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Influence of short-range four-fermion interactions on quadratic and cubic nodal-line fermion systems is studied
by renormalization group theory. It is found that arbitrarily weak four-fermion interaction could drive quadratic
or cubic nodal-line fermion system to a new phase. According to the initial conditions and value of fermion flavor,
the system may appear three kinds of instabilities. First, quadratic or cubic nodal line is split into conventional
nodal lines, thus the system becomes nodal-line semimetal. Second, finite excitonic gap is generated, and the
system becomes an excitonic insulator. Third, the system is driven into superconducting phase. Thus quadratic
and cubic nodal line fermion systems are rare strong correlated fermion systems in three dimensions under the
influence of four-fermion interactions. These theoretical results may be verified in the candidates for quadratic
and cubic nodal-line fermion systems.
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I. INTRODUCTION

Study about topological semimetals (SMs) is one of the
most important fields of modern condensed matter physics
[1–15]. On the one hand, some SMs have wide potential
industrial applications due to their fantastic properties, such as
large thermoelectric power [16,17]. On the other hand, some
SMs provide a platform to verify certain important concepts
in high energy physics, due to that their low-energy fermion
excitations resemble the elementary particles [1–15].

According to energy dispersion of the fermion excitations
and topological property of the system, SMs can be classi-
fied as Dirac SM (DSM), Weyl SM (WSM), multi-WSMs,
semi-DSM, Luttinger SM, nodal-line SM (NLSM), etc. [9].
Graphene is a prototypical two dimensional (2D) DSM.
Angle-resolved photoemission spectroscopy (ARPES) exper-
iments have confirmed that Cd3As2 and Na3Bi are 3D DSM
[18,19], and TaAs, TaP, NbAs, NbP are WSMs [8,11,20,21].
NLSM has been realized in PbTaSe2, ZrSiS, ZrSiSe, HfSiS,
and TiB2 according to ARPES measurements [22–28].

In SMs, the dimension of Fermi surface is at least two
less than the dimension of the system. This characteristic is
different from conventional metals, in which the dimension
of Fermi surface is one less than the dimension of the system
[29]. In DSM, WSM, multi-WSMs, semi-DSM, and Luttinger
SM, the Fermi surface is composed by discrete points, where
conduction and valence bands touch each other in the Bril-
louin zone, whereas the Fermi surface of NLSM is a line in the
3D Brillouin zone. Due to the abovementioned characteristic

*Corresponding author: wliustc@theory.issp.ac.cn
†Corresponding author: zhangcj@hmfl.ac.cn

of SMs, the density of states (DOS) of SMs vanishes at the
Fermi level.

Influence of interactions on SMs is an important and
nontrivial question, which attracts much attentions [1,30–66].
Due to the vanishing DOS, short-range four-fermion interac-
tion is irrelevant in SM if it is weak, but may drive a quantum
phase transition (QPT) to a new phase if the interaction
strength is large enough [57–66]. There have been studies
on the effects of four-fermion interactions in SMs including
2D DSM [57,58], 3D DSM [59], WSM [60,61], multi-WSMs
[61], semi-DSM [62,63], Luttinger SM [64], and NLSM
[65–67]. These studies showed that the SMs may be driven
to different phases according to the types of four-fermion
interactions. Additionally, the influence of four-fermion in-
teractions is closely related to the fermion dispersion and
topological property of the system.

In NLSM, the fermion dispersion is linear within the x-y
plane and also linear along the z axis [47,48,65–70]. For
NLSM, DOS takes the form ρ(ω) ∼ ω, which vanishes at
the Fermi level, i.e., ρ(0) = 0. Roy has analyzed the possible
QPTs in NLSM under the influence of four-fermion interac-
tions [66].

Recently, Yu et al. proposed that quadratic and cubic
nodal-line fermion (NLF) systems could be realized in some
materials [71]. In these materials, the Fermi surface is also
a line in the 3D Brillouin zone, which is same as NLSM.
However, the fermion dispersion is quadratic (cubic) within
the x-y plane and also quadratic (cubic) along the z axis
[71,72]. Accordingly, DOS satisfies ρ(ω) ∼ ω0 in quadratic
NLF system, and ρ(ω) ∼ ω−1/3 in cubic NLF system. Thus
the influence of four-fermion interactions on quadratic and
cubic NLF systems could be substantially different from the
one in NLSM. This is an interesting and urgent question,
which needs comprehensive study.
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In this paper, we resolve this question through renor-
malization group (RG) theory [73]. We find that quadratic
and cubic NLF fermion systems are unstable to short-range
four-fermion interactions. We show that arbitrarily weak four-
fermion interaction could drive quadratic or cubic NLF system
to a new phase. According to the initial conditions and value
of fermion flavor, the system may appear three kinds of
instabilities. First, the quadratic or cubic nodal line is split into
conventional nodal-lines, and the system becomes a NLSM.
Second, finite excitonic gap is generated, then the system
becomes an excitonic insulator. Third, the system is driven
into a superconducting phase.

The rest of paper is structured as follows. The model is
presented in Sec. II. In Sec. III, we analyze the physical
meaning of various fermion bilinears, which may be generated
by the four-fermion interactions. We perform the mean-field
calculation in Sec. IV. In Sec. V, we show RG equations of the
model parameters and numerical results of the RG equations.
The behaviors of observable quantities in different phases are
discussed in Sec. VI. In Sec. VII, we discuss the role of
geometry of nodal line. The main results are summarized in
Sec. VIII. The detailed calculation and derivation for the RG
equations are given in Appendices.

II. MODEL

In Ref. [71], after performing a symmetry analysis over all
230 space groups for solid systems with spin-orbit coupling
and time-reversal symmetry, Yu et al. found that quadratic and
cubic nodal lines can be stabilized by crystalline symmetries.
For convenience, in Appendix A, we show lattice models for
quadratic and cubic NLF systems, and derive the low-energy
effective models. In the following, our analysis will focus on
the low-energy effective models directly.

The Hamiltonian density for free quadratic NLF system is
given by

Hq
0(k) = A

[(
k2

r − k2
z

)
σ1 + 2krkzσ2

]
, (1)

where kr = k⊥ − kF with k⊥ =
√

k2
x + k2

y . A is a model pa-

rameter. σ1,2,3 are the standard Pauli matrices. The energy
spectrum for quadratic NLF is

Eq(k) = ±A
(
k2

r + k2
z

)
. (2)

For simplicity, here we do not consider anisotropy of the
fermion dispersion along kr and kz. The qualitative conclu-
sions will not be changed if this anisotropy is incorporated.

The Hamiltonian density for cubic NLF system can be
written as

Hc
0(k) = B

[(
k3

r − 3krk2
z

)
σ1 + (

k3
z − 3kzk

2
r

)
σ2
]
, (3)

with B being a model parameter. The energy dispersion for
cubic NLF takes the form

Ec(k) = ±B
(
k2

r + k2
z

)3/2
. (4)

The Pauli matrices σi act on the sublattice space of free-
dom. Both the Hamiltonian densities Hq

0 and Hc
0 satisfy the

chiral symmetry {Hq,c
0 , σ3} = 0. Once a term H�3 = �3σ3

is generated, the fermions become gapped and the chiral
symmetry is broken [71].

We consider the four-fermion interactions described by the
action

Sψ4 = 1

N

3∑
i=0

λi

∫
dω1

2π

d3k1

(2π )3

dω2

2π

d3k2

(2π )3

dω3

2π

d3k3

(2π )3

×ψ†(ω1, k1)σiψ (ω2, k2)ψ†(ω3, k3)σi

×ψ (ω1 − ω2 + ω3, k1 − k2 + k3), (5)
where λi with i = 0, 1, 2, and 3 are the four-fermion cou-
pling parameters, and N is the fermion flavor. The fermion
flavor N represents the degeneracy of the real spin. In the
calculation, we take N as a general turning parameter. The
physical value of N is N = 2. σ0 is the identity matrix. In the
following, we are only interest in the case that the initial value
λi,0 satisfies λi,0 > 0, namely, the interaction is repulsive
initially.

