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We analyze local operator growth in nonintegrable quantum many-body systems. A recently introduced
universal operator growth hypothesis proposes that the maximal growth of Lanczos coefficients in the continued
fraction expansion of the Green’s function reflects chaos of the underlying system. We first show that the
continued fraction expansion, and the recursion method in general, should be understood in the context of
a completely integrable classical dynamics in Krylov space. In particular, the time-correlation function of a
physical observable analytically continued to imaginary time is a tau-function of integrable Toda hierarchy. We
use this relation to generalize the universal operator growth hypothesis to include arbitrarily ordered correlation
functions. We then proceed to analyze the singularity of the time-correlation function, which is an equivalent
sign of chaos to the maximal growth of Lanczos coefficients, and we show that it is due to delocalization in
Krylov space. We illustrate the general relation between chaos and delocalization using an explicit example of
the Sachdev-Ye-Kietaev model.
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Introduction. The time-correlation function of local op-
erators is one of the standard probes of quantum many-
body physics. It characterizes a system’s linear response and
transport. With the exception of a few integrable models, the
explicit form of the time-correlation function is not known,
and a variety of methods have been devised to describe its
behavior in different limits. Among them is the recursion
method [1–3], briefly described below, which is commonly
used for analytic and numerical approximations. In this paper,
we show that the recursion method should be understood as
a part of a more general construction, defining completely
integrable dynamics in Krylov space. In particular, in full
generality, the time-correlation function of a physical observ-
able, analytically continued to Euclidean (imaginary) time, is
a tau-function of the integrable Toda chain. Previously known
examples [4–7] in which a quantum correlation function was
related to a classical tau-function of an integrable hierarchy
were in the context of very particular integrable or supersym-
metric theories. Here we consider generic dynamical systems
and generic observables.

One of the open questions of quantum many-body dynam-
ics is how to characterize chaotic behavior. This question
connects very different pursuits from quantum gravity [8]
to mesoscopic thermodynamics [9]. Recently it was pro-
posed [10] that the time-correlation function of local operators
reflects underlying quantum chaotic behavior through the
maximal growth of Lanczos coefficients (introduced below);
see also [11–13] for related work. The maximal growth of
Lanczos coefficients can be reformulated as singularity of the
time-correlation function in imaginary time [14]. We apply the
relation to the Toda chain to elucidate this picture and show

that the singularity in imaginary time is due to delocalization
of the operator in Krylov space.

Recursion method and Krylov space. We begin by re-
minding the reader about the basics of the recursion
method [15,16], which includes Krylov space construction
and Lanczos coefficient expansion. The starting point is the
time-correlation function of some operator A,

C(t ) = 〈A(t ), A〉, (1)

defined with help of a Hermitian bilinear form in the space of
operators,

〈A, B〉 ≡ Tr(A†ρ1Bρ2〉 = 〈B, A〉∗. (2)

Here ρ1, ρ2 are some Hermitian positive-semidefinite oper-
ators that commute with the Hamiltonian H . Therefore, the
adjoint action [H, ] is self-adjoint with respect to 〈 , 〉. Col-
loquially, (2) is a scalar product in the space of operators, with
the caveat that it might be positive-semidefinite rather than
definite. For any initial A0 = A, one can define Krylov space,
which is the space of linear combinations of all operators of
the form [H, [H, [. . . , A]]]. Alternatively, Krylov space is the
minimal subspace in the space of all operators, which includes
time-evolved A(t ) for any t . Next, we define a basis in the
Krylov space Ak via the iterative relation

An+1 = [H, An] − anAn − b2
n−1An−1, (3)

and we require Ak to be mutually orthogonal, 〈Ak, Al〉 = 0 for
k �= l . Orthogonality of Ak fixes coefficients an, bn to be

an = 〈[H, An], An〉
〈An, An〉 , b2

n = 〈An+1, An+1〉
〈An, An〉 , n � 0. (4)
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Coefficients an, bn are called Lanczos coefficients. They ap-
pear in the continued fraction expansion of the Green’s func-
tion associated with C(t ). While this is not important for our
discussion, this is one of the central relations of the recursion
method [1–3], and we explain it in the Appendix.

