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Yu-Shiba-Rusinov states of a single magnetic molecule in an s-wave superconductor
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We use the numerical renormalization group theory to investigate the Yu-Shiba-Rusinov (YSR) bound state
properties of single magnetic molecules placed on an s-wave superconducting substrate. The molecule is
modeled as a large core spin and a single orbital, coupled via exchange interaction. The critical Coulomb
interaction for the singlet/doublet transition decreases in the presence of this exchange interaction for both ferro-
and antiferromagnetic couplings. The number of YSR states also increases to two pairs; however, in the singlet
phase, one of the pairs has zero spectral weight. We explore the evolution of the in-gap states using the Anderson
model. Away from the particle-hole symmetry point, the results suggest a doublet-singlet-doublet transition as the
on-site energy is lowered while keeping the Coulomb interaction fixed. We construct an effective model for the
molecule to understand these results, in the limit of the large superconducting order parameter. Qualitatively,
the model accounts for the phase transitions and spectral nature of the in-gap states. Finally, we analyze the
effects of magnetic anisotropic fields of the core spin on in-gap states. Due to internal degrees of freedom of
the spin excited states, a multitude of new states emerges within the gap. Depending on the sign and strength
of the uniaxial anisotropic field, the results indicate up to three pairs of YSR states.

DOI: 10.1103/PhysRevB.102.085136

I. INTRODUCTION

Nanoscale devices embedded in tunnel junctions provide
unique opportunities to study quantum many-body effects of
impurity systems. In recent years, there have been tremendous
advancements over the control of such devices, where the
number of electrons is electrostatically controlled in a small
restricted region. Whenever these devices contain an odd
number of electrons, the Kondo effect [1–3] arises due to
multiple spin-flip scattering processes. Quantum dots [4,5],
magnetic adatoms [6–8], and magnetic molecules [9–11] are
examples of microscopic systems that display the Kondo
effect when mounted between metallic electrodes.

Low-temperature experiments with localized magnetic
moments adsorbed onto a superconducting surface display
the emergence of bound states inside the superconducting
gap [12]. This was first measured using scanning tunneling
microscopy and spectroscopy [13] for single magnetic impuri-
ties, which has subsequently been reproduced under different
experimental conditions, such as a magnetic field [14,15].
Understanding the detailed dynamics of the smallest possi-
ble magnetic systems is important for fundamental reasons
since it provides insight into the mechanisms that govern the
physics of magnetic moments interacting with superconduct-
ing materials. Magnetic impurities can hold Majorana modes
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[16] in a superconducting substrate [17]. Theoretically, the
emergence of in-gap bound states was predicted by Yu [18],
Shiba [19], and Rusinov [20] using semiclassical approaches
where, specifically, the spin moment was treated as classical.
Quantum effects of magnetic impurities were later studied
within mean-field theory [21–23], perturbation theory [24,25],
and numerical renormalization group (NRG) theory [26–31].

The ground state of a quantum magnetic impurity in a
metal substrate is a Kondo singlet with a characteristic energy
scale related to the Kondo temperature (Tk). However, in a
superconductor, the substrate electrons form Cooper pairs,
which are not compatible with the Kondo singlet state. The
fundamental interactions associated with the superconduct-
ing gap (�sc) and the Kondo temperature compete, and at
large �sc the ground state becomes a doublet formed by the
substrate and impurity electron states. The ratio of the two
energy scales determines the nature of the ground state as
well as the energies of the bound states inside the gap. The
bound state energy coincides with the energy of the edge
of the superconducting gap for weak coupling between the
spin moment and the surface states, and they move inside
the gap for increasing coupling strength, eventually crossing
the Fermi energy when the two energy scales are similar,
Tk ≈ �sc.

The bound states always come in pairs of particle-hole
symmetric states around the Fermi energy. Recently, more
than one pair of Yu-Shiba-Rusinov (YSR) states were ob-
served [32,33] in experiments with magnetic molecules. Mul-
tiple pairs of YSR states have been attributed to the presence
of many orbitals in the molecule. The coupling of these
orbitals with the substrate is not uniform due to the different
nature of the orbitals. As a result, the energies of the YSR
states of the different orbitals may have different energies
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and weights. Results from NRG calculations of large spin
moments with magnetic anisotropy show that multiple pairs
of YSR states may appear [34] due to internal spin excitation.
These calculations, however, do not take into account differ-
ences due to the localized and delocalized nature of the d and
the ligand orbitals, respectively.