III. PHYSICAL MEANING OF FERMION BILINEARS

Decoupling the four-fermion interactions, we could get
four different fermion bilinears ψ†σ0ψ , ψ†σ1ψ , ψ†σ2ψ , and
ψ†σ3ψ . The expectation values of these bilinears are given by

�0 = 〈ψ†σ0ψ〉, (6)

�1 = 〈ψ†σ1ψ〉, (7)

�2 = 〈ψ†σ2ψ〉, (8)

�3 = 〈ψ†σ3ψ〉. (9)

〈. . . 〉 represents taking mean value on the ground state of total
Hamiltonian. They have different physical meanings. If �0

becomes finite, the Fermi level is modified, and the Fermi
surface is changed from 1D nodal line to 2D tube, since �0

represents the chemical potential.
The original nodal line is gapless for (kr, kz ) = (0, 0). For

quadratic NLF system, if �1 becomes finite, the original nodal
line with quadratic dispersion is split into two conventional
nodal lines with linear dispersion. These two conventional
nodal lines are gapless for the cases

(kar, kaz ) = (0, (�1/A)1/2) (10)

and

(kbr, kbz ) = (0,−(�1/A)1/2). (11)

Around these two nodal lines, the fermion dispersion can be
written as

E = ±
√

4A�1
(
K2

r + K2
z

)
, (12)

where Kr and Kz are the momentum components relative to
the nodal lines.

For cubic NLF system, if �1 becomes finite, one cubic
nodal line, is split into three conventional nodal lines, which
are determined by

(kar, kaz ) = (−(�1/B)1/3, 0), (13)

(kbr, kbz ) =
(

1

2
(�1/B)1/3,

√
3

2
(�1/B)1/3

)
, (14)

(kcr, kcr ) =
(

1

2
(�1/B)1/3,−

√
3

2
(�1/B)1/3

)
. (15)
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FIG. 1. [(a) and (b)] Splitting of quadratic nodal line into conven-
tional nodal lines in the presence of �1 and �2, respectively. [(c) and
(d)] Splitting of cubic nodal line into conventional nodal lines in
the presence of �1 and �2, respectively. Red, magenta, and blue
lines correspond to quadratic, cubic, and conventional nodal lines,
respectively.

The energy dispersion around these three nodal lines can be
expressed as

E = ±
√

9B2/3�
4/3
1

(
K2

r + K2
z

)
. (16)

For quadratic NLF system, if �2 acquires finite value, one
quadratic nodal line is split into two conventional nodal lines,
which satisfy

(kar, kaz ) = ((�2/(2A))1/2,−(�2/(2A))1/2), (17)

(kbr, kbz ) = (−(�2/(2A))1/2, (�2/(2A))1/2). (18)

The energy dispersion of the fermions around these two nodal
lines reads as

E = ±
√

4A�2
(
K2

r + K2
z

)
. (19)

For cubic NLF system, if �2 becomes finite, one cubic
nodal line is split into three conventional nodal lines. The
corresponding conditions can be obtained through Eq. (13)–
(15) by employing k jz ↔ k jr with j = a, b, c and �1 → �2.
Around these three nodal lines, the fermion dispersion can be
expressed by Eq. (16) through utilizing �1 → �2. .

If �3 acquires finite value, the energy dispersions for
quadratic and cubic NLF systems can be written as

Eq,c(k,�3) = ±
√

E2
q,c(k) + �2

3, (20)

where Eq(k) and Ec(k) are given by Eqs. (2) and (4), re-
spectively. We can find that the fermion dispersion becomes
gapped once �3 becomes finite. Physically, it suggests that
the system is driven into excitonic insulating phase.

For convenience, we show the splitting of quadratic and
cubic nodal lines to conventional nodal lines in the presence
of �1 or �2 by the schematic diagrams in Fig. 1.

For a fermion system under the influence of four-fermion
interaction λ(ψ†	ψ )2, where 	 is a matrix, if the RG analysis
shows that the four-fermion coupling strength λ approaches
to infinity at a finite running parameter 
c, it indicates that the

system becomes unstable under the energy scale

�US = �e−
c , (21)

where � ia an energy cutoff. For this situation, it is usually
considered that a finite expectation value �	 = 〈ψ†	ψ〉 is
generated. The magnitude of �	 can be estimated through the
energy scale �US, i.e.,

�	 ∼ �US = �e−
c . (22)

This method has been usually adopted in the RG studies about
the influence of four-fermion interactions on various fermion
systems [57–66,74–77].

If the four-fermion coupling parameter flows to negative
infinity finally, we consider that the four-fermion interaction
becomes attractive in the low-energy regime. Accordingly, the
system is unstable to pairing in the particle-particle channel,
namely, the generation of superconducting gap.

IV. MEAN-FIELD ANALYSIS

Before performing the RG analysis, in this section, we
analyze the generation of various order parameters under
the influence of short-range four-fermion interactions through
mean-field method.

A. Quadratic NLF system

1. �1 = 〈ψ†σ1ψ〉
Considering �1 induced by the four-fermion interaction

λ1(ψ†σ1ψ )2, the fermion propagator in the Matsubara formal-
ism reads as

G(ωn, k) = 1

−iωn + Hq
k,�1

, (23)

where

Hq
k,�1

= [
A
(
k2

r − k2
z

)+ �1
]
σ1 + 2Akrkzσ2. (24)

The mean-field equation for �1 is given by

�1

λ1
= T

∑
ωn

∫
d3k

(2π )3
Tr[σ1G(ωn, k)]

= 2T
∫

d3k
(2π )3

[
A
(
k2

r − k2
z

)+ �1
]

×
∑
ωn

1

ω2
n + E2

k,�1

, (25)

where ωn = (2n + 1)πT with n being integers, and

Ek,�1 =
√

A2
(
k2

r + k2
z

)2 + 2A
(
k2

r − k2
z

)
�1 + �2

1. (26)

Performing the frequency summation, we get

�1 =
∫

d3k
(2π )3

[
A
(
k2

r − k2
z

)+ �1
] 1

Ek,�1

× tanh

(
Ek,�1

2T

)
. (27)
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Linearizing �1 in the vicinity of critical temperature Tc for the
phase transition, we obtain the equation for Tc

�1

λ1
= �1

∫
d3k

(2π )3

1

Eq(k)

×
⎧⎨
⎩
[

1 −
(
k2

r − k2
z

)2(
k2

r + k2
z

)2

]
tanh

(
Eq(k)

2Tc

)

+ Eq(k)

2Tc

1

cosh2
(

Eq (k)
2Tc

)
(
k2

r − k2
z

)2(
k2

r + k2
z

)2

⎫⎬
⎭. (28)

The equation can be further written as

1

λ1
= kF

4π

∫
dKK

1

AK2

[
tanh

(
AK2

2Tc

)

+ AK2

2Tc

1

cosh2
(

AK2

2Tc

)
]

= kF

8πA

[
ln

(
A�2

2Tc

)
tanh

(
A�2

2Tc

)
−
∫ A�2

2Tc

0
dx ln(x)

× 1

cosh2(x)
+ tanh

(
A�2

2Tc

)]
. (29)

If Tc 	 A�2, the equation becomes

1

λ1
≈ kF

8πA

[
ln

(
A�2

2Tc

)
−
∫ +∞

0
dx ln(x)

1

cosh2(x)
+ 1

]

= kF

8πA
ln

[(
A�2

Tc

)(
2eγ+1

π

)]
, (30)

where γ represents the Euler constant, and it satisfies γ ≈
0.577215. Thus Tc is given by

Tc = 2eγ+1

π
A�2e− kF

8λ1πA . (31)

2. �2 = 〈ψ†σ2ψ〉
Incorporating �2 induced by the four-fermion interaction

λ2(ψ†σ2ψ )2, after similar derivation shown in Sec. IV A 1, we
obtain the critical temperature for the phase transition as

Tc = 2eγ+1

π
A�2e− kF

8λ2πA . (32)

