
PHYSICAL REVIEW B 102, 085135 (2020)

Loop currents in ladder cuprates: A dynamical mean field theory study
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We investigate the possibility of spontaneous loop currents in the two-leg ladder cuprate Sr14−xCaxCu24O41

by applying cluster dynamical mean field theory (CDMFT) to a seven-band Hubbard model for that compound,
with an exact diagonalization solver. We sample several values of the local interaction Ud and of the Cu-O energy
difference Epd , by applying an external field that induces loop currents. We find no instance of spontaneous loop
currents once the external field is brought to zero.
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I. INTRODUCTION

One of the most interesting features of cuprate super-
conductors is the pseudogap phenomenon, which is widely
believed to be a key to understanding the mechanism of
high-temperature superconductivity (HTSC) [1]. However,
the origin of the pseudogap is still a matter of debate and
the possibility of a spontaneously broken symmetry at low
temperature within that state has not been excluded [2].
One important possibility is the loop currents (LC) phase,
proposed by Varma [3–5], in which equilibrium orbital cur-
rents are circulating along the O-Cu-O plaquette within
each unit cell, thus breaking time-reversal symmetry while
preserving translational symmetry. Varma’s proposal has
stimulated many experimental searches for the signature
of microscopic orbital magnetic moments. Polarized neu-
tron diffraction (PND) experiments have lent support to
the existence of an intra-unit-cell (IUC) magnetic order on
CuO2 planes [6–8] or involving apical oxygens [9]. By con-
trast, nuclear magnetic resonance (NMR) [10–12] and muon
spin rotation (μSR) [13–16] have not found evidence of
magnetic order. Varma’s hypothesis has also been investi-
gated theoretically, with numerical methods and models of-
ten used in the study of strongly correlated electrons, such
as exact diagonalizations (ED) [17–19], variational Monte
Carlo (VMC) [20,21], and the variational cluster approx-
imation (VCA) [22]. For the three-band Hubbard model
with realistic parameters for high-Tc cuprates, the results
of these different methods are consistent: the LC phase
is not stabilized as a ground state in the thermodynamic
limit.

The existence of LCs was also investigated theoretically
in the two-leg ladder, which is simpler and interpolates be-
tween one- and two-dimensional systems. By using the highly
accurate density-matrix renormalization group (DMRG) tech-
nique, evidence for the existence of a “staggered-flux” phase
was found for the two-leg ladder with long-range interaction
both at and away from half-filling [23,24]. Analytical studies
using a bosonization/renormalization group (RG) method

also found stable regions of LCs for weak interactions [25,26].
However, a DMRG study on two-leg CuO ladders has found
negative evidence towards the LC phase [27,28].

Recently, using polarized neutron diffraction, Bounoua
et al. [29] discovered the existence of a new kind
of short-range magnetism in the two-leg ladder cuprate
Sr14−xCaxCu24O41(SCCO-x) for two Ca contents (x = 5 and
8). The measured magnetic structure factor can be reproduced
by assuming a set of counter-propagating LCs around each Cu
atom. This raises the possibility of a LC phase in the ladder
cuprate. In this paper, we try to verify this for x = 8 using
cluster dynamical mean field theory (CDMFT) applied on a
multiband Hubbard model.

II. MODEL AND METHOD

A. Hamiltonian

The structure of SCCO-x consists of an alternating stack of
1D CuO2 chains and quasi-1D Cu2O3 two-leg ladder layers.
We will focus of the ladder layer only and use a simplified
description in terms of seven orbitals per unit cell: two Cu
dx2−y2 orbitals (in blue in Fig. 1), two O px and three O
py orbitals, respectively, in green and red on the right panel
of Fig. 1. The hopping amplitudes will be chosen to be the
same as the ones often used in the three-band model for
the cuprates, except that two of the oxygen sites in the unit
cell involve both px and py orbitals, owing to the slightly
different geometry of the model compared to the cuprates. The
noninteracting Hamiltonian has the form

H0 =
∑
k,σ

tkC†
k,σCk,σ , (1)

where Ck,σ stands for an array of annihilation operators
associated with the seven orbitals per unit cell, as labeled
on Fig. 1, and where the momentum-dependent matrix tk is
shown in Eq. (2) below. That matrix is Hermitian (the upper
triangle is not shown). The hopping amplitude between Cu
and O orbitals is tpd and the energy difference between O
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FIG. 1. (Left) Cu2O3 lattice. Cu atoms are in blue, oxygen atoms in red. The expected loop currents for SCCO-8 are shown by arrows and
the associated fluxes of opposite signs are indicated by blue and red triangles. Unit cells are delimited in yellow and the lattice vectors e1 and
e2 are shown. (Right) Seven orbitals in a given unit cell, with their labels as they appear in Eq. (2).