For any Hermitian operator, its norm defined with the help
of (2) is manifestly real and non-negative. It is therefore
convenient to introduce qn = ln〈An, An〉 such that

Gnm = 〈An, Am〉 = δnmeqn . (5)

In (3) we formally require b−1 = 0.
In what follows, we focus on the Euclidean time evolution,

O(t ) ≡ etH Oe−tH , (6)

where t is Euclidean (imaginary) time. An operator evolved
in conventional (Minkowski) time is O(−it ). With the help
of (3), adjoin action of H in the Krylov basis An can be
represented by a Jacobi (i.e., tridiagonal) matrix L,

[H, An] =
∑

m

LnmAm, L = gMg−1, (7)

g = diag(eq0/2, eq1/2, . . . ), (8)

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 b0 0
. . .

b0 a1 b1
. . .

0 b1 a2
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠. (9)

Matrix L is usually called the Liouvillian because it generates
time evolution of an operator expanded in the Krylov basis An.
The tridiagonal form of L and M allows for simple numerical
evaluation of eiMt , i.e., time evolution in the Krylov basis. This
underlines the use of the Krylov space method (also known as
the Lanczos method) in numerical applications.

Toda chain flow in Krylov space. At this point we would
like to establish a connection between the recursion method
and classical integrable dynamics. As a generalization of (5),
we define

Gnm(t ) = 〈An(t ), Am〉 (10)

and evaluate it in terms of Lanczos coefficients (we use matrix
notations here for brevity),

G(t ) = geMt gT . (11)

The original correlation function is then C(t ) = G00(t ) =
〈A0, A0〉(eMt )00.

We leave G(t ) aside for a moment and show that Lanc-
zos coefficients an, bn can naturally be promoted to be t-
dependent functions. Later we will show that they satisfy Toda
chain equations of motion [17]. First, we interpret 〈A(t ), B〉
for two arbitrary operators A, B as a t-dependent family of
scalar products (Hermitian bilinear forms),

〈A, B〉t ≡ 〈A(t ), B〉. (12)

It is easy to see that 〈 , 〉t can be defined with the help of (2)
with some new t-dependent ρt

1,2,

ρt
1 = etH/2ρ1 etH/2, ρt

2 = e−tH/2ρ2 e−tH/2. (13)

For any real t , ρt
1,2 satisfy the requirements we outlined for

ρ1,2 above: they are Hermitian positive-semidefinite and com-
mute with H . We therefore can apply the recursion method to
define the Krylov basis starting from the same initial A for any
given value of t . This defines the family of orthogonal bases
At

n, At
0 ≡ A,

Gt
nm ≡ 〈

At
n, At

m

〉
t = δnmeqn (t ), (14)

where an, bn, and qn are now t-dependent,

an(t ) =
〈[

H, At
n

]
, At

n

〉
t〈

At
n, At

n

〉
t

, (15)

b2
n(t ) = eqn+1−qn , qn(t ) = ln

〈
At

n, At
n

〉
t . (16)

With the help of an(t ), bn(t ), qn(t ) we also define t-dependent
matrices M(t ) and g(t ); see Eqs. (8) and (9).

A crucial observation is that Gnm(t ) (10) and Gt
nm (14) are

the matrix representation of the same scalar product 〈 , 〉t

written in terms of two different bases, An and At
n. They are

therefore related by a change of coordinates,

G(t ) = z(t )Gt z(t )T , (17)

An =
∑

m

znm(t )At
m. (18)

Going back to the definition (3), for any given t , basis
element At

n is a linear combination of nested commutators
[H, . . . , [H, A]]︸ ︷︷ ︸

k times

with 0 � k � n such that the coefficient in

front of the nested commutator of degree n is exactly 1.
Therefore, matrix z(t ), which transforms basis At

n into basis
An ≡ At=0

n , is lower-triangular with the identities on the diag-
onal. For convenience we rewrite (17) using (11) and express
Gt in terms of g(t ),

