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Interacting Rice-Mele model: Bulk and boundaries
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We investigate the interacting, one-dimensional Rice-Mele model, a prototypical fermionic model of topolog-
ical properties. To set the stage, we first compute the single-particle spectral function, the local density, and the
boundary charge in the absence of interactions. We find that the fractional part of the boundary charge is fully
determined by bulk properties of the lattice model. In a large parameter regime the boundary charge agrees with
the one obtained from an effective low-energy theory (arXiv:2004.00463). Second, we investigate the robustness
of our results towards two-particle interactions. To resume the series of leading logarithms for small gaps, which
dismantle plain perturbation theory in the interaction, we use an essentially analytical renormalization group
approach. It is controlled for small interactions and can directly be applied to the microscopic lattice model. We
benchmark the results against numerical density matrix renormalization group data. The main interaction effect
in the bulk is a power-law renormalization of the gap with an interaction dependent exponent. The important
characteristics of the fractional part of the boundary charge are unaltered and can be understood from the
renormalized bulk properties. This requires a consistent treatment not only of the low-energy gap renormalization
but also of the high-energy band width one. In contrast to low-energy field theories our renormalization group
approach also provides the latter. We show that the interaction spoils the relation between the bulk properties
and the number of edge states, consistent with the observation that the Rice-Mele model with finite potential
modulation does not reveal any zero-energy edge states.

DOLI: 10.1103/PhysRevB.102.085122

I. INTRODUCTION

For noninteracting quantum many-body systems the rela-
tion between the topological properties and the behavior of
typical observables is well understood [1-7]; see Refs. [8—12]
for reviews and textbooks. However, in many respects this
understanding relies on ideas which make explicit use of
the concept of independent particles. Insights on the relation
between topology and the physics of interacting many-body
systems are based either on case studies for specific models
or on general considerations of how to extend the concept
of topological invariants to the realm of correlated systems
[13-24].

We here provide a case study for the interacting, one-
dimensional (1D), and spinless Rice-Mele (RM) model [25].
For vanishing interaction and up to isolated points in the space
of the single-particle parameters the model is an insulator with
phases of distinct topological properties. It is one of the most
elementary models with a band gap in the spectrum and was
set up in the early 1980s when investigating the electronic
properties of linear polymers [26]. The model consists of two-
site unit cells with an intracell hopping matrix element #; and
alternating on-site energies V| and V,. The unit cells are cou-
pled by a nearest-neighbor intercell hopping #,. For degenerate
on-site energies it becomes the famous Su-Schriefer-Heeger
(SSH) model [27]. We add a nearest-neighbor two-particle
interaction of amplitude U to the Hamiltonian.

One of the hallmarks of topological systems is the bulk-
boundary correspondence [28-35]. It is formulated in terms
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of a connection between topological bulk invariants and the
appearance of edge states. For 1D systems, it is known that
topological invariants are related to the number or parity of
zero-energy edge states. Besides these topological edge states,
there are other properties of a system close to a boundary
which can solely be understood based on bulk characteristics.
To investigate them we first solve the noninteracting infinite
and semi-infinite RM model. We focus on three observables:
The local single-particle spectral function, the local density,
and the so-called boundary charge accumulated close to the
boundary. Edge states show up as in-gap 6 peaks in the
local single-particle spectral function. The boundary charge,
which is computed from the local density, is influenced by
the number of edge states via an integer number. However,
the fractional part of the boundary charge is an alternative
and fundamentally different observable. It is influenced by the
whole spectrum of extended states, which carry also important
information from the boundary.

As shown for noninteracting and clean systems via the
polarization in terms of the Zak-Berry phase [36-44] and
recently also for disordered and interacting systems [45] the
fractional part of the boundary charge shows characteristics
which follow directly from bulk properties. Furthermore it is
an interesting observable in its own right as it indicates various
universal properties, such as the linear phase-dependence
against continuous translations of the lattice [46—49], the
possibility to realize rational quantization in the presence of
symmetries [45], and a universal low-energy behavior for very
small gaps [45]. Moreover, the fractional part of the boundary
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charge can be related to the bulk polarization which can be
defined generically for any many-body system in terms of the
phase of the ground-state expectation value of an exponential
containing the position operator [50,51]. However, this quan-
tity is quite hard to measure in an experiment, whereas the
boundary charge is directly accessible and can be calculated
easily from the density.

Our first important step is thus to compute the boundary
charge for the noninteracting RM model and illustrate the
above mentioned characteristics resulting from bulk proper-
ties. We show that results obtained from an effective low-
energy theory for gaps much smaller than the band width [45]
hold in a surprisingly large parameter regime. In addition, we
find an interesting ; quantization of the boundary charge in
the limit of large gaps.

In 1D metallic systems two-particle interactions imply
correlations which strongly alter the low-energy physics. They
lead to Tomonaga-Luttinger liquid behavior [52,53] which
cannot be captured by perturbation theory in the interaction.
In fact, perturbative approaches are plagued by logarithmic
infrared divergences. One can expect that in systems with a
band gap 2A, and the chemical potential placed in the gap,
these are cut off by A leading to dominant terms of the
form U" In"(A /W), with the band width 2W and n being the
order of perturbation theory. In fact, such terms are found
in plain perturbation theory for the interacting RM model
(see below). They severely limit its applicability in the limit
of small gaps as corrections to the leading term become
exceedingly large. Thus, as for metallic systems [52,53], in the
past low-energy field theories and field-theoretical methods,
such as bosonization, were employed [45-47,54-57]. They
circumvent logarithmic terms. However, if being interested in
the properties of a microscopic lattice model, such as the in-
teracting RM model, their application requires the additional
approximate step of mapping the lattice model to a continuum
field theory [45-47,57]. They are furthermore bound to the
low-energy limit.

To study the interacting RM model we follow an alterna-
tive route and use an essentially analytical but approximate
truncated functional renormalization group (RG) approach
[58,59]. This has the distinct advantage that it can directly
be applied to the microscopic lattice model and consistently
treats interaction effects on all energy scales, from the high-
energy band width down to the low-energy gap. The approxi-
mations required to derive a finite set of RG flow equations
for the components of the static self-energy are controlled
for small interactions. Crucially, the solution of these leads
to a proper resummation of the leading logarithms to a power
law (for related examples, see Ref. [58]). We benchmark our
functional RG results for the above observables to numerical
density matrix renormalization group data (DMRG) [60].
DMRG was earlier applied to models of topological insulators
[14,16,45,61-67]. However, to reach the low-energy regime
for systems with boundaries requires the study of exceedingly
large systems which provides a computational challenge to
this approach.

We show that the interaction can induce in-gap § peaks that
is “effective edge states,” in the local single-particle spectral
function, which are absent for U = 0. They originate from
the local modulation of the self-energy close to the open

boundary and cannot be explained based on renormalized
bulk properties. Therefore, the appearance of edge states
cannot be related to bulk properties. These modulations also
affect the local density close to the boundary. However, the
characteristic features of the fractional part of the boundary
charge remain unaffected and can be explained from the bulk
properties of the interacting model.

This paper is structured as follows. In Sec. II we present
the lattice model and introduce the observables of interest to
us. For vanishing interactions, we compute all eigenenergies
and wave functions for periodic as well as open bound-
ary conditions—including possible (topological) edge states.
From these we determine the local single-particle spectral
function, the local density, as well as boundary charge accu-
mulated close to the boundary. Details of these calculations
are given in the Appendix. In Sec. III we next present the
quantum many-body methods we employ to investigate the
interacting RM model: Functional RG and DMRG. In addi-
tion, we introduce a field theoretical model to investigate the
low-energy physics for small gaps. Our results for the bulk
properties of the interacting model are presented in Sec. 1V,
while Sec. V is devoted to the study of the physics in the
presence of an open boundary. In Sec. VI we provide a—taken
the length our paper—short summary of our results. As the
individual sections end with summaries of the corresponding
parts, we this way avoid a doubling. In addition, we present
an outlook.

II. THE MODEL AND ITS PHYSICS
AT VANISHING INTERACTION

A. The model

The noninteracting RM model [25] is one of the basic
models discussed in connection with edge state physics and
topological properties. In 1D, for spinless fermions, and in the
Wannier state basis (with lattice site index j) it is given by the
Hamiltonian

J

with the site-density operator n; = clc.. Standard second

quantized notation is used. The on-site potentials V; =V,
and hoppings t; = t;,z are periodic with period Z = 2, defin-
ing the number of lattice sites of the unit cell. With the
average hopping ¢t = (#; 4+ 2)/2 and half the difference §t =
(t1 — 12)/2, we parametrize V; and ¢; by

Vi=-V, =V, ll/zzli8l>0. )

We take ¢ as our unit of energy and set = 1. In analytic cal-
culations we still find it advantageous to introduce a symbol
for an energy scale associated to this average hopping. We use
W = 2¢, as it reminds us that 27 is half the band width of the
gapless model with §r = 0 = V. For compactness we refer to
2W as the band width.

As discussed in more detail in Sec. IIB the RM model
displays two bands separated by a single particle gap of
minimal size 2A (taken at wave vector k = +m, with the
lattice constant a = 1) with

A =V 4452 3)
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It is convenient to define a phase y € [0, 277) via the complex
gap parameter

Ae? =V +i26t. 4)

We vary y to modulate the staggered hopping and on-site
energies such that the complex gap parameter stays on a circle
in the complex plane defined by (V, 26¢). For V = 0 the RM
model becomes the SSH model [27].