and Cu orbitals is Epd . We assume for simplicity that the
diagonal hopping amplitude tpp between oxygens is the same
for px − px and px − py bonds. We will set tpp = 1 and tpd =
1.5 throughout (tpp sets the energy scale). Finally, we will

specifically investigate the loop current structure illustrated on
Fig. 1 which, according to Ref. [29], is appropriate for x = 8,
corresponding to a doping of ∼17%. We will, however, cover
a fairly wide doping range around that value.

tk = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0 0

−tpd tpd −Epd

tpd e−ik·e2 0 tpp(1 + e−ik·e1 ) −Epd

0 tpd (−1 + e−ik·e1 ) tpp(1 − e−ik·e1 ) 0 −Epd

0 −tpd eik·e2 0 tpp(1 + eik·e1 )eik·e2 tpp(1 − eik·e1 )eik·e2 −Epd

tpd (1 − eik·e1 ) 0 tpp(1 − eik·e1 ) tpp(1 − eik·e1 )eik·e2 0 tpp(1 + eik·e1 )eik·e2 −Epd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

To this noninteracting Hamiltonian we add Hubbard and
extended interactions on the Cu and O atoms, so that the
complete Hamiltonian reads

H = H0 + Ud

∑
i∈Cu

nd
i↑nd

i↓ + Up

∑
j∈O

np
j↑np

j↓

+Vpd

∑
〈i, j〉,i∈Cu

nd
i np

j − μN̂tot, (3)

where the sum over i runs over Cu sites, the sum over j
runs over the five O orbitals in each unit cell, 〈i, j〉 stands
for nearest-neighbor sites (O-Cu), μ is the chemical potential,
and N̂tot the total number of electrons in all the orbitals
considered. Ud and Up are the Coulomb repulsion of two
holes sitting on the same copper orbital or the same oxygen
orbital, respectively. Vpd is the Coulomb interaction between
nearest-neighbor Cu and O orbitals.

B. Impurity model

In order to reveal loop currents possibly arising in model
(3), we use cluster dynamical mean-field theory (CDMFT)
[30–33] with an exact diagonalization solver at zero tempera-

ture (or ED-CDMFT). In CDMFT, the infinite lattice is tiled
into identical units, or clusters, each of which is then coupled
to a bath of uncorrelated, auxiliary orbitals. The parameters
describing this bath (energy levels, hybridization, etc.) are
then found by imposing a self-consistency condition.

In this work, the cluster consists of a single unit cell (as
shown on the right panel of Fig. 1), which is coupled to a
bath of four uncorrelated orbitals. The Cu orbitals being the
most correlated (because Ud is considerably larger than Up),
we choose a simplified bath parametrization in which the bath
orbitals are hybridized with the Cu orbitals only, even though
Up �= 0, as shown on Fig. 2. The corresponding Anderson
impurity model (AIM) Hamiltonian is

Himp = Hc +
∑
i,r

θir (c†
i ar + H.c.) +

∑
r

εra†
r ar , (4)

where Hc is the Hamiltonian (3), but restricted to a single clus-
ter; cluster orbitals are labeled by the index i and uncorrelated
(bath) orbitals by the index r. θir is a complex hybridization
parameter between cluster orbital i and bath orbital r, and εr

is the energy level of bath orbital r. All these parameters are
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FIG. 2. Structure of the hybridization between the four bath
orbitals of the Anderson impurity model and the two Cu orbitals of
the cluster (for simplicity, the oxygen orbitals are not shown, even
though they are part of the impurity model).

assumed to be spin independent, as we are not looking for
magnetic ordering.

In ED-CDMFT, the bath parameters θir and εr are de-
termined by an approximate self-consistent procedure, as
proposed initially in Ref. [34], that goes as follows: (i) initial
values {εr, θir} are chosen on the first iteration. (ii) For each
iteration, the AIM (4) is solved, i.e., the cluster Green function
Gc(ω) is computed using the Lanczos method. The latter can
be expressed as

Gc(ω)−1 = ω − tc − �(ω) − �c(ω), (5)

where tc is the one-body matrix in the cluster part of the im-
purity Hamiltonian Himp, �c(ω) is the associated self-energy
and �(ω) is the bath hybridization matrix:

�i j (ω) =
∑

r

θirθ
∗
jr

ω − εr
. (6)

(iii) The bath parameters are updated, by minimizing the
distance function:

d (ε, θ) =
∑
iωn

W (iωn)[Gc(iωn)−1 − Ḡ(iωn)−1], (7)

where Ḡ(ω), the projected Green function, is defined as

Ḡ(ω) = 1

N

∑
k

G(k, ω), G(k, ω) = 1

ω − tk − �c(ω)
.

(8)
In the above, tk is the one-body Hamiltonian (2) and N is the
(nearly infinite) number of sites. The matrices in the above
are 7 × 7, for each spin projection. Essentially, Ḡ(ω) is the
local Green function obtained by carrying the self-energy
�c(ω) to the whole lattice. Ideally, Ḡ(ω) should coincide with
the impurity Green function Gc(ω), but the finite number of
bath parameters does not allow for this correspondence at all
frequencies, and so a distance function d (εr, θir ) is defined,
with emphasis on low frequencies along the imaginary axis.
The weight function W (iωn) is where the method has some
arbitrariness; in this work W (iωn) is taken to be a constant
for all Matsubara frequencies lower than a cutoff ωc = 2tpp,
with a fictitious temperature β−1 = tpp/50. (iv) We go back
to step (ii) and iterate until the bath parameters or the bath
hybridization function �(ω) stop varying within some preset
tolerance.