3. �3 = 〈ψ†σ3ψ〉
Considering �3 induced by the four-fermion interaction

λ3(ψ†σ3ψ )2, the fermion propagator in the Matsubara formal-
ism takes the form

G(ωn, k) = 1

−iωn + Hq
k,�3

, (33)

where

Hq
k,�3

= A
[(

k2
r − k2

z

)
σ1 + 2krkzσ2

]+ �3σ3. (34)

The mean-field equation for �3 is determined by

�3

λ3
= T

∑
ωn

∫
d3k

(2π )3
Tr[σ3G(ωn, k)]

= 2�3T
∫

d3k
(2π )3

∑
ωn

1

ω2
n + E2

k,�3

, (35)

where

Ek,�3 =
√

A2
(
k2

r + k2
z

)2 + �2
3. (36)

Carrying out the frequency summation, we obtain

�3

λ3
= �3

∫
d3k

(2π )3

1

Ek,�3

tanh

(
Ek,�3

2T

)
, (37)

which can be further written as

1

λ3
= kF

2π

∫ �

0
dKK

1√
A2K4 + �2

3

× tanh

⎛
⎝
√

A2K4 + �2
3

2T

⎞
⎠. (38)

Linearizing �3 in the vicinity of Tc yields

1

λ3
= kF

2π

∫ �

0
dKK

1

AK2
tanh

(
AK2

2Tc

)

= kF

4πA

[
ln

(
A�2

2Tc

)
tanh

(
A�2

2Tc

)

−
∫ A�2

2Tc

0
dx ln(x)

1

cosh2(x)

]
. (39)

If Tc 	 A�2, we have

1

λ3
≈ kF

4πA

[
ln

(
A�2

2Tc

)
−
∫ +∞

0
dx ln(x)

1

cosh2(x)

]

= kF

4πA
ln

[(
A�2

Tc

)(
2eγ

π

)]
. (40)

Namely,

Tc = 2eγ

π
A�2e− kF

4λ3πA . (41)

B. Cubic NLF system

1. �1 = 〈ψ†σ1ψ〉
Considering �1 generated by the four-fermion interaction

λ1(ψ†σ1ψ )2, the fermion propagator in Matsubara formalism
can be written as

G(ωn, k) = 1

−iωn + Hc
k,�1

, (42)

where

Hc
k,�1

= [
B
(
k3

r − 3krk2
z

)+ �1
]
σ1

+B
(
k3

z − 3kzk
2
r

)
σ2. (43)
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The mean-field equation for �1 takes the form

�1

λ1
= T

∑
ωn

∫
d3k

(2π )3
Tr[σ1G(ωn, k)]

= 2T
∫

d3k
(2π )3

[
B
(
k3

r − 3krk2
z

)+ �1
]

×
∑
ωn

1

ω2
n + E2

k,�1

, (44)

where

Ek,�1 =
√

B2
(
k2

r + k2
z

)3 + 2B
(
k3

r − 3krk2
z

)
�1 + �2

1. (45)

Carrying out the frequency summation gives to

�1

λ1
=
∫

d3k
(2π )3

[
B
(
k3

r − 3krk2
z

)+ �1
] 1

Ek,�1

× tanh

(
Ek,�1

2T

)
. (46)

Linearizing �1 in the vicinity of Tc, we find

�1

λ1
= �1

∫
d3k

(2π )3

1

Ec(k)

×
⎧⎨
⎩
[

1 −
(
k3

r − 3krk2
z

)2(
k2

r + k2
z

)3

]
tanh

(
Ec(k)

2Tc

)

+Ec(k)

2Tc

1

cosh2
(Ec (k)

2Tc

)
(
k3

r − 3krk2
z

)2(
k2

r + k2
z

)3

⎫⎬
⎭. (47)

This equation can be further expressed as

1

λ1
= kF

4π

∫ �

0
dKK

1

BK3
tanh

(
BK3

2Tc

)

= kF

12πB2/3(2Tc)1/3

⎡
⎣(−3)

1(
B�3

2Tc

)1/3 tanh

(
B�3

2Tc

)

+4
∫ B�3

2Tc

0
dx

1

x1/3

1

cosh2(x)

⎤
⎦. (48)

In the limit Tc 	 B�3, we get

1

λ1
≈ kF

12πB2/3(2Tc)1/3
4
∫ +∞

0
dx

1

x1/3

1

cosh2 (x)

= akF

3 · 21/3πB2/3T 1/3
c

, (49)

where

a =
∫ +∞

0
dx

1

x1/3

1

cosh2 (x)
≈ 1.43829. (50)

Accordingly, Tc can be expressed as

Tc =
(

aλ1kF

3 · 21/3πB2/3

)3

. (51)

2. �2 = 〈ψ†σ2ψ〉
Considering �2 induced by the four-fermion interaction

λ2(ψ†σ2ψ )2, similar to Sec. IV B 1, we obtain

Tc =
(

aλ2kF

3 · 21/3πB2/3

)3

. (52)

3. �3 = 〈ψ†σ3ψ〉
Incorporating �3 induced by the four-fermion interaction

λ3(ψ†σ3ψ )2, the fermion propagator in the Matsubara formal-
ism reads as

G(ωn, k) = 1

−iωn + Hc
k,�3

, (53)

where

Hc
k,�3

= B
[(

k3
r − 3krk2

z

)
σ1 + (

k3
z − 3kzk

2
r

)
σ2
]

+�3σ3. (54)

The mean-field equation for �3 is given by

�3

λ3
= T

∑
ωn

∫
d3k

(2π )3
Tr[σ3G0(ωn, k)]

= 2�3T
∫

d3k
(2π )3

∑
ωn

1

ω2
n + E2

k,�3

, (55)

where

Ek,�3 =
√

B2
(
k2

r + k2
z

)3 + �2
3. (56)

Performing the frequency summation, we get

�3

λ3
= �3

∫
d3k

(2π )3

1

Ek,�3

tanh

(
Ek,�3

2T

)
. (57)

The equation can be further written as

1

λ3
= kF

2π

∫ �

0
dKK

1√
B2K6 + �2

3

× tanh

⎛
⎝
√

B2K6 + �2
3

2T

⎞
⎠. (58)

Tc is determined by

1

λ3
= kF

2π

∫ �

0
dKK

1

BK3
tanh

(
BK3

2Tc

)

= kF

6πB2/3(2Tc)1/3

⎡
⎣(−3)

1(
B�3

2Tc

)1/3 tanh

(
B�3

2Tc

)

+3
∫ B�3

2Tc

0
dx

1

x1/3

1

cosh2 (x)

⎤
⎦. (59)

In the limit Tc 	 B�3, we obtain

1

λ3
≈ kF

6πB2/3(2Tc)1/3
3
∫ +∞

0
dx

1

x1/3

1

cosh2 (x)

= akF

24/3πB2/3T 1/3
c

, (60)
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which is equivalent to

Tc =
(

aλ3kF

24/3πB2/3

)3

. (61)

V. RENORMALIZATION GROUP ANALYSIS

In this section, we present the RG results of the influence
of four-fermion interactions on quadratic and cubic NLF
systems. The detailed derivation for the RG equations are
shown in Appendices.

A. Quadratic NLF

For quadratic NLF system in the presence of four-fermion
interactions, the RG equations for the coupling parameters are
given by

dλ0

d

= (λ0λ1 + λ0λ2)

1

N
, (62)

dλ1

d

=
[(

λ2
0 + λ2

2 + λ2
3 + λ0λ1 + 2λ1λ2 + λ1λ3

−2λ2λ3
) 1

N
+ λ2

1

]
, (63)

dλ2

d

=
[(

λ2
0 + λ2

1 + λ2
3 + λ0λ2 + 2λ1λ2 − 2λ1λ3

+λ2λ3
) 1

N
+ λ2

2

]
, (64)

dλ3

d

=
[(−2λ2

3 + 2λ0λ3 − 2λ1λ2 + 3λ1λ3 + 3λ2λ3
)

× 1

N
+ 2λ2

3

]
. (65)

The transformations kF
2πAλi → λi with i = 0, 1, 2, and 3

have been employed in the derivation of the RG equations.
We notice that λ0 is not generated if the initial value λ0,0 = 0.