The Hamiltonian Hj is complemented by a homogeneous
two-particle interaction of nearest-neighbor type

1 1
=05 2o -2)
J

with amplitude U. Subtracting 1/2 from the local density op-
erator n; the interaction is written in a particle-hole symmetric
form.

We take the number of lattice sites L to be even such
that all unit cells remain intact. We are interested in the bulk
properties as well as the boundary ones. In the former case
we consider periodic boundary conditions (PBCs). The site
index j in the sum of Egs. (1) and (5) runs from 1 to L
and site indices are considered modulo L. For open boundary
conditions (OBCs) the sum in the first term of Eq. (1) runs
from 1 to L while in the second one of Eq. (1) and in Eq. (5)
it extends only up to L — 1.

For §t = 0 =V the elementary unit cell has a single site
and H = Hy + Hjy is the Bethe ansatz solvable (single-band)
lattice model of spinless fermions with nearest-neighbor
hopping r = 1 and nearest-neighbor interaction U; see e.g.,
Ref. [52]. For |U| being smaller than a filling dependent
critical interaction it shows metallic behavior. For example,
for half filling the model remains gapless for =2 < U < 2.1In
this regime the system is a Tomonaga-Luttinger liquid with
all low-energy excitations being of collective bosonic nature
(instead of being fermionic quasiparticles) and correlation
functions decay as power laws with interaction dependent
exponents [52,53]. Outside the metallic Tomonaga-Luttinger
liquid phase correlations induce a gap. Here we are not
interested in the interplay of the single-particle gap 2A of the
noninteracting RM model and the interaction induced gap and
always consider interactions so small that the latter does not
open. For results on this interplay, see Ref. [19].

Before discussing our results on the interaction effects of
the spinless 1D RM model we investigate its U = O properties
in the next section. For details, see the Appendix. We also use
this section to introduce our observables of interest. A par-
ticular emphasize is put on the boundary charge accumulated
close to an open boundary, as it is an interesting quantity with
characteristics which can be understood solely based on bulk
properties of the Hamiltonian.

&)

B. Spectra and the density

For PBC the noninteracting Hamiltonian (1) can easily be
diagonalized. For this we rewrite the Wannier states as

1j) = n) @1i) (6

with the unit cell index n and the index i = 1, 2 for the two
sites within the unit cell. They are related to the lattice site

index via

j=2n—1)+i, 7

a relation which is used implicitly in the following.
In the single-particle subspace Hj can then be rewritten as

Ho= Y [In)(n| ® h(0)+ |n + 1)(n| @ h(1) + Heel,  (8)

n=—oo

with the 2 x2 matrices

_ Vi —h _ 0 —n
h(0) = (—n V2), h(1) = (0 0)
in the i = 1, 2 basis. Here we have already taken the thermo-

dynamic limit L — oo (infinite system, bulk properties). We
next define k states

€))

k) ik |y, (10)

1 o0

with k € [—m, 7). Taking these as our basis the Hamiltonian
reads

T
Ho= [ ki@ i (1n
with
he= Y h(@&e ™
5=0,+1
I Vi -t — l‘ze_ik
- <—l1 — l‘zeik Vs ) (2)
The eigenenergies are given by the eigenvalues of & as
slio’) =ag = oz\/V2 +12+13 +2nncosk,  (13)

with the band index o = 4. We used V; = -V, =V. We
thus find two bands separated by a single-particle energy gap
which takes its minimal value 2A at k = +7, with A defined
in Eq. (3).

The single-particle wave functions of the infinite (bulk)
system are given by the Bloch states

o) = =1 (14)
where
Oy = 1 gy Y oem g
N]Ea) N]Ea)
with the normalization factor
N = 2e4(e, — aV). (16)

We here exclusively consider the case with the chemical
potential u lying in the gap between the valence and conduc-
tion band as well as temperature 7 = 0, such that the lower
band is completely filled and the upper one is empty.

Integrating over the absolute values squared of the wave
functions in the lower band we obtain the bulk density.
It is translationally invariant by two lattice sites and is
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given by

. 4 . 1 [~ .
P () = / ARV P = 5 f dklx ()

-7

1 nays 1
_2+( 1) yp /_ndkgk, (17)
where we made use of Eqs. (14)—(16) for the Bloch states
and used Eq. (7) relating the indices i and j. Closing the
integration contour in the upper half we show in the Appendix
that the bulk density can be calculated very efficiently from
the integral

i 1 Vo[ 1
Poulk () = 5 + (—I)JE/O dK«/?(K) (18)
with
R(k) =V + 1t} +15 —2titycosh (k + kpe)  (19)
and

A2 4211t + AV A2 + 4111y
n .

24t

Kpe =1 (20)
As we will see below the length scale Kb_cl corresponds to
the decay length of the exponential localization of the excess
density for a semi-infinite system at the boundary. The fact
that this length scale appears also in the calculation of the
bulk density provides an interesting link between bulk and
boundary quantities.

The eigenstates of a semi-infinite chain with an open
boundary (boundary properties), obtained by starting with
OBC and taking L — o0, are given by

1
2w
with k € [0, w]. The dispersion remains the same as for the
infinite chain; see Eq. (13).

It is well established that for t; — t, < O the set of extended

eigenstates of a semi-infinite chain (21) is complemented by
an edge state with wave function

v\ G) = [x @) e — x% @)y e ], 1)

2 172
Ye(j) = 8ia (1) <% - 1) e " (22)

1
and

Ke = In t—z (23)
|

It has weight exclusively on the sites with i = 1 within the
unit cell and decays (purely) exponentially in the unit cell
index n away from the boundary. The characteristic length
scale is «;!. The edge state is located at energy V within
the energy gap. Accordingly, at T = O the edge state is filled
for V < p and empty for V > p. For V = p it is half-filled.
In the SSH model limit with V = 0 the edge state is located
at vanishing energy and classified as topologically protected
within the standard nomenclature of topological insulators.
The existence of the edge state follows from a property of the

bulk parameters, namely, t; —t, < 0.
From the eigenenergies and the eigenstates the local single-
particle spectral function A;(w) of the semi-infinite system

-2 -1 0 1
w

FIG. 1. The local single-particle spectral function A;(w) of the
noninteracting RM model as a function of energy o for different
lattice sites j close to an open boundary. The in-gap edge state is
indicated by a vertical arrow of height proportional to its weight.
The parameters are 6t = —0.04, and V = —0.01.

can be computed as
A =Y [ dkuG)Fste - ae)
a=+"0

+ [Ye(NI*8(0 — V). 24)

Figure 1 shows results for different j. The parameters are
8t = —0.04 and V = —0.01, thus from the regime featuring
an edge state. Therefore, the spectral function shows an in-gap
8 peak at energy w = . = V on odd sites with a weight which
according to Eq. (22) decays exponentially for increasing j =
2(n — 1) 4 i. In the figure it is indicated as a vertical arrow.
The height of the arrow is proportional to the weight of the
8 peak. The gap is clearly visible. Close to the boundary the
spectral weight generically (for an exception, see Sec. V A)
vanishes in a semicircular way when the energy approaches
the band edges. For larger j inverse square-root-like van-Hove
singularities typical for the density of states of 1D systems
develop. For w — %A this is visible only for larger j than
shown in Fig. 1.

We note that the results of Fig. 1 were computed for
a finite system of L = 4096 sites with PBC by numerical
diagonalization. To obtain a smooth function out of the sum
of § peaks (finite system size) we averaged the spectral weight
in the bands over several eigenenergies. Increasing the system
size the curves do not change on the scale of the plot and the
data can considered to be in the thermodynamic limit.

The local density of the semi-infinite system can be written
as

p(j) = /0 kYO DP + pei)
— oo () + () + peli), 25)

where p.(j) denotes the edge state density which is given by

pe(j) = Oty — t)|Ye(HIPS[1 +sgn(u = V), (26)
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with sgn(0) = 0. As outlined in the Appendix the Friedel
density pr can be split into a pole and branch cut contribution

T
dk[X]E_) (l-)]2e2zkn

Pr(j) = - 27
T J-n
= o) + (), (28)
given by
P () = = pe(lu=o (29)
\%
(be) —2Kpeht
ch(n’l)Z_Ee :
oo o —t K +Kpe \2
% dic O 262 ) e—2kn7 (30)
0 =R(©)[V* — R(x)]
\% o0 1
IO](:bC)(I’l, 2) — __6721(‘,5" dK e*2KI‘l’ (31)

2m o V-R@&)
with R(k) and «y,. defined in Eqgs. (19) and (20). The pole
contribution coincides with the negative edge state density
at u = 0. Therefore, for u = 0 it exactly cancels the edge
state density p.(j) in Eq. (25). The second term of pr(j)
arises from a branch cut contribution and decays exponentially
(to zero) for large n, i.e., large j = 2(n — 1) + i, with the
characteristic length scale Kl;cl. Therefore, for j — oo the
total density Eq. (25) for the semi-infinite chain approaches
the bulk values Eq. (17) as expected. This holds for any u
located in the gap. Inserting Egs. (28) and (29) in Eq. (25)
one finds that the only term depending on such a chemical
potential is the difference

Pe(j) = pe(Nlu=o = Ot — t)|Pe ()

x slsgn(n —V) —sgn(=V)l.  (32)

In the following we mostly consider the case of vanishing
chemical potential

w=0, (33)

in which the right-hand side of Eq. (32) is zero. Therefore,
the difference of the densities of the semi-infinite and infinite
system is given by the branch cut contribution of the Friedel
density

8p(j) = p(j) — Pour(j) (34)
= pr(j) + pe(j) = pP(j). (35)

In the SSH model limit with V = 0 we find «,. = «e. In
this case and for = O the total density of the semi-infinite
chain is given by 1/2 independent of the lattice site index j.
This follows from particle-hole symmetry.

