detail the former and
provide a similar derivation for the latter in Appendix F.

The spin-1 XY Hamiltonian family on a D-dimensional
hypercubic lattice with size L in each dimension is given by

H (x) = J
∑
〈r,r′〉

(
Sx

r Sx
r′ + Sy

r Sy
r′
)

︸ ︷︷ ︸
HXY

+ h
∑

r

Sz
r︸ ︷︷ ︸

Hz

+ D
∑

r

(
Sz

r

)2

︸ ︷︷ ︸
Hz2

. (60)

Throughout this section, we label the spin-1 degrees of
freedom by {+, 0,−}. As discussed in Ref. [9], the spin-1
XY Hamiltonian has a tower of states starting from a spin-
polarized root eigenstate |�〉 ≡ | − − · · · − −〉:

H (x)(P (x) )n|�〉 = [h(2n − LD) + DLD](P (x) )n|�〉 (61)

for 0 � n � LD and

P (x) ≡
∑

r

eiπ ·r(S+
r )2. (62)

Reference [13] showed that

[Hz,P (x)] = 2hP (x), [Hz2 ,P (x)] = 0,
(63)

[HXY ,P (x)] = 4J
∑
〈r,r′〉

eiπ·rĥr,r′ ,

where ĥr,r′ reads

ĥr,r′ = |0 +〉〈− 0| − | + 0〉〈0 − |. (64)

We can thus decompose H (x) as

H (x) = Hz2 + Hz︸ ︷︷ ︸
H (x)

SGA

+ HXY︸︷︷︸
V̂ (x)

, (65)

where H (x)
SGA admits an exact SGA, i.e.,[

H (x)
SGA,P (x)] = E (x)P (x), E (x) = 2h. (66)

We thus obtain

[H (x),P (x)] = 2hP (x) + 4J
∑
〈r,r′〉

eiπ·rĥr,r′ . (67)

Noting that ĥr,r′ |�〉 = 0, we obtain

[H (x),P (x)]|�〉 = 2hP (x)|�〉. (68)

Further, using Eqs. (67) and (64), we obtain

[[H (x),P (x)],P (x)] = 4J
∑
〈r,r′〉

[̂hr,r′ , (S+
r )2 − (S+

r′ )2] = 0. (69)

Using Eqs. (61), (68), and (69), we obtain that the family of
Hamiltonians of Eq. (61) admits an RSGA of order M = 1
(see Lemma C.2 in Appendix C) with |ψ0〉 = |�〉, E0 = (D −
h)LD, E = 2h, η† = P (x).

VII. CONCLUSIONS

In this article, we have shown how quantum many-body
scars based on η-pairing states can appear in generalized
and perturbed fermionic Hubbard models. We have explored
the η-pairing states in the Hubbard model and generalized
in two directions. First, casting η-pairing as a real-space
phenomenon, we find a highly general Hubbard Hamiltonian
potentially with disorder and spin-orbit coupling that exhibits
a spectrum generating algebra (SGA). Second, we introduce
the concept of a restricted SGA (RSGA), and we use it to find
various perturbations to the (generalized) Hubbard models
that preserve the η-pairing tower starting from the vacuum
state. The states of this tower have a subthermal entanglement
entropy, and we analytically obtain conditions for the states of
this tower to lie in the bulk of the spectrum of their quantum
number sector, showing that they are examples of quantum
many-body scars. We further connected RSGAs to some
models of exactly solvable quantum scars in the literature,
particularly the first two examples of towers of quantum
scars in the AKLT model [7] and the spin-1 XY model
[9]. The scars there can thus be explained by the existence
of RSGAs obtained by perturbing Hamiltonians with exact
SGAs.

There are many natural extensions to this work. It is impor-
tant to understand the connection of RSGAs with models of
quantum scars that exhibit multisite quasiparticles [10,11,14],
including Hubbard models with generalized η-pairing [56],
where the discussions in this work do not seem to generalize
easily. Further, the RSGAs described here closely resemble
algebraic structures introduced in earlier works both in the
context of ground states [64,65] as well as quantum scars
[13,26], and it is highly desirable to better understand the
connections between them, and also connections to the em-
bedding construction in Ref. [39]. Appropriate generalizations
of RSGAs might also provide a way to construct closed
solvable subspaces that are not necessarily equally spaced
towers of states, akin to the closed Krylov subspaces found
in several constrained systems [66–69]. On a different note,
given that the SGAs and RSGAs survive in the presence of
disorder, it would be interesting to understand the existence
and implications of these towers of states in the many-body
localized regime in Hubbard models [70–74]. Beyond Hamil-
tonian systems, it would be interesting to explore η-pairing in
Floquet [75] and open quantum systems [76,77], and to obtain
RSGA-like algebraic structures to construct models of Floquet
quantum many-body scars [78–83].