If the initial value λ0,0 is finite, the flows of λ0, λ1, λ3,
λ0/λ1, λ0/|λ3|, λ1/|λ3| are shown in Fig. 2. As shown in
Figs. 2(a)–2(c), λ0, λ1 approach to infinity, and λ3 flows to
negative infinity at same finite energy scale. According to
Figs. 2(d)–2(f), λ0/λ1 and λ0/|λ3| approach to zero. Addi-
tionally, λ1/|λ3| flows to a constant smaller than 1 for N = 1,
but approaches to a constant larger than 1 for N � 2. λ1/λ2

is always equal to 1, which is not shown in Fig. 2. These
results indicate that arbitrarily weak four-fermion interaction
induces the system to be unstable. For N = 1, generation
of superconducting gap is the leading instability. However,
splitting of quadratic nodal line with generation of �1 or �2

is the subleading instability. For N � 2, splitting of quadratic
nodal line with generation of �1 or �2 becomes the leading
instability.

If the parameter λ1,0 takes finite value, the relations be-
tween λ1, λ2, λ3, λ1/λ2, λ1/|λ3|, λ2/|λ3| and running param-
eter 
 are shown in Fig. 3. λ0 always equals to zero, if only
λ1,0 is finite initially. We can find that λ1 always approaches
to infinity at some finite value 
c. As shown in Fig. 3(b),
λ2 flows from zero to infinity at the same 
c. According to
Fig. 3(c), λ3 is generated from zero and approaches to negative
infinity finally. As depicted in Figs. 3(d)–3(f), λ1/λ2 flows to

FIG. 2. Flows of λ0, λ1, λ3, λ0/λ1, λ0/|λ3|, and λ1/|λ3| in
quadratic NLF system. Blue, red, and green colors correspond to
λ0,0 = 0.1, 0.2, and 0.3, respectively. Solid, dashed, and dotted
lines stand for N = 1, 2, and 4, respectively.

1, and λ1/|λ3| and λ2/|λ3| flow to a constant smaller than 1 for
N = 1 but flow to a constant larger than 1 for N � 2. These
results represent that transition into superconducting phase is
the leading instability for N = 1, but generation of �1 or �2

and splitting of quadratic nodal line into conventional nodal
lines is the leading instability for N � 2.

If the parameter λ2,0 takes finite value, we will obtain
qualitatively similar results comparing the ones in the case
that only λ1,0 is finite.

If the initial value λ3,0 is finite, the flows of λ1, λ2,
λ3, λ1/λ2, λ1/λ3, λ2/λ3 are shown in Fig. 4. According to
Figs. 4(a)–4(c), λ3 approaches to infinity at a finite 
c, and λ1

and λ2 flow from zero and approach to infinity at the same

FIG. 3. Flows of λ1, λ2, λ3, λ1/λ2, λ1/|λ3|, and λ2/|λ3| in
quadratic NLF system. Blue, red, and green colors correspond to
λ1,0 = 0.1, 0.2, and 0.3, respectively. Solid, dashed, and dotted
lines stand for N = 1, 2, and 4, respectively.
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FIG. 4. Flows of λ1, λ2, λ3, λ1/λ2, λ1/λ3, and λ2/λ3 in quadratic
NLF system. Blue, red, and green colors correspond to λ3,0 =
0.1, 0.2, and 0.3, respectively. Solid, dashed, and dotted lines stand
for N = 1, 2, and 4, respectively.


c. As shown in Fig. 4(d), λ1/λ2 equals to 1. As displayed in
Figs. 4(e) and 4(f), λ1/λ3 and λ2/λ3 always flow to a constant
smaller than 1 for any fermion flavor N . It represents that
generation of excitonic gap is always the leading instability
for any fermion flavor, if only λ3,0 takes finite value.

If the initial values of two coupling parameters are finite,
the flows of λ0, λ1, λ2, λ3, λ0/|λ3|, λ1/λ2, λ1/|λ3|, and λ2/|λ3|
are displayed in Fig. 5. According to these results, we find that
the system could be driven to NLSM, excitonic insulator, or

FIG. 5. Flows of λ0, λ1, λ2, λ3 λ0/|λ3|, λ1/λ2, λ1/|λ3|, and
λ2/|λ3| in quadratic NLF system. Blue color corresponds to λ0,0 =
0.05 and λ1,0 = 0.05; red color corresponds to λ0,0 = 0.05 and
λ3,0 = 0.05; green color corresponds to λ1,0 = 0.05 and λ2,0 = 0.05;
black color corresponds to λ1,0 = 0.05 and λ3,0 = 0.05; solid and
dashed lines stand for N = 1 and N = 2, respectively.

superconducting phase, which is determined by the concrete
initial conditions and fermion flavor sensitively.

B. Cubic NLF

For cubic NLF system in the presence of four-fermion
interactions, the RG equations for the four-fermion coupling
parameters are given by

dλ0

d

= 1

3
λ0 + (λ1λ3 + λ2λ3)

1

N
, (66)

dλ1

d

= 1

3
λ1 +

[(−λ2
1 + λ0λ1 + λ0λ3 + λ1λ2 + λ1λ3

− 2λ2λ3
) 1

N
+ λ2

1

]
, (67)

dλ2

d

= 1

3
λ2 +

[(−λ2
2 + λ0λ2 + λ0λ3 + λ1λ2 − 2λ1λ3

+ λ2λ3
) 1

N
+ λ2

2

]
, (68)

dλ3

d

= 1

3
λ3 +

[(−2λ2
3 + λ0λ1 + λ0λ2 + 2λ0λ3 − 2λ1λ2

+ 2λ1λ3 + 2λ2λ3
) 1

N
+ 2λ2

3

]
. (69)

The transformations kF
2πB�

λi → λi with i = 0, 1, 2, and 3
have been utilized. One could find that one type of four-
fermion interaction can exist solely.

If only consider the four-fermion interaction λ0(ψ†σ0ψ )2,
RG equation for the coupling strength takes the form

dλ0

d

= 1

3
λ0. (70)

The solution is

λ0 = λ0,0e
1
3 
. (71)

It is easy to find that λ0 does not become divergent at a finite
energy scale, but only becomes divergent in the lowest energy
limit 
 → ∞, i.e., 
c → ∞. We believe that divergence of
four-fermion coupling strength at 
 → ∞ does not represent
the generation of a finite expectation value of order parameter.
Indeed, according to Eqs. (21) and (22), the energy scale
for the appearance of instability and the magnitude of order
parameter vanish if 
c → ∞.

If only the four-fermion interaction λ1(ψ†σ1ψ )2 is consid-
ered, the RG equation for λ1 is given by

dλ1

d

= 1

3
λ1 +

(
1 − 1

N

)
λ2

1. (72)

For the fermion flavor N = 1, the RG equation becomes

dλ1

d

= 1

3
λ1. (73)

The corresponding solution reads as

λ1 = λ1,0e
1
3 
, (74)

which becomes divergent in the lowest energy limit 
 → ∞.
In this case, divergence of λ1 does not indicate the generation
of long-range order parameter �1 = 〈ψ†σ1ψ〉.
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For the case N > 1, solving Eq. (72) yields

λ1 =
1
3λ1,0e

1
3 


1
3 + (

1 − 1
N

)
λ1,0

(
1 − e

1
3 

) . (75)

We find that λ1 becomes divergent at a critical value


1c = 3 ln

[
1 + 1

3
(
1 − 1

N

)
λ1,0

]
. (76)

This result implies that a finite expectation value �1 =
〈ψ†σ1ψ〉 is generated under the influence of four-fermion
interaction. The magnitude of �1 can be roughly estimated
by

�1 ∼ �e−
1c , (77)

where � is an energy cutoff.
Similarly, if only the four-fermion interaction λ2(ψ†σ2ψ )2

is considered, we could find that a finite expectation value
�2 = 〈ψ†σ2ψ〉 is generated for N > 1.