G(t ) = g(0)eM(0)t g(0)T = z(t )g(t )g(t )T z(t )T . (19)

The right-hand side of (19) defines the so-called orispherical
coordinate system (qn, znm), n > m, on the space of symmetric
positive-definite matrices G. The explicit time dependence of
G(t ) given by (19) provides that

d

dt
(G−1Ġ) = 0. (20)

Thus, G(t ) describes a geodesic flow on the space of sym-
metric positive-definite matrices, which is projected onto the
space of diagonal matrices (parametrized by coordinates qn)
by the group of lower-triangular matrices with the identities
on the diagonal. This geodesic flow is described by an open
Toda chain, which can be shown by applying the Hamilto-
nian reduction formalism toward the original geodesic flow;
see [18]. From here it follows that qn(t ) defined via (16)
satisfies the following set of equations:

q̈n = eqn+1−qn − eqn−qn−1 , (21)

which are the equations of motion of a completely integrable
Toda chain [17]. This is the main result of the first part of the
paper.

There are several useful ways to rewrite Eq. (21). First,
using the trivial redefinition

an(t ) ≡ q̇n, bn(t ) ≡ e(qn+1−qn )/2, (22)
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we can express Toda chain equations of motion (21) in the
so-called Flaschka form [19]

ȧn = b2
n − b2

n−1, ḃn = bn(an+1 − an)/2. (23)

Note that (22) is consistent with (15) if we take into account
that the derivative of At

n with respect to t is a linear combina-
tion of At

k for 0 � k < n. Alternatively, Toda equations can be
straightforwardly rewritten in the so-called Hirota’s bilinear
form [20],

τnτ̈n − τ̇n
2 = τn+1τn−1, τ−1 ≡ 1, (24)

where τn = exp(
∑

0�k�n qn). In particular,

τ0(t ) = eq0(t ) = C(t ), (25)

which establishes in full generality that the time-correlation
function analytically continued to Euclidean time is a tau-
function of Toda hierarchy.

At this point we would like to make a number of remarks
outlining the role of completely integrable classical dynamics
in the context of the recursion method. By virtue of the
identity 〈A(t/2), B(t/2)〉 = 〈A, B〉t for any A and B, operators
At

n(t/2) define the orthogonal Krylov basis associated with
the scalar product 〈 , 〉 and the initial operator A0 = A(t/2).
Corresponding Lanczos coefficients are an(t ) and bn(t ). This
follows from the fact that the relation (3) is linear, and
hence it will hold if all operators are evolved in time. Thus,
the flow described by the Toda chain can be defined solely
in terms of the original scalar product 〈 , 〉 by considering
different initial vectors of the Krylov basis. Furthermore, since
e−qn (0)/2An and e−qn (t )/2At

n(t/2) are orthonormal bases for the
same scalar product, they must be related by some orthogonal
transformation QT ,∑

m

QT
nm(t/2)e−qm (0)/2Am = e−qn (t )/2At

n(t/2). (26)

Evolving this equation in time by −t/2 and using the rela-
tion (18) between An and At

n, we find

eM(0)t = Q(t )R(t ), RT (t/2) = g(0)−1z(t )g(t ). (27)

This defines QR decomposition of eM(0)t , i.e., representation
as a product of an orthogonal matrix Q and lower-triangular
matrix R. Any real-valued matrix admits QR decomposition,
but it plays an important role in the context of the Toda
chain [21], and in our analysis below.