Note added: A related work by Mark and Motrunich [84]
appeared in the same arXiv posting.
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APPENDIX A: USEFUL IDENTITIES

In this Appendix, we provide some useful operator iden-
tities that we use in this article. We denote spinful fermionic
creation and annihilation operators by {c†

r,σ } and {cr,σ }, where
r denotes the site index and σ the spin index. These obey the
algebra

{cr,σ , cr′,σ ′ } = {c†
r,σ , c†

r′,σ ′ } = 0,
(A1){cr,σ , c†

r′,σ ′ } = δr,r′δσ,σ ′ .

Further, defining the operators

n̂r,σ ≡ c†
r,σ cr,σ , η†

r ≡ c†
r,↑c†

r,↓, ηr ≡ −cr,↑cr,↓ (A2)

we directly obtain the useful relations

[c†
r,σ , n̂r′,σ ′] = −δr,r′δσ,σ ′c†

r,σ ,

[cr,σ , n̂r′,σ ′] = δr,r′δσ,σ ′cr,σ . (A3)

We also obtain

[̂nr,σ , η
†
r′] = δr,r′η†

r ,

[̂nr,↑n̂r,↓, η
†
r′] = δr,r′η†

r , (A4)

[η†
r′ , η

†
r ] = 0,

[ηr′ , η†
r ] = δr,r′ (1 − n̂r,↑ − n̂r,↓). (A5)

Using Eq. (A3), we also obtain

[c†
r′,σ ′cr,σ , η†

r ] = −sσ c†
r,σ̄ c†

r′,σ ′ , (A6)

where we have defined

sσ =
{+1 if σ =↑,

−1 if σ =↓,
σ̄ =

{↓ if σ =↑,

↑ if σ =↓ .
(A7)

APPENDIX B: η-PAIRING WITH DISORDER
AND SPIN-ORBIT COUPLING

Here we derive the conditions for the η operator of Eq. (13)
to commute with a generic one-body hopping operator of the
form

T̂ σ,σ ′
r,r′ = (

tσ,σ ′
r,r′ c†

r,σ cr′,σ ′ + tσ ′,σ
r′,r c†

r′,σ ′cr,σ
)
. (B1)

Our aim is to determine a set of conditions on {qr}, {tσ,σ ′
r,r′ }

such that[∑
σ,σ ′

T̂ σ,σ ′
r,r′ , η†

]
=
[∑

σ,σ ′
T̂ σ,σ ′

r,r′ , qrη
†
r + qr′η

†
r′

]
= 0. (B2)

We first compute [T̂ σ,σ ′
r,r′ , qrη

†
r ]:[

T̂ σ,σ ′
r,r′ , qrη

†
r

] = [
tσ,σ ′
r,r′ c†

r,σ cr′,σ ′ + tσ ′,σ
r′,r c†

r′,σ ′cr,σ , qrc
†
r,↑c†

r,↓
]

= [
tσ ′,σ
r′,r c†

r′,σ ′cr,σ , qrc
†
r,↑c†

r,↓
]

= −qrt
σ ′,σ
r′,r sσ c†

r,σ̄ c†
r′,σ ′ , (B3)

where we have used Eqs. (A1) and (A6). Similarly, we also
obtain[

T̂ σ,σ ′
r,r′ , qr′η

†
r′
] = [

tσ,σ ′
r,r′ c†

r,σ cr′,σ ′ + tσ ′,σ
r′,r c†

r′,σ ′cr,σ , qr′c†
r′,↑c†

r′,↓
]

= [
tσ,σ ′
r,r′ c†

r,σ cr′,σ ′ , qr′c†
r′,↑c†

r′,↓
]

= −qr′tσ,σ ′
r,r′ sσ ′c†

r′,σ̄ ′c
†
r,σ . (B4)

