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Lowest energy states of an O(N) fermionic chain
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A quite general finite-size chain of fermions with N internal degrees of freedom (flavors) and O(N ) symmetry
is considered. In the case of the free boundary condition, we prove that the ground state in the invariant sector
having exactly m flavors with an odd particle number is represented by a single rank-m antisymmetric multiplet.
For the even-length chains, its particle-hole quantum number (if it’s a good one) is given by the parity of the
m. For the odd-length chains, the particle-hole symmetry leads to the twofold degeneracy among the conjugate
multiplets. Similar statements are proven for the O(N ) mixed-spin chains in antisymmetric representations. The
results are extended to the long-range interacting fermions and (partially) to the translation invariant chains.
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I. INTRODUCTION

The degeneracy and quantum numbers of the ground state
have an important bearing on the low-temperature behavior
of quantum systems. Apart from various numerical and ap-
proximate approaches, there are certain explicit methods to
reveal them for the spin and fermion lattice systems. One
such approach is based on the existence and properties of
the basis where all off-diagonal elements of the Hamiltonian’s
matrix take nonpositive values (nonpositive basis). As a con-
sequence, the ground state of the spin- 1

2 translation invariant
antiferromagnetic Heisenberg model with an even number
of sites is a unique spin singlet [1,2]. A simple structure of
the classical ground state case (Neel state), is not retained
in the quantum case. However, the quantum ground state
inherits certain properties from its classical counterpart like
the degeneracy degree and spin value. Using the structure
of the SU(2) spin multiplets, this property was extended to
antiferromagnetic systems with arbitrary spins on bipartite
lattices [3], repulsive Hubbard [4] and periodic Anderson [5]
models at half filling. Similar features was established for
a more common class of the SU(2) invariant fermionic
chains [6].

The extension to the SU(N ) symmetric spin and fermionic
chains was formulated and proven too [7–12]. In some cases,
the uniqueness of the lowest level multiplets in the sectors
with fixed total spin values and antiferromagnetic ordering
of related energies was established [3,6,10,12]. Higher sym-
metries may emerge at special values of the parameters, in
the case of orbital degeneracy [13], as well as at the quantum
critical point in the low-energy limit. One can mention in this
respect the SO(5) symmetry unifying the antiferromagnetism
and high-temperature superconductivity [14] (for a review, see
Ref. [15]). Moreover, experimental capacities now enable us
to fabricate and control the artificial quantum systems based
on ultracold atoms trapped in optical lattices. In particular,
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the fermionic alkaline earth atoms realize quantum models
possessing the unitary symmetry [16] (see Ref. [17] for a
review).

In this paper, we study a finite-size chain of interacting
fermions endowed with N internal degrees of freedom (spins
or flavors). The model is defined in terms of the usual (com-
plex) and Majorana (real) fermions. We take advantage of
both formulations. Note also that the second representation
is actual due to the recent interest in interacting Majorana
fermions [18]. The Hamiltonian remains invariant with re-
spect to the O(N ) rotations in the flavor space (including im-
proper ones). It has quite general multi-fermion interactions.
In contrast to its U (N ) invariant counterpart, the system does
not preserve the total number of particles with a given flavor.
Instead, it keeps the related parities.

The parity operators constitute a discrete subgroup of
reflections with respect to the flavor directions, Z×N

2 . Their
eigenvalues σ = ±1 (even/odd) define the invariant sub-
spaces of the Hamiltonian. Such subspaces have equal di-
mensions and can be mapped to each other by the Majorana
fermion operators. Moreover, the σ subspaces with the same
number of odd flavors, m, are degenerate and combined into a
single invariant sector.

For a wide range of coupling constants, we prove that
the lowest energy O(N ) multiplet in any such m sector is
unique and represented by an mth-order antisymmetric tensor.
The components form the nondegenerate lowest energy states
(the relative ground states) in the corresponding σ subspaces.
Thus, the ground state in the m = 0 sector (where all parities
are even) is a unique O(N ) singlet. At the same time, in
the m = N sector (where the parities are odd), it is a unique
pseudoscalar (i.e., behaves as a singlet under proper rotations
while changing signs under improper ones). An additional
degeneracy is not banned and may happen for special values
of couplings with accidental symmetries. In particular, in the
limit of the N decoupled Kitaev chains [19], the total ground
state completely breaks the Z×N

2 symmetry.
We also consider Hamitonians with particle-hole

symmetry. The related Z2 group commutes with the SO(N )
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symmetry. The impact on the spectrum depends on the parity
of the chain’s size. For the even-length chains, it is consistent
with the whole O(N ) symmetry, including improper rotations.
The lowest energy states acquire a particle-hole quantum
number given by the parity of m. For the odd chains, this
map alters all parities, σ → −σ , which leads to an additional
twofold degeneracy.

We also examine in the same context the O(N ) mixed-spin
chains in the antisymmetric representations. They emerge at
the particular limiting values of the parameters when the
on-site particle numbers become persistent. The total parity
turns into a constant, dependent on the chain’s size, so the
independent reflection generators form a Z×(N−1)

2 group. It
is argued, however, that the aforementioned results on the
uniqueness and O(N ) structure of the relative ground states
remain valid for the spin chains too. The results extend our
previous studies of the bilinear-biquadratic Heisenberg model
with spins in the vector representation [20].

The long-range interactions may also be involved in the
fermionic Hamiltonian in a way to maintain the above proper-
ties of the nearest-neighboring chain. The distant interaction
contains an additional sign-valued tail depending on the in-
termediate fermions. Finally, we show that for the translation-

invariant chain, the lowest energy state in the odd-parity sector
has zero momentum.

The paper is organized as follows. In Sec. II, we describe
in detail the model and its symmetries in terms of the standard
and Majorana fermions. In Sec. III the properties of the invari-
ant subspaces and sectors are described. Then the basis, where
all off-diagonal elements of the Hamiltonian are nonpositive,
is presented using the standard and Majorana fermions, as
well as hard-core bosons. Finally, the aforementioned result
about the O(N ) structure of the lowest energy states is proven.
In Sec. IV, this result is extended to fermionic chains with
particle-hole symmetry. Section V is devoted to the fermionic
chains with long-range interactions, translation invariance,
and mixed-spin chains in the antisymmetric representation.
Finally, in the Appendixes, we derive the complete spectrum
and multiplet structure of the two-site system with two and
three flavors.

II. O(N) SYMMETRIC FERMIONIC CHAIN

A. Standard fermions

Consider the extended Hubbard chain of length L described
by the Hamiltonian

Ĥ = −
∑
x,a

(txc+
x+1,acx,a + rxcx+1,acx,a + H.c.) −

∑
x,a,b

( fxc+
x+1,bc+

x,acx+1,acx,b − gxc+
x+1,ac+

x,acx+1,bcx,b

+ hxc+
x+1,ac+

x+1,bcx,bcx,a + excx+1,acx+1,bcx,bcx,a + H.c.) + V (n1, . . . , nL ). (1)

The open boundary conditions are supposed so the position
index in the sums, x, varies from 1 to L − 1. There are N
different species (flavors) of fermions, which are labeled by
a, b. The creation-annihilation operators c±

x,a obey the stan-
dard anticommutation relations.

The potential V depends on the local fermion occupation
numbers:

nx =
∑

a

c+
x,acx,a.

Its explicit form does not matter here. The Hubbard potential,
V = ∑

x n2
x , is a particular case.

The coupling coefficients in the Hamiltonian depend on
the fermion position. In this paper, we will set them positive.
More explicitly, we impose

tx, rx > 0, fx, gx, hx, ex � 0. (2)

These conditions may be even weakened, see Eq. (61) below.
The t term in the Hamiltonian describes the single fermion

hopping between neighboring sites. The r term is responsible
for the creation-annihilation of the superconducting fermion
pairs of same flavor. The remaining part of the Hamiltonian is
responsible for the four-fermion interaction. The f term swaps
the fermions with different flavors on adjacent sites, |ab〉 →
|ba〉. The g term replaces a pair of adjacent fermions of a
same type with an other-type pair, |aa〉 → |bb〉. The h term
moves a fermion pair providing the system with pair-hopping
opportunity. Finally, the e term creates and annihilates four
neighboring particles, two per node.

For N = 1 with a single fermion per site, the pair-hopping
term disappears. The remaining two four-fermion interactions
are reduced to the density-density interaction between adja-
cent sites, which may be included in the potential:

Ĥ = −
∑

x

(txc+
x+1cx + rxcx+1cx + H.c.) + V + δV,

δV = 2
∑

x

( fx − gx )nx+1nx. (3)

For the special case when V + δV is set to the chemical
potential, the system can be considered as a local analog of
the Kitaev chain [19].

For N > 1, the Hamiltonian (1) is invariant under the
global SO(N ) rotations,

[Ĥ, L̂ab] = 0, L̂ab =
∑

x

Lab
x , (4)

where the local rotations are provided by the generators:

Lab
x = ı(c+

x,acx,b − c+
x,bcx,a). (5)

Neither the number of particles with a given species,

n̂a =
∑

x

c+
x,acx,a, (6)

nor the total number of particles is conserved in the system.
Instead, as is easy to see, the related parities are good quantum
numbers. Denote by σ̂a an operator describing the parity of the
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number of fermion with flavor a:

[Ĥ, σ̂a] = 0, σ̂a = (−1)n̂a . (7)

Such reflections generate the Z×N
2 group. Together with

the continuous rotations, they make up the orthogonal group
O(N ) composing the internal symmetry of the fermionic
chain (1).

Note that the product of two distinct reflections define a π

rotation in a plane inside the flavor space:

σ̂aσ̂b = eiπ L̂ab
.

Such rotations form together a subgroup Z×(N−1)
2 .

According to the Pauli exclusion principle, every site can
be occupied by at most N fermions. There are 2N such
states. The one-particle states, c+

a |0〉, form the defining rep-
resentation of O(N ). Due to the Fermi-Dirac statistics, the
multiparticle states,

c+
a1

· · · c+
am

|0〉, (8)

comprise the
(N

m

)
-dimensional antisymmetric multiplet. The

empty and completely filled nodes are, respectively, a scalar
and pseudoscalar.