In particular we are interested in the limit that the gap is
smaller than the energy scale associated to the band width
2W of the gapless model: A <« W. As shown in the Appendix
in this case the branch cut contribution of the Friedel density
decays asymptotically as

pre () ~ = ﬁe_z’%”,
with the decay length Kb_cl and a prefactor which depends on i.

The main part of Fig. 2 shows §p(j) for §t = 0.000125,
and V = 0.001, that is, for a very small gap. A very large but

w
n> N > 1 (36)

FIG. 2. Main panel: The difference §p(j) of the density of the
semi-infinite and infinite system constructed from the extended
eigenstates of the noninteracting RM model as a function of the
unit cell index n for chemical potential u = 0. Data for the two
different lattice sites i = 1, 2 within the unit cell are shown. The
single-particle parameters are §t = 0.000125 and V = 0.001. Inset:
The logarithmic derivative of the preexponential function computed
according to Eq. (37). The asymptotic inverse square-root decay of
the preexponential function is reached only for very large n.

finite system with OBC and L = 200000 sites was consid-
ered. On the scale of the plot the data are free of finite-size
corrections and for all practical purposes can considered to
be in the thermodynamic limit. In the inset the ‘“centered
logarithmic differences”

ﬂm_mvm+m—mum—m
" In(n+1)—In(n—1)

with f(n) = e*"|pp(j)| are shown for i =1,2. If f(n)
shows power-law scaling for large n, «a(n) approaches a
constant in this limit with lim,_, -, «(n) being the exponent.
The inset of Fig. 2 indicates that to identify the preexponential
inverse square-root behavior of Ecll) (36) fairly large n must be
accessed. Note that for u = 0, ,o](; ) =5 p holds. The Friedel
density on the second sites of every unit cell (i = 2) takes
longer to decay to zero as compared to the one on the first
sites (i = 1). We return to these observations in Sec. V when
studying the interacting RM model.

(37

C. The boundary charge

In this section we discuss the boundary charge Qg of
the noninteracting RM model. It is defined as the charge
accumulated close to an open boundary. We closely follow
the treatment of Ref. [49]. Here we summarize the most
important results; see the Appendix for the technical details.
The boundary charge Op of the semi-infinite RM model for
@ = 0 can be computed as

oo
. : L] .
Op = lim nggozl [p(;) - E}fN,MU), (38)
j:
where fy u(j) is an envelope function changing smoothly
from 1 to zero when going from the boundary towards the

bulk. It characterizes a macroscopic charge measurement
probe; see Fig. 3, from which the definition of the parameters
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MZ

AN)

. 1
01 NZ

j

FIG. 3. Sketch of the envelope function f(j) used to compute
the boundary charge with N > M > Z, «_ r Kb’cl, where Z = 2 for
the RM model.

M and N is apparent. Using Eq. (34), Op can be split as
Op = Op + 803, (39)

]

Op = lim lim
M—o00 N—oo

1
|:10bulk(j) - §:|fN,M(j)

j=1
! > i[p (i) 1] (40)
= -z bulk (Z) — = |5
2 i=1,2 2
808 =Y _8p(j). (41)

J=1

Here Qp is the polarization charge determined by the bulk
density. Using the translational invariance puy(j = 2[n —
114 i) = ppuk (i) and expanding the envelope function in i
one proceeds from the first to the second line of Eq. (40); see
Ref. [49] for details. The term §Qp involves the exponentially
decaying part 8 o(j) for which the fy () function can be set
to 1. Inserting Egs. (17), (30), (31), and (35) for the various
parts of the density, together with the explicit solution Eq. (15)
for the Bloch states, we show in the Appendix that the total
boundary charge can be calculated very efficiently as

1
Qs = —sen(V)

_ M /OO di 1 (42)
4 0 V=R(V? — R(x)]’

where R(x) is defined in Eq. (19). This holds for the special
case u = 0. For finite u one has to add the difference of the
edge state charge corresponding to Eq. (32)

0c(j) = Qe()l =0
= O(t, — 1)) 1[sgn(n — V) — sgn(=V)]. (43)

There are four characteristics of the boundary charge dis-
cussed in Refs. [45-49] which all can be derived from prop-
erties of the bulk Hamiltonian. (i) Transformation property of
Qg when shifting the lattice by one site towards the boundary
(also referred to as the universal linear slope of Qg as a func-
tion of the phase variable y). (i) Transformation property of
Qg under local inversion. (iii) Low-energy behavior of Qg for
small gaps A « W. (iv) Quantization of Qg in the presence
of local and nonlocal symmetries. These four features are
specified in the following for the noninteracting RM model
employing the above formulas and further alternatives to write
Eq. (42) (see the Appendix).

(i) Transformation of Qp under translations. Using the
parametrization of the single-particle parameters (4) in terms
of the phase variable y, one can describe a translation of the
lattice by one site towards the boundary as a phase change by
7, which corresponds to V| <> V, = =V} (or V. — —V) and
t; < t,. Using Eq. (42) we find

AQp(y) = Qp(y + ) — Op(y) = 3sgn(V). (44)

This agrees with the general result derived in Refs. [48,49] for
all single-channel and nearest-neighbor hopping models that
Og changes either by the average particle charge per site p or
the average hole charge per site p — 1 [68]. For the RM model
at 4 =0 we have p = % leading to :I:% for AQg consistent
with Eq. (44). We note that, for finite ©, we have to add the
change of Eq. (43) under translation, which gives

AQg(y) = 5[0 — n)sgn( + V)
— Ot — 1y)sgn(p — V)] (45)

Again we see that the change of Qp can take only the
values :I:%.

(ii) Transformation of Qp under local inversion. A local
inversion for the RM model is defined within a unit cell by
the transformation V| < V, = —V| (or V < —V) but leaving
the hoppings invariant. In Ref. [45] it was shown that Qg
changes its sign under local inversion [mod(1)] for generic
tight-binding models in one dimension (for special cases
see also Refs. [46,47,49]). Using Eq. (42) we find for the
particular case of the RM model

Os(=V) = —-0s(V). (46)

(iii) Low-energy theory for small gaps. In the low-energy
limit of a very small gap A <« W and using the definition (4),
we show in the Appendix that the boundary charge can be
written approximately in the universal form

y 1

O™ o T4

for 0 < y < 27 and periodic continuation to other intervals.
Here ©,.,., =1 for a <x < b and zero otherwise. The
universal linear behavior in y has been found in Ref. [45] for
any single-channel and nearest-neighbor hopping model in the
low-energy limit (note that in this reference y’ = y — 7 with
—nm <y’ < 7 defines the phase of the gap parameter).

(iv) Quantization of Qp. In the presence of special sym-
metries the boundary charge is quantized to some rational
number. For local inversion or local chiral symmetry Qg
is quantized in half-integer units. This was shown via the
quantization of the Zak-Berry phase y in units of 7 [69,70],
which is related to the boundary charge by Op = — % mod(1)
[36—44]. In the presence of nonlocal symmetries it was shown
recently [45] that any rational quantization of the boundary
charge is possible in combinations of multiples of half of the
average particle or hole charge per site % p or %([) — 1). Since

p= % for the RM model this means that both cases of % and

quantization can occur for QOg.

For the RM model a local inversion or local chiral sym-
metry is present for V| =V, =V = 0, which corresponds to
the SSH model. Due to particle-hole symmetry at © = O this
gives Op = 0. For |V| « |§t| we show in the Appendix [note

47

3
sm<y<2m’

e
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FIG. 4. The boundary charge Qg of the noninteracting RM model
as a function of V and 26t or the polar coordinates A and y;
see Eq. (4).

that sgn(0) = 0]

Vv
) (48)

1
Op = —59(12 —t)sgn(V) + 0(8 )
This gives half-integer quantization.
A nonlocal chiral symmetry occurs for the RM model for

t; = t,. In this case one obtains for Qg the quantization value
4—11; see Ref. [45]. For |§t| < |V | we show in the Appendix

1
Op = —ngn(V) + 0( (49)

W st
Vmax{|V], W})’
leading to the expected }1 quantization.

The main characteristics (i)—(iv) suggest the boundary
charge to be an interesting quantity with characteristics related
to bulk properties. This has to be contrasted to the connection
between topological bulk invariants and the appearance of
edge states which, for 1D systems, have to be at zero energy
[28-35]. Our results of Secs. VA and V C indicate that the
boundary charge might be a more robust signature related to
bulk properties as compared to the number of edge states when
the interaction is turned on.

The features (i), (ii), and (iv) can be seen clearly in Fig. 4,
where we show the boundary charge as function of the two
parameters V and 24t defining the real and imaginary part
of the quantity Ae”” of Eq. (4). Therefore, y corresponds to
the polar angle and A to the radial component in Fig. 4. The
data were computed for L = 2000 but are essentially free of
finite-size corrections. A translation by one lattice site towards
the boundary corresponds to a sign change of V and ¢, i.e.,
changes of the angle y by 7. According to Eq. (44) this leads
to a change of Qg by %sgn(V) which is consistent with Fig. 4.
The transformation (46) under local inversion means that Qg
is antisymmetric when changing the sign of the variable V in
Fig. 4. The quantization rules (48) and (49) can be seen on the
axis V = 0 and 8¢ = 0 in Fig. 4, respectively.