We did not require the Hermitian form 〈 , 〉 to be positive-
definite, merely positive-semidefinite. Therefore, the coeffi-
cient b2

n given by (4) may vanish either because An+1 vanishes
as an operator, or because it has zero “norm” 〈An+1, An+1〉 =
0. In either case, time-evolved A(t ) will be a linear combi-
nation of only the first n basis elements Ak , and therefore
C(t ) will be described in terms of a finite Toda chain. Matrix
Gkl in this case will be defined for 0 � k, l � n and will
be finite positive-definite. Thus, without loss of generality,
matrix G is always positive-definite, which justifies taking
the inverse in (20). This completes the construction of the
recursion method as a part of the Toda chain flow in Krylov
space.

This result is very general. The construction above is linear
in the scalar product, and therefore applies to any linear

combination of (2), i.e., when

〈A, B〉 ≡
∑

i

Tr
〈
A†ρ

(i)
1 Bρ

(i)
2

〉
. (28)

This may appear, e.g., in the context of differently ordered
thermal correlators. For example, if ρ1 = ρ2 = ρ1/2, ρ =
e−βH/Z , this defines symmetric ordering with an = 0. A con-
ventional thermal correlator is obtained by ρ1 = I, ρ2 = ρ.
We have show that Lanczos coefficients for these two cases
are related to each other via time evolution of Toda equations
of motion from t = 0 to t = β/2.

Quantum chaos and delocalization. The relation to the
Toda chain provides a way to analyze the time-correlation
function. Below we apply it to elucidate chaos in quantum
many-body systems. The growth of C(t ) in Euclidean time
is qualitatively different in integrable (solvable) and generic
lattice systems [14]. Considering the thermodynamic limit in
known integrable examples, C(t ) is an entire function of a
complex parameter t . On the contrary, an accurate counting of
nested commutators appearing in the Taylor series expansion
of C(t ) suggests that in general, i.e., the nonintegrable case,
C(t ) will be singular at some finite t = t∗. This behavior is
confirmed by an explicit example of [22]. The same singular
behavior for the chaotic models follows from the conjecture
of [10], which associates chaos with the maximal rate of
growth of Lanczos coefficients permitted by analyticity of
C(t ) at t = 0, bn ∝ n. An equivalent formulation in terms of
the power spectrum of C(t ) was advocated earlier in [23].

The original analysis of [10] assumed an = 0. The Toda
chain formalism provides an easy way to extend this result.
From the equations of motion (23) it follow that linear growth
bn ∝ n is consistent with at most linear growth of an, and the
slope of an cannot exceed twice the slope of bn. This can
be illustrated with the help of a family of exact solutions.
Combining (23) into

d2

dt2
ln b2

n = b2
n+1 − 2bn + b2

n−1, (29)

and assuming b2
n = b2(t )p(n), where p(n) is an arbitrary

quadratic polynomial, we find

an(t ) = (2n + c)J cot (J (t0 − t )), (30)

b2
n(t ) = (n + c)(n + 1)J2

sin2 (J (t0 − t ))
. (31)

This family is associated with the tau-function τ0 ∝
[sin (J (t0 − t ))]−c, which is the time-correlation function of
the Sachdev-Ye-Kitaev model [10,24]. The same solution with
c = 2 in the J → 0 limit also appeared in [25] in the context
of N = 2 SYM. At large n, an/bn ∝ 2 sin (J (t0 − t )). Thus, in
general, chaotic behavior is reflected by the linear growth of
both an and bn, parametrized by J and dimensionless |γ | � 1,

lim
n

(
b2

n − a2
n/4

)
/n2 = J2, lim

n
an/bn = 2γ . (32)

The asymptotic behavior of an, bn controls the location of the
singularity of C(t ) at t∗ = arcsin(γ )/J .

Singular behavior of the time-correlation function can be
further elucidated. As a starting point, we assume that C(t ) =
G00(t ) is a smooth function, together with its derivatives for
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0 � t < t∗, and it diverges at t = t∗. From here it follows that
for n, m � 0, Gnm(t ) defined in (10) is regular for 0 � t < t∗.
Indeed, different matrix elements Gnm(t ) are related by the
differential operator

Gn+1,m =
(

d

dt
− an

)
Gnm − b2

n−1Gn−1,m. (33)

Therefore, all Gnm are regular for 0 � t < t∗, provided C(t ) is
sufficiently smooth.