Considering only the four-fermion interaction
λ3(ψ†σ3ψ )2, the RG equation for the coupling strength
can be written as

dλ3

d

= 1

3
λ3 + 2

(
1 − 1

N

)
λ2

3. (78)

If N = 1, the RG equation becomes

dλ3

d

= 1

3
λ3. (79)

The corresponding solution is given by

λ3 = λ3,0e
1
3 
, (80)

which is divergent in the limit 
 → ∞. Thus, for N = 1, finite
expectation value �3 = 〈ψ†σ3ψ〉 should not be generated.

For N > 1, solving Eq. (78) gives rise to

λ3 =
1
3λ3,0e

1
3 


1
3 + 2

(
1 − 1

N

)
λ3,0

(
1 − e

1
3 

) . (81)

It is found that λ3 approaches to infinity when 
 → 
3c, where


3c = 3 ln

[
1 + 1

6
(
1 − 1

N

)
λ3,0

]
. (82)

Therefore, for N > 1, finite expectation value �3 should
be generated under the influence of four-fermion interaction
λ3(ψ†σ3ψ )2. The magnitude of �3 can be estimated by

�3 ∼ �e−
3c . (83)

A shown in above, if one type of four-fermion coupling is
considered and N = 1, long-range order is not generated in
cubic NLF system. Accordingly, the DOS takes the behavior
ρ(ω) ∼ ω−1/3, which is divergent in the limit ω → 0, and
compressibility takes the behavior Cv (T ) ∼ T −1/3, which is
divergent in the limit T → 0, as shown in the Sec. VI. We
notice that these characteristics are similar to ones in super-
metal state proposed by Isobe and Fu [78]. Indeed, as shown
in the paper by Isobe and Fu, in the supermetal state, none
long-range order appears, DOS becomes divergent in the limit

FIG. 6. Flows of λ0, λ1, λ2, λ3, |λ0|/λ3, λ1/|λ2|, λ1/λ3, and
|λ2|/λ3 in cubic NLF system. Blue color corresponds to λ0,0 = 0.08
and λ1,0 = 0.02; red color corresponds to λ0,0 = 0.05 and λ1,0 = 0.05;
green color corresponds to λ0,0 = 0.02 and λ1,0 = 0.08. Solid,
dashed, and dotted lines stand for N = 1, 2, and 4, respectively.

ω → 0, and compressibility becomes divergent in the limit
T → 0.

If the initial values of two coupling parameters are finite,
the flows of λ0, λ1, λ2, λ3, and the ratios between them are
shown in Figs. 6–8. We notice that the coupling parameters
which vanish initially are generated. The absolute values of

FIG. 7. Flows of λ0, λ1, λ2, λ3, |λ0|/|λ3| λ1/λ2, λ1/|λ3|, and
λ2/|λ3| in cubic NLF system. Blue color corresponds to λ1,0 = 0.08
and λ2,0 = 0.02; red color corresponds to λ1,0 = 0.05 and λ2,0 = 0.05;
green color corresponds to λ1,0 = 0.02 and λ2,0 = 0.08. Solid,
dashed, and dotted lines stand for N = 1, 2, and 4, respectively.
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FIG. 8. Flows of λ0, λ1, λ2, λ3, |λ0|/λ3, λ1/|λ2|, λ1/λ3, and
|λ2|/λ3 in cubic NLF system. Blue color corresponds to λ1,0 = 0.08
and λ3,0 = 0.02; red color corresponds to λ1,0 = 0.05 and λ3,0 = 0.05;
green color corresponds to λ1,0 = 0.02 and λ3,0 = 0.08. Solid,
dashed, and dotted lines stand for N = 1, 2, and 4, respectively.

λ0, λ1, λ2, and λ3 all approach to infinity at a finite RG running
parameter 
c. The ratios between the coupling parameters
in the limit 
 → 
c are determined by the initial conditions.
After checking these ratios, we find that the system would
become to NLSM, excitonic insulator, or superconducting
phase, according to the concrete initial conditions and the
value of N .

VI. OBSERVABLE QUANTITIES

For convenience, we compare the observable quantities in
different phases.

For conventional NLF system, the DOS satisfies

ρ(ω) = NkF |ω|
2πvF vz

, (84)

where vF and vz are the fermion velocities within the x-y plane
and along the z axis. The specific heat and compressibility
depend on temperature as

Cv (T ) = 9ζ (3)NkF

πvF vz
T 2, (85)

κ (T ) = 2 ln(2)NkF

πvF vz
T, (86)

where ζ (x) is the Riemann zeta function.
For quadratic and cubic NLF systems with an excitonic gap

�3, the retarded fermion propagator takes the form

Gret
q,c(ω, k) = 1

−(ω + iη) + Hq,c
0 (k) + �3σ3

, (87)

where η is infinitesimal. The spectral function is given by

Aq,c(ω, k) = 1

π
Tr
[
Im
[
Gret

q,c(ω, k)
]]

= 2|ω|δ(ω2 − (
E2

q,c(k) + �2
3

))
. (88)

The DOS can be written as

ρq,c(ω) = N
∫

d3k
(2π )3

Aq,c(ω, k)

≈ NkF

∫
dkrdkz

(2π )2
Aq,c(ω, k). (89)

Substituting Eq. (2) into Eqs. (88) and (89), we can get the
DOS for quadratic NLF system

ρq(ω) = NkF |ω|
4πA

√
ω2 − �2

3

θ (|ω| − |�3|), (90)

where θ (x) represents the Heaviside step function. Substitut-
ing Eq. (4) into Eqs. (88) and (89), the DOS for cubic NLF
system can be written as

ρc(ω) = NkF |ω|
6πB2/3

(
ω2 − �2

3

)2/3 θ (|ω| − |�3|). (91)

If �3 = 0, ρq and ρc become

ρq(ω) = NkF

4πA
(92)

and

ρc(ω) = NkF

6πB2/3|ω|1/3
, (93)

respectively.
For quadratic and cubic NLF systems with finite exci-

tonic gap �3 and finite chemical potential μ, the propaga-
tor of fermions in the Matsubara formalism can be writ-
ten as

Gq,c(ωn, k) = 1

−(iωn + μ) + Hq,c
0 (k) + �3σ3

= iωn + μ + Hq,c
0 (k) + �3σ3

(ωn − iμ)2 + E2
q,c(k) + �2

3

, (94)

where ωn = (2n + 1)πT with n being integers. The parameter
chemical potential μ is introduced to calculate the compress-
ibility subsequently. The free energy of the fermions is given
by

Ff (T, μ) = −2NT
∑
ωn

∫
d3k

(2π )3

× ln
[(

(ωn − iμ)2 + E ′2
q,c(k)

)1/2]
, (95)

where

E ′
q,c(k) =

√
E2

q,c(k) + �2
3. (96)

Carrying out the frequency summation, we obtain

Ff (T, μ) = −2N
∑
α=±1

∫
d3k

(2π )3

[
E ′

q,c(k)

+ T ln
(
1 + e− E ′

q,c (k)+αμ

T
)]

, (97)
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which is clearly divergent. In order to get a finite free energy,
we redefine Ff (T ) − Ff (0) as Ff (T ) and get

Ff (T, μ) = −2NT
∑
α=±1

∫
d3k

(2π )3
ln
(
1 + e− E ′

q,c (k)±αμ

T
)

≈ −2NT kF

∑
α=±1

∫
dkrdkz

(2π )2

× ln
(
1 + e− E ′

q,c (k)±αμ

T
)
. (98)

Taking the limit μ = 0, we have

Ff (T ) = −4NT kF

∫
dkrdkz

(2π )2
ln
(
1 + e− E ′

q,c (k)

T
)
. (99)

The specific heat is defined as

Cv (T ) = −T
∂2Ff (T )

∂T 2
. (100)

Substituting Eq. (2) into Eqs. (99) and (100), we find that for
quadratic NLF system, if �3 = 0, the specific heat reads as

Cv (T ) = πNkF

24A
T . (101)