The SO(N ) structure of the single-node states is trick-
ier [21]. The conjugate multiplets with m and N − m fermions
become equivalent. Moreover, in the case of two flavors,
N = 2, the group SO(2) is Abelian. Then the single-particle
representation is reducible and splits into the symmetric and
antisymmetric combinations.

At the limiting point where three couplings vanish, rx =
gx = ex = 0, the symmetry is expanded to the unitary group
U (N ). The additional generators are provided by the sym-
metrized bilinear components:

T̂ab =
∑

x

T ab
x , T ab

x = c+
x,acx,b + c+

x,bcx,a. (9)

The diagonal part consists of the fermion number operators,
n̂a = 1

2 T̂aa, which are preserved in this case.
To reveal the structure of the Hamiltonian (1), let us present

it in the form

Ĥ =
L−1∑
x=1

(Hx+1 x + H+
x+1 x ) + V ′(n1, . . . , nL ), (10)

with the slightly modified potential:

V ′ = V + 2
L−1∑
x=1

fxnx+1. (11)

Next, present the local Hamiltonian as follows (we set y =
x + 1 to shorten the formula):

Hyx = −txKyx − rxPyx − fxKyxKxy − gxP+
yxPyx − hxK2

yx

− exP2
yx. (12)

Here we have introduced the two O(N ) invariant bilinear
combinations of fermionic operators:

Kyx =
∑

a

c+
y,acx,a = c+

y · cx,

Pyx =
∑

a

cy,acx,a = cy · cx. (13)

Notice that the Kyx possesses a larger, U (N ), symmetry while
Pyx does not.

The equivalence of the representations (1) and (10) is easy
to establish using the canonical anticommutation relations.

Note that the operators (13) obey the conditions K+
yx = Kxy

and Pxy = −Pyx, as well as the following commutation rules:

[Kxy, Kyx] = nx − ny, [P+
yx, Pyx] = nx + ny,

[Kxy, Pxy] = 0. (14)

The usual Heisenberg interaction between neighboring
SO(N ) spins is expressed via them as

Ly · Lx =
∑
a<b

Lab
y Lab

x = −K+
yxKyx − P+

yxPyx + nx. (15)

The local fermion number, nx, may be added to the potential
and will not be essential in the current context. Notice that the
invariance of the right side under the coordinate replacement
x ↔ y follows from the commutation relation (14). The spin-
exchange term appears in the Hamiltonian, for instance, when
the parameters obey the condition fx = gx.

B. Majorana fermions

In this section, the initial Hamiltonian (1) is represented as
an O(N ) chain of interacting Majorana fermions.

It is well known that a single complex fermion is equivalent
to a pair of real, or Majorana, fermions. The relation among
both representations is provided by the map [19],

c±
x,a = γ (1)

x,a ∓ ıγ (2)
x,a

2
, (16)

and its inverse:

γ (1)
x,a = c+

x,a + cx,a, γ (2)
x,a = ı(c+

x,a − cx,a). (17)

The Majorana fermions are identical to their own antiparticles
and described by the Hermitian unitary operators γ (λ)

x,a , with
the upper index λ = 1, 2 separating individual particles in the
pair. These particles have become quite popular recently, see
Ref. [22] for a short review on the subject.

The Majorana operators generate the 2NL-dimensional
Clifford algebra:

{
γ (λ)

x,a , γ
(λ′ )

y,b

} = 2δabδxyδλλ′ .

The number of a-type on-site fermions and its parity can be
expressed via them:

2nx,a − 1 = ıγ (1)
x,a γ (2)

x,a , σx,a = −ıγ (1)
x,a γ (2)

x,a . (18)

As a result, the overall parity (7) is just a product of all
Majorana operators with a certain phase factor ensuring the
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involutivity [23]:

σ̂a = (−ı)L
L∏

x=1

γ (1)
x,a γ (2)

x,a . (19)

It is worth mentioning that in the Dirac matrix context, it
corresponds to the chiral gamma-matrix which anticommutes
with all γ ’s of the same type:

σ̂a = γ2L+1,a. (20)

The right/left chirality sectors then correspond to the states
with even/odd parities, respectively.

The local symmetries (4) and (9) can be also expressed
in terms of Majorana fermions. The rotation generators in
this form are known from the spinor representation of the
orthogonal group:

Lab
x = ı

4

∑
λ=1,2

[
γ (λ)

x,a , γ
(λ)

x,b

]
. (21)

The local building blocks of the Hamiltonian are expressed
through the Majorana operators in the following way:

Kyx = 1

4

∑
a

(
γ (1)

y,a γ (1)
x,a + γ (2)

y,a γ (2)
x,a

)

+ ı

4

∑
a

(
γ (1)

y,a γ (2)
x,a − γ (2)

y,a γ (1)
x,a

)
, (22)

Pyx = 1

4

∑
a

(
γ (1)

y,a γ (1)
x,a − γ (2)

y,a γ (2)
x,a

)

+ ı

4

∑
a

(
γ (1)

y,a γ (2)
x,a + γ (2)

y,a γ (1)
x,a

)
. (23)

In both expressions, the first sum is antisymmetric under
the exchange of the coordinates x and y. Hence, it disappears
in the double-fermion part of the Hamiltonian. In contrast, the
second sum is symmetric and participates there.

In Majorana representation, the fermionic Hamiltonian
(10) acquires the following explicit form:

Ĥ = − ı

2

∑
x,a

[
(tx + rx )γ (1)

x+1,aγ
(2)

x,a − (tx − rx )γ (2)
x+1,aγ

(1)
x,a

] + V + δV

+1

8

∑
x,a,b

∑
λ=1,2

[
( fx + gx − hx − ex )γ (λ)

x+1,aγ
(λ)

x,a γ
(λ)

x+1,bγ
(λ)

x,b + ( fx + gx + hx + ex )γ (λ)
x+1,aγ

(λ̄)
x,a γ

(λ)
x+1,bγ

(λ̄)
x,b

+ (− fx + gx − hx + ex )γ (λ)
x+1,aγ

(λ̄)
x,a γ

(λ̄)
x+1,bγ

(λ)
x,b + ( fx − gx − hx + ex )γ (λ)

x+1,aγ
(λ)

x,a γ
(λ̄)

x+1,bγ
(λ̄)

x,b

]
, (24)

where the bar over λ = 1, 2 inverts the order of two particles
in the Majorana pair, λ̄ = 2, 1. The potential V depends on the
local fermion numbers (18).

The above Hamiltonian describes N interacting Majorana
chains [18]. In the absence of the four-fermion interactions,
it describes the N decoupled chains, any of which extends
the well-known Kitaev model, describing tight-binding chains
with p-wave superconducting pairing [19], out of the homoge-
nous point.

Recently, the Majorana representations of conventional
lattice fermions has been successfully applied for elaboration
of sign-free Monte Carlo algorithms [24], for studying the
ground-state degeneracy of interacting spinless fermions [25]
using the reflection positivity [4]. We apply it throughout the
current paper, in particular, to uncover the structure of the
invariant subspaces and the particle-hole map.

III. LOWEST ENERGY MULTIPLETS

A. Invariant subspaces

In this section, we will describe the subspaces, which
remain invariant under the Hamiltonian’s action.

There are 2NL different states in the entire space VL. We
partition the VL into the 2N subspaces, each characterized by
its own set of reflection quantum numbers (7):

V L
σ1...σN

= {ψ | σ̂aψ = σaψ}. (25)

We call them σ subspaces following an analogy with the spin
system [3]. Since the parities are good quantum numbers (7),
the Hamiltonian (1) remains invariant in any σ subspace.

All such subspaces are mapped to each other by a single
Majorata operator γa = γ (λ)

x,a ,

γa V L
σ1...σa,...σN

= V L
σ1···−σa...σN

. (26)

In this way, any σ subspace is obtained from a single one, for
example,

V L
σ1...σN

=
N∏

a=1

γ
1
2 (1−σa )

a V L
+···+. (27)

So, they have the same dimension:

dimV L
σ1...σN

= 2N (L−1). (28)

Sometimes is more convenient to label the invariant sub-
spaces by the values of odd flavors,

V L
a1...am

:= V L
σ1...σN

with σa =
m∏

i=1

(−1)δaia . (29)

Which notation of these two is used will be clear from the
context. The new one depends on an m combination of the N
flavor’s set but not on their order. Hence, it is symmetric on
the flavor indexes.

In contrast to the Hamiltonian, the orthogonal symmetry
mixes different σ subspaces. Consider the symmetric group
of permutations between the flavors, SN ⊂ O(N ). It permutes
the reflection operators and the indexes,

sσ̂as−1 = σ̂s(a), sV L
a1...am

= V L
s(a1 )...s(am ), (30)
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V0 V2

V V↑↓ V↑ V↓V↓

V0 V3

V V123

V1 V2 V3V23 V13 V12

(a)

(b)

V1V2

V1

FIG. 1. The structure of multiplets in the two-site O(2) (a) and O(3) (b) fermionic chain. Each column depicts a σ subspace Va1 ...am

labeled by the odd flavor values. The identical columns unite into a single sector, Vm. The black circles, triangles, and squares represent the
singlet, vector, and (traceless) symmetric states, respectively. The gray dots in the listed order denote the pseudosinglet, pseudovector, and
pseudosymmetric states. The lines connect the elements of the same multiplet and, hence, are on the same energy level. Each contour encloses
the lowest-energy multiplet within the corresponding sector.

where s ∈ SN or, equivalently,

sV L
σ1...σN

= V L
σs(1)...σs(N )

. (31)

Due to this symmetry, the Hamiltonian has the same spec-
trum on all invariant subspaces, which have the same number
m of odd parities, We unify them into the

(N
m

)
-fold degenerate

sector of dimension 2N (L−1)
(N

m

)
;

VL
m =

⊕
a1<···<am

V L
a1...am

. (32)

Clearly, the total space of states splits into the sum of all
possible sectors:

VL =
N⊕

m=0

VL
m. (33)

B. Spectrum of two-site chains

Before making general statements, let us consider a toy
system on two nodes with the Hamiltonian,

Ĥ = −tK − rP − hK2 − eP2 + H.c. − f (K+K + KK+)

− g(P+P + PP+), (34)

with

K =
∑

a

c+
2,ac1,a, P =

∑
a

c2,ac1,a. (35)

It respects the particle-hole inversion (see Sec. IV below). To-
gether with the lattice reflection symmetry, this significantly
simplifies the solution. We will stick with the lowest spins:
N = 2, 3.