A comment on the extended interaction HV [the Vpd term
in Eq. (3)]. It is split into two: HV = H (c)

V + H (ic)
V . The first

term contains the Cu-O bonds located within the clusters and
is included in the impurity Hamiltonian. The second term
contains the bonds located across clusters and is treated in
the Hartree approximation, as explained in Ref. [35]. The
self-consistent Hartree procedure is carried out at the same
time as the DMFT iterations and typically converges faster
than the bath parameters themselves.

III. RESULTS AND DISCUSSION

In order to probe the possible existence of loop currents
in model (3), we first need to define an operator representing
them. We selected the following current loop operator, defined
within the unit cell and following the arrows shown on the
right panel of Fig. 1:

Î = i(c†
1c7 + c†

7c3 + c†
3c5 + c†

5c2 + c†
2c3 + c†

3c1) + H.c. (9)

We then impose an external field I proportional to this opera-
tor on the system, i.e., we replace Hamiltonian (3) by H + I Î .
This external field induces a nonzero expectation value 〈Î〉
on the impurity model. We then reduce this external field to
zero through a sequence of values (see Fig. 3) and monitor
the expectation value 〈Î〉. If spontaneous currents were pos-
sible, a nonzero value of 〈Î〉 would persist down to I = 0,
which would indicate a spontaneous breaking of time reversal
symmetry (TRS). This is impossible if the hybridization θir is
purely real. One can always require the hybridization param-
eter θ1r to be real, because of an arbitrariness in the phase of
the bath annihilation operator arσ . This being done, the phase
of the other hybridization θ2r is determined by the CDMFT
procedure. The complex-valued character of θ2r is a necessary
(but not sufficient) condition for a broken TRS state.

We have carried out a series of CDMFT computations
on model (3) with band parameters tpp = 1 and tpd = 1.5,
Up = 3, Vpd = 1, and several values of Epd (0, 2, 4, 7), Ud

(6, 8, 10, 14), and chemical potential. In all cases, an external
current field I was applied sequentially (I = 0.2, 0.1, 0.05,
0.01 and 0.0) in order to maximize the chances of finding a
spontaneous current. In all cases, no such current was found:
〈Î〉 = 0, within numerical error (10−6). Plots of 〈Î〉 versus the
electron density nc on the impurity (corresponding to a few
values of the chemical potential μ) are shown on Fig. 3. In
each panel, the different curves correspond to different values
of the external current field I , down to I = 0 for the null curve.
A few sample values of Ud and Epd were chosen for the figure.
Another series of computations was carried out with Vpd = 0
(not shown), with the same conclusions.

In Fig. 1, another current loop may be defined, that strad-
dles four different unit cells, meeting at its center (dotted line
on the figure). An operator Î ′ exists for this current loop,
except that it is defined on the lattice model only, not on the
impurity. Nevertheless, it is possible to formally compute the
average of such an operator, from the lattice Green function
G(k, ω) of Eq. (8). We have checked that this average too is
identically zero in the limit of zero external field.

We have also checked that our conclusions are unchanged
if we add a sizable second-neighbor O-O hopping term
t ′
pp = −1. This hopping was deemed important to detect loop
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FIG. 3. Expectation value 〈Î〉 of the local current operator as a function of electron density for several values of the external field I , for
several values of Ud and Epd . In all cases, tpd = 1.5, tpp = 1, Up = 3, and Vpd = 1. In the absence of external field (I = 0), the loop current 〈Î〉
always vanishes.

currents in Ref. [21]. In our work, such a coupling does not
affect the impurity model, but affects the CDMFT solution
through the self-consistency solution.

Even though we are bound to limit ourselves to a sampling
of model parameters, we are strongly inclined to conclude
that spontaneous orbital currents do not occur in the model
we used to describe Sr14−xCaxCu24O41. If the results of
Ref. [29] are truly the signature of loop currents, the source
of the discrepancy has to be found either in the model itself,
or in the simple CDMFT treatment we have put in place.
We have chosen an impurity model that contains a pair of
triangular loops within the cluster, so as not to rely only on
the measurement of lattice-based operators (as opposed to
impurity-based operators). Of course the bath system itself
is limited in size, but this is necessary in order to keep the
problem numerically manageable. Increasing the number of

bath orbitals would in general lead to better accuracy, but
would not, from experience, change the nature of the ground
state. Quantum Monte Carlo studies are impossible here,
because of the sign problem, which becomes a phase problem
for complex-valued Hamiltonians. In short, we do not believe
that incremental improvements in the DMFT treatment of this
problem would lead to different conclusions.
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