Using Eqs. (B2)–(B4), we obtain[∑
σ,σ ′

T̂ σ,σ ′
r,r′ , η†

]
= −

∑
σ,σ ′

(
qrt

σ ′,σ
r′,r sσ − qr′t σ̄ ,σ̄ ′

r,r′ sσ̄ ′
)
c†

r,σ̄ c†
r′,σ ′

= −
∑
σ,σ ′

(
qrt

σ ′,σ
r′,r sσ + qr′t σ̄ ,σ̄ ′

r,r′ sσ ′
)
c†

r,σ̄ c†
r′,σ ′ ,

(B5)

where we have used Eq. (A1) and sσ̄ ′ = −sσ ′ . Equation (B2)
is thus satisfied by setting

qrt
σ ′,σ
r′,r sσ + qr′t σ̄ ,σ̄ ′

r,r′ sσ ′ = 0 ∀σ, σ ′. (B6)

APPENDIX C: TOWER OF STATES FROM (RESTRICTED)
SPECTRUM GENERATING ALGEBRAS

Here we show that the (restricted) spectrum generating
algebras lead to the existence of a tower of exact eigenstates
of the Hamiltonian. We work with a Hamiltonian H and
“root eigenstate” |ψ0〉 from which the tower is generated by
the application of η† operator, and we use the definition of
Eqs. (45) and (46). We define a set of states {|ψn〉} as

|ψn〉 ≡ (η†)n|ψ0〉, (C1)

and a set of operators {Hn} as

H0 ≡ H, Hn+1 ≡ [Hn, η
†], ∀n � 0. (C2)

Lemma C.1. If the Hamiltonian H and operator η† satisfy
the conditions

(i) H |ψ0〉 = E0|ψ0〉,
(ii) [H, η†] = Eη†,
then

H |ψn〉 = (E0 + nE )|ψn〉 or |ψn〉 = 0. (C3)

Proof. The proof proceeds straightforwardly via induction.
Assuming |ψm〉 satisfies Eq. (C3), we show that |ψm+1〉 satis-
fies Eq. (C3) provided it does not vanish. Using condition (ii),
we obtain

[H, η†]|ψm〉 = E |ψm〉 ⇒ (Hη† − η†H )|ψm〉 = E |ψm〉
⇒ Hη†|ψm〉 = (E0 + mE + E )η†|ψm〉. (C4)

Thus, either |ψm+1〉 = 0 or H |ψm+1〉 = [E0 + (m +
1)E]|ψm+1〉. Since Eq. (C3) is satisfied for m = 0 [due
to condition (i)], this concludes the proof.

Lemma C.2. If the Hamiltonian H , operator η†, and state
|ψ0〉, such that η†|ψ0〉 �= 0, satisfy the conditions

(i) H |ψ0〉 = E0|ψ0〉,
(ii) [H, η†]|ψ0〉 = Eη†|ψ0〉 (i.e., H1|ψ0〉 = E |ψ1〉),
(iii) [[H, η†], η†] = 0 (i.e., H2 = 0),
then

H |ψn〉 = (E0 + nE )|ψn〉 or |ψn〉 = 0. (C5)
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Proof. The proof proceeds by induction on two levels. We
first wish to show

H1|ψn〉 = E |ψn+1〉. (C6)

For the purposes of induction, we assume that Eq. (C6) is valid
for |ψm〉. Using condition (iii) we obtain

H2|ψm〉 = [H1, η
†]|ψm〉 = 0 ⇒ (H1η

† − η†H1)|ψm〉 = 0

⇒ H1|ψm+1〉 = E |ψm+2〉. (C7)

Since Eq. (C6) is satisfied for m = 0 [due to condition (ii)],
this concludes the proof of Eq. (C6).

Using Eq. (C6), we show Eq. (C5) by induction again.
Assuming Eq. (C5) holds for |ψm〉, using Eq. (C4) we can
show that |ψm+1〉 also satisfies it. Since |ψ0〉 satisfies Eq. (C5)
[due to condition (i)], this concludes the proof.