First, we describe briefly the energy spectrum and the mul-
tiplet structure of the O(2) model. The detailed calculations
are done in Appendix A. We keep the usual notations and
associate the two flavors with the spin-up and spin-down states
so a =↑,↓. There are three sectors [26],

V0 = V, V1 = V↑ ⊕ V↓, V2 = V↑↓, (36)

consisting of the four-dimensional invariant subspaces
(25), (29) and (32):

V = V++, V↑ = V−+, V↓ = V+−, V↑↓ = V−−. (37)

The 16 independent two-site states are partitioned into
three singlets, three pseudo-singlets (describing by the Levi-
Civita tensor, εab), four vector-doublets, and a single doublet,
behaving under rotations as a symmetric traceless tensor:

ψab = ψba,
∑

a

ψaa = 0. (38)

In Fig. 1(a), which summarizes the results in Appendix A,
the states of the listed multiplets are depicted, respectively,
by the black and gray circles, the black triangle, and black
square. A line connects the elements of the same multiplet,
which, clearly, are on the same energy level.

Each column in Fig. 1 represents a certain σ subspace.
As we see, the singlets and pseudosinglets are gathered,
respectively, in the even, V0, and odd, V2, sectors. At the
same time, the vectors compose the remaining sector, V1.
Each vector doublet spreads along the two σ subspaces
with opposite parities, V↑ and V↓, which make up that
sector.

Every contour encloses the lowest-energy multiplet within
the corresponding sector. In the allowed parameter’s region, it
is unique. Moreover, we see that the sector Vm (m = 0, 1, 2)
is characterized by the mth order antisymmetric tensor (the
scalar, vector, and pseudoscalar, respectively).

Comparing together the minimal energies of individual
sectors [see E0 in the expressions (A6), (A13), and (A17)
in Appendix A], we conclude that there is no lowest among
them for the common coupling parameters (2). In partic-
ular, if the latter are restricted by the conditions g = f ,
e = h, r = t , a degeneracy happens among the sectors V0

and V2. Thus, in general, the total ground state may be
a unique scalar, a pseudoscalar, a vector doublet, or their
superposition.

Go now to the O(3) model and outline briefly the spectrum
properties, derived in detail in Appendix B. The entire space
of states, V , splits into the four sectors, composed of the eight-
dimensional σ subspaces,

V0 = V, V1 = V1 ⊕ V2 ⊕ V3, V3 = V123,

V2 = V12 ⊕ V13 ⊕ V23, (39)
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characterized by the following parities:

V1 = V−++, V2 = V+−+, V3 = V++−,

V12 = V−−+, V13 = V−+−, V23 = V+−−,

V = V+++, V123 = V−−−.

(40)

The 64-dimensional space V is distributed along the four
singlets, six vectors, and two symmetric traceless tensors (38),
depicted again by the black dots (cycles, triangles, squares)
in Fig. 1(b), and their pseudoanalogs with the same mul-
tiplicities, drawn by the gray dots. Compared to the O(2)
case, the two types of new multiplets are listed above: the
pseudovector, which is equivalent to the antisymmetric ten-
sor vab = ∑

c εabcvc, and the pseudoanalog of the symmetric
traceless tensor:

ψabc =
∑

d

εabdψdc. (41)

The latter is more known as a third-order tensor with mixed
symmetry [21]. Like the ψab, it has five independent compo-
nents.

The distribution of all multiplets along the σ subspaces
and sectors is shown in Fig. 1(b). In particular, any quintet
described by the tensor ψab (ψabc) has two states from the
sector V0 (V3), and three others from the sector V2 (V1), one
per each σ subspace.

The properties of the lowest-level states are similar to
those of the O(2) model. For a given m = 0, 1, 2, 3, the
lowest-energy multiplet of the sector Vm is a unique mth-order
antisymmetric tensor (the scalar, vector, pseudovector, and
pseudoscalar, respectively).

Again, the total ground state is not determined for the
common values of the couplings. In particular, in the case
of g = f , e = h, and r = t , a degeneracy emerges among the
multiplets and their pseudoanalogs.

The remaining part of the current section is devoted to
the extension and proof of the above statement to the O(N )
fermionic chains of arbitrary length (1).

C. Nonpositive basis

Here we pick up a basis where all nonzero off-diagonal
matrix elements of the Hamiltonian become negative. This
can be achieved by a specific rearrangement of the fermions
in the standard Fock basis, which results in an additional
sign factor [7,12]. First, let us group together the fermions
with the same flavors and set them in ascending order by the
coordinate. So, define

A{x},a = c+
x1,ac+

x2,a . . . c+
xna ,a, x1 < · · · < xna , (42)

where na is the total number of particles with the flavor a in
the building state. (In their absence, the above operator is set
to unity.) Then define the basic states in the following way:

A{x1},1A{x2},2 . . . A{xN },N |0〉. (43)

Thus, the particles are arranged first by the flavor numbers,
then by the coordinates. In other words, they are displaced
in the ascending order in their multi-index values when
rewriting the above state in the standard way,

	x1...xn
a1...an

= c+
x1,a1

. . . c+
xn,an

|0〉, (44)

with n = ∑
a na. The order is defined as

(x, a) < (y, b) if

{
a < b
a = b and x < y.

(45)

In general, the wave function (44) is not a part of a certain
O(N ) multiplet apart from the case when all fermions are
located on a single site (8), see also Eq. (50) below.

Since the potentials V , δV are diagonal in the constructed
basis, the off-diagonal matrix elements of the chain Hamil-
tonian are generated exclusively by algebraic combinations of
the local operators Kx+1 x, Px+1 x and their conjugates with pos-
itive coefficients, see Eqs. (2), (10), (12), and (13). Therefore,
it is enough to show the positivity of the selected basis (43)
for the K, P operators.

Indeed, due to the Fermi–Dirac statistics, the hopping
term c+

x+1,acx,a acts nontrivially solely on the states with
the a-type fermion on the xth position and without it on
the (x + 1)th one [12]. The resulting action merely replaces
the creation operator c+

x,a by the annihilation one, c+
x+1,a.

Similarly, a pair annihilation term, cx+1,acx,a, acts nontrivially
on the states where both positions are filled with a fermions,
which are presented in the basic state (43) in reverse order,
| . . . c+

x,ac+
x+1,a . . . |0〉. It just eliminates both fermions, produc-

ing another basic state without any factor. Clearly, the Her-
mitian conjugates of both operators, the backward hopping,
c+

x,acx+1,a, and pair creation, c+
x,ac+

x+1,a, act on the basic states
in reverse order. So, all matrix elements of the four considered
operators are either 0 or 1. Thus the operators Kx+1 x, Px+1 x

and their conjugates (13) can generate only integral matrix
elements from 0 to N .

The specific fermion ordering in the basic wave func-
tions (43) has a simple explanation in terms of the well-
known Jordan-Wigner transformation [2,27]. Assigning to
each multi-index value the three Pauli matrices, τ±, τ 3, we
get the system of hard-core bosons. Such particles behave
like fermions (bosons) at the same (different) points. Once we
have set the ordering (45), the fermions and bosons are related
by the Jordan-Wigner transformation:

τ±
x,a = c±

x,a

∏
(y,b)<(x,a)

σy,b, τ 3
x,a = −σx,a. (46)

The building blocks of the Hamiltonian (1), expressed in terms
of the Pauli matrices, retain their structure:

c±
x+1,acx,a = −τ±

x+1,aτ
3
x,aτ

−
x,a = τ±

x+1,aτ
−
x,a. (47)

Using the relations (46), it is easy to see that the multi-
fermionic wave functions (43) in ascending order (44) can be
expressed as multibosonic states:

	x1...xn
a1...an

= τ+
x1,a1

. . . τ+
xn,an

|0〉. (48)

Evidently, the ordering of Pauli matrices on the right side
of this equation is not essential in contrast to the fermion
ordering on the left side. Then the relations (10), (12), (13),
and (47) reaffirm the nonpositivity of the basis (48).

Finally, note that the basic states keep their form in the
Majorana representation too:

	x1...xn
a1...an

= γ (1)
x1,a1

. . . γ (1)
xn,an

|0〉. (49)
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Of course, the Majorana fermions on the right side are in
ascending order.

D. O(N) structure of relative ground states

In the previous section, we selected a nonpositive basis for
the fermionic Hamiltonian (1). In addition, the Hamiltonian
connects any two basic elements belonging to an invariant
subspace (29). Indeed, manipulating successively with the
fermion hoppings c+

x±1,acx,a and pair annihilations cx+1,acx,a,
one can easily transfer any target basic state from the subspace
V L

a1...am
to an m-particle trial state. All particles there are

gathered on the first site of the chain (44):

	a1...am = 	1 ... 1
a1...am

. (50)

The above wave function transforms as a rank-m antisymmet-
ric tensor under the rotations as already discussed, (8).

According to the Perron-Frobenius theorem, the lowest
energy state in the invariant subspace V L

a1...am
(the relative

ground state) is nondegenerate. Moreover, it can be expressed
as a positive superposition of all basic states (43) inside this
subspace (denoted shortly by �α):

a1...am =
2N (L−1)∑
α=1

ωα�α, ωα > 0. (51)

Since the trial state (50) is a member of this family, one
can set �1 = 	a1...am . Due to the rotational symmetry, the
relative ground state must be a part of a single O(N ) multiplet.
Otherwise, it would split into mutually orthogonal pieces,
belonging to nonequivalent multiplets. This fact would lead
to a spontaneous symmetry breaking in the subspace V L

a1...am
,

which contradicts the above proven uniqueness condition.
Therefore, state a1...am has the same O(N ) structure as state
�1 itself: Both wave functions belong to different but equiva-
lent multiplets.