Using QR decomposition (27), we can decompose

R00(t/2)2 = C(t )/C(0), (34)

and we conclude that R00(t ) is regular for 0 � t < t∗/2 and
diverges at t = t∗/2. Using (27) again we can decompose A(t )
into an orthonormal Krylov basis,

e−q0(0)/2A(t ) =
∑

n

cn(t )(e−qn(0)/2An), (35)

where

cn(t ) ≡ e−[q0(0)+qn (0)]/2G0n(t ) = R00(t )Qn0(t ). (36)

Here R00(t ) is the norm of the operator, and the unit vector
Qn0(t ) specifies projection on a particular basis element.
Regularity of G0n(t ) at t = t∗/2 and divergence of R00(t ) at
t = t∗/2 implies that Qn0(t∗/2) for all n has to vanish. This is
a manifestation of delocalization in Krylov space: at t = t∗/2
the operator A(t ) spreads across the whole Krylov space, such
that its norm diverges, while its projection on any particular
normalized basis element is finite. The same can be seen from
the inverse participation ratio I ,

I ≡
(∑

n

Q4
n0

)−1

, (37)

which diverges at t = t∗/2. This can be seen directly from
the explicit solutions (30). We show in the Appendix that the
solutions correctly capture universal behavior near t = t∗/2.

Finally, we would like to contrast the behavior of A(t ) in
Krylov space and the singularity of I near t = t∗/2 for (30)
with the behavior for integrable models. Starting from b2

n =
b2 p(n), where p(n) is a linear function, one finds an ex-
plicit solution illustrating “integrable” behavior bn ∝ n1/2.
The corresponding tau-function grows double-exponentially,
τ0 ∝ exp{em(t−t0 )}, which is the behavior of C(t ) in generic
one-dimensional systems [14]. This further emphasizes that
nonintegrable one-dimensional systems cannot be considered
fully chaotic. In the limit m → 0, the tau-function becomes
Gaussian, τ0 ∝ ea(t−t0 )2/2. In both cases, A(t ) is moving as
a localized wave packet in Krylov space, with the inverse
participation ratio growing with time exponentially when m �=
0 or merely linearly when τ0 is a Gaussian. Technical details
can be found in the Appendix.

Discussion. In this paper, we established explicit represen-
tation for the Euclidean time evolution of the time-correlation
function as a classical dynamics of the integrable Toda chain.
We have subsequently used the Toda chain formalism to
elucidate the behavior of the time-correlation function in non-
integrable quantum many-body systems. We have extended
the conjecture of [10] to include nonvanishing an. We have
also demonstrated that singularity along the imaginary time

axis, which is a generic behavior for nonintegrable systems, is
due to delocalization in Krylov space.

The obtained connection between the recursion method
and the Toda chain is likely to lead to new practical improve-
ments in the numerical applications, as suggested by many
other uses of the Toda chain in the context of computational
algorithms [26].

Tau-functions of completely integrable systems have free-
fermion representation [27]. It is a natural question to ask
how this representation may appear in the context of the
time-correlation function of a generic Hamiltonian system.
The construction presented in this paper does not require the
system to be quantum. In the classical case, scalar product (2)
can be defined as an integral over the phase space, and
the adjoint action [H, ] in (3) will be substituted by the
Poisson brackets. Further, an arbitrary classical system can
be reformulated in terms of a supersymmetric path integral,
which includes auxiliary fermionic degrees of freedom [28].
We expect the free-fermion representation to follow from
there.