If �3 is finite, the specific heat satisfies

Cv (T ) ≈ NkF

πA

�3
3

T 2
e− �3

T , (102)

in the limit T 	 �3. For cubic NLF system, substituting
Eq. (4) into Eqs. (99) and (100), if �3 = 0, we obtain

Cv (T ) = 20a1NT 2/3kF

9πB2/3
, (103)

where

a1 =
∫ +∞

0
dxx ln

(
1 + e−x3) ≈ 0.3547. (104)

For finite �3, we have

Cv (T ) ≈ NkF

πB2/3

�
8/3
3

T 2
e− �3

T , (105)

in the limit T 	 �3.
The compressibility is defined as

κ (T, μ) = −∂2Ff (T, μ)

∂μ2
. (106)

Substituting Eq. (98) into Eq. (106) and then taking μ = 0, we
can get the expressions of compressibility for quadratic and
cubic NLF systems. Concretely, for quadratic NLF system,
the compressibility is given by

κ (T ) = NkF

2πA
, (107)

in the case �3 = 0, and

κ (T ) ≈ NkF

πA

�2
3

T 2
e− �3

T , (108)

for finite �3 in the limit T 	 �3. For cubic NLF system, in
the case �3 = 0, the compressibility reads as

κ (T ) = 2a2NkF

πB2/3
T −1/3, (109)

where

a2 =
∫ +∞

0
dxx

ex3(
1 + ex3

)2 ≈ 0.1903. (110)

As shown in Eq. (109), the compressibility κ of cubic NLF
system is divergent in the limit T → 0. This singular behavior
of κ is closely related to the singular behavior of DOS ρ(ω) ∼
ω−1/3, which is divergent in the limit ω → 0. Divergence of
DOS at the Fermi level indicates that the influence of short-
range four-interaction would be remarkable. Indeed, as shown
in Sec. V B, in many cases, arbitrarily weak four-fermion
interactions could drive the system to become unstable to
a new phase. Thus the singular behavior of κ is indeed an
indication that the influence of four-fermion interactions is
important in cubic NLF system. For finite �3,

κ (T ) ≈ NkF

πB2/3

�
2/3
3

T
e− �3

T , (111)

in the limit T 	 �3.
In the RG analysis, the temperature can be introduced

through the transformation T = T0e−
, where T0 is the initial
value of temperature and 
 is the RG running parameter.
For example, this transformation was utilized to calculate the
corrections of observable quantities induced by long-range
Coulomb interaction in graphene [31,33], 3D DSM/WSM
[34,35], multi-WSMs [42–45], through incorporating the
renormalization of fermion velocities.

We have found that the four-fermion coupling parameters
could become divergent at a critical value 
c. It represents that
if T < Tc, where Tc = T0e−
c , the system becomes unstable
to a new phase, which may be conventional NLF phase,
excitonic insulating phase, or superconducting phase. For the
case 
 < 
c, the four-fermion coupling parameters have not
flowed to the strong-coupling regime. Thus, if T > Tc, the
system is stable and still in the original phase. Accordingly,
the observable quantities take the same forms as the free
fermion system, due to that the fermion dispersion is not
renormalized by the short-range four-fermion interactions in
this case. If T < Tc, the behaviors of observable quantities are
modified obviously, since the system becomes to be in a new
phase.

VII. ROLE OF THE GEOMETRY OF THE NODAL LINE

Thereinbefore, we consider a nodal line with circular
shape. It is interesting to verify whether the results are
changed by the geometry of the nodal line. In this section,
we consider a straight nodal line along the y axis from −�y to
�y. The expressions of Hamiltonian density for quadratic and
cubic NLSMs are given by

H0 = A
[(

k2
x − k2

z

)
σ1 + 2kxkzσ2

]
(112)

and

H0 = B
[(

k3
x − 3kxk2

z

)
σ1 + (

k3
z − 3kzk

2
x

)
σ2
]
, (113)

respectively. After tedious calculation and derivation, we find
that the expressions of the RG equations for the four-fermion
coupling parameters are not changed. For quadratic NLF
system, the RG equations are still given by Eqs. (62)–(65).
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The transformations

�y

2π2A
λi → λi, (114)

with i = 0, 1, 2, and 3, have been used in the derivation.
For cubic NLF system, the RG equations are still given by
Eqs. (66)–(69). The transformations

�y

2π2B�
λi → λi, (115)

with i = 0, 1, 2, and 3, have been utilized in the derivation.
Thus the results shown in former sections are still valid for
the system with straight nodal line. We believe that the results
also hold on for a system in which the nodal lines take other
shapes.

VIII. SUMMARY AND DISCUSSION

In summary, we study the influence of four-fermion inter-
actions on the quadratic and cubic NLF systems. Through RG
analysis, we find that arbitrarily weak four-fermion interac-
tions could drive the system to NLSM, excitonic insulator, or
superconducting phase, which is determined by the concrete
initial conditions and value of fermion flavor. The remarkable
interaction effects in quadratic and cubic NLF systems are
closely related to the dispersion of fermion excitations.

Yu et al. predicted that quadratic NLF system may be
realized in the candidate materials including ZrPtGa, V12P7,
ZrRuAs, and cubic NLF system may be realized in CaAgBi
[71]. We expect our theoretical predictions may be verified
experimentally in these candidate materials for quadratic and
cubic NLF systems in future.

Recently, Volkov and Moroz found that nodal surface
fermion system is another strong correlated system in three
dimension, since it would be driven to excitonic insulating
phase under arbitrarily weak Coulomb interaction [79].
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APPENDIX A: FROM LATTICE MODEL
TO LOW-ENERGY EFFECTIVE MODEL

In this section, we show the lattice models for quadratic and
cubic NLF systems, and derive the corresponding low-energy
effective models.

1. Quadratic NLF system

We consider a lattice Hamiltonian for quadratic NLF sys-
tem as following:

Hq = −tq

[
cos (kr ) − cos

(
kr

2

)
cos

(√
3kz

2

)]
σ1

+
√

3tq sin

(
kr

2

)
sin

(√
3kz

2

)
σ2. (A1)

Expanding it around the nodal line determined by kr =
0, kz = 0, we get

Hq ≈ −tq

[(
1 − k2

r

2

)
−
(

1 − k2
r

8

)(
1 − 3k2

z

8

)]
σ1

+
√

3tq
kr

2

√
3kz

2
σ2

≈ 3

8
tq
[(

k2
r − k2

z

)
σ1 + 2krkzσ2

]
= A

[(
k2

r − k2
z

)
σ1 + 2krkzσ2

]
, (A2)

where

A = 3
8 tq. (A3)

2. Cubic NLF system

We consider a lattice Hamiltonian for cubic NLF system as
following:

Hc = tc sin

(√
3kr

2

)[
cos

(
3kz

2

)
− cos

(√
3kr

2

)]
σ1

− 3
√

3tc sin

(
kz

2

)[
cos

(
kz

2

)
− cos

(√
3kr

2

)]
σ2.

(A4)

Expanding it around the nodal line decided by kr = 0, kz = 0,
we obtain

Hc ≈ tc

√
3kr

2

[(
1 − 9k2

z

8

)
−
(

1 − 3k2
r

8

)]
σ1

− 3
√

3tc
kz

2

[(
1 − k2

z

8

)
−
(

1 − 3k2
r

8

)]
σ2

= 3
√

3tc
16

[(
k3

r − 3krk2
z

)
σ1 + (

k3
z − 3kzk

2
r

)
σ2
]

= B
[(

k3
r − 3krk2

z

)
σ1 + (

k3
z − 3kzk

2
r

)
σ2
]
, (A5)

where

B = 3
√

3tc
16

. (A6)

APPENDIX B: FERMION PROPAGATOR

The fermion propagator for quadratic NLF system takes
the form

Gq0(ω, k) = 1

−iω + Hq
0(k)

, (B1)
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FIG. 9. Feynman diagrams for the self-energies of fermions in-
duced by four-fermion interactions. Solid line represents the fermion
propagator, and dashed line stands for the four-fermion interaction.

where Hq
0 is given by Eq. (1). The fermion propagator for

cubic NLF system can be written as

Gc0(ω, k) = 1

−iω + Hc
0(k)

, (B2)

where Hc
0 is expressed by Eq. (3).