In particular, by removing the restriction on the indexes,
one can set the lowest state to be antisymmetric like the
trial one:

...ai ...a j ... = −...a j ...ai .... (52)

Selecting another m combination of the flavors, we arrive at a
similar state within the subspace V L

b1...bm
. All such subspaces

are equivalent, as was established in Sec. III A, mapped to
each other by the flavor exchanges (30), and produce together
a single degenerate m sector (32).

Summarizing, we come to the conclusion that the lowest
energy wave function in the sector with m odd flavors, VL

m,
is given by a single m-th order antisymmetric O(N ) tensor
described by the one-column Young tableau of the same length:

Ym = Y [1m]. (53)

The components provide the nondegenerate relative ground
states in the invariant subspaces V L

a1...am
.

Note that, according to the representation theory of the
orthogonal group [21], the pair of multiplets, described by the
Young diagrams Ym and YN−m, are mutually conjugate and
related by the Levi-Civita symbol:

′
a1...aN−m

= 1

m!

∑
b1,...,bm

εa1...aN−mb1...bmb1...bm . (54)

As SO(N ) representations, they are equivalent and character-
ized by the smallest number among m and N − m. Both mul-
tiplets are distinguished by the sign under improper rotations,
which maps tensor to pseudotensor. One can mention this sign
by the prime soO(N ) representations are characterized by the
Young diagrams Ym and

Y ′
m ∼ YN−m with m � 1

2 N, (55)

provided that for an even group rank, YN/2 ∼ Y ′
N/2.

For example, the empty diagram is a scalar (singlet) while
the single N-length column, given by the Levi-Civita tensor,
is a pseudoscalar. So, according to our results, in the even-
parity sector, VL

0 , the lowest-level state is a scalar, whereas it
is a pseudoscalar in the odd-parity sector, VL

N . Similarly, the
lowest-level state in the sector with a single odd (even) flavor,
VL

1 (VL
N−1) is a vector (pseudovector).

The relation among the lowest energy levels within the
distinct invariant m sectors remains an open question. In
particular, the total ground state may coincide with a single
antisymmetric multiplest Ym for some m or it can be an
arbitrary combination of them. Below we show that for the
particular values of the coupling constants, one can achieve
the complete degeneracy when the lowest energy levels in
all sectors coincide. In that case, the relative ground states
(51) from all subspaces V L

σ1...σN
form the 2N -fold completely

degenerate total ground state.

E. Decoupled Kitaev chains

Consider the chain (1) without the four-fermion interac-
tions where we also set tx = rx:

H =
N∑

a=1

Ha,

Ha = −
L−1∑
x=1

tx
(
c+

x+1,acx,a + cx+1,acx,a + H.c.
)
.

(56)

The related Majorana system (24) is reduced to the N decou-
pled Kitaev chains [19]:

Ha = −ı

L−1∑
x=1

txγ
(1)

x+1,aγ
(2)

x,a . (57)

In each Hamiltonian, the two boundary Majorana modes,
γ

(1)
1,a and γ

(2)
N,a, are absent. They produce a single nonlocal

fermion, the presence or absence of which does not affect the
energy spectrum:

[
H, c±

a

] = 0, c±
a = γ

(1)
1,a ∓ ıγ

(2)
N,a

2
. (58)

One can choose the boundary Majorana fermions, γa =
γ

(1)
1,a , to implement the mapping between different σ subspaces

(26) and (27). In this case, they also intertwine the Hamilto-
nian’s action on these subspaces. Therefore, the spectrum in
all subspaces V L

σ1...σN
are identical. In particular, the ground

state completely breaks the Z×N
2 symmetry.
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IV. PARTICLE-HOLE SYMMETRY IN O(N) FERMION
CHAIN

A. Particle-hole transformation

In this section, we define the particle-hole transformation
and study its properties. For a single fermion, which we
consider first, the particle-hole map may also be described
as a similarity transformation induced by the first Majorana
fermion (16):

γ (1)c±γ (1) = c∓. (59)

A similar map, provided by the second fermion, also produces
an additional sign:

γ (2)c±γ (2) = −c∓. (60)

The above maps separate two Majorana modes within a single
complex fermion: the first (second) map detects the parity of
the second (first) mode.

The transformations (59) and (60) generate a Z2 × Z2

group and interchange between the particle and hole, n →
1 − n with n = 0, 1 meaning the fermion number. Their com-
position gives the parity operator (18), which alters the sign of
the creation-annihilation operators:

σc±σ = −c±, σ = −ıγ (1)γ (2).

Get back now to the chain model (1) and apply the last
transformation to all fermions located on the odd nodes:
c±

x,a → (−1)xc±
x,a. As a result, it alters the signs of the double-

fermion couplings,

tx → −tx, rx → −rx,

without touching the other parts of the Hamiltonian. As a
result, the positivity requirement on these coefficients (2) may
be weakened by setting the same sign for them:

rxtx > 0. (61)

Construct now a global particle-hole map for the en-
tire system in a way suitable for our purposes. Apply the
transformations (59) and (60) to the even-site and odd-site
fermions, respectively. The resulted conjugation is given by
the following operator:

�̂ = e−ıϕ
∏
x,a

γ (λx )
x,a , (62)

where the function λx separates the odd and even coordinates:
λodd = 1 and λeven = 2. Although the operator order in the
product (62) is not relevant, we set, for definiteness, the
ascending order (45). As usual, the phase factor

ϕ = π (LN−1)LN
4 (63)

is chosen to fulfill the involutivity condition:

�̂2 = 1. (64)

Thus, the particle-hole operator �̂ generates a Z2 group.
Obviously, it is unitary, which also ensures the Hermiticity. It
(anti)commutes with the Majorana fermion operators,

�̂γ (λx )
x,a �̂ = (−1)LN−1γ (λx )

x,a ,

�̂γ (λ̄x )
x,a �̂ = (−1)LNγ (λ̄x )

x,a ,
(65)

as well as with the reflection operators, see Eq. (19):

�̂σ̂a�̂ = (−1)Lσ̂a. (66)

In addition, it commutes with the proper rotations Eqs (4)
and (21):

�̂L̂ab�̂ = L̂ab.

The last two equations uncover the O(N ) structure of the
�̂. It is a scalar for even-length chains and a pseudoscholar
for odd lengths.

The global particle-hole map differs by a sign from its local
counterparts (59) and (60):

�̂c±
x,a�̂ = (−1)LN−xc∓

x,a. (67)

It converts the empty state into the completely filled one with
the prescribed fermion order (45):

�̂|0〉 = e−ıϕ′ ∏
x,a

c+
x,a|0〉 = e−ıϕ′ |0〉, (68)

ϕ′ = ϕ − π N
2

[
L
2

]
. (69)

Here the barred vacuum means the empty-hole state.
A similar transform of a general basic state (43) produces

an additional sign factor, which may be calculated using the
relations (67) and (68). In particular, a trial wave function (50)
converts into the following state:

�̂	a1...am = e−ıϕ′
(−1)pL−m	a1...am ,

p = (N − 1)m + a1 + · · · + am. (70)

Here again, the bar describes a state in terms of the holes
rather than particles. So, the state 	a1...am contains the ordered
fermions, all except those having the flavors a1, . . . , am and
located on the first node:

	a1...am =
∏

(x,a)=(1,ai )

c+
x,a|0〉. (71)

It is a member of the basis (43) or (44).
In general, any basic state 	x1...xn

a1...an
has its counterpart 	

x1...xn

a1...an

with the holes instead of particles. Clearly, there is no a �̂-
invariant state, so the entire basis splits into 2NL−1 such pairs.

We remark that an equivalent particle-hole operator may
be introduced by applying the alternating local maps (59)
and (60) in reverse order (see Ref. [25] for the N = 1 case):

�̂′ = e−ıϕ
∏
x,a

γ (λ̄x )
x,a . (72)

Both matrices are related to each other through the total
fermion parity σ̂ = ∏N

a=1 σ̂a:

�̂�̂′ = �̂′�̂ = σ̂ for even NL,

�̂�̂′ = −�̂′�̂ = ıσ̂ for odd NL.

B. Particle-hole symmetric O(N) chains

Remember that in Sec. III D the O(N ) structure and
degeneracy of the lowest energy states of the fermionic
model (1) is revealed. Here we consider the behavior of
these wave functions under the additional Z2 (particle-hole)
symmetry.
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The particular choice, which distinguishes between the
even and odd sites (62), implies the invariance of the local
Hamiltonian (12), modified by the replacement:

P+
yxPyx → 1

2
(P+

yxPyx + PyxP+
yx ),

K+
yxKyx → 1

2
(K+

yxKyx + KyxK+
yx ).

(73)

Indeed, the relations (65) and Majorana fermion representa-
tions of the K, P operators (22) and (23) imply

�̂

(
Kx+1,x

Px+1,x

)
�̂ =

(
K+

x+1,x
P+

x+1,x

)
. (74)

Note that from the commutation relations (14), it becomes
clear that the above modification (73) results in an extra
chemical potential,

δV ′ =
L−1∑
x=1

(gx + fx )nx + (gx − fx )nx+1,

which may be absorbed by the potential.
From the other side, the modified potential (11) is not

symmetric and undergoes the following shift:

�̂V ′(. . . , nx, . . . )�̂ = V ′(. . . , N − nx, . . . ).

Consider now the potentials which remain invariant under
the particle-hole transformation:

V ′(n1, . . . , nL ) = V ′(N − n1, . . . , N − nL ).

This happens, for example, when they depend on the products
(N − nx )nx as in the case of the SU(N ) Hubbard potential.
Therefore, the respective Hamiltonians are also preserved, as
can be inferred from the relations (10), (12), and (74):

[�̂, H] = 0.

The particle-hole structure of the relative ground states
manifests a parity effect on the chain’s size.