Lemma C.3. If the Hamiltonian H , operator η†, and state
|ψ0〉 such that (η†)n|ψ0〉 �= 0 for n � M satisfy the conditions

(i) H |ψ0〉 = E0|ψ0〉,
(ii) H1|ψ0〉 = E |ψ1〉,
(iii) Hn|ψ0〉 = 0 ∀n, 2 � n � M,
(iv) HM+1 = 0 (i.e., [HM, η†] = 0),
then

H |ψn〉 = (E0 + nE )|ψn〉 or |ψn〉 = 0. (C8)

Proof. We start with conditions (iii) and (iv) and note
that they satisfy the conditions (i) and (ii) of Lemma C.1
with the replacements H → HM , E0 → 0, and E → 0. Using
Eq. (C3), we arrive at

HM |ψn〉 = 0 = [HM−1, η
†]|ψn〉 ∀ n. (C9)

Further, using Eq. (C4) along with condition (i) of Lemma
C.1 with the replacements H → HM−1, E0 → 0, E → 0, as a
consequence of Eq. (C9) we obtain

HM−1|ψn〉 = 0 = [HM−2, η
†]|ψn〉 ∀ n, (C10)

which is the same as Eq. (C9) with the replacements HM →
HM−1 and HM−1 → HM . Repeating the steps from Eq. (C9) to
Eq. (C10) successively replacing Hn → Hn−1 at each step, we
finally arrive at

H2|ψn〉 = 0 = [H1, η
†]|ψn〉 ∀ n. (C11)

The proof of Eq. (C8) can then be completed following the
same steps as the proof of Lemma C.2.

APPENDIX D: QUANTUM SCARS WITH
TRANSLATION INVARIANCE

Here we show that the states of the tower {(η†)n|�〉} lie
in the bulk of the spectrum of the Hamiltonian (HHub + ÎM+1)
even if translation, inversion, spin-flip, and Sz symmetries are
preserved. We start with the one-dimensional Hubbard model
of even length L with periodic boundary conditions, and we
add to it a small perturbation ÎM+1 that breaks the integrability
of spin SU(2) symmetry and HHub, but preserves the spin-flip
and translation symmetries. We have numerically verified that
such an ÎM+1 can be found for generic choices of parameters
{V {σ j}

{r j} } that satisfy Eq. (55). The states (η†)n|�〉 for even
n have the following quantum numbers: momentum k = 0,

charge Q = 2n, spin Sz = 0, inversion I = +1 (for inversion
about a site), spin-flip Pz = +1.

To determine whether these η-pairing states lie in the bulk
of the energy spectrum within their quantum number sectors,
we can consider the noninteracting ferromagnetic eigenstates
since their energies can be analytically obtained. Noninteract-
ing ferromagnetic eigenstates with charge Q = 2n and k = 0
can be constructed by occupying the single-particle spectrum
of the quadratic part of the Hamiltonian HHub with 2n ↑ spins
such that the total momentum adds up to 0. Such states with
inversion quantum number I = +1 can be constructed by
having an even number of pairs of occupied single-particle
levels with momenta k and −k, which can be realized when
n is even. As a consequence of the spin SU(2) symmetry of
HHub, states with Sz = 0 can be obtained by applying the spin
lowering operator on these ferromagnetic states. The Sz = 0
states thus obtained are also guaranteed to have spin-flip
quantum number Pz = +1 since they are part of the ferromag-
netic multiplet, and the inversion quantum number remains
unchanged by spin lowering. The lowest energy ferromagnetic
state with these quantum number constraints is constructed
by occupying the lowest 2n single-particle eigenstates except
the k = 0 level by ↑ spins. Similarly, the highest energy
ferromagnetic state with these quantum number constraints is
built by occupying the highest 2n single-particle eigenstates
except the k = π level by ↑ spins. Their energies thus read

E± = −2nμ ∓ 2t

⎡⎣⎛⎝ n∑
j=−n

cos

(
2π j

L

)⎞⎠ − 1

⎤⎦
= −2nμ ∓ 2t

[
csc

(
2π

L

)
sin

(
(2n + 1)π

L

)
− 1

]
. (D1)

Similar to the case with disorder discussed in Sec. V C, for
small perturbations ÎM+1, we can use these noninteracting
states to estimate the energies of the lowest and highest
excited state restricted to a given quantum number sector. The
state (η†)n|�〉, the eigenstate with n doublons with energy
n(U − 2μ), certainly lies in the bulk of the spectrum of its
own quantum number sector if E− < n(U − 2μ) < E+, or

−2t

n

[
csc

(
2π

L

)
sin

(
(2n + 1)π

L

)
− 1

]
< U

<
2t

n

[
csc

(
2π

L

)
sin

(
(2n + 1)π

L

)
− 1

]
. (D2)

For a finite density of doublons in the thermodynamic
limit (n/L = ρ, while n, L → ∞), we recover the bound of
Eq. (58).