Of particular interest is the validity range of the low-
energy behavior (iii) of Qp according to Eq. (47), i.e., the
universal linear behavior as a function of the angle y if the
gap 2A is very small compared to the band width. This is

0.50

e A=0.01
o A=0.1
g A A=1
0.251 ¢ A=10
* “b“
@ St
e} 0.00 -
4 J
’5‘ 1.25 - A
—-0.25 1A 4 LA
té%l.oo _?—-ﬁ‘_-‘é--?— ‘m
~ 05 ra EWS kN 0“5‘
1 | ag®
—0.501 0 18
0.00 0.25 0.50 0.75 1.00
\PAL

FIG. 5. Main panel: The boundary charge as a function of the po-
lar angle y [see Eq. (4)] for different A. Inset: Derivative of the data
of the main panel with respect to y. This highlights the remarkable
linearity even for sizable A; see Eq. (47) and the discussion in the
main text.

shown in Fig. 5 (again obtained for L = 2000). Strikingly, the
linear behavior is observed to a high accuracy in the whole
parameter regime A < W extensively beyond the low-energy
regime A < W where it is expected to hold. As shown in the
Appendix the stability of the low-energy result up to values
A ~W can be explained by calculating the leading-order
correction to Eq. (47). According to Eq. (A40) it is given by
1/(87r)sin(2y)(A/W)2 In(A/W). This is in full agreement
with the inset of Fig. 5, showing the derivative of Qg with
respect to y, where the corrections to the linear slope are
zero for cos(2y ) = 0 and largest for cos(2y ) = 1. Only for
A Z W visible deviations from linear behavior occur and in
the atomic limit A 3> W one obtains the universal result of %
quantization

Op ~ —%Sgn(V)[l -5 | (50)
see the Appendix for details.

Therefore, we find two universal regimes of the boundary
charge for the noninteracting RM model, given by the linear
dependence in the phase y of the gap parameter for A < W,
and the i quantization of Qg for A > W. Moreover, in
Sec. VC we demonstrate that this interesting behavior is
stable against weak two-particle interactions.

III. MANY-BODY METHODS

A. Field theory

Already in the early 1980s it was suggested [71] to use
field theoretical models [72] to study the universal low-energy
physics of lattice models for linear polymers (such as the
RM and the SSH models) with small single-particle gaps.
Continuum models also provide a straightforward way to in-
clude two-particle interactions [54—-56]. It was shown that the
interaction leads to logarithmic terms of the form g* In"(2A)
in the first- (n = 1) and second- (n = 2) order perturbative
expressions for the effective renormalized gap 2A™" as a
function of the bare one 2A [54-56]. Here g denotes the
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coupling constant of the field theory. As the gap is small this
logarithmic dependence severely limits the applicability of
perturbation theory to tiny couplings g. However, the leading-
log series can be resummed by either using field-theoretical
RG [55] or by adapting results from the Bethe ansatz solution
of the massive Thirring model [54]. In fact, in the field theo-
retical model the effective gap depends on the bare one in a
power-law fashion. Up to linear order in the coupling constant
one finds A™ ~ Al=8/2% with a characteristic interaction
scale g. [73].

We are not aware that this power-law renormalization has
so far been verified directly for a microscopic lattice model,
i.e., without the intermediate approximate step of mapping
it to a continuum field theory. However, expecting to find
this and being interested in the entire space of noninteracting
parameters, including the small gap limit, we cannot use sim-
ple perturbation theory to investigate the interaction effects
in the RM model. Instead we employ the functional RG [58]
in its lowest-order truncation. In addition, we benchmark our
approximate results by comparing to numerical ones obtained
by DMRG.

We note that recently the use of field theoretical models
and tools (such as bosonization) to investigate the low-energy
properties of (topological) insulators experienced a revival. In
Ref. [57] they were used to not only study the gap renor-
malization but in addition the edge state and in Ref. [45] to
investigate the boundary charge. In Refs. [45-47,57] it has
furthermore been established how to express the parameters
of a continuum Dirac model in a 1 + 1 dimension in terms of
microscopic lattice model parameters. However, by neglecting
fast-oscillating terms in these approaches one has to assume
that the gap is much smaller than the band width and it
is quite difficult to determine the quality of the low-energy
results beyond this regime. The functional RG used here treats
the microscopic details of the lattice model on all energy
scales and thus can cover the entire parameter range from
small to large gaps. Also, high-energy properties such as the
renormalization of the band width are treated consistently
in functional RG. This will turn out to be crucial to the
discussion of the relation of the boundary charge to bulk
properties in the presence of two-particle interactions. Field
theories do not capture high-energy features and will thus fail
in this respect.

It was emphasized early on that the exponent of the
renormalization of the gap by the two-particle interaction is
independent of the details of the ultraviolet regularization of
the field theory (“universal”) only to leading order in the
coupling constant [54]. This implies that field theory can
strictly speaking not provide a prediction for the exponent
beyond leading order in the two-particle interaction. On this
level many of the details of the field theoretical model do not
matter and one can, e.g., use the results from the massive
Thirring model to predict the exponent of the RM model
(see below). It is, however, still tempting to consider a field
theoretical model which is closer to our lattice model and
compute the exponent beyond leading order.

Using standard bosonization methods [52,74,75] one can
construct a continuum field theory capturing the low-energy
physics of the RM model [45,57]. It is of the sine-Gordon

form
_Y L) + [0,
H=" / dx{Kl'I (@) + 230001 }

+

ni fdxsin[\/ﬂmx) —yl, (51)
where K is the Tomonaga-Luttinger liquid parameter and
v denotes the renormalized Fermi velocity which, up to
leading order in U, are given by K =1—-U/n and v =
vp(1 4+ U/m), with vp = 2. The canonically conjugate fields
I(x) = —0[@1(x) — ®_(x)] and §(x) = @4 (x) + @_(x) are
defined in terms of the chiral boson fields @ (x). The latter

are related to the fermionic right and left movers via Vi(x) =
ﬁ eEV4T2:() Here 1/a. denotes a phenomenological
momentum cutoff which implies the high-energy cutoff
}\.0 =V / dc.

Changing the ultraviolet cutoff from A, to a smaller value
A a flow equation for the ratio of the gap and the cutoff,
denoted by A;, can be derived in a standard way from the
scaling dimension of the nonlinear term of the sine-Gordon

model

dhi _ (2 —K)A (52)
i~ v

The initial value is Ag = A /Ao, with the bare gap A, and the
flow parameter / is given by / = In %; it starts at zero and goes
to infinity when A approaches zero. The right-hand side of the
flow equation for K is of order A2, For small gaps the flow of
K can thus be neglected. For repulsive interactions with K < 1
the gap grows under reduction of the cutoff. Stopping the flow
if A; is of order one we find for the renormalized gap

Aren
A

The precise value at which the flow is stopped enters the
prefactor only on the right-hand side of this equation.

For half-filling the relation between the Tomonaga-
Luttinger liquid parameter K and the interaction U is known
analytically beyond leading order from the Bethe ansatz solu-
tion of the gapless, interacting lattice model [52]. Taking this
value we obtain for the exponent

~ A(K—l)/(2—K). (53)

K—1 11— Zarccos(-U/2)
T 2—-K  *arccos(-U/2)—1

b/

U <U>2 96+n2(U>3
T T 24 T

2 4 5
+48+7r <g> +O<[E} ) (55)
6 T T

To universal (see above), leading order the exponent is given
by —U/m. In comparison to the result from the massive
Thirring model [54] we thus have to identify g/g. <> U/m.
We note that the coefficients of the power series (55) in
U/m do not decay with the order and are alternating. This
indicates that for increasing interactions corrections of order
U? and higher will quickly become sizable and lead to a
deviation from the universal linear interaction dependence. In
Sec. IVB we will return to this observation and investigate

B

(54)
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how this result for the exponent 8, obtained combining field
theory, bosonization, and the Bethe ansatz result for K of the
gapless lattice model, compares to the one obtained if the
renormalized gap is directly computed for the microscopic
model by functional RG and DMRG.

B. The functional RG
1. The basic idea

It was earlier shown that functional RG in its lowest-order
truncation [58] can be used to properly resum leading logs in
extended 1D models of correlated fermions [76] as well as for
quantum dot models with local two-particle interactions [77].
In Sec. IV A it will be shown analytically that this also holds in
the (single-particle) gaped RM model with nearest-neighbor
interaction.

The functional RG has the distinct advantage over other
RG methods that it is directly applicable to microscopic lattice
models. It does not require the intermediate (approximate)
step of the mapping to a field theory. It thus does not only
capture the low-energy physics but the one on all energy
scales. Functional RG still inherits the RG idea of a successive
treatment of energy scales. A comprehensive account is given
in Ref. [58] (see also Ref. [59]). For completeness we here
present the basic idea and the important equations.

The fundamental steps of the application of FRG to inter-
acting fermionic systems are the following:

(1) Write the partition function as a coherent state func-
tional integral (within the Matsubara formalism).

(2) Replace the noninteracting propagator Gy(iw) which
inherits all the single-particle physics by one decorated by a
cutoff A. For the initial value A;, the free propagation must
vanish; for the final one Ay, the original propagation must be
restored. One often uses (]6‘ (iw) = O(lw| — A)Go(iw), A; =
00, and Af = 0. When A is sent from oo to 0 (see below) this
incorporates the RG idea of a successive treatment of energy
scales. Here we will also use this cutoff.

(3) Differentiate the generating functional of one-particle
irreducible vertex functions with respect to A.