Here, we have considered an Anderson impurity model
in which superconducting surface states play the role of the
reservoir electrons coupled with a core spin. Due to the
presence of the core spin, multiple YSR states emerge inside
the superconducting gap. This model naturally reflects the ge-
ometry of large spin molecular systems such as Fe8 [35], Mn12

[36], and transition-metal phthalocyanines [32,37]. The ligand
orbitals of the molecule form degenerate orbitals that couple
with the surface electrons in the substrate. For simplicity, we
have considered a single-orbital Anderson impurity model for
the ligand orbitals. This orbital represents the lowest unoccu-
pied molecular orbital (LUMO), since this is the most impor-
tant orbital in the vicinity of the Fermi level. Here we consider
only one molecular orbital, as our calculation becomes very
expensive with a number of molecular orbitals. The d-orbital
electrons of the transition-metal atom have a negligible hy-
bridization with the ligand orbitals and, therefore, form a local
magnetic moment. We have assumed that the spin moment
of the transition-metal atom interacts only with electrons in
the ligand orbital via exchange and has no interaction with
the substrate electrons. This is because the energies of the
d-orbital states are far below the Fermi level, which tends
to suppress the charge fluctuations. The unpaired electrons
of these orbitals only give a magnetic moment. In other
words, the large Coulomb interaction of the d-orbital forbids
double occupancy, and spins are exchange coupled with a
molecular orbital. As a result, the spins of the metal atom do
not interact directly with the substrate. We have considered
the magnetic moment of the transition-metal atom to be large
(S > 1/2). Due to the spin-orbit coupling and spatial structure
of the substrate, we have also included magnetic anisotropy
for the core spin. In the case of phthalocyanine molecules,
some d-orbitals can form a core-spin without hybridiz-
ing with the substrate while other d-orbitals do hybridize.
The latter scenario does give rise to a pronounced Kondo
effect [38].

This paper is organized as follows. In Sec. II, the model is
defined and we present a brief description of the NRG method.
In Sec. III, we derive an effective model for our system in
the limit of a large superconducting gap. This gives a better
understanding of the NRG results and qualitatively explains
various properties of the YSR states. In Sec. IV, we present the
NRG results. In Sec. IV A, we discuss the proximity-induced
superconducting order parameter in the molecule, whereas
in Sec. IV B we discuss the behavior of the YSR state as a
function of the Coulomb interaction for different values of the
exchange interaction. Then we discuss the spectral weight of
the YSR states. The single-particle transition from the ground
state is only possible when the spectral weight is nonzero. In
Sec. IV C, we change the on-site energy of the orbital away
from the particle-hole symmetric point, while in Sec. IV D,
finally, we look at the behavior of the YSR as we turn on
the magnetic anisotropy field. The paper is concluded and
summarized in Sec. V.
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FIG. 1. (a) Schematic diagram of the magnetic molecule in a
tunnel junction with tunneling strengths (VL,R). εd , U , and Jex are the
on-site, Coulomb, and exchange energy of the molecule. (b) Energy
eigenvalues of the effective Hamiltonian as a function of Coulomb
energy (U ) in the large � limit. The arrow indicates the possible
single-particle transition from the ground state.

II. MODEL AND METHODS

We consider the magnetic molecule to be embedded in
a tunnel junction between metallic electrodes, as depicted
in Fig. 1(a). We have considered VL to be very small and
only measure the properties of the molecule. As a result,
we consider our system to consist of the molecule and the
right lead with coupling V = VR. The total Hamiltonian of the
system is given by

H = Hmol + Hsc + HT, (1a)

Hmol = εd nd + Un↑n↓ + Jexs · S + HS, (1b)

HS = DS2
z , (1c)

Hsc =
∑

kσ

εkc†
kσ

ckσ − �sc

∑

k

(c†
k↑c†

−k↓ + H.c.), (1d)