For even-length chains, L = 2l , the particle-hole and
reflection symmetries are compatible according to the
relation (66):

[�̂, σ̂a] = 0.

Together they constitute a discrete group Z×(N+1)
2 , which

preserves any individual σ subspace. Due to the unique-
ness condition established in Sec. III D, the relative ground
state also remains invariant under the particle-hole symme-
try. To detect the corresponding quantum number, we ob-
serve that the basic states meet in pairs in the decompo-
sition (51). The pair members are related by the particle-
hole map such as, in particular, the two paired states (50)
and (71). The phase factor in the definition of �̂ (69) is
trivial, ϕ′ = π (Nl − 1)Nl , and Eqs. (70) simplifies to the
following one:

�̂	a1...am = (−1)m	a1...am . (75)

Both states participate in the sum (51) with positive coeffi-
cients, which have to equal, giving rise to a combined state
	a1...am + 	a1...am with the particle-hole parity (−1)m. Clearly,

it coincides with the eigenvalue of the relative ground state
(51):

�̂a1...am = (−1)ma1...am . (76)

For odd-length chains, L = 2l − 1, the particle-hole trans-
formation anticommutes with reflections (66),

{�̂, σ̂a} = 0. (77)

This fact leads to the additional twofold degeneracy of the
energy levels. Indeed, the particle-hole transformation inverts
the parities of all flavors. It matches the Hamiltonian’s spec-
trum on the two invariant subspaces (25):

�̂V L
σ1...σN

= V L
−σ1···−σN

.

Therefore, both subspaces have identical spectra. As a conse-
quence, the two invariant sectors are degenerate (32):

�̂VL
m = VL

N−m.

The exclusion is the sector with m = N/2 for even values of
the group rank N . The double degeneracy occurs within the
sector VL

N/2 containing an equal number of flavors with odd
and even parities.

V. FURTHER EXTENSIONS AND SPIN CHAINS

The result on the nondegeneracy and the multiplet structure
of the relative ground state, obtained in the previous sec-
tion, remain valid for more general class of SO(N ) invariant
fermionic chains. Recall that the local Hamiltonian (12) is
constructed from the blocks (13) using negative numbers
to prevent any positive off-diagonal matrix element in the
selected basis (43). In fact, more members can be added just
keeping this rule.

Note that the four-particle interactions in the original
Hamiltonian (1) are chosen to preserve the number of
fermions of each sort, na. The requirement simplifies the
system but is not necessary. Thus, the interaction KxyP+

xy with
the conjugate can also be included in the local Hamiltonian
(12). They are responsible for a particle decay into three
particles and the reverse process.

A. Long-range interactions

So far, we have deal with the nearest-neighbor interaction
in the open fermionic chain. The building blocks of the
Hamiltonian (13), which couple two distant sites, are not
yet positive in the basis (48). The simple replacement of the
fermionic operators with their bosonic counterparts given by
the Pauli matrices (47) is not valid for a distant interaction any
more. Instead, the Jordan-Wigner transformation (46) imply
a nonlocal coupling between distant sites, depending on the
overall fermionic parity in all intermediate positions. To avoid
a sign problem, we redefine them in the following way:

Kyx =
∑

a

τ+
y,aτ

−
x,a =

∑
a

c+
y,acx,a

∏
x<z<y

σz,a,

Pyx =
∑

a

τ−
y,aτ

−
x,a =

∑
a

cy,acx,a

∏
x<z<y

σz,a.
(78)

Clearly, all results about the relative ground states and their
multiplet structure, established for the open chains, remain
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valid for an analog of the Hamiltonian (10) with the long-
range interactions:

Ĥlr =
∑
x<y

(
Hyx + H+

yx

) + V ′(n1, . . . , nL ). (79)

The interaction between two distant sites depends on positive
coupling constants, as in the adjacent case (12):

Hyx = − tyxKyx − ryxPyx − fyxKyxK+
yx

− gyxP+
yxPyx − hyxK2

yx − eyxP2
yx.

(80)

B. Cyclic boundaries and translation invariance

Let us restrict the distant interactions to a single term
binding together the first and last sites. As a result, the
nearest-neighboring chain (10) is supplemented by the cyclic
boundary term:

Ĥcyc = Ĥ + Hb, Hb = HL1 + H+
L1. (81)

As soon as this term is borrowed from the long-range inter-
acting model (80), it fulfills the sign rule. It is easy to observe
that the sign factors, depending on the intermediate fermions,
are provided by the total parity operators (78),

KL1 = −
∑

a

c+
L,ac1,aσ̂a, PL1 = −

∑
a

c1,acL,aσ̂a, (82)

which take constant values, σa, on the invariant subspaces
V L

σ1...σN
. Thus, the boundary conditions depend on the individ-

ual σ subspaces. Below we consider only one of them.
Define the elementary lattice translation:

T̂ c±
x,aT̂ −1 = c±

x(mod L)+1,a. (83)

Its eigenvalues eip are given by the lattice momentum values,
p = 0, 2π

L , . . . , 2π (L−1)
L . Evidently, it commutes with the O(N )

symmetry, including the parity operators:

[T̂ , σ̂a] = 0. (84)

Let us confine the Hamiltonian to the odd-parity sector,
VL

N = V L
−···−, and consider the site-independent coupling con-

stants (2):

rx = r, tx = t, fx = f , etc.

Then the translation operator maps the local Hamiltonians to
each other, including the boundary one, (81). This property
ensures the translation invariance of the restricted system,

T̂ Hx x−1T̂ −1 = Hx+1 x, [T̂ , Ĥcyc] = 0,

with the x ± 1 taken on modulo L [see Eq. (83)].
We affirm that the relative ground state of the translation-

invariant Hamiltonian in the odd-parity sector, σa = −1, is a
pseudoscalar with zero momentum:

T̂ 12...N = 12...N . (85)

One can use arguments similar to those in the proof of
Eq. (76). Using the translations, circulate the trial state (50) to
all nodes and take the sum to get a translation-invariant state
with zero momentum:

	 =
L−1∑
l=0

T̂ l	12...N , T̂ 	 = 	. (86)

It is easy to observe that the above state takes part in the
linear combination (51). Due to the uniqueness condition, the
both states, 12...N and 	, have the same momentum quantum
number, which proves Eq. (85).

Note that for the even-size chains with odd Majorana
modes per site (which is not our case with the 2N modes), the
commutator in Eq. (84) is replaced by the anticommutator.
As a result, the twofold degeneracy appears with the super-
symmetry behind it [28]. This resembles a similar behavior
(without a supersymmetry) in the case of the particle-hole
symmetry and odd-size chains [see Sec. IV B, Eq. (77)].

C. Mixed-spin chains

The six and more fermion exchange terms may also con-
tribute in the local interaction. Among them there are the
second- and higher-order SO(N ) Heisenberg spin exchanges.

Consider the limiting case when all other terms are absent
so the Hamiltonian acquires the following form:

Ĥs =
∑

x

(
J (1)

x Lx+1 · Lx − J (2)
x (Lx+1 · Lx )2

)
, (87)

where higher powers, k < N , of the Heisenberg exchange (15)
may be involved too. To fulfill the required sign rule, they
must be with alternating couplings:

(−1)k−1J (k)
x with J (k)

x > 0. (88)

The positivity condition may be weakened (see, for example,
the inequality (93) for the second coupling below).

In fact, it is easy to check that the local spin-exchange
interaction (15) is purely off-diagonal and may be presented
in the form

Ly · Lx = −
∑
a =b

(c+
x,acy,ac+

y,bcx,b + c+
x,ac+

y,acy,bcx,b), (89)

with y = x + 1. This expression is built from the double-
fermion operators with the same flavor, like c+

x,acy,a. As was
derived already in Sec. III C, they produce non-negative ma-
trices in the current basis. As a result, all matrix elements of
Lx+1 · Lx are nonpositive.

Clearly, the Hamiltonian (87) keeps unchanged the local
intrinsic spins given by the antisymmetric representations Ymx

and the total number of fermions per site:

[Ĥs, nx] = 0.

Thus, it has a block diagonal form with LN+1 parts, according
to all possible distributions of the local fermion numbers nx =
mx = 0, . . . , N along the chain nodes. Moreover, the trivial
representations, mx = 0, N , appearing anywhere, cut the chain
into the two disjoint pieces. We get in this way a set of the
mixed-spin chains containing no more than L nodes. Each
site is endowed with an O(N ) antisymmetric multiplet (higher
spin) Ym formed by nx = mx fermions provided that

1 � mx � N − 1. (90)

The particle-hole transformation �̂ (59) intertwines be-
tween two “dual” chains composed from the mutually conju-
gate representations with mx and N − mx fermions per node,
ensuring the equivalence of both Hamiltonians.
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FIG. 2. The five-site mixed-spin chain with O(5) symmetry with
xth node filled by the mx fermions. The related antisymmetric mul-
tiplet is characterized by its dimension

(5
m

)
with or without the bar

listed below. The bar (and gray color) marks a multiplet m′ = 3, 4
dual to that with m = 5 − m′, A particular state (92) is shown with
the flavors inside the boxes atop.

Select now a single chain from this family and keep the
notations (for the length, invariant sectors, the lowest level
states there, etc.) the same to avoid new entries. Clearly, the
total amount of fermions and the total parity σ̂ = (−1)n̂ take
constant values therein:

n =
N∑

a=1

na =
L∑

x=1

mx,

σ =
N∏

a=1

σa =
L∏

x=1

(−1)mx .

As a result, the reflection symmetry for spin chains is reduced
to the Z×(N−1) group composed from N − 1 independent
parities [20].

Hence, the allowed invariant sectors VL
m (32) have to obey

the parity rule:

(−1)m = σ = (−1)n. (91)

Of course, they are still
(N

m

)
-fold degenerate, but their di-

mensions are essentially less comparing with those in the
parent, fermionic chain. Note that a single Majorana fermion
γa alters the total parity value, taking beyond the spin chain’s
space of states. Therefore, the equivalence relation between
two σ subspaces (26) is not valid any more. Moreover, their
dimensions differ in general.