(4) Expand both sides of the functional differential equa-
tion with respect to the vertex functions. This leads to an
infinite hierarchy of coupled differential equations for the
vertex functions. The lowest-order vertex function is the self-
energy X.

The hierarchy of coupled flow equations presents an exact
reformulation of the quantum many-body problem. Integrat-
ing it from A; to Af leads to exact expressions for the vertex
functions. From those observables, such as the single-particle
spectral function can be computed.

In practice, truncations of the hierarchy are required, result-
ing in a closed finite set of equations. The integration of this
leads to approximate expressions for the vertices and, thus,
for observables. We here employ the lowest-order truncation
in which the flowing two-particle vertex is replaced by the
bare interaction. What remains within this scheme is a set of
coupled differential equations for the matrix elements of a
frequency independent self-energy. This approximation con-
tains all leading order in U terms [58] but in addition selected
higher-order ones. As will be seen a posteriori in Sec. IV A
this includes all leading log terms of the form U" In"(2A). In

this context we also show how to reproduce the perturbative
results from the functional RG.

The frequency independence of the self-energy has the
distinct advantage that it leads to an effective single-particle
picture at the end of the RG flow. All single-particle param-
eters of the model, that is all hoppings and on-site energies
get renormalized by the interaction and in the final step
of computing the renormalized propagator a single-particle
Hamiltonian of the form (1) needs to be solved. We empha-
size that for open boundaries the single-particle parameters
acquire a spatial dependence beyond the underlying unit cell
structure (see below). We will employ this effective single-
particle picture in the interpretation of our results, however,
we already now emphasize that it should not be overstressed.
For example, the wave functions obtained from diagonalizing
the effective single-particle Hamiltonian do not have a direct
physical meaning (similar to their role in Hartree-Fock or
density-functional theory). This includes energetically iso-
lated “effective single-particle edge states.”

Within our approximation the local spectral function can
be obtained by simply taking

Aj(w) = —%Im G(iw — w +i0), (56)

with G(iw) computed using Eq. (57) and X taken at the end of
the RG flow.

As discussed in the introduction and Sec. II B we are also
interested in the spatial dependence of the local density of
the interacting RM model with open boundaries. As it is well
known the density on site j can be computed by integrating the
(j, j)-matrix element of the full propagator (Dyson equation)

G(iw) = {[Go(iw)] ™" — =} (57)
over the Matsubara frequency. However, truncated functional
RG is not a so-called conserving approximation. It is thus not
guaranteed that computing the density along this line will lead
to the same result as computing it in a more consistent way
via its own RG flow equation. In fact, it was earlier shown
that the above frequency integration over the full approximate
propagator does not capture the typical Tomonaga-Luttinger
liquid power-law decay of the Friedel density oscillations
away from an open boundary or an impurity for vanishing
gap. In contrast, the (leading) interaction dependence of the
exponent is properly captured if a flow equation for the den-
sity is considered [78]. This shows another limitation of the
effective single-particle picture obtained at the end of the RG
flow. When computing the local density of the interacting RM
model we thus set up its own flow equation. From the local
density the boundary charge can be computed as explained in
Sec. I B.

2. The RG flow equations

As described in the last subsection we focus on the lowest-
order truncated functional RG scheme featuring a static flow-
ing self-energy X* and consider a sharp frequency cutoff in
Matsubara space [58]. As the two-particle interaction (5) is of
nearest-neighbor type the self-energy matrix in real space has
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a tridiagonal form [58]. The flow equations are given by

0
AT = Z D Gienjr(i),
w=%A r==1
3
o T = Z G (i), (58)
w=tA

with a cutoff dependent propagator
G (i) = {[Go(iw)]™"

For PBCs the self-energy depends on the site index i = 1, 2
within the unit cell only. The translation symmetry by two
sites is preserved. In contrast, for open boundaries A ac-
quires a nontrivial dependence on n in addition to the one
oni.

To consistently compute the local density p(j) we set up
according flow equations for this observable

— M (59)

a i
G (1)——2— > u[d? GM R ()] (60)
w+EA

They involve a density response vertex Rf which obeys the
flow equation

3 U ,
aali= 222000 X0 Ghatio)
oA 2
w=tA " r=%1r=0,%+1
X R;'\;Z’,l’+r’gl[’\+r’,l+r(iw)’
d .
aa R = =50 D2 D Ghliw)

w=tA I P=0,%1
A A :
X Ry 1 Gy a1 (10). (61)

Details on this can be found in Ref. [78].

The flow is uniquely determined by this set of coupled first-
order differential equations and the initial conditions at A =
oo. However, the numerical solution of the equation have to
start at a large but finite cutoff Ay. One can integrate over the
flow equation (58) from A = 0o to A = A analytically to
obtain the initial condition for the self- energy at this Value of
the cutoff [58]. For PBC it is given by X; ° =U and ¥/ "il
0. For OBC the initial condition on the dlagonal of the self-
energy matrix and the sites j = 1 and j = N has to be changed

to 21 ! = Elf,\(}v = U/2. Moreover, the initial condition for the
3
and R;‘? y = 8,181, respectively. The corrections are of order
1/Ay. To obtain the data shown below we set Ag = 108.

Note that X2 and G, are both tridiagonal matrices in
real space. Using a particular algorithm [78], the tridiagonal
matrix elements of the the cutoff dependent propagator (59)
needed on the right-hand side of the flow equations(58) can
be computed with an O(L) computational effort. Similarly, the
right-hand side of the flow equation of the density response
vertex which involves the product of inverted tridiagonal
matrices and the vertex itself can be computed in O(L). We
can therefore easily deal with very large systems with L ~ 10°
sites.

At the end of the flow at A =0, one can decom-
pose the self-energy into unit cell index n independent and

local density and density response vertex at Aq are ,o]{\” =

dependent parts, labeled by “bulk” and “E” respectively.
For j=2(n—1)+1,

A=0 __ s bulk F
X =+ B (),
$A=0 _ shulk 4 »F L (n) fori=1 o
JJ+1 7] pbulk + ¥F (n) fori= > (62)
inter inter -

Finally, the renormalized on-site potentials and hoppings are
determined by

erinZ(nfl)+i = Viren + ViF(n)7

Loy =4+ tf(n), (63)
with
Viren — V1 + E?ulk, (64)
VEn) = X[ (n), (65)
H— Eﬁﬁﬂj fori=1
1" = bulk i , (66)
th — Em‘ier fori =2
n) fori=1
if(n) = { mea() - for i =1 ©67)
lnter(n) fori=2

For PBCs the unit cell index dependent interaction induced
Friedel parts vanish. For OBC, however, they lead to a mod-
ulation of the potential and hopping landscape close to the
boundary (and beyond the unit cell structure). The approach of
the renormalized bulk values is dominated by an exponential
decay in the unit cell index (see Fig. 10 below). We can thus
expect that local properties, such as the weight of in-gap &
peaks of the single-particle spectral function, which for U = 0
are associated to single-particle edge states, are altered by the
two-particle interaction. We will even show that peaks can be
generated which do not have any analog at U = 0 and are thus
purely interaction induced. The § peaks are signatures of the
edge states of the effective single-particle Hamiltonian to be
diagonalized at the end of the RG procedure.

C. The density matrix renormalization group

We use a “numerically exact” DMRG approach set up
in the language of matrix product states [60] to compare to
and to benchmark the results obtained within the approximate
functional RG method described above. The model defined
in Egs. (1) and (5) can be mapped directly to a spin model
by a Jordan-Wigner transform [79] rendering it amendable to
standard DMRG implementations, such as the one outlined in
Ref. [60].

An iterative two-site update sweeping procedure to obtain
the ground state of a system with OBC is employed. We fol-
low precisely the procedure outlined in Sec. 6 of Ref. [60]. We
use constant bond dimension and perform sweeps forth and
back on the chain until the relative energy change per sweep
falls below 1073, Increasing the bond dimension we achieve a
“numerically exact” approximation to the ground-state wave
function. From this the site-dependent density o(j) = (n;)
can be computed. After the ground-state wave function has
been obtained we orthogonalize against this state and rerun the
above procedure, which provides us with the first excited state
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of the system [60] in the same total particle number sector.
The gap is then defined as the difference between the first
excited- and the ground-state energy.

Careful benchmarks in the noninteracting case show that
we can converge the above described ground-state and
excited-state DMRG calculations and provide confidence also
for the interacting case.

IV. BULK PROPERTIES FORU > 0

We first discuss our results for the bulk properties of the
interacting RM model at 1 = 0 obtained by truncated func-
tional RG as well as by numerical DMRG. In Sec. IV A we
present the analytical solution of the functional RG flow equa-
tions (58) in the limit of small bare gaps 2A. We show that
the renormalized gap, displayed in the (interacting) single-
particle spectral function, scales as a power law as a function
of the bare gap with U entering in the exponent. In addition,
we discuss how the first order in U perturbative result can be
obtained from functional RG. These considerations prove that
functional RG in lowest-order truncation captures the entire
leading log series.

In Sec. IV B results for the effective gap obtained from
a numerical solution of the RG flow equations (58) are
presented and compared to the DMRG results. In the limit
of small bare gaps both confirm the analytical insight of
Sec. IV A. In addition, considering bulk properties we provide
a first hint that Fig. 4 is altered quantitatively only by small
interactions.