HT =
∑

kσ

Vk (c†
kσ

dσ + H.c.). (1e)

The molecule consists of a single orbital labeled with the
on-site energy εd and Coulomb repulsion energy U , nσ =
d†

σ dσ is the number operator for each spin, d†
σ is the creation

operator for the orbital, and nd = n↑ + n↓ is the electron
occupation number of the orbital. The orbital spin (s) and
the core spin (S) interact via exchange interaction (Jex). To
describe magnetic molecules in general, we have included an
anisotropy field (D) for the core spin. For simplicity, here we
have not included the transverse anisotropic term E (S2

x − S2
y ).

The electrons in the superconducting substrate are described
by the s-wave Bardeen-Schrieffer-Cooper (BCS) mean-field
Hamiltonian (Hsc). The first term of Hsc describes the kinetic
energy part of the free electrons in the substrate. In the
absence of superconductivity, we assumed that the substrate
has a constant density of electron states, ρ0 = 1/2D, within
[−D,D] with a bandwidth 2D. Henceforth, we take D as
the absolute energy scale of the system and set it to be
D = 1. We have added a BCS order parameter �sc, and the
temperature dependence of the �sc is neglected, as we only
discuss the ground-state properties. Here, we have neglected
electron-electron interactions in the substrate. We also fix
�sc/D = 2 × 10−4 and S = 2.

In this work we use NRG theory [27,39–44], which is
an unbiased nonperturbative method that works perfectly at

085136-2



YU-SHIBA-RUSINOV STATES OF A SINGLE MAGNETIC … PHYSICAL REVIEW B 102, 085136 (2020)

both zero and finite temperatures. First, we discretize the
noninteracting substrate electrons such that the electrons are
described by a finite number of states, logarithmically sep-
arated from each other. Second, we transform this system
into a linear chain that begins with the molecule. The on-
site energy of the linear chain becomes zero for reservoir
electrons, with a particle-hole symmetric density of states,
whereas the hopping elements decrease exponentially with
increasing distance away from the molecule. We use the NRG
discretization parameter � = 2.5 throughout this paper.

The exponential decrease of the energy scale of successive
sites in the linear chain ensures the success of the NRG
method for the metallic substrate. For the superconducting
substrate it was initially thought, however, that the supercon-
ducting gap �sc would cause a problem for the NRG iteration,
since the argument of energy scale separation no longer holds
for large Wilson chains. In other words, the perturbation of
adding a site to the Wilson chain is no longer sufficiently small
to allow truncating the NRG iteration at site N where �−N/2

is comparable to �sc [39,40]. It was nevertheless pointed
out that the energy scale separation of NRG works even
beyond this value of N , and that the perturbations become
even smaller with finite �sc [42]. Hence, in the presence
of superconductivity, the NRG approximation becomes even
more accurate.

III. LARGE � LIMIT

Before discussing the NRG results, we consider a simpli-
fied version of the model in Eq. (1), obtained in the limit
of large �sc, to gain some understanding of the expected
behavior of the many-body YSR bound states. As is illustrated
for the single-orbital Anderson model in Refs. [45,46], the
substrate induces superconducting order in the quantum dot
when the superconducting gap is the largest energy scale
compared to any other energy scales of the system. In this
limit, the self-energy, due to the bath electrons, gives only
finite off-diagonal components in the Bogoliubov–de Gennes
basis for energies much smaller than the superconducting gap.
As a result, we can write an effective Hamiltonian for the
system. This procedure can also be applied to the molecular
system, and the effective low-energy Hamiltonian can be
written as

Heff = εd n + Un↑n↓ + �̃(d↑d↓ + H.c.) + Jexs · S, (2)

where �̃ is the induced superconducting order in the molecule.
Here we will consider the symmetric Anderson model

(εd = −U/2). In the absence of the exchange term between
the orbital spin and the core spin, the ground-state behavior
changes as function of U at U/2 = �̃. The ground state is a
doublet state (the antisymmetric combination of |0〉 and |↑↓〉)
for small U , while for large U the ground state is a singly oc-
cupied state. The transition between these two states occurs at
U = 2�̃. The ground-state degeneracy also changes from one
to two electrons across this transition, resulting in the expec-
tation values of various operators changing discontinuously.