One of our main results is the relation between noninte-
grability of the original physical system and delocalization in
Krylov space. This result can be understood in the context of
a general idea that localization versus ergodicity in physical
space corresponds to delocalization in the auxiliary “Fock
space” of a “particle” moving on a graph [29]. This idea
has been further developed in the context of many-body
localization in [30]. In a general case, construction of the
appropriate graph is not clear. Our study suggests that the
Krylov basis provides a representation of the “Fock space,”
with the tridiagonal Liouvillian matrix M describing hoping
of a particle on a one-dimensional graph.
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APPENDIX

1. Toda miscellanea

Here we mention certain standard results about the Toda
chain that are used in the other parts of the paper.

a. Toda EOM in Lax form

In (26) we introduce an orthogonal matrix Q that maps
between the family of orthonormal bases At

n(t/2)e−qn (t )/2,
parametrized by t , all being associated with the same scalar
product 〈 , 〉. Matrix M(t ) is simply the matrix of the adjoint
action [H, ] written in the t-basis. From here it follows that
the t-dependence of M(t ) is an isospectral deformation,

M(t ) = QT (t/2)M(0)Q(t/2). (A1)
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Written in differential form, this becomes the Toda equation
of motion written in Lax form [21],

Ṁ(t ) = [B(t ), M(t )], Q̇T (t ) = 2B(2t )QT (t ), (A2)

B = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 b0 0
. . .

−b0 0 b1
. . .

0 −b1 0
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠. (A3)

b. Hankel determinant representation

Tau-functions of Toda hierarchy τn = exp(
∑

0�k�n qn) are
the leading principal minors of matrix Gnm(t ), as follows from
Eq. (19), the lower-triangular form of z and znn = 1. They can
also be expressed concisely in terms of C(t ) = eq0(t ) and its
derivatives. Namely, we introduce (n + 1) × (n + 1), n � 0,
the matrix

M(n)
i j = C(i+ j)(t ), (A4)

where C(k)(t ) stands for the kth derivative of C. Then

τn = det M(n). (A5)

2. Continued fraction representation

Continued fraction representation of the Green’s function,

G(z) =
∫ ∞

0
e−zt C(t ) dt, (A6)

is the central part of the recursion method. From the definition
above and representation (11), we readily find

G(z) =
(

1

z I − M

)
00

, (A7)

provided the original operator is normalized, C(0) = 0. When
matrix M is infinite, the inverse matrix (z I − M )−1 should be
understood in the formal sense. It is convenient to consider
M to be finite, such that an are defined for 0 � n � N + 1
and bn for 0 � n � N . Then we introduce M (n) as the (N −
n) × (N − n) bottom-right corner submatrix of M. By �n we
denote a characteristic polynomial of M (n),

�n = det(z I − M (n) ). (A8)

Then G(z) = �1/�0.
To obtain the continued fraction representation, we notice

that �n satisfies the following iterative relation:

�n = (z − an)�n+1 − b2
n �n+2. (A9)

If one defines sn = �n/�n+1, then

sn = (z − an) − b2
n/sn+1. (A10)

From here it follows that

G(z) ≡ 1

s0
= 1

z − a0 − b2
0

s1

= 1

z − a0 − b2
0

z−a1− b2
1

s2

= · · · .

Continued fraction representation plays an important role
in the context of the Toda chain as well. In this case, G(z, t )
is defined by (A7) with the t-dependent M(t ). Using (19) we
readily find

C(t + s)

C(t )
= (esM(t ) )00, (A11)

and therefore

G(z, t ) =
∫ ∞

t C(t ′)e−zt ′
dt ′

C(t )
. (A12)

Green’s function G(z, t ) can be written in terms of the eigen-
values λi of M and non-negative rn,

∑
n r2

n = 1,

G(z, t ) =
∑

n
r2

n
z−λn∑

n r2
n

. (A13)

Then the time dependence of G is described by the gradient
flow [31],

dλk

dt
= 0,

drk

dt
= − ∂V

∂rk
, V =

∑
n λnr2

n

2
∑

n r2
n

. (A14)

3. Exact solutions

In this subsection, we find several families of exact so-
lutions of the Toda chain that exhibit different characteristic
behavior: “chaotic” an, bn ∝ n and “integrable” an, bn ∝ n1/2.
First, we notice that the “center-of-mass” coordinate