A. Analytical insights

We consider periodic boundary conditions. In this case the
chain is translational invariant by two lattice sites. For analytic
calculations it is advantageous to transform the right-hand
side of the flow equations (58) to k space. The number of
(independent) coupled equations is reduced to three: One for
the on-site energy

2U (™ dk VA
P Ebu}kA — = - 1 , 68
A1 + w J_p 2w | a® + b2 cosk (68)

and one each for the intra- and the interunit cell hopping:

gtiks _ U / dk{tf‘—}—tz‘\cosk}
ntra 27 | a® +brcosk |’
bulk, A 1 cosk + 13

A Biper = / {aA + bA cos(k) } (69)

Here a® = A%+ (VA + (1) + (¢f)%, b = 2tP e, and

VA, Jo are defined as the effective on-site potential and

hopping parameters during the flow, respectively.

Remind that for the bare parameters V; = —V, holds. As
the consequence, Eq. (68) implies —V,;* = V» = V4 during
the entire flow including the end A = 0.

The k integrals in Eqgs. (68) and (69) can be performed an-
alytically. Going over from flow equations for the self-energy
to the ones for the renormalized single-particle parameters one

obtains
sttt U 1 A ph
onot” ULy, a7 ¥b i (70)
sth T bA [(ah )2 — (M)
RN 2U 1
T — (71)
VA T J(ah)? — (b™)?
RINZS U 1 at — b
= 1l —, (72)
th T bA [(a™)2 — (bA )2

with 8t4 = (¢{* — #3')/2 and t* = (t}* + 1{*)/2. For weak in-
teractions, one can expand the right-hand sides of the RG
equations in U. Due to the explicit prefactor U, the first-order
correction can be obtained by replacing the renormalized
parameters in a® and b* by the bare ones. We will use this
below. Note that this is an additional approximation which
comes on top of the truncation of the infinite hierarchy of
functional RG flow equations to lowest order. In Sec. IV B we
avoid this and numerically integrate the full set of truncated
flow equations.

The self-energy or the (effective) single-particle parame-
ters within standard first-order perturbation theory (for the
self-energy, not the Green function) can, as usual, be obtained
from the lowest-order truncated RG flow equations by switch-
ing off the feedback of the self-energy [58]. In Egs. (70)—(72)
we thus do not only have to replace the renormalized pa-
rameters by the bare ones in the expressions for a® and b
on the right-hand sides but in addition in the corresponding
denominators on the left-hand sides. We will return to this.

1. Gap renormalization

For bare gaps 2A much smaller than the band width 2W
and keeping the leading order in U only, the right-hand sides
of the Egs. (70) and (71) can systematically be expanded
leading to

VA U xSt U
T o= AT = (73)
va TA Sth TA
Integrating Eq. (73) from the high-energy cutoff W down to
the low-energy scale A leads to

yren A -U/n Sgren " A < W (74)
~\ = ~ or .
Vv w ot

Employing that the renormalized gap, as it shows up in
the single-particle spectral function (see Sec. V A), can be
obtained introducing the renormalized parameters at the end
of the flow into Eq. (3) we obtain

Aren A -U/m
A= <W> for A K W. (75)

This result for the ratio of the renormalized and the bare gap
as a function of the bare one is fully consistent with the one
obtained from field theory as mentioned in Sec. III A [54-56].
We are not aware that this power-law increase (for repulsive
interactions) of the gap was earlier shown directly for a
microscopic lattice model, that is without the intermediate
approximate step of mapping the lattice model to a continuum
field theory.
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Evaluating Egs. (70) and (71) in first-order perturbation
theory as described above we obtain the perturbative result

U A
AT = A(l - —an) (76)
T

It coincides with the leading order in U expansion of Eq. (75).
This logarithmic divergence in the limit of small A is known
from field theory [54-56]. For the present lattice model it can
also be obtained directly by employing standard first-order
perturbation theory.

To summarize this part, we have shown analytically that
functional RG in its lowest-order truncation contains all in-
frared divergent leading log terms and is able to resum this
series to a power law.

2. Band width renormalization

After the analysis of the gap renormalization, we next
discuss the interaction effect on the band width. Similar to
the renormalized gap it will be visible in the local spectral
function discussed in Sec. V A. As for bare gaps A K W,
yren < AN L " + 1%, it is meaningful to define half the
renormalized band width as W™ = [ 4 1" = 2¢™". Keep-
ing the term to leading order in U on the right-hand side
of the RG equation and systematically expanding for A <«
min {W, A}, Eq. (72) becomes

opth U 2 A
-2 (1o ——2_). (77)
A T W2 NINEN 2

It can be integrated over A from oo (which is possible as the
right-hand side decays as 1/A?) to A with the solution

wren [U<W_A>]
=exp| —| —————— | |-
b

78
W W (78)
Expanding this result up to first order in U, (half) the renor-
malized bandwidth is given as

U
wren — W<1 + —). (79)
4

This result is again consistent with the one known from first-
order perturbation theory (for the gapless model).

Note that the “high-energy” band width does not show
any divergent behavior. A resummation of (logarithmically)
divergent terms inherent to the functional RG procedure is
not required. In accordance with the observation that our
truncated RG does contain all regular (non-log-divergent)
terms to leading order in U only, the higher-order terms of
Eq. (78) are not systematic in the sense of perturbation theory.
Accordingly, we cannot argue that this equation provides a
better approximation to the unknown exact renormalization
of the band width as compared to the purely perturbative
result (79).

B. Numerical results

The effective gap, as it shows up in the functional RG
approximation of the spectral function (see Sec. V A), can be
computed using Eq. (3) with the bare V and 6¢ replaced by
the renormalized values. The main panel of Fig. 6 shows a
comparison of the renormalized gap divided by the bare one as

o—o FRG
6--—0 DMRG

20" 2N

107t 100
2A

FIG. 6. Main panel: The ratio of the renormalized gap and the
bare one 2A™" /(2A) as a function of the bare one. A comparison of
functional RG (filled symbols) and DMRG data (open symbols) for
different U as indicated is shown. The single-particle parameters are
V =0.3sing = 26t and ¢ varies between 0 and 7 /2. The system
size is L = 1000. Lines are guide to the eyes. A log-log scale is used.

a function of the bare gap obtained by the numerical solution
of the full truncated functional RG equations to DMRG data
for different U. In contrast to our analytical considerations
of Sec. IVA we do not employ any additional approxima-
tions besides the lowest-order truncation when solving the
RG flow equations. The DMRG data are obtained from the
difference of the first excited- and the ground-state energy,
as explained in Sec. III C. The single-particle parameters are
V =0.3sinp = 256t and ¢ varies between 0 and 7 /2. For
interactions of up to U = 0.25 the agreement between the
functional RG and DMRG data is excellent. Both data sets
show linear behavior on a log-log scale indicating power-law
scaling for small bare gaps as discussed in Secs. IV A and
IIT A. The slope and therefore the exponent depends on U.

To further substantiate this we show the centered logarith-
mic differences of 2A™"/(2A) as a function of 2A computed
as in Eq. (37) for different U in Fig. 7. The data obtained

{ e—e—e—e—s0—0—0—00——8
0.0 s
U=0.1
ST TTETT R T T e
—0.11 U=0.25
0O ————0 o
=03 PMRG o9
QY. | PMRG &9
u=1 —Ulm e
-0.21 6&=®—e—e—e0—0—0—00———0
U=1.5
-0.34 Y=Ll __ _ .
0.1 0.3 0.5 0.7 0.9
2A

FIG. 7. Log-derivative [see Eq. (37)] of the data of Fig. 6. The
(color coded) dotted lines indicate the leading-order exponent —U /7
(shown only for U up to 0.5). The (black) dashed lines indicate the
exponent obtained by field theory employing the Bethe ansatz result
for K [Eq. (54)].
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by both methods give a U dependent constant which is the
exponent B of the power-law scaling of the renormalized
gap. The deviations of the DMRG data from the plateau
value at the smallest A indicate that convergence with respect
to the bond dimension and/or the system size is not fully
reached. For small U the functional RG and DMRG data
nicely approach the expected leading-order exponent S =
—U /7 [Eq. (75)] indicated as (color coded) dotted horizontal
lines. However, the agreement between both methods persists
even to interactions up to U = 1 for which the exponent is
apparently no longer dominated by the leading-order expres-
sion. The plateau value obtained equally by functional RG
and DMRG deviates significantly from the dotted line already
for U = 0.5. Only for very large interactions (U g 1.5) the
exponents of both methods start to show visible differences
on the scale of Fig. 7. This indicates that the higher-order
corrections contained in the numerical solution of the full
truncated functional RG equations (but not in the analytical
solution of Sec. IV A which required additional approxima-
tions) show the correct trend in comparison to the ones of
the highly accurate DMRG exponent. The prefactors of a
Taylor expansion of the functional RG exponent in powers of
U/ must be very close to the exact ones numerically deter-
mined by DMRG. However, within the lowest-order truncated
functional RG it is not possible to show analytically that the
obtained exponent should agree with the exact one beyond
leading order. Overall, this is a rather stringent numerical
confirmation that the analytical result (75) gives the expo-
nent of the power-law renormalization of the gap to leading
order.

We can compare the functional RG and DMRG results
for B to the result (54) for the exponent from the field
theoretical model constructed for our particular lattice model
by bosonization and using the Bethe ansatz result for the
Tomonaga-Luttinger liquid parameter K. The corresponding
values are shown as (black) dashed lines in Fig. 7. They
agree much better to the numerical functional RG and DMRG
results than the leading-order expression —U /m (color-coded
dotted lines shown only up to U = 0.5). On the scale of the
figure differences between the functional RG, the DMRG,
and the field theoretical result are visible only for U Z 1.5.
This indicates that studying low-energy field theories which
are designed as closely as possible to the microscopic lattice
model of interest and using additional results available (Bethe
ansatz for the gapless lattice model) might be a very useful
approach even beyond leading-order considerations. In fact,
one can raise the comparison to a higher level.