The energy difference between the ground and first excited
states mimics the behavior of the YSR bound states when �sc

is comparable to the other energy scales in the system. Within
this effective model, we can see that the bound state energy
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FIG. 2. The expectation value of superconducting order of the
orbital label at zero temperature for different values of the Coulomb
interaction at fixed values of the exchange interaction Jex/�sc � 0
(a), Jex/�sc � 0 (b).

first decreases with increasing U and approaches zero at the
transition point, while it increases again after the transition
point; see Fig. 1(b).

In the presence of finite exchange interaction between the
orbital spin and core spin, the doublet ground state remains
unaffected while the degeneracy of the singly occupied state
is lifted. The energies of the singly occupied states are now
−U/2 + JexS/2 and −U/2 − Jex(S + 1)/2. In Fig. 1(b), the
energies of the effective Hamiltonian are plotted as a function
of U . The first excited state is split below a critical energy
Uc, whereas the ground state splits at a larger U . Even though
there are more states within the gap, not all states are visible in
the single-particle spectrum at zero temperature. This is clear
since for U < Uc, transitions between the singly occupied
state to both doublet states are possible, while for U > Uc,
only transitions from the doublet state with the lowest energy
to the singly occupied state are allowed, given that the tem-
perature is sufficiently low to prevent thermal excitations of
the second doublet state. The arrows in Fig. 1(b) indicate all
possible transitions. As a result, a single pair of YSR states
emerges in the singlet phase, while two pairs of YSR states
should be observed in the doublet phase. We also observe
that Uc is shifted toward the lower value for both positive
and negative values of the exchange interaction. This can
be understood from the fact that the exchange interaction
always lowers the energy of the singly occupied state. As
mentioned earlier, the energies of the singly occupied states
are −U/2 + JexS/2 and −U/2 − Jex(S + 1)/2. One of these
states will certainly have lower energy compared to −U/2
depending on the sign of Jex.

IV. NRG RESULTS

A. Induced superconductivity

Due to proximity, the superconductor induces a finite
pairing potential, or a superconducting order parameter in
the molecule. In Fig. 2 we show the expectation values of
the induced order parameter as a function of the Coulomb
interaction. First, consider the case of vanishing exchange
interaction, Jex = 0 (blue circle). It can be clearly seen that
the largest values of the order parameter are reached in
the noninteracting limit, U → 0, and they decrease with
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FIG. 3. Bound state energies (a)–(e) and their spectral weight (f)–(j) of the in-gap states for different values of the Coulomb interaction at
fixed exchange interaction Jex/�sc = −0.5 (a,f), −0.2 (b,g), 0 (c,h), 0.2 (d,i), and 0.5 (e,j). The spectral weights of all of the states are also
color-coded. The dashed line indicates the YSR states for Jex = 0.

increasing interaction strength U . This can be explained as
an effect of the fact that the doubly occupied (and empty state
for the symmetric Anderson model) state is less favorable for
large U . Since the BCS states are a combination of the empty
and doubly occupied states, the induced superconducting or-
der becomes suppressed as the Coulomb interactions become
increasingly influential.

A further increase of the Coulomb interaction strength, U ,
leads to the superconducting order parameter changing sign
at the critical interaction energy Uc. At this transition point,
the ground state of the molecule changes from a doublet
(U < Uc) to a singlet (U > Uc) state. The discontinuity of
the induced order parameter at U = Uc reflects the change
in the degeneracy of the ground state when it undergoes a
transition from a doublet to a singlet state. In the context
of the Josephson junction, this discontinuity is related to the
so-called 0-π transition. One important thing to notice is that
for Coulomb interactions that are weaker than the critical
energy Uc, the induced superconducting order has the same
phase as the substrate, whereas it is phase-shifted by π in the
large-U limit. While the order parameter remains negative for
U > Uc, its magnitude decreases.