∑
n qn

and total momentum
∑

n q̇n of the Toda chain are free param-
eters. Hence a transformation qn(t ) → qn(t ) + vt + q turns a
solution into a solution while transforming

an(t ) → an(t ) + v, bn(t ) → bn(t ). (A15)

Since the Toda equations are not explicitly time-dependent, if
qn(t ) is a solution, then qn(t − t0) for arbitrary t0 is a also a
solution. Finally, rescaling t yields

qn(t ) → qn(Jt ) + 2k ln(J ), (A16)

an(t ) → Jan(Jt ), bn(t ) → Jbn(Jt ). (A17)

a. “Chaotic” solutions

Keeping these symmetries in mind, we proceed to con-
struct the family of exact solutions as follows: we use the
ansatz b2

n = b2(t )p(n), where p(n) is a quadratic polynomial.
The constant term in p(n) is arbitrary due to (A15). The over-
all coefficient can be reabsorbed into b2, while the constant
term is fixed by consistency. The most general solution within
this ansatz is p(n) = (n + c)(n + 1) with some c. Plugging
this into (29), we find

d2

dt2
ln(b2) = 2b2, b2 = J2

sin2 (J (t0 − t ))
. (A18)
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This leads to the solution (30),

τn = G(n + 2)G(n + 1 + c)

G(c)
(c)n+1

Jn(n+1)

sin (J (t0 − t ))(n+c)(n+1) ,

qn(t ) = 2n ln(J ) − (2n + c) ln(J sin (J (t0 − t )))

+ ln (n!
(n + c)),

an(t ) = (2n + c)J cot (J (t0 − t )),

b2
n(t ) = (n + c)(n + 1)J2

sin2 (J (t0 − t ))
, (A19)

where G(x) is the Barnes gamma function. Positivity of b2
0(t )

requires c � 0.
After taking the limit J → 0 and using the symme-

try (A15), the solution becomes

τn = G(n + 2)G(n + 1 + c)

G(c)
(c)n+1

1

(t0 − t )(n+c)(n+1)
, (A20)

qn = −(2n + c) ln(t0 − t ) + ln (n! 
(n + c)), (A21)

an = 2n + c

t0 − t
, b2

n = (n + c)(n + 1)

(t0 − t )2
. (A22)

The family of solutions (A19) can be further analyzed.
We would like to find the explicit form of the orthogonal
transformation Q(t ). From (A2) it follows that each row of Q,
which we (somewhat surprisingly) denote by ψ , will satisfy

ψ̇ (t ) = 2B(2t )ψ (t ). (A23)

Using the explicit form of bn(t ), we factor out the time
dependence of B(t ),

2B(2t ) = 1

sin (J (t0 − 2t ))
2B(ti ), ti = t0 − π

2J
. (A24)

It is convenient to introduce the auxiliary “time” variable
tM (t ), which satisfies dtM/dt = J/ sin (J (t0 − 2t )),

JtM = 1

2
ln

cot (J (t0/2 − t ))
tan (J (t0/2))

, (A25)

such that tM (ti ) = 0. Then ψ (tM (t )) will solve (A23), provided
dψ/dtM = 2B(ti )ψ (tM ). Since an(ti ) = 0, matrix 2B(ti ) is
related by a simple unitary transformation to iM(ti ). There-
fore, up to a trivial factor, ψ (tM ) describes the conven-
tional (Minkowski) time evolution of an operator in Krylov
space. This explains the choice of notations for ψ—the
“wave-function” of the operator, and tM—time in Minkowski
space. For the system described by Lanczos coefficients an =
0, bn = (n + c)(n + 1), a particular solution with ψn(0) = δn0

was found in [10],

ψn(tM ) = (−1)n

√

(n + c)

n! 
(c)

tanhn(J tM )

coshc(J tM )
. (A26)