APPENDIX C: SELF-ENERGY OF THE FERMIONS

The self-energy of fermions induced by Fig. 9(a) is defined
as

�a =
3∑

i=0

λi

N

∫
dω

2π

∫ ′ d3k
(2π )3

σiGq,c0(ω, k)σi, (C1)

where
∫ ′ represents that a momentum shell will be properly

taken. Figure 9(b) results in the self-energy of fermions as
following:

�b = N
3∑

i=0

λi

N

∫
dω

2π

∫ ′ d3k
(2π )3

Tr[Gq,c0(ω, k)σi]. (C2)

Substituting Eq. (B1) or Eq. (B2) into Eqs. (C1) and (C2), we
obtain

�a = 0, (C3)

�b = 0, (C4)

for both of quadratic and cubic NLF systems. Thus the
fermion propagator is not renormalized by the four-fermion
interactions to one-loop order.

APPENDIX D: ONE-LOOP ORDER CORRECTIONS
FOR THE FOUR-FERMION COUPLINGS

1. General expressions for the one-loop order corrections

The correction contributed by Fig. 10(a) is given by

W (1) =
3∑

i=0

W (1)
i , (D1)

FIG. 10. One-loop Feynman diagrams for the corrections to the
four-fermion couplings.

where

W (1)
i =

3∑
j=0

4λiλ j

N
(ψ†σiψ )

∫
dω

2π

∫ ′ d3k
(2π )3

× [ψ†σ jGq,c0(ω, k)σiGq,c0(ω, k)σ jψ]. (D2)

The diagrams as shown in Figs. 10(b) and 10(c) lead to the
correction for the four-fermion couplings as following:

W (2)+(3) =
3∑

i=0

∑
i� j�3

W (2)+(3)
i j , (D3)

where

W (2)+(3)
i j = 4λiλ j

N

∫
dω

2π

∫ ′ d3k
(2π )3

(ψ†σiGq,c0(ω, k)σ jψ )

×{ψ†[σ jGq,c0(ω, k)σi+σiGq,c0(−ω, −k)σ j]ψ}.
(D4)

The correction for the four-fermion couplings resulting from
Fig. 10(d) can be written as

W (4) =
3∑

i=0

W (4)
i , (D5)

where

W (4)
i = −2λ2

i (ψ†σiψ )(ψ†σiψ )
∫

dω

2π

×
∫ ′ d3k

(2π )3
Tr[σiGq,c0(ω, k)σiGq,c0(ω, k)]. (D6)

A momentum shell b� <
√

k2
r + k2

z < � with b = e−
 will
be utilized in the derivation, where 
 stands for the RG running
parameter.
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2. Results for quadratic NLF

Substituting Eq. (B1) into Eqs. (D1)–(D6), we obtain

W (1) = λ1(λ0 − λ1 + λ2 + λ3)
1

N

kF

2πA

(ψ†σ1ψ )2 + λ2(λ0 + λ1 − λ2 + λ3)

1

N

kF

2πA

(ψ†σ2ψ )2

+ λ3(λ0 + λ1 + λ2 − λ3)
1

N

kF

πA

(ψ†σ3ψ )2, (D7)

W (2)+(3) = (λ0λ1 + λ0λ2)
1

N

kF

2πA

(ψ†σ0ψ )2 +

(
3∑

i=0

λ2
i + λ1λ2 − 2λ2λ3

)
1

N

kF

2πA

(ψ†σ1ψ )2

+
(

3∑
i=0

λ2
i + λ1λ2 − 2λ1λ3

)
1

N

kF

2πA

(ψ†σ2ψ )2 + (−2λ1λ2 + λ1λ3 + λ2λ3)

1

N

kF

2πA

(ψ†σ3ψ )2, (D8)

W (4) = λ2
1

kF

2πA

(ψ†σ1ψ )2 + λ2

2
kF

2πA

(ψ†σ2ψ )2 + λ2

3
kF

πA

(ψ†σ3ψ )2. (D9)

From Eqs. (D7)–(D9), we get

W = W (1) + W (2)+(3) + W (4) =
3∑

i=0

δλi(ψ
†σiψ )2, (D10)

where

δλ0 = (λ0λ1 + λ0λ2)
1

N

kF

2πA

, (D11)

δλ1 =
[(

λ2
0 + λ2

2 + λ2
3 + λ0λ1 + 2λ1λ2 + λ1λ3 − 2λ2λ3

) 1

N
+ λ2

1

]
kF

2πA

, (D12)

δλ2 =
[(

λ2
0 + λ2

1 + λ2
3 + λ0λ2 + 2λ1λ2 − 2λ1λ3 + λ2λ3

) 1

N
+ λ2

2

]
kF

2πA

, (D13)

δλ3 =
[(−2λ2

3 + 2λ0λ3 − 2λ1λ2 + 3λ1λ3 + 3λ2λ3
) 1

N
+ 2λ2

3

]
kF

2πA

. (D14)

3. Results for cubic NLF

Substituting Eq. (B2) into Eqs. (D1)–(D6), we get

W (1) = λ1(λ0 − λ1 + λ2 + λ3)
1

N

kF

2πB�

(ψ†σ1ψ )2 + λ2(λ0 + λ1 − λ2 + λ3)

1

N

kF

2πB�

(ψ†σ2ψ )2

+λ3(λ0 + λ1 + λ2 − λ3)
1

N

kF

πB�

(ψ†σ3ψ )2, (D15)

W (2)+(3) = (λ1λ3 + λ2λ3)
1

N

kF

2πB�

(ψ†σ0ψ )2 + (λ0λ3 − 2λ2λ3)

1

N

kF

2πB�

(ψ†σ1ψ )2

+(λ0λ3 − 2λ1λ3)
1

N

kF

2πB�

(ψ†σ2ψ )2 + (λ0λ1 + λ0λ2 − 2λ1λ2)

1

N

kF

2πB�

(ψ†σ3ψ )2, (D16)

W (4) = λ2
1

kF

2πB�

(ψ†σ1ψ )2 + λ2

2
kF

2πB�

(ψ†σ2ψ )2 + λ2

3
kF

πB�

(ψ†σ3ψ )2. (D17)

From Eqs. (D15)–(D17), we find

W = W (1) + W (2)+(3) + W (4) =
3∑

i=0

δλi(ψ
†σiψ )2, (D18)

where

δλ0 = (λ1λ3 + λ2λ3)
1

N

kF

2πB�

, (D19)

δλ1 =
[(−λ2

1 + λ0λ1 + λ0λ3 + λ1λ2 + λ1λ3 − 2λ2λ3
) 1

N
+ λ2

1

]
kF

2πB�

, (D20)

085132-13



WANG, LI, AND ZHANG PHYSICAL REVIEW B 102, 085132 (2020)

δλ2 =
[(−λ2

2 + λ0λ2 + λ0λ3 + λ1λ2 − 2λ1λ3 + λ2λ3
) 1

N
+ λ2

2

]
kF

2πB�

, (D21)

δλ3 =
[(−2λ2

3 + λ0λ1 + λ0λ2 + 2λ0λ3 − 2λ1λ2 + 2λ1λ3 + 2λ2λ3
) 1

N
+ 2λ2

3

]
kF

2πB�

. (D22)

APPENDIX E: DERIVATION OF THE RG EQUATIONS

1. Quadratic NLF

The action for quadratic NLFs is

Sψ =
∫

dω

2π

d3k
(2π )3

ψ†(ω, k)
[−iω + A

(
k2

r − k2
z

)
σ1 + 2Akrkzσ2

]
ψ (ω, k), (E1)

where kr ≡ k⊥ − kF ≡
√

k2
x + k2

y − kF . In the low-energy regime, the action for quadratic NLF can be also written as