Next, we include a finite exchange interaction, Jex �= 0.
Previously, in the bound state analysis of the effective model,
Eq. (2), it was shown that the critical energy Uc decreases
in the presence of a finite exchange interaction, irrespective
of being ferro- and antiferromagnetic. Here, our numerical
results corroborate this conclusion, which can be seen in
Fig. 2. Specifically, the sign change of the induced supercon-
ducting order parameter shifts to a lower U for increasing
|Jex|. The value of Uc reduces much faster in the case of
positive exchange interaction compared to the negative value
of the exchange interaction. The core spin (S) and the orbital

spin (s = 1/2) have eigenstates that can be categorized as a
triplet and a singlet, with corresponding energies JexS/2 and
−Jex(S + 1)/2, respectively, in the absence of the substrate.
From this, it is evident that the ground-state energy decreases
faster when Jex is positive. This makes the reduction in Uc

larger when Jex > 0. Near the transition point, U � Uc, the
induced superconducting order parameter is strongly renor-
malized by the finite exchange interaction. The absolute value
of the order parameter is reduced compared to the case when
Jex is zero.

B. Bound states and spectral weights

The dimensions of the Hilbert space of the Wilson chain
increases by a factor of 4 for each added site. Therefore, we
discard higher energy states after a few iterations to keep the
size of the Hamiltonian manageable. The maximum number
of states that we retain is of the order of 5000. After a
sufficient number of NRG iterations (N = 40), we obtain all
pertinent many-body states. This includes a continuum of
states above the superconducting gap and few states below.
The states within the superconducting gap are known as
Andreev [17], YSR states [18–20], and we shall use the latter
nomenclature for the remainder of this article. In Figs. 3(a)–
3(e), the YSR states are plotted as a function of the Coulomb
energy U of the molecule level for various values of the
exchange interaction Jex. Here, the on-site energy of the
molecule is εd = −U/2, which is the symmetric Anderson
model. In this case, the single-particle spectrum of the system
is particle-hole-symmetric. There exists a negative energy
YSR state for each positive energy YSR state (not shown in
this figure). By turning off the exchange interaction, that is,
setting Jex = 0, the model is reduced to an Anderson model
with a superconducting reservoir. The associated positive
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energy YSR state for this case is shown in Fig. 3(c). It
can be seen that there is only one bound state, as expected
under degenerate conditions, emerging near the edge of the
superconducting gap for small values of U . The doublet state
is the ground state and the singlet state becomes the first
excited state for lower Coulomb energy. With increasing U ,
the bound state shifts into the gap, coinciding with the Fermi
level (Eb − EF = 0) at the critical energy U = Uc. The ground
state of the molecule changes from a doublet to a singlet state
at this critical energy (Uc). For Coulomb repulsion energies
U > Uc, the bound state energy shifts away from the Fermi
level. At larger U , the singlet state is the ground state and
the doublet state is the first excited state. In the metallic
system, the Kondo temperature is the only energy scale of the
system and the ground state is the Kondo singlet state. By
contrast, in the presence of superconductivity, �sc becomes
a second energy scale of the system. The BCS state of the
superconductor and Kondo singlet state compete, giving rise
to the singlet to doublet transition.

In our previous discussion of the effective model, Eq. (2),
we argued that a large superconducting order parameter
(�sc → ∞), accompanied by a finite exchange interaction
(Jex), splits the singly occupied states. The result is also valid
for finite �sc, however it is slightly modified to involve a
lifting of the (2S + 1)-fold degeneracy of the Kondo singlet.
This (2S + 1)-fold degeneracy originates from the core spin
(S) in the absence of the interaction between the core spin
and the molecular orbital. Due to internal spin excitations
in the presence of the exchange iteration, new states emerge
within the superconducting gap, as shown in Fig. 3. Due to
finite exchange interaction, three low-energy states arise (one
doublet state and two singlet states). At zero temperature,
one of these states becomes the ground state whereas the
two other states become higher energy excited states. These
two higher energy states are the two YSR states that appear
in the positive part of the spectrum, both for positive and
negative values of Jex. These two states arise from transitions
between the doublet and singlet states; see Fig. 1(b). One of
the bound state energies coincides with the Fermi energy at
the critical Coulomb energy U = Uc. One important thing to
notice here is that Uc always reduces, both for ferromagnetic
and antiferromagnetic exchange interaction. The energy of
the second bound state remains finite for all values of U .
The energy of this bound state first decreases with U , has
a minimum at U = Uc, and increases again for increasing
U . This state appears because of the transition from the
doublet states to a higher energy singlet state for U < Uc.
For U > Uc, however, the YSR state emerges from singlet to
singlet transitions. The energy of this YSR state is indicated as
filled and empty hexagons in Figs. 3(a), 3(b), 3(d), and 3(e),
respectively. The energy difference between the two singlet
states increases with the absolute value of Jex. As a result, the
energy of this YSR state (empty hexagon) steadily increases
with |Jex| for U > Uc. With large enough |Jex| compared to
�sc, this bound state merges with the continuum states above
the superconducting gap.