Using the momentum space functional RG flow equations
(70)—(72) set up in the thermodynamic limit it is possible to
extract highly accurate results for the exponent 8 which are
free of any finite-size corrections by considering very small
bare gaps A (of the order of 107> and smaller). This is not
possible within DMRG due to finite-size and bond dimension
effects (see Fig. 7). From these data we subtract the leading
order —U/m. After dividing the difference by (U/m)* and
taking the limit U — O we can read off the second-order
Taylor coefficient of the functional RG approximation to
the exponent. For clarity we in addition divide by the field
theoretical prediction 2 [see Eq. (55)]. As Fig. 8 shows this
coefficient is indeed 2 and thus agrees with the field theoretical
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FIG. 8. The second- and third-order Taylor coefficient of 8 (for
U — 0) from momentum space functional RG data, divided by the
respective Taylor coefficients from the field theoretical result (55).
For details see the text.

one. We proceed one step further, subtract 2(U /7 )* and divide
by (U/m)? as well as the prediction from field theory for the
third-order coefficient —(96 + 2)/24. The data are shown
in Fig. 8 as well. Now it is no longer obvious that the field
theoretical prediction for the third-order coefficient (55) is
reached. However, the agreement is surprisingly good. In
particular, functional RG and the field theoretical exponent
both show an alternating structure of the power series. It is
impossible to study smaller U as with this highly sensitive
analysis we reach machine precision. For the third-order
coefficient this is already visible at the smallest U shown.
Having analyzed this in due detail we emphasize that it can
neither be argued that the truncated functional RG nor the field
theory (plus the Bethe ansatz) provide the exact expression for
the exponent beyond the leading-order result —U /7.

In addition to the gap, the band width is renormalized
by the interaction. As discussed in Sec. IV A2 this can be
computed analytically using functional RG and simple pertur-
bation theory. We note in passing that for sufficiently small
U the numerical functional RG data for the renormalized
band width given by 2:™" agree well with the perturbative
result (79).

In a first attempt to investigate if the topological properties
are altered by the two-particle interaction we study the renor-
malized V™" and §¢™" at the end of the RG flow as a function
of the bare parameters 8¢ and V. In case 6¢t™" has a sign
opposite to ¢ one would naively, that is within an effective
single-particle picture, expect that the interaction alters the
topological properties as well as Fig. 4, highlighting the char-
acteristic features of the boundary charge. We did not observe
this for any parameter set considered. Figure 9(a) shows §¢™"
(color coded) as a function of V and §¢. Similarly, V™" stayed
positive for all positive V and vice versa; see Fig. 9(b). Still
the renormalization leads to nontrivial structures indicated by
the bending of the (dashed) equipotential lines.

From the renormalized bulk properties one would thus
conclude that the number of “effective edge states” showing
up as in-gap 8 peaks in the single-particle spectral function
is not altered by the interaction. We will return to this in
Sec. VA.
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FIG. 9. The renormalized parameter ™" (a) and V™" (b) (color
coded) as a function of the bare ones. The interaction is U = 0.5.
Dashed lines are equipotential lines.

V. SYSTEMS WITH BOUNDARY FORU > 0

The nontrivial spatial structure of the frequency indepen-
dent self-energy (or the renormalized single-particle param-
eters) close to a boundary build up during the RG flow
prohibits the analytical solution of the functional RG flow
equations (58). This has to be contrasted to the case with
PBC in which this was possible, at least in the limit of small
bare gaps; see Sec. IV A. We thus have to rely on a numerical
solution of the RG equations. Figure 10 shows the Friedel-part
of the renormalized single-particle parameters (or the static
self-energy) at the end of the RG flow; see Eqs. (63)-(67). The
parameters are V = —0.015, ¢ = 0.0025, U = 0.25 and the
system size is L = 4000. The inset illustrates that the decay
towards the renormalized bulk values is exponential with a
decay length 1/«;3" which can be obtained by plugging the
renormalized bulk values for A, ¢, and t, into Eq. (20) (dashed
line). We have verified that the renormalized values for the
hoppings and on-site energies deep in the bulk of a chain with
open boundaries agree with the values computed for a chain
with PBC.

0.04 -
0.02-
0.001
—0.025 5 10 15 20 25 30
j

FIG. 10. Main panel: Functional RG data for the Friedel part
of the renormalized single-particle parameters at the end of the RG
flow; see Eqs. (63)—-(67). The parameters are V = —0.25, 6t =0.001,
U = 0.25 and the system size is L = 10000. Inset: The absolute
value of the data of the main panel on a linear-log sale highlighting
the exponential decay. The dashed line shows an exponential func-

ren

tion with decay length 1/« which can be obtained by plugging the
renormalized bulk values for A, #,, and #, into Eq. (20).

FIG. 11. Functional RG data for the local single-particle spectral
function of the interacting RM model for the same single-particle
parameters as in Fig. 1 and U = 0.5. The height of the § peaks
(vertical arrows) on the i = 2 sites is scaled up as compared to the
one of the i = 1 sites.

In the above sections we explained how to obtain the
observables of interest from functional RG and DMRG. We
focus on p = 0 and start out with the local spectral function.

A. The local spectral function

In Fig. 11 we show functional RG results for the local
single-particle spectral function of the interacting RM model
with OBC computed using Eq. (56). The single-particle pa-
rameters are as in Fig. 1, the interaction is U = 0.5, and
the system size L = 4096. Similar to the procedure used in
the noninteracting case, to obtain a smooth function out of the
sum of § peaks (finite system size) we averaged the spectral
weight in the bands over several eigenenergies of the effective
single-particle Hamiltonian. Increasing the system size the
curves do not change on the scale of the plot.

The interaction effects we expect based on our analysis
of the bulk properties can clearly be observed in Fig. 11. In
comparison to Fig. 1 the gap size is increased and the bands
extend to smaller (valence band) and larger (conduction band)
energies (renormalization of the band width). The in-gap &
peak representing the edge state for U = O still appears. We
emphasize that strictly speaking the § peak of the interacting
spectral function does not have an interpretation as a single-
particle (edge) state.

However, beyond these findings expected from the renor-
malized bulk properties we observe in Fig. 11 that the n
dependence [j = 2(n — 1) + i] of the weight of the § peak on
the first site of each unit cell (i = 1) is modified as compared
to the U =0 case [see Eq. (22) and Fig. 1]. For generic
single-particle parameters and U > O the spectral weight of
the peak first increases before it starts to decrease when going
from the boundary towards the bulk. This has to be contrasted
to the purely exponential spatial decay of the noninteracting
case. Furthermore, we observe the appearance of § peak
spectral weight on the second sites of the unit cell (i = 2).
It is much smaller then the one on i = 1 sites but also shows
a nonmonotonic n dependence. To render the weight on the
i =2 sites visible they were all scaled up by a (arbitrary) factor
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FIG. 12. Functional RG data for the energy ¢. of the in-gap 8§
peak as a function of |§¢] in the V < |8¢| limit with fixed V = 0.001
for different U (symbols). It is compared to the renormalized bulk
on-site potential V™" (dashed lines). Note the log-log scale.

as compared to the weights on i = 1. Both these interaction
effects are a consequence of the nontrivial interaction induced
spatial dependence of the effective single-particle parameters
close to the boundary (and beyond the unit cell structure)
acquired during the RG flow.

‘We observe that also for U > 0, the energy ¢, of the § peak,
indicating the “effective edge state,” turns out to be position
independent. Comparing Figs. 1 and 11 one can barely see
that e, is modified by the interaction. To further illustrate
this we show the dependence of the peak energy &, on &t
for different U on a log-log scale in Fig. 12 (symbols). The
single-particle parameters are V = 0.001, and ¢ varies from
—0.1 to —0.005. The system size is L = 2048. As we are in
the limit |V| « |8¢|, according to Eq. (3) |6¢| is a measure for
the size of the bare gap. The energy of the § peak thus scales
as a power law (straight line on the log-log scale) as a function
of the bare gap with the leading-order exponent —U /7 known
from the scaling of the renormalized gap Eq. (75). Consulting
Eq. (74) for the renormalized bulk value of the on-site energy
and taking into account that in the noninteracting case &, = V
one might argue that this power-law dependence was to be
expected. However, this ignores that the RG flow leads to
a nontrivial spatial dependence of the renormalized on-site
energies and bond hoppings close to the boundaries. This can
be anticipated to affect all properties close to the boundaries.
Indeed, for U > O the energy &, of the in-gap § peak does not
coincide with the renormalized bulk value V™" of the on-site
energy. The latter is shown as dashed lines in Fig. 12 [and
shows power-law scaling as a function of §¢ (respectively the
bare gap) in accordance with Eq. (74)].

Although first-order perturbation theory for the self-energy
misses the power-law renormalization of the gap as well as the
power-law dependence of &, it leads to qualitatively the same
interaction effects in the single-particle spectral function as
discussed above.

We find even more severe interaction effects in the single-
particle spectral function associated to “effective edge states.”
In the limit |6¢] < |V| the noninteracting gap (3) is dominated
by |V| and the spectral function on site j = 1 shows a van-
Hove singularity at V. This can be seen in the U = 0 curve

FIG. 13. Functional RG data for the photoemission part of the
single-particle spectral function A;(w) of the interacting RM model
on site j = 1 with §t = 0.001 and V = —0.25. Data for different U
are shown. In-gap § peaks are indicated by vertical arrows.