APPENDIX E: QUANTUM SCARS IN D DIMENSIONS

In this Appendix, we obtain the conditions for which the
states of the tower {(η†)n|�〉} are in the bulk of the spectrum of
the Hamiltonian (HHub + ÎM+1) in D-dimensions. Consider a
system of L × L × · · · × L sites in D dimensions, and the state
(η†)n|�〉 consisting of n doublons. To obtain the conditions
for (η†)n|�〉 to lie in the bulk of the spectrum for a small
perturbation ÎM+1, it is sufficient to obtain the energies E−
and E+ of the lowest and highest ferromagnetic noninteracting
eigenstates with charge Q = 2n, as discussed in Sec. V C. To
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do so, we directly work in the continuum limit in momentum
space and with a finite density of doublons, i.e.,

ρ ≡ n

LD
. (E1)

The single-particle density of states f (k) reads

f (k) =
(

L

2π

)D

,

∫
dDk f (k) = LD. (E2)

Assuming a spherical Fermi surface, the Fermi momentum
kF by filling the lowest 2n single-particle levels satisfies the
relation∫

|k|<kF

dDk f (k) =
(

L

2π

)D
π

D
2 kD

F

�
(

D
2 + 1

) = 2n, (E3)

where we have used the expression for the volume of a
D-dimensional sphere. We thus obtain

kF = 2
√

π

L

[
2n �

(
D

2
+ 1

)] 1
D

= 2
√

π

[
2ρ �

(
D

2
+ 1

)] 1
D

. (E4)

Note that the spherical approximation of the Fermi surface
in Eq. (E3) breaks down for sufficiently large n when the
Fermi surface is close to the edges of the Brillouin zone,
i.e., when the Fermi momentum kF obtained using Eq. (E4)
is comparable to π . Thus, the calculations in this section are
strictly valid only when kF � π , or when the doublon density
ρ satisfies

ρ � π
D
2

2D+1�
(

D
2 + 1

) . (E5)

However, we expect that similar arguments work for the larger
densities as well. Since the dispersion relation of the quadratic
part of the D-dimensional Hubbard models is given by Eq. (3),
the energy of the states obtained by filling all single-particle
momentum levels with |k| < kF is given by

E− = −2nμ − 2tD
∫

|k|<kF

dDk f (k) cos (ki )

= −2nμ − 2tD

(
L

2π

)D ∫
|k|<kF

dDk cos (ki )︸ ︷︷ ︸
≡ID (kF )

, (E6)

where ki is the component of k along any axis. Evaluating the
integral ID(kF ) in D-dimensional spherical coordinates, we
obtain

ID(kF ) = (2πkF )
D
2 J D

2
(kF ), (E7)

where Jα (x) is the αth-order Bessel function of the first kind.
Note that Jα (x) for α ∈ Z + 1

2 can be expressed in terms of
trigonometric functions. Thus, for D = 1, for example, we
obtain

I1(kF ) = 2 sin(kF ). (E8)

For the highest energy state, similar to Eq. (E6), we obtain

E+ = −2nμ + 2tD

(
L

2π

)D

ID(kF ). (E9)

The state (η†)n|�〉 with n doublons is thus guaranteed to be in
the bulk of the spectrum if E− < n(U − 2μ) < E+, or

− 2D

(2π )D

ID(kF )

ρ
<

U

t
<

2D

(2π )D

ID(kF )

ρ
, (E10)

where ID(kF ) and kF are defined in Eqs. (E7) and (E4),
respectively. Note that we recover Eq. (58) by setting D = 1
in Eq. (E10). For D = 2, the bound reads

−
√

8

πρ
J1(

√
8πρ ) <

U

t
<

√
8

πρ
J1(

√
8πρ ). (E11)

APPENDIX F: RSGAs IN THE AKLT FAMILY
OF QUANTUM SCARRED HAMILTONIANS

In this Appendix, we show that the AKLT family of
quantum scarred Hamiltonians studied in Refs. [13,14] admits
RSGAs of order M = 2. Throughout this Appendix, we use
the notation |Jj,m〉 to denote a total angular momentum eigen-
state of two spin-1’s with total angular momentum quantum
number j, 0 � j � 2, and its z-projection quantum number
m, − j � m � j. We refer readers to Ref. [14] for details of
the notation. The one-dimensional family of quantum scarred
spin-1 Hamiltonians (including the spin-1 AKLT chain) on a
system size of L derived in Refs. [13,14] is given by