Next, we make a connection with experiments through a
discussion of the single-particle spectrum of the system. This
can be measured in experiments, for instance using scanning
tunneling microscopy. The conductance thus measured is

proportional to the local density of electron states of the single
orbital. In the zero-temperature limit, the local density of
electron states contains two contributions, one from the states
within the superconducting gap and the other from the states
outside the superconducting gap. Formally, the local density
of states can be written A(ω) = A1(|ω| < �sc) + A2(|ω| >

�sc), A1(ω) = ∑
i w

i
bδ(ω − Ei

b). In this article, we are only
interested in the in-gap part of the spectrum (A1), and we
will not discuss the continuum part of the spectrum (A2).
The operator dσ is updated after each NRG iteration, and
we extract the matrix elements between the ground state and
excited state within the SC gap after NRG iterations are
finished. This square of this matrix element gives the spectral
weight (wi

b).
The spectral weights and corresponding energies of the

in-gap states are plotted in Fig. 3 for both positive and negative
values of the exchange interaction Jex. Here, the on-site energy
of the orbital is εd = −U/2, which is the symmetric Anderson
model, imposing particle-hole symmetry in the spectrum such
that the bound states with positive and negative energies have
equal weights. Previously, it has been shown that the spectral
weight is discontinuous at U = Uc [27]. Due to the presence
of the exchange interaction, two YSR states with finite weight
arise in the spectrum for U < Uc, which is consistent with
the large �sc model (see the arrows in Fig. 1 for smaller
U ). The two bound states arise from transitions between the
doublet ground state and the two singlet states. These two
YSR states reduce to one when Jex is zero. It can be seen that
both weights increase with U , and that the weight of the state
with the higher energy drops to zero at U = Uc, as indicated
by empty symbols in Fig. 3. The weight of the other state
shows a discontinuity at U = Uc. The size of the jump at the
discontinuity depends on the sign of the exchange interaction
Jex, which appears more prominently for antiferromagnetic
exchange interaction. To the right of the transition point, that
is, U > Uc, the spectral weights gradually decrease with in-
creasing U . The zero of spectral weight can be explained from
the symmetry arguments. The presence of superconductivity
breaks the charge symmetry of the problem, but the spin is
still a converse quantity. We can use Sz of the total system
to characterize the different many-body states of the system
including the ground state [34]. The single-particle transitions
from the ground state to a higher energy state should have a
difference of Sz that is 1/2. These transitions gave rise to the
YSR states. If the difference of Sz between a ground state and
an excited state is not equal to 1/2, then the spectral weight of
those states will be zero.

We summarize the discussion of the single-particle spec-
trum by noting that below the critical point, U < Uc, two pairs
of YSR states emerge in the superconducting gap whereas
only one pair is observed above, U > Uc. This is one im-
portant result of this article. In the molecular setup, it should
be possible to vary the ratio U/�, and we expect that such
variations should enable observations of transitions between
two pairs and one pair of YSR states.