Sψ ≈ kF

∫
dω

2π

dkr

2π

dkz

2π
ψ†(ω, k)

[−iω + A
(
k2

r − k2
z

)
σ1 + 2Akrkzσ2

]
ψ (ω, k). (E2)

Employing the transformations

kr = k′
re− 


2 , (E3)

kz = k′
ze

− 

2 , (E4)

ω = ω′e−
, (E5)

ψ = ψ ′e
3
2 
, (E6)

A = A′, (E7)

the action of the quadratic NLFs becomes

Sψ ′ = kF

∫
dω′

2π

dk′
r

2π

dk′
z

2π
ψ ′†(ω′, k′)

[−iω′ + A′(k′2
r − k′2

z

)
σ1 + 2A′k′

rk′
zσ2
]
ψ ′(ω′, k′), (E8)

which recovers the form of the original action.
The action for the four-fermion interactions between quadratic NLFs is given by

Sψ4 = 1

N

3∑
i=0

λi

∫
dω1

2π

d3k1

(2π )3

dω2

2π

d3k2

(2π )3

dω3

2π

d3k3

(2π )3
ψ†(ω1, k1)σiψ (ω2, k2)ψ†(ω3, k3)σiψ (ω1 − ω2 + ω3, k1 − k2 + k3)

≈ 1

N

3∑
i=0

λik
3
F

∫
dω1

2π

dk1r

2π

dk1z

2π

dω2

2π

dk2r

2π

dk2z

2π

dω3

2π

dk3r

2π

dk3z

2π
ψ†(ω1, k1)σiψ (ω2, k2)ψ†(ω3, k3)σi

×ψ (ω1 − ω2 + ω3, k1 − k2 + k3). (E9)

Incorporating the one-loop order corrections, the action becomes

Sψ4 = 1

N

3∑
i=0

(λi + δλi )k
3
F

∫
dω1

2π

dk1r

2π

dk1z

2π

dω2

2π

dk2r

2π

dk2z

2π

dω3

2π

dk3r

2π

dk3z

2π
ψ†(ω1, k1)σiψ (ω2, k2)ψ†(ω3, k3)σi

×ψ (ω1 − ω2 + ω3, k1 − k2 + k3). (E10)

Adopting the transformations shown in Eqs. (E3)–(E6), and

λ′
i = λi + δλi, (E11)

the action can be written as

Sψ ′4 = 1

N

3∑
i=0

λ′
i

∫
dω′

1

2π

dk′
1r

2π

dk′
1z

2π

dω′
2

2π

dk′
2r

2π

dk′
2z

2π

dω′
3

2π

dk′
3r

2π

dk′
3z

2π
ψ ′†(ω′

1, k′
1)σiψ

′(ω′
2, k′

2)ψ ′†(ω′
3, k′

3)σi

×ψ ′(ω′
1 − ω′

2 + ω′
3, k′

1 − k′
2 + k′

3), (E12)
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which recovers the original form of the action. From Eq. (E11), we obtain

dλi

d

= dδλi

d

. (E13)

Substituting Eqs. (D11)–(D14) into Eq. (E13), we get the RG equations

dλ0

d

= (λ0λ1 + λ0λ2)

1

N
, (E14)

dλ1

d

= (

λ2
0 + λ2

2 + λ2
3 + λ0λ1 + 2λ1λ2 + λ1λ3 − 2λ2λ3

) 1

N
+ λ2

1, (E15)

dλ2

d

= (

λ2
0 + λ2

1 + λ2
3 + λ0λ2 + 2λ1λ2 − 2λ1λ3 + λ2λ3

) 1

N
+ λ2

2, (E16)

dλ3

d

= (−2λ2

3 + 2λ0λ3 − 2λ1λ2 + 3λ1λ3 + 3λ2λ3
) 1

N
+ 2λ2

3. (E17)

The transformations
kF

2πA
λi → λi, (E18)

with i = 0, 1, 2, and 3 have been used.

2. Cubic NLF

The action for cubic NLFs takes the form

Sψ =
∫

dω

2π

d3k
(2π )3

ψ†(ω, k)
[−iω + B

(
k3

r − 3krk2
z

)
σ1 + B

(
k3

z − 3krk2
z

)
σ2
]
ψ (ω, k), (E19)

which is equivalent to

Sψ ≈ kF

∫
dω

2π

dkr

2π

dkz

2π
ψ†(ω, k)

[−iω + B
(
k3

r − 3krk2
z

)
σ1 + B

(
k3

z − 3krk2
z

)
σ2
]
ψ (ω, k). (E20)

Using the transformations

kr = k′
re− 


3 , (E21)

kz = k′
ze

− 

3 , (E22)

ω = ω′e−
, (E23)

ψ = ψ ′e
4
3 
, (E24)

B = B′, (E25)

the action can be written as

Sψ ′ = kF

∫
dω′

2π

dk′
r

2π

dk′
z

2π
ψ ′†(ω′, k′)

[−iω′ + B′(k′3
r − 3k′

rk′2
z

)
σ1 + B′(k′3

z − 3k′
rk′2

z

)
σ2
]
ψ ′(ω′, k′), (E26)

which has the same form as the original action.
The action describing the four-fermion interactions between cubic NLFs is given by

Sψ4 = 1

N

3∑
i=0

λik
3
F

∫
dω1

2π

dk1r

2π

dk1z

2π

dω2

2π

dk2r

2π

dk2z

2π

dω3

2π

dk3r

2π

dk3z

2π
ψ†(ω1, k1)σiψ (ω2, k2)ψ†(ω3, k3)σi

×ψ (ω1 − ω2 + ω3, k1 − k2 + k3). (E27)

Including one-loop order corrections, the action becomes

Sψ4 = 1

N

3∑
i=0

(λi + δλi )k
3
F

∫
dω1

2π

dk1r

2π

dk1z

2π

dω2

2π

dk2r

2π

dk2z

2π

dω3

2π

dk3r

2π

dk3z

2π
ψ†(ω1, k1)σiψ (ω2, k2)ψ†(ω3, k3)σi

×ψ (ω1 − ω2 + ω3, k1 − k2 + k3). (E28)

Utilizing the transformations shown in Eqs. (E21)–(E24) and

λ′
i = (λi + δλi )e

1
3 
 ≈ λi + λi

1
3
 + δλi, (E29)
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the action becomes

Sψ ′4 =
3∑

i=0

λ′
ik

3
F

∫
dω′

1

2π

dk′
1r

2π

dk′
1z

2π

dω′
2

2π

dk′
2r

2π

dk′
2z

2π

dω′
3

2π

dk′
3r

2π

dk′
3z

2π
ψ ′†(ω′

1, k′
1)σiψ

′(ω′
2, k′

2)ψ ′†(ω′
3, k′

3)σi

×ψ ′(ω′
1 − ω′

2 + ω′
3, k′

1 − k′
2 + k′

3), (E30)

which has the same form of the original action. According to Eq. (E29), the RG equation for λi is given by

dλi

d

= 1

3
λi + dδλi

d

. (E31)

Substituting Eqs. (D19)–(D22) into Eq. (E31), the RG equations for λi can be written as

dλ0

d

= 1

3
λ0 + (λ1λ3 + λ2λ3)

1

N
, (E32)

dλ1

d

= 1

3
λ1 + (−λ2

1 + λ0λ1 + λ0λ3 + λ1λ2 + λ1λ3 − 2λ2λ3
) 1

N
+ λ2

1, (E33)

dλ2

d

= 1

3
λ2 + (−λ2

2 + λ0λ2 + λ0λ3 + λ1λ2 − 2λ1λ3 + λ2λ3
) 1

N
+ λ2

2, (E34)

dλ3

d

= 1

3
λ3 + (−2λ2

3 + λ0λ1 + λ0λ2 + 2λ0λ3 − 2λ1λ2 + 2λ1λ3 + 2λ2λ3
) 1

N
+ 2λ2

3. (E35)

The transformations
kF

2πB�
λi → λi, (E36)

with i = 0, 1, 2, and 3 have been adopted.
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