H (a) =
L∑

j=1

ĥ j, j+1,

ĥ j, j+1 = E (|J2,1〉〈J2,1| + |J2,2〉〈J2,2|)

+
0∑

m,n=−2

z(m,n)
j (|J2,m〉〈J2,n|), (F1)

where (z(m,n)
j ) = (z(m,n)

j )∗. As discussed in Refs. [13] and [14],
for an even system size L and periodic boundary conditions,
the Hamiltonian of Eq. (F1) contains a tower of quantum scars
from a root eigenstate |G〉,

H (a)(P (a) )n|G〉 = 2nE (P (a) )n|G〉, 0 � n � L

2
, (F2)

where |G〉 is the spin-1 AKLT ground state [6,7], and

P (a) =
L∑

j=1

(−1) j (S+
j )2, (F3)

which forms the analog of the η† operator in the Hubbard
models discussed in the main text. The spin-1 AKLT Hamil-
tonian [6,7] is recovered from Eq. (F1) by setting [14]

E = 1, z(m,n)
j = δm,n. (F4)

We first compute the commutator

[H (a),P (a)] =
L∑

j=1

(−1) j [̂h j, j+1, (S+
j )2 − (S+

j+1)]

≡ 2EP (a) +
L∑

j=1

(−1) j ĥ(1)
j, j+1,
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ĥ(1)
j, j+1 = −2

0∑
n=−2

((
z(−1,n)

j − E
)|J1,1〉〈J2,n|.

+
√

2
(
z(−2,n)

j − E
)|J1,0〉〈J2,n|

)
, (F5)

where we have used Eq. (F1), and [13]

(S+
j )2 − (S+

j+1)2

= −2(|J2,1〉〈J1,−1| +
√

2|J2,2〉〈J1,0|
+ |J1,1〉〈J2,−1| +

√
2|J1,0〉〈J2,−2|). (F6)

Using Eqs. (F1) and (F5), it is apparent that H (a) can be
decomposed as

H (a) = H (a)
SGA + V̂ (a), (F7)

where

H (a)
SGA ≡

L∑
j=1

E (|J2,1〉〈J2,1| + |J2,2〉〈J2,2|

− |J2,−1〉〈J2,−1| − |J2,−2〉〈J2,−2|), (F8)

and it admits an exact SGA, i.e.,[
H (a)

SGA,P (a)
] = 2EP (a). (F9)

Further, we note that

ĥ(1)
j, j+1|G〉 = 0, (F10)

since the AKLT ground state does not have a total spin-2
component over neighboring sites [6]. Using Eq. (F5), we thus

obtain

[H (a),P (a)]|G〉 = 2EP (a)|G〉. (F11)

We further compute the next commutator

[[H (a),P (a)],P (a)] =
L∑

j=1

[
h(1)

j, j+1, (S+
j )2 − (S+

j+1)2
]

≡
L∑

j=1

ĥ(2)
j, j+1,

ĥ(2)
j, j+1 = −4

√
2

0∑
n=−2

(
z(−2,n)

j − E
)|J2,2〉〈J2,n|.

(F12)

Similar to Eq. (F10), we obtain

ĥ(2)
j, j+1|G〉 = 0 and [[H (a),P (a)],P (a)]|G〉 = 0. (F13)

Using Eqs. (F12) and (F6), we further obtain

[[[H (a),P (a)],P (a)],P (a)]

=
L∑

j=1

(−1) j
[̂
h(2)

j, j+1, (S+
j )2 − (S+

j+1)2
]

= 0. (F14)

Using Eqs. (F2), (F11), (F13), and (F14), we obtain that
the family of Hamiltonians of Eq. (F1) admits an RSGA
of order M = 2 (see Lemma C.3) with |ψ0〉 = |G〉, E0 =
0, E = 2E , and η† = P (a). Similarly, we can verify that the
same algebraic structure holds for the single-site quasiparticle
family of scarred Hamiltonians studied in Ref. [14], the one-
dimensional spin-S AKLT Hamiltonians [7], and the associ-
ated family of scarred Hamiltonians discussed in Ref. [13].
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