C. Away from particle-hole symmetry

Even though the symmetric Anderson model is most often
used in the existing theoretical literature, such asymmetry is
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FIG. 4. Bound state energies of the molecule for different value
of on-site energy of the orbital away from the particle-hole symmet-
ric point for both ferromagnetic Jex = −0.2 (a) and antiferromag-
netic Jex = 0.2 (b) at a fixed U = 0.10.

most likely not present in a realistic experimental setup. Apart
from this, it is also possible to effectively shift the on-site en-
ergy by applying a gate voltage to the system. Thus motivated,
we change the on-site energy of the molecular orbital from
the symmetric value, noticing that the particle-hole symmetry
is removed for εd �= −U/2. Therefore, we cannot expect the
positive and negative half of the spectrum to be symmetric. In
Fig. 4, we plot the energies and spectral weights of the YSR
bound states both for positive and negative energies. Here, the
Coulomb interaction is fixed at U = 0.10 while varying the
on-site energy of the orbital for both ferromagnetic [Fig. 4(a)]
and antiferromagnetic [Fig. 4(b)] exchange interactions. It can
be noticed that for both ferromagnetic and antiferromagnetic
exchange interactions, the molecular ground state remains in
the doublet regime for small negative on-site energy, which
leads to the emergence of two pairs of YSR states. While the
YSR states in the doublet phase coincide with the edges of
the superconducting gap at ε/U = 0, they are shifted inside
the gap with increasing −εd/U , and eventually transition into
the singlet phase where only a single pair of YSR states with
finite weight exists. We have chosen the Coulomb interaction
in such a way that at the symmetric points (εd = −U/2) we
are in the singlet phase. With a further increase of −εd/U ,
the system reenters the doublet phase where two YSR states
reappear. This reentrance of the phases can be attributed to
the nonlinear behavior of the doublet ground-state energy as a
function of on-site energy, and it can be understood in terms
of the large �sc effective model. The energies of the effective
model, Eq. (2), in the absence of the exchange interaction
are εd and εd + U/2 ±

√
�̃2 + (εd + U/2)2. While the former

energy refers to the singlet state, depending linearly on εd , the
latter energies refer to the doublet states, depending nonlin-
early on εd . From this observation, it is evident that the system
is in the doublet phase for small εd and in the singlet phase for
intermediate values of εd . It is also possible to always remain
in the doublet phase by varying U and �̃ such that the ratio
U/�̃ remains nearly unchanged.
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FIG. 5. Bound state energies and the color-coded spectral
weights of the molecule for different values of an anisotropic field
for U = 0.07 (a,b), 0.10 (c,d), Jex/�sc = −0.2 (a,c), 0.2 (b,d). Here
we have only shown the states with finite spectral weight.

D. Effect of the anisotropy field

Large spin molecules are always subject to more or less
strong anisotropic fields due to spatial structure and the intrin-
sic spin-orbit coupling of the substrate. To describe a physical
molecular system, we add a uniaxial anisotropy term to the
core-spin Hamiltonian, that is, HS = DS2

z . The anisotropy
field lifts the degeneracy of the singlet and doublet states,
creating possibilities for the emergence of additional YSR
states inside the superconducting gap. We also notice that
positive (negative) values of the parameter D refer to uniax-
ial anisotropies, which, respectively, lead to a low- (high-)
spin ground state. In Fig. 5, we plot the evolution of the
YSR states for various combinations of the Coulomb and
exchange interactions. We have chosen U = 0.07 and 0.10,
such that the ground state is in the doublet and singlet phase,
respectively, both for ferromagnetic and antiferromagnetic
exchange interactions. In the presence of exchange interaction
and an anisotropic field, many more states appear within the
gap. But not all of them have nonzero single-particle spectral
weight. The states with zero spectral weight are not shown in
the figures.

First, consider the lower Coulomb interaction, U = 0.07
[Figs. 5(a) and 5(b)]. For ferromagnetic interaction [Fig. 5(a)],
the two YSR states of the doublet phase evolve into three
distinct YSR states for small negative values of the anisotropy
field D. For larger negative values of anisotropy parameter
D, however, one of these YSR states merges into the edge
of the superconducting gap, while the energies of the two
remaining YSR states remain almost constant. On the other
hand, for small positive values of the anisotropy parameter D,
two YSR states appear out of which one merges into the edge
of the superconducting gap as D increases. By contrast, for
antiferromagnetic exchange interaction the picture changes,
which can be viewed in Fig. 5(b) (U = 0.07 and Jex = 0.2).
At this value of U , the ground state is still in the doublet
phase, and in the absence of an anisotropic field we see two
YSR states. The higher-energy YSR state splits into two YSR
states for negative D, while it remains as a single YSR state
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for positive D. As was shown in Fig. 5(b), one of the YSR
states merges into the continuum states above �sc with an
increasing value of |D|. However, at D = 0 the lower-energy
YSR state does not split, and its energy increases and saturates
for increasing |D|. As a result, two YSR states for negative
values of D and one YSR state are visible in the positive half
of the spectrum.