Figure 2 illustrates a sample mixed-spin chain with N = 5
flavors. The (higher) spins on the nodes are members of the
antisymmetric multiplets Ym with m = 2, 1, 3, 4, 2 fermions
per site. Their dimensions are listed at the bottom. For a
conjugate pair Y1,Y ′

1 or Y2,Y ′
2 (55), they coincide so the

representations Y ′
1,2 are plotted in gray and marked with an

overbar.
A sample state is displayed in terms of the Young tableau

at the top: a box means a fermion with inscribed flavor [21].
Using the comma to separate the adjacent nodes apart, it may
be written as follows:

|34, 2, 1245, 235, 12〉= c+
1,3c+

1,4c+
2,2 . . . . . . c+

5,2|0〉. (92)

In the particular case when each node of the system (87) is
occupied by a single fermion, mx = 1, we arrive at the SO(N )
invariant spin chain in the vector (defining) representation,
already considered in the current context [20,27]. Following
the common rule (91), the total parity must equal the length’s

parity:

(−1)m = σ = (−1)L.

Rearranging fermions according to their positions as done
above (92), we present the related fermionic basis (43) in
a form more conventional for spin systems (commas are
omitted):

|a1 . . . aL〉 = (−1)pa1 ...aL c+
1,a1

. . . c+
L,aL

|0〉.
Here pa1...aL is a number of disordered pairs is the sequence,
i.e., the amount of the flavor pairs with x < y but ax > ay.

The local spin exchange (89) produces on the above state:

Lx+1 · Lx |ab〉 = (−1)1−δab |ba〉 − δab

∑
c

|cc〉.

Here only the spins at the neighboring xth and (x + 1)th po-
sitions are mentioned, the others are not affected and omitted.
As was already discussed, it contains solely negative elements
out of the diagonal. Therefore, its square has positive matrix
elements:

(Lx+1 · Lx )2|ab〉 = |ab〉 + (N − 2)δab

∑
c

|cc〉

(the angular momentum exists merely for N � 2).
The assembly of the common terms in both operators

broadens the definition area of the second coupling (88)
beyond the positive region [20]:

J (2)
x > − J (1)

x

N − 2
. (93)

It contains the integrable point,

J (2) = − N − 4

(N − 2)2
J (1), (94)

at which the translational invariant system is solved exactly by
the Bethe ansatz [29].

One can spread out the results in Sec. III D to the spin
chain system. In particular, the ground state in the sector VL

m is
given by a single m-th order antisymmetric O(N ) tensor with
the components a1...am , producing the unique relative ground
states in the subspaces V L

a1...am
.

The proof repeats the steps for the parent model from
Sec. III. The connectivity of the spin Hamiltonian (87) in
the nonpositive basis (44) inside a restricted σ subspace is
easy to establish using the representation (15). Due to the
uniqueness and continuity, the multiplet type of the relative
ground state remains unchanged along the path connecting
the Hamiltonians (1) and (87). Alternatively, one can look
for a more complex trial wave function than the state (50),
which may go beyond the space of the spin chain states, see
Refs. [12,20]. For instance, one can set

	a1...am =
∑

s

	
xs1 ...xsm
a1...am , (95)

where the sum is taken over the nontrivial permutations of
a chosen coordinate set x1, . . . , xm. It is easy to see that the
above wave function is antisymmetric in the flavors.
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VI. CONCLUSION

We have studied the properties of the sectoral ground states
(degeneracy, multiplet structure) of the O(N ) invariant finite-
size chain of interacting (Dirac or Majorana) fermions with N
spins (flavors).

The system does not retain the number of particles with
a given flavor a but keeps its parity, σa. The corresponding
invariant subspaces Va1...am labeled by the values of odd flavors
(that is, the flavors with σa = −1), are related with each other
by the Majorana modes and thus have the same dimension. In
general, they differ in their spectrum. Merely the σ subspaces
with the same number m of odd flavors are completely degen-
erate and unified into a single invariant m sector.

For a wide range of coupling constants, we have estab-
lished in the current paper that the lowest energy O(N )
multiplet in any such m sector is unique and represented
by an mth-order antisymmetric tensor, a1...am . Owing to the
degeneracy, its components are the unique lowest energy
states (the relative ground states) in the subspace Va1...am .

Note that there is no way to somehow relate the lowest
levels of two distinct sectors. In fact, the exact results in
the two-site samples and Kitaev chain illustrate that there
is not any ordering between them for common parameters.
The additional degeneracies may happen at special values
of couplings, including the complete degeneracy among all
N + 1 sectors.

Such degeneracies usually emerge in the presence of extra
symmetries as the particle-hole symmetry. The impact on the
spectrum depends on the parity of the chain’s size. For the
even-length chains, the particle-hole and O(N ) symmetries
commute. This endows the ground states a1...am with an
additional parity given by the particle-hole eigenvalue, (−1)m.
For the odd-length chains, the particle-hole map does not
commute with improper rotations any more. Instead, it alters
the values of all parities, leading to an additional twofold
degeneracy between the dual subspaces Va1...am and Va′

1...a
′
N−m

with differing flavor sets ai and a′
i.

Remember that for the U (N ) fermionic chain, there is no a
particle creation-annihilation process so the fermion quantum
numbers per flavor, na, are good and mark the invariant
subspaces. The subspaces with the same total number, n =∑

a na, are combined into the sectors. It is known that the
lowest-energy states in each such n sector is described by a
unique mth-order antisymmetric U (N ) multiplet with m = n
mod N [12].

The above results remain valid in the presence of the long-
range interactions multiplied by a Jordan-Wigner string. For
the translation-invariant system, they are verified merely in
the odd-parity sector, m = N , where the momentum quantum
number of the ground state vanishes.

Finally, the aforementioned statements for the fermionic
models have been transferred as well to the O(N ) invariant,
polynomial Heisenberg chains with alternating couplings and
mixed spins. This system is obtained in the limit when the
fermion numbers (but not the flavors) per each site persist.
They set ranks of the antisymmetric multiplets, where the
local spins live. Note that now the number of odd flavors
(m) in each invariant subspace Va1...am is confined by the
total number of fermions: both must have the same parity.

The obtained results extend those for the bilinear-biquadratic
model in the vector representation [20].
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APPENDIX A: TWO-SITE O(2) FERMIONIC CHAIN

In the current Appendix, we derive exactly the spectrum
and quantum numbers of the particle-hole invariant two-site
O(2) fermionic chain (34), (35). The obtained results have
been described briefly in Sec. III B.

The space of states decomposes into the invariant sectors
Vm with m = 0, 1, 2 (36) and (37). Here we consider each
sector separately.

1. m = 0 sector

The sector V0 with even particle numbers is spanned by the
states

|0〉, |↑↓,↑↓〉, |↑,↑〉, |↓,↓〉, (A1)

with a comma separating the nodes, see also the wave function
(92). We use here the conventional basis where the fermion’s
position prevails over the spin. Three states obey the nonposi-
tivity conditions (42) and (43) while the fully occupied state,

|↑↓,↑↓〉= c+
1,↑c+

1,↓c+
2,↑c+

2,↓|0〉,
needs a sign.

The particle-hole transformation (62) shuffles the states as
follows (see also Appendix B 5):

�̂|0〉= −|↑↓,↑↓〉, �̂|↑,↑〉= |↓,↓〉. (A2)

Due to the Pauli exclusion principle, the fermion hopping
is banned here (K = 0) while the annihilation of a fermion
pair is allowed only on the following states:

P|↑↓,↑↓〉= −|↑,↑〉− |↓,↓〉,
P|↑,↑〉= P|↓,↓〉= |0〉. (A3)

The O(2) symmetry splits the Hamiltonian into two diago-
nal blocks. The first block,

H =
⎛
⎝ −2g 2e −√

2r
2e −2g

√
2r

−√
2r

√
2r −4g

⎞
⎠,

is spanned by the pure singlets:

|0〉, |↑↓,↑↓〉, 1√
2
(|↑,↑〉+ |↓,↓〉). (A4)

Note that the last one is specific for the orthogonal groups.
It forms a trace which contracts the spins of neighboring
fermions with the invariant metrics, δab. The traceless part
of the symmetric tensor (38) makes up an O(2) doublet, one
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member of which,

1√
2
(|↑,↑〉− |↓,↓〉), (A5)

forms the second block with H = 0. [The second member be-
longs to the odd parity sector described below, see Eq. (A12)].

As a result, the energy eigenvalues are given by the follow-
ing expressions:

E0,1 = −e − 3g ∓
√

(e − g)2 + 4r2,

E2 = 2(e − g), E3 = 0.
(A6)

Clearly, the lowest level, E0 (top sign), is unique in the region
with positive parameters.

The relative ground state (51) is a singlet with the following
coordinates in the basis (A4):

 = (ω,−ω, 1), ω = e−g+
√

(e−g)2+4r2

2
√

2r
.

Clearly, ω > 0, so its coefficients in the basis (43) become
positive in complete agreement with the most common for-
mula (51).

The particle-pole parity is even, as is easy to see for the
relations (A2),

�̂ = , (A7)

which agrees with the general formula (76).

2. m = 2 sector

The sector V2 with odd parities is spanned by two fermions
with opposite spins:

|↑,↓〉, |↓,↑〉, |↑↓, 0〉, |0,↑↓〉. (A8)

Note that merely the second state has a wrong sign to make
up a nonpositive state (43). The particle-hole inversion (62)
produces

�̂|↑,↓〉= −|↓,↑〉, �̂|↑↓, 0〉= |0,↑↓〉. (A9)

In contrast to the previous sector, here the annihilation is
forbidden, P = 0, and the particle motion conforms to the
forward jumps,

K|↑↓, 0〉= |↑,↓〉− |↓,↑〉,
K|↑,↓〉= −K|↓,↑〉= |0,↑↓〉, (A10)

together with their backwards.
Make use of the O(2) invariance again and split the Hamil-

tonian into two independent parts. The first block is built on
the pseudoscalar sector,

1√
2
(|↑,↓〉− |↓,↑〉), |↑↓, 0〉, |0,↑↓〉, (A11)

with the following matrix

H = −
⎛
⎝ 4 f

√
2t

√
2t√

2t 2 f 2h√
2t 2h 2 f

⎞
⎠.