Since 2B(ti ) is time-independent, other solutions can be ob-
tained by acting on (A26) by differential operators with con-
stant coefficients, e.g., ψ (1) = c−1/2ψ ′(tM ) is a solution satis-
fying ψ (1)

n (0) = δn1. After substituting (A25) as an argument

of ψ , it becomes the first row of matrix Q,

Qn0(t ) = (−1)n

√

(n + c)

n! 
(c)

(
sin(Jt0) sin (J (t0 − 2t ))

sin2 (J (t0 − t ))

)c/2

×
(

sin(Jt )

sin (J (t0 − t ))

)n

, (A27)

while ψ (1) will become the second row, etc.
From the explicit solution it is easy to see that at t =

t0/2 all components of Qn0 vanish, while the product R00Qn0

is regular. In fact, all components Qnm vanish at t = t0/2.
This is easy to see by going back to the “Minkowski” time
tM (A25). When t → t0/2, tM → ∞. In this limit, all compo-
nents of (A26) decay exponentially. Since all rows of Q can
be obtained by acting on ψn(tM ) by a differential operator with
constant coefficients, they all will decay exponentially with tM
and therefore vanish at t = t0/2.

Using the explicit solution (A27) one can easily calculate
the inverse participating ratio (37) to immediately conclude
that it diverges at t = t0/2. The behavior of (A27) near
t = t0/2 is typical, where t0 = t∗ is the point of singularity.
To show that, we assume that near t = t∗ the tau-function
behaves as

τ0 ∝ 1

(t∗ − t )c
. (A28)

Using Hankel determinant representation (A5) we immedi-
ately find that the singular behavior of τn near t = t∗ is given
by (A20) with t0 = t∗, from where the singular behavior of
qn, an, bn near t = t∗ given by (A21) and (A22) follows.

From the identity R00(t/2)2 = τ0(t )/τ0(0) one immedi-
ately sees that near t = t∗/2, R00(t ) ∝ (t∗ − 2t )−c/2, and from
R00(t )Q00(t ) = τ0(t )/τ0(0) and regularity of τ0(t ) at t = t∗/2
one concludes

Q00(t ) ∝ (t∗ − 2t )c/2, (A29)

near t = t∗/2. Now one can use the differential equation
for Q (A2), Q̇00(t ) = b0(2t )Q10(t ), together with the leading
singular behavior of b0 near t = t∗/2 (A22) to conclude that
Q10(t ) ∝ (t∗ − 2t )c/2, and so on.

b. “Integrable” solutions

There is an exact family of solutions b2
n = b2(t )p(n), where

p(n) is a linear function of n. Without loss of generality we
can choose p(n) = n + c, and later see that self-consistency
requires c = 1. Then b2 = em(t−t0 ), and

τn = G(n + 2)e
(n+1)

m2 em(t−t0 )

em(n+1)(n+2)(t−t0 )/2,

qn = em(t−t0 )

m2
+ (n + 1)m(t − t0) + ln(n!),

an = em(t−t0 ), b2
n = (n + 1)em(t−t0 ). (A30)

From the positive of b2
0 it follows that c � 0.
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In the limit m → 0, exponent em(t−t0 ) can be expanded in
Taylor series, and after rescaling of t one finds

τn = G(n + 2)en(n+1)/2 ln(a)ea(n+1)(t−t0 )2/2, (A31)

qn = a(t − t0)2

2
+ n ln(a) + ln(n!), (A32)

an = a(t − t0), b2
n = a(n + 1). (A33)

Since b2
n are time-independent, the differential equation for

Qn0 is particularly easy to solve,

Qn0 = (−a1/2t )n

√
n!

e−at2/2. (A34)

This is a “wave packet” centered at n ∼ t2. It is also
easy to calculate the inverse participation ratio (37), I =
e2at2

/I0(2at2), which grows linearly with t .
Going back to the solution (A30), the “wave function” Qn0

is given by (A34) with t substituted by

a1/2t → e−mt0

m
(emt − 1), (A35)

which means the inverse participation ratio grows exponen-
tially with t .
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