Next we consider the case for larger Coulomb energy at
U = 0.10 in Figs. 5(c) and 5(d). We are now in the singlet
phase, and only one YSR state appears with finite weight
at D = 0. We have shown the evolution of YSR states for
negative values of Jex in Fig. 5(c). Here, a single YSR state
at D = 0 remains as a single YSR state for negative values
of D while it splits into two YSR states for positive values of
D. The energy difference between these two increases with D.
The YSR states of the molecule are shown in Fig. 5(d) for a
positive value of exchange interaction (Jex/�sc = 0.20). Here,
a single YSR state at D = 0 splits into two YSR states for both
positive and negative values of the anisotropic field.

To summarize the effect of the anisotropic field, we see
huge changes in the YSR states. The number of YSR states
increases due to internal spin excitations of the molecular
core spin for small values of the anisotropic field. With larger
values of the anisotropic field, some of the YSR state energies
move to higher energies and end up mixed up with the con-
tinuum of states above the superconducting gap. Depending
on the various experimental conditions and spatial structure
of the molecule and substrate, the actual values of U/�, Jex,
and D can be different. As a result, the number of visible YSR
states in a scanning tunneling microscopy experiment can be
different even for the same molecule.

V. SUMMARY AND CONCLUSION

In conclusion, we have considered the properties of YSR
states created from a magnetic molecule absorbed on the sur-
face of an s-wave superconductor. The molecule is modeled as
a single orbital and a core spin, coupled via an exchange inter-
action. The competition between the Kondo effect and super-
conductivity determines the nature of the many-body ground
state and the excited states of the molecule-superconductor
complex. Depending on the ratio between the energy scales
associated with the Kondo effect and superconductivity, the
ground state of the emerging YSR states can be either a singlet
or a doublet. The induced superconducting order parameters
on the molecule show a discontinuity and change sign at the

singlet-doublet transition point, related to the different ground
degeneracies of the singlet and doublet states. The exchange
interaction is a crucial ingredient of our system as it lifts the
degeneracy of the singlet state. As a result, two pairs of YSR
states appear. In general, however, in the singlet phase only
one of the pairs has finite spectral weight at zero temperature.
These results based on NRG simulations are qualitatively
consistent with analytical predictions made for large �sc in
terms of the effective model given in Eq. (2).

Furthermore, we studied the effects of the on-site energy in
a setup out of the particle-hole symmetry point (εd = −U/2).
Here, the Coulomb interaction is fixed such that the ground
state retains the singlet phase with one pair of YSR states
at the particle-hole symmetric point. At a critical point, the
system undergoes a transition into a doublet state ground state
as the on-site single electron energy εd is either increased
or decreased. One of the YSR states approaches the Fermi
energy at the transition point. This effect is predicted to be
measurable in experiments since the on-site energy can be
changed by means of a gate voltage.

Finally, we have investigated the effects of a uniaxial
anisotropy field, acting on the core spin, on the YSR states.
Here, both the exchange and Coulomb energies play crucial
roles to determine the number of YSR states. It is important
to notice that for small negative values of D [see Figs. 5(a)
and 5(c)], the number of YSR states changes from three to
one. Hence, keeping the values of the exchange interaction,
Jex, and the anisotropy, D, small and negative, a continuous
variation of U/� should enable the observation of a change
in the number of YSR states. Excitation spectra of MnPc
resolved using scanning tunneling microscopy [34] also show
similar changes in the properties of the YSR states. The
spectral weights of the individual YSR states, moreover, show
discontinuous changes across the phase transition. Future
studies should involve investigations of finite temperatures
and magnetic-field effects in the state emerging both inside
and outside of the gap.
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