The symmetric combination,

1√
2
(|↑,↓〉+ |↓,↑〉), (A12)

is a zero-energy eigenstate. Together with the state Eq. (A5), it
forms an O(2) doublet described by the two-component tensor
(38).

Thus, the resulting energy levels are

E0,1 = −h − 3 f ∓
√

( f − h)2 + 4t2,

E2 = 2(h − f ), E3 = 0.
(A13)

Clearly, the lowest value, E0, is unique in the region with pos-
itive parameters. The corresponding state is a pseudosinglet
with the following coordinates in the basis (A11):

↑↓ = (ω, 1, 1), ω = f −h+
√

( f −h)2+4t2
√

2t
.

Since ω > 0, all coefficients in the basis (43) are positive in
agreement with the general rule (51), as is easy to verity. Its
particle-pole parity is even,

�̂↑↓ = ↑↓,

which follows from Eqs. (A9). This fact agrees with the
general formula (76).

3. m = 1 sector

The sector V1 with mixed parities consists of the two σ

subspaces: V↑ and V↓ (36), spanned, correspondingly, by the
first and second rows below:

|↑, 0〉, |0,↑〉, −|↓,↑↓〉, |↑↓,↓〉, (A14)

|↓, 0〉, |0,↓〉, |↑,↑↓〉, −|↑↓,↑〉. (A15)

It is easy to see that every column forms a vector doublet
and the upper component goes to the down one under the π

rotation.
The Hamiltonian (34) is given by the same matrix in both

subspaces, V↑ and V↓:

H = −

⎛
⎜⎝

f + g t 0 r
t f + g r 0
0 r f + g t
r 0 t f + g

⎞
⎟⎠. (A16)

This fact reflects the degeneracy and can be also verified
using the action of the K, P operators (and their Hermitian
conjugates). The nonvanishing processes on V↑ are provided
by

K|↑, 0〉= |0,↑〉, K|↓,↑↓〉= −|0,↑〉,
P|↓,↑↓〉= −|0,↑〉, P|↑↓,↓〉= |↑, 0〉,

together with their backwards.
The corresponding energy levels are pretty simple:

E0,1,2,3 = − f − g ∓ r ∓ t . (A17)

Obviously, the lowest level, E0 (with minus signs), is unique
in the subspace V↑ (V↓).

The relative ground states in both subspaces have the same
expansion:

↑ = ↓ = (1, 1, 1, 1). (A18)

085128-13



TIGRAN HAKOBYAN PHYSICAL REVIEW B 102, 085128 (2020)

Clearly, both components form a vector doublet, a. The eight
basic states (A14) and (A15) match the nonpositivity condi-
tion (43), and the unit coefficients justify the most common
decomposition formula (51).

Note that simple expressions for the spectrum and eigen-
states are the consequence of the lattice reflection and particle-
hole symmetries of the Hamiltonian (34). Both of them shuffle
the basic states (A14) and (A15). The lowest-energy state is
even under the lattice reflection and is odd under the particle-
hole transformation:

�̂a = −a.

The last fact is in agreement with the general rule (76) and can
be verified independently applying

�̂|↑, 0〉= |↓,↑↓〉, �̂|0,↑〉= −|↑↓,↓〉,
�̂|↓, 0〉= −|↑,↑↓〉, �̂|0,↓〉= |↑↓,↑〉

and taking into account the involutivity property (64).

APPENDIX B: TWO-SITE O(3) FERMIONIC CHAIN

Here we derive exactly the spectrum and quantum numbers
of the particle-hole invariant two-site O(3) fermionic chain
(34) and (35). The obtained results have been discussed briefly
in Sec. III B.

The space of states decomposes into the invariant sectors
Vm with m = 0, 1, 2, 3 (39) and (40). Below we treat each
sector separately.

1. m = 0 sector

The sector with even parities, V0, is formed by the follow-
ing eight states (no summation):

|0〉, |a, a〉, −|ab, ab〉, −|123, 123〉, (B1)

where a, b = 1, 2, 3 and a < b. We continue with the Dirac
notations from the previous section with the comma sepa-
rating the nodes. The minus signs has been set to fit the
nonpositivity condition (43).

Due to the Pauli exclusion principle, a particle hopping
is forbidden here (K = 0) while the pair annihilation is sub-
jected to the rule,

P|a, a〉= |0〉, P|ab, ab〉= −|a, a〉− |b, b〉,
P|123, 123〉=

∑
a<b

|ab, ab〉.

The Hamiltonian is split into two blocks, each involving
equivalent multiplets. The first block is made from the scalars
(singlets), which we endow with the following basis:

|0〉,
∑

a

|a, a〉√
3

, −
∑
a<b

|ab, ab〉√
3

, −|123, 123〉. (B2)

Inserting the structure of the K, P operators into the Hamil-
tonian (34), we obtain

H = −

⎛
⎜⎜⎝

3g
√

3r 2
√

3e 0√
3r 7g 2r 2

√
3e

2
√

3e 2r 7g
√

3r
0 2

√
3e

√
3r 3g

⎞
⎟⎟⎠. (B3)

The energy levels are

E0,1 = −5g − r ∓ 2
√

3e2 + g2 + 3er + gr + r2,

E2,3 = −5g + r ∓ 2
√

3e2 + g2 − 3er − gr + r2.
(B4)

Among them, the level E0 (with − sign) is the lowest one, not
only among singlets but also in the whole sector as we will see
later. The related state has positive coordinates in the singlet
basis:

 = (1, ω, ω, 1),

ω = 2g+r+2
√

3e2+g2+3er+r(g+r)√
3(2e+r)

> 0.

Then the coordinates in the current σ subspace basis (B1) are
also positive, as is easy to see, in complete agreement with the
expansion formula for the relative ground state (51).

The second block of the Hamiltonian is based on the
diagonal parts of the two equivalent O(3) quintets, described
by the traceless symmetric tensor (38),

ψ
(1)
ab |a, b〉, 1

4
ψ

(2)
e f εeabε f cd |ab, cd〉, (B5)

where the summation is supposed over the repeating indexes.
Such states are characterized by the Young tableau
[21].

We select the following diagonal tensors:

ψab = ψaaδab with
1) ψaa = (1,−1, 0),
2) ψaa = (1, 1,−2). (B6)

They define orthogonal states (normalization is not essential
here),

|1, 1〉− |2, 2〉, |1, 1〉+ |2, 2〉− 2|3, 3〉,
|23, 23〉− |13, 13〉, |23, 23〉+ |13, 13〉− 2|12, 12〉. (B7)

The Hamiltonian mixes together the states within the same
column, so that is spit once more into two identical blocks,
each given by

H = −
(

g r
r g

)
.

Thus, the corresponding energy levels are doubly degenerate:

E4,5 = −g − r, E6,7 = −g + r. (B8)

Each level is filled by the two diagonal states within the same
symmetric multiplet. Comparing the above values with the
singlet levels (B4), we make sure that the energy E0 is indeed
the lowest one in the current sector.

2. m = 3 sector

The sector with odd parities, V3, is formed by the three
particles with different flavors. We write them in cyclic order
for the latter convenience,

|123, 0〉, |12, 3〉, |23, 1〉, |31, 2〉,
|0, 123〉, |1, 23〉, |2, 31〉, |3, 12〉. (B9)

In this form, by the way, they all belong to the nonpositive
basis (43), as is easy to verify.
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The Pauli exclusion principle bans the creation and anni-
hilation processes (P = 0). The jumps from left to right are
driven by

K|123, 0〉= |23, 1〉+ |31, 2〉+ |12, 3〉, (B10)

and six more rules given by

K|12, 3〉= |1, 23〉+ |2, 31〉, K|1, 23〉= |0, 123〉 (B11)

and their cyclic permutations. Evidently, the backward jumps
are driven by the operator K+.

Here again the Hamiltonian (34) decomposes into diagonal
blocks, composed from equivalent O(3) multiplets. One such
block is made up of the pseudoscalars (pseudosinglets), which
we endow with the following basis:

|123, 0〉, εabc

2
√

3
|ab, c〉, εabc

2
√

3
|a, bc〉, |0, 123〉, (B12)

with the summation over the Levi-Civita indexes. Using the
hoppings described above, we derive the restriction of the
Hamiltonian there:

H = −

⎛
⎜⎜⎝

3 f
√

3t 2
√

3h 0√
3t 7 f 2t 2

√
3h

2
√

3h 2t 7 f
√

3t
0 2

√
3h

√
3t 3 f

⎞
⎟⎟⎠. (B13)

The energy levels can be easily calculated:

E0,1 = −5 f − t ∓ 2
√

3h2 + f 2 + 3ht + f t + t2,

E2,3 = −5 f + t ∓ 2
√

3h2 + f 2 − 3ht − f t + t2.
(B14)

The second block of the Hamiltonian is formed on the
space spanned by the four states,

|23, 1〉− |31, 2〉, |23, 1〉+ |31, 2〉− 2|12, 3〉,
|1, 23〉− |2, 31〉, |1, 23〉+ |2, 31〉− 2|3, 12〉. (B15)

In fact, the above states belong to the two equivalent O(3)
quintets based on the three-component tensor with mixed
symmetry (41),

1

2
ψ

(1)
abc|ab, c〉, 1

2
ψ

(2)
abc|c, ab〉, (B16)

where the sum is taken over the repeating indexes. In the
representation theory terms, the states in both multiplets are

described by the Young tableau .

It is a pseudoanalog to the ψab tensor (or its dual in
the representation theory terminology [21]). In particular, the
above states, like the wave functions (B7), are based on the
diagonal tensors (B6), which produce mixed ones by ψabc =
εabcψcc (no sum).

Again, the Hamiltonian entangles only the column states in
the table (B15). In each column, it acquires the form

H =
(− f t

t − f

)
.

Thus, the energy levels are doubly degenerate:

E4,5 = − f − t, E6,7 = − f + t . (B17)

Each level is filled by two states from a quintet with mixed
symmetry being dual to the symmetric quintet. Comparing
with the energy levels (B14), we conclude that the lowest one
is provided by the energy E0.

The related relative ground state is derived easily. Of
course, it is a nondegenerate pseudosinglet and has the pos-
itive coefficients in the basis (B12),

123 = (1, ω, ω, 1),

ω = 2 f +t+2
√

f 2+3h2+ f t+3ht+t2
√

3(2h+t )
> 0.

It is easy to see that its coefficients in the total basis (B9) are
also positive. This agrees with the established law (51).

3. m = 1 sector

The sector with a single flavor with an odd particle number,
V1, contains three equivalent σ subspaces, Va with a = 1, 2, 3
(39) and (40).

First, consider the subspace V1, where the flavor a = 1 is
odd and takes the following basis there:

|1, 0〉, |0, 1〉, |1b, b〉, −|b, 1b〉,
−|123, 23〉, −|23, 123〉 (B18)

with b = 2, 3 and without summation. The signs are set to
match the common rule (43).

The direct (left-to-right) moves are described by the hop-
pings:

K|1, 0〉= |0, 1〉, K|1a, a〉= −|a, 1a〉,
K|123, 23〉= |23, 123〉.

Similarly, the pair annihilations are managed by the rules:

P|1a, a〉= |1, 0〉, P|123, 23〉= −|12, 2〉− |13, 3〉,
P|a, 1a〉= −|0, 1〉, P|23, 123〉= |3, 13〉+ |2, 12〉.

Note that the first two states in the basis (B18) represent the
first component of a vector. In fact, the last two also represent
the same. For example,

|123, 23〉= 1

2

∑
a,b

|1ab, ab〉. (B19)

Taking the sum over b in Eqs. (B18), we get two more vectors.
We have extracted in this way the six-dimensional subspace
spanned by the first components of vectors

|1, 0〉, |0, 1〉,
∑

b

|1b, b〉√
3

, −
∑

b

|b, 1b〉√
3

,

−1

2

∑
b,c

|1bc, bc〉, −1

2

∑
b,c

|bc, 1bc〉. (B20)
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Clearly, the Hamiltonian (34) preserves that subspace. It
has the following matrix representation therein:

H = −

⎛
⎜⎜⎜⎜⎜⎜⎝

u t
√

2r 0 2e 0
t u 0

√
2r 0 2e√

2r 0 u + 2g t
√

2r 0
0

√
2r t u + 2g 0

√
2r

2e 0
√

2r 0 u t
0 2e 0

√
2r t u

⎞
⎟⎟⎟⎟⎟⎟⎠

with the substitution u = f + 2g. The corresponding six en-
ergy levels are

E0,1,2,3 = −3g − e − f ∓ t ∓
√

(e − g)2 + 4r2,

E4,5 = 2(e − g) − f ∓ t .
(B21)

The second block of the Hamiltonian is formed on the
remaining two states, which are associated with the two
quintets with mixed symmetry (B16),

|12, 2〉− |13, 3〉, |2, 12〉− |3, 13〉. (B22)

In more detail, the above states correspond to the ψabc (41)
which is obtained from the tensor

ψab = δa2δb3 + δa3δb2. (B23)

The Hamiltonian on this subspace acquires the matrix form,

H =
(− f t

t − f

)

with the energy spectrum given by

E6,7 = − f ± t . (B24)

We conclude that the minimal level corresponds to E0 in the
vector spectrum (B21).

The basis (B20) trivially spreads to any of three subspaces
Va by replacing the first flavor with the ath. Let us denote the
corresponding basis by 	ai and keep the disposition, so 	a1 =
|a, 0〉, 	a2 = |0, a〉, etc.

Evidently, the Hamiltonian’s matrix is the same for all Va.
The lowest-energy states of the current sector are combined
into a single vector triplet, which may be derived explicitly:

a =
6∑

i=1

ωi	ai, ωi = (1, 1, ω, ω, 1, 1)

with ω = g−e+
√

(g−e)2+4r2
√

2r
> 0.

(B25)

The coefficients in the σ -subspace basis are positive too,
(B18) [compare with Eq. (51) for the general case].

The counterparts of Eq. (B22) in the subspaces V2 and V3

are obtained by cyclic permutations of the flavors. They are
all provided by the off-diagonal components of the symmetric
tensor ψab [see Eq. (B23)]. The diagonal components (B16)
have already generated the states (B15) of the same quintets
in the odd sector V3.

4. m = 2 sector

Consider now the sector V2 having two flavors with odd
particle numbers. Alike the previous sector, it is also degener-

ate and contains three σ subspaces, Vab, labeled by the values
of odd flavors (39).

For definiteness, consider the subspace V23 and choose the
following basis there:

|23, 0〉, |123, 1〉, −|12, 13〉, |2, 3〉,
|0, 23〉, |1, 123〉, |13, 12〉, − |3, 2〉. (B26)

Here the minus sign makes the basis nonpositive.
The direct moves are provided by the jumps,

K|123, 1〉= |13, 12〉− |12, 13〉,
K|23, 0〉= |2, 3〉− |3, 2〉,

K|1a, 1b〉= |1, 1ba〉, K|a, b〉= ε1ab|0, ab〉,
where a, b = 2, 3. The following annihilations are also al-
lowed:

P|123, 1〉= |23, 0〉, P|1, 123〉= |0, 23〉,
P|1a, 1b〉= −|a, b〉.

The backward processes are implemented by the Hermitian
conjugate operators.

Let us extract the six-dimensional subspace spanned by
the first components of pseudovectors (equivalently, by the
second and third components of antisymmetric tensors). De-
fine the basis with Levi-Civita symbol making apparent their
structure,

ε1ab

2
|ab, 0〉, ε1ab

2
|1ab, 1〉, − ε1ab√

2
|1a, 1b〉,

ε1ab√
2

|a, b〉, ε1ab

2
|0, ab〉, ε1ab

2
|1, 1ab〉,

(B27)

with the sum taken over the flavors a, b.
The Hamiltonian (34) has the following structure therein:

H = −

⎛
⎜⎜⎜⎜⎜⎜⎝

u r
√

2t 0 2h 0
r u 0

√
2t 0 2h√

2t 0 u + 2 f r
√

2t 0
0

√
2t r u + 2 f 0

√
2t

2h 0
√

2t 0 u r
0 2h 0

√
2t r u

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with the substitution u = 2 f + g. It has the following eigen-
values:

E0,1,2,3 = −3 f − h − g ∓ r ∓
√

( f − h)2 + 4t2,

E4,5 = 2(h − f ) − g ∓ r.
(B28)

The second block of the Hamiltonian is formed on the
states belonging to the two equivalent symmetric O(3) quin-
tets (B5). They correspond to the choice (B23) for the sym-
metric tensor (38):

|2, 3〉+ |3, 2〉, |12, 13〉+ |13, 12〉. (B29)

Remember that the diagonal components of these quintets
(B7) have already taken part in the even sector V0. Thus,
the energy levels (excluding the degeneracy) are inherited
therefrom (B8):

E6,7 = −g ± r. (B30)
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Of course, they may be also obtained from the restriction of
the Hamiltonian to the subspace spanned by the states (B29):

H =
(−g r

r −g

)
.

Thus, the minimal energy level in the current sector be-
longs to the pseudovector’s spectrum and has the value E0

(B28).
The pseudovector basis (B27) may be expanded to the

whole sector replacing of the first flavor by the cth one.
Keeping the disposition, denote the corresponding basis by
	 ′

ci. Due to the degeneracy, the Hamiltonian is described by
the same matrix in all Vab.

The lowest-energy states of the current sector are gathered
into the following single pseudovector (two-component anti-
symmetric tensor) triplet:

ab =
∑
c,i

ωiεabc	
′
ci, ωi = (1, 1, ω, ω, 1, 1)

with ω = f −h+
√

( f −h)2+4t2
√

2t
> 0.

(B31)

The symmetric states (B29) in the subspaces V12 and V13

are obtained by cyclic permutations of the flavors. They are
provided by the ψ12 and ψ13 components of the symmetric
tensor (B23). Recall that the diagonal parts of the symmetric
quintets (B5) have already participated in the even-parity
sector V0.

5. Particle-hole parity

Here we address the properties of the particle-hole in-
version. Recall that the latter maps the empty state to the
completely filled one (68):

�̂|0〉= |0〉 = −|123, 123〉. (B32)

The minus sign has arisen due to the difference in fermion
disposition in the last two states. Together with the relation
(67), it determines the action of the �̂ on an arbitrary state.
Indeed, it can be verified that a common basic wave function
with m fermions in the ascending order (44) and (45) obeys the
same relation as that for the trial state (70). For the L = even
chains, it reduces to

�̂	x1...xm
a1...am

= (−1)m	
x1...xm

a1...am
. (B33)

Remember that a bared state lists the holes but not the particles
(71).

According to the results in Sec. IV B, the inverted wave
function, 	, is also a member of the nonpositive basis (44).
Moreover, both states (B33) belong to the same σ subspace.

The above properties hold, in particular, for the basis
all sectors Vm with m = 0, 1, 2, 3, given, respectively, by
Eqs. (B1), (B9), (B18), and (B26). The corresponding lowest-
energy states are positive superpositions of the basic wave
functions. Together with the relation (B33), this fact set their
particle-hole quantum numbers to (−1)m.

Consider, for instance, the sector V1 (V2), where the rel-
ative ground state is formed by the six vectors 	ai (B20)
[pseudovectors 	 ′

ai (B27)] numbered by index i. Then the
particle-hole inversion (B33) results on them,

�̂	ai = −	ai = −	aī

(
�̂	 ′

ai = 	
′
ai = 	 ′

aī

)
,

with ī = 7 − i. Applying the above map to the lowest-level
states (B25) or (B31), we obtain

�̂a = −a
(
�̂ab = ab

)
,

in complete agreement with the formula (76) established for
the common even-length chains.
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