(deep purple) of Fig. 13, which displays only the photoemis-
sion part w < 0 of A;(w). For 6t > 0 no edge state appears.
If in this regime of single-particle parameters an interaction is
turned on an in-gap § peak appears, which can be associated
to an “effective edge state.” In fact, it is an edge state of the
effective single-particle Hamiltonian to be diagonalized at the
end of the RG procedure. The appearance of the in-gap weight
can be traced back to the interaction induced spatial modula-
tion of the effective on-site energy and the hopping close to the
boundary which can obviously alter local properties (such as
“effective edge states”). Increasing the interaction the weight
of the § peak increase as illustrated in Fig. 13. It furthermore
shows the characteristics of an edge state as a function lattice
site j; for large j the weight decays exponentially. This is
a property of the eigenstate of the effective single-particle
Hamiltonian at the in-gap eigenvalue. However, similar to the
peak of Fig. 11 its weight first increases when going towards
larger j (not shown).

We emphasize, that the appearance of the interaction in-
duced “effective edge states” is not related to the ability of
the lowest-order truncated functional RG to resum the series
of leading logarithms. Accordingly, this effect can also be
observed in first-order perturbation theory for the self-energy.

We conclude that the interaction can alter the number of
“effective edge states” (in-gap § peaks of the single-particle
spectral function). As discussed, this cannot be understood
from the bulk properties of the system but follows from the
interaction-induced spatial modulation of the effective on-site
energy and hopping close to the boundary. This insight shows
that the number of “effective edge states” (in-gap § peaks
of the single-particle spectral function) in the interacting
case cannot be predicted based on a bulk properties. As we
will discuss in Sec. V C the main features of the boundary
charge can be understood from the bulk properties even in the
presence of interactions.

B. The local density

In the discussion of our functional RG results for the local
density modulations induced by an open boundary, we start
out with a comparison of functional RG and highly accurate
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FIG. 14. Main panel: Total density p as a function of the site
index j for V =0.0035, §t = —0.007, U = 0.25 and L = 1000.
The results from two different ways to compute the density within
functional RG (labels “vertex” and “Green”) are compared to the
DMRG result. Filled triangles indicate the asymptotic bulk value of
p of the DMRG data. Inset: The largest absolute value of the relative
difference between the functional RG and DMRG data taken over all
lattice sites as a function of U. A log-log scale is taken. The dashed
line indicates the power-law U? (line with slope 2 on the log-log
scale).

DMRG data. The main panel of Fig. 14 shows results obtained
for generic single-particle parameters in the small gap limit
V =0.0035, 6t = —0.007, for a weak interaction U = 0.25
and system size L = 1000. Close to the boundary the density
deviates from the bulk values, which, however, are approached
for larger j. The renormalized (as compared to U = 0) bulk
value of the density obtained from DMRG is indicated on the
right by a triangle. The behavior on the two sites of the unit
cell (i =1, 2) differs. Close to the boundary the density is
nonmonotonic for the first site (i = 1) in each unit cell and
monotonic for the second (i = 2). This nonmonotonicity is
an interaction effect (see below) which vanishes for U — 0.
In addition, larger j are required for the i = 1 sites (odd j)
to approach their asymptotic bulk value as compared to the
i = 2 ones (even j). This is opposite to the noninteracting case
(see the discussion of Fig. 2) and thus an interaction effect as
well. Within the approximate functional RG approach both
these interaction effects can be traced back to the nontrivial
spatial dependence of the effective single-particle parameters
acquired during the RG flow.

Within the approximate functional RG approach the den-
sity was computed in two ways: By integrating the (j, j)-
matrix element of the Green function over Matsubara fre-
quency (label “Green,” diamonds) and by its own flow equa-
tion (label “vertex,” squares). In accordance with our discus-
sion in Sec. III B the density computed via the second way
agrees better with the highly accurate DMRG data. The inset
shows the maximum (over all lattice sites) of the relative
difference between the functional RG and DMRG data as a
function of U. Due to the truncation this difference scales
as U? (dashed line). Deviations from the U? scaling result
from the limited accuracy of the numerical solution of the
functional RG flow equations as well as the small errors
inherent to the DMRG approach. We emphasize that using the
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FIG. 15. Main panel: Functional RG data for the Friedel part o
of the total density as a function of the unit cell index n for i =2
and different U. The single-particle parameters are §¢ = 0.0001, and
V =0.002. A very large chain with L = 20000 sites is considered.
A linear-log scale is taken to illustrate the dominating exponential
decay. The slope of the dashed lines is computed plugging the renor-
malized bulk single-particle parameters into Eq. (20) for —2xy".
Inset: Logarithmic derivative [see Eq. (37)] of the preexponential
function indicating that the interaction alters the 1/./n behavior
(dotted line) of the noninteracting case. Solid lines are for i = 1 and
dashed-dotted ones for i = 2.

flow equation for the density one does not gain a power in U.
Rather the difference to the exact prefactor of the U? term is
significantly smaller. From now on we refer to functional RG
density data obtained from their own flow equation.

As in the noninteracting case the approach of the bulk value
of the density on the two sites of the unit cell is dominated by
an exponential factor. The bulk value itself agrees with the
one obtained for PBC. The functional RG decay rate ;" can
for small U be obtained by plugging the renormalized bulk
values for A, t;, and #, into Eq. (20). In other words, the
effective single-particle picture can be used and the leading
asymptotic decay is not altered by the spatial modulation of
the effective single-particle parameters close to the boundary.
This is shown in the main part of Fig. 15 for §t = 0.0001,
V =0.002, L = 20000, and different U. To avoid overloading
the plot we focus on the unit cell index i = 2 in the main part
(solid lines). After subtracting the bulk value and on a linear-
log scale the data for sufficiently large n are linear with the
slope given by —2«;2" as computed from the corresponding
bulk A™", #*", and #;*" (see dashed lines).

The advantage of the functional RG approach as compared
to DMRG is that it is easily possible to study very large
systems (see Sec. IIIB2). This is required if one is inter-
ested in the spatial dependence of the density beyond the
leading exponential behavior. By subtracting the bulk values
and factoring out the exponential term discussed in the last
paragraph we can extract the large j = 2(n — 1) 4 i behavior
of the preexponential function. In the inset of Fig. 15 we
show centered logarithmic differences of the preexponential
function which were computed as in Eq. (37). The same
parameters as in the main part are considered. We here show
results for both unit cell indices i = 1 (solid lines) and i = 2
(dashed-dotted lines). In contrast to the noninteracting case
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FIG. 16. Functional RG data for the boundary charge Qg of
the interacting RM model as a function of V and 26t or the polar
coordinates A and y; see Eq. (4). The interaction is U = 0.25.

the U > 0 data do not approach a plateau at —1/2 (dotted
line). The 1/4/n decay of the preexponential function is thus
altered by the interaction. This is a qualitative change of the
position dependence of the density due to the interaction.
However, this qualitative effect is hidden by an exponential
decay and thus difficult to observe. It results from a similar
nontrivial preexponential function of the spatial dependence
of the Friedel part of the renormalized self-energy (the domi-
nant decay being exponential; see Sec. III B 2). The details of
the behavior of the preexponential functions of the self-energy
and the density for U > 0 are beyond the scope of the present
paper.

We note in passing that we do not observe any remnants
of the Tomonaga-Luttinger liquid power-law decay of the
Friedel oscillations of the density obtained for a vanishing
single-particle gap. As discussed in Sec. III B, if present, we
should be able to observe this even within our approximate
functional RG approach.

This completes our discussion of the spatial dependence of
the density close to an open boundary. We now turn to the
boundary charge which can be computed from the density.

C. The boundary charge

As our last observable of the interacting RM model with
an open boundary we investigate the boundary charge. As in
the noninteracting case it can be computed from the density
by Eq. (38).

To get an overview of the interaction effects in Fig. 16
we show functional RG data for the boundary charge in
the (V,26t) [or equivalently the (A, y)] plane for U =
0.25. Barely any differences as compared to the noninter-
acting case Fig. 4 are visible. As discussed in Sec. IIC
this type of plot nicely illustrates the main characteris-
tics (i), (ii), and (iv) of the boundary charge for non-
interacting models. Combined this already indicates that
these characteristics are robust towards small two-particle
interactions.

For the noninteracting model, the features (i)—(iv) of
the boundary charge follow from bulk properties. Thus the
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FIG. 17. Main panel: Functional RG data for the interaction
correction of the boundary charge with respect to the noninteracting
one as a function of U. Different A and y are considered. Inset:
Logarithmic derivative of the data, computed as in Eq. (37).

apparent robustness of (i), (ii), and (iv) towards interactions
[for (iii), see below] in addition provides a first hint that
this also holds for U > 0. Crucially, the spatial modulations
of the renormalized single-particle parameters close to the
boundary do not seem to alter the general features of the
boundary charge. This has to be contrasted to the number of
“effective edge states” (in-gap § peaks of the single-particle
spectral function) which in the interacting case cannot be
predicted from bulk properties; see Sec. V A. Next we further
substantiate the robustness of (i)-(iv) towards two-particle
interactions for U > 0.

In Fig. 17 we show the difference between the boundary
charge with and without interaction as a function of U for
different A and y on a log-log scale. First, we realize that
for small U the corrections are very small. Still, for generic y
they are of order U. This can be seen from the inset, which
shows the logarithmic derivative of the data computed as in
Eq. (37). Furthermore, the finite U corrections depend on (the
generic) y but are only weakly A-dependent. For y being
a multiple of 7 (blue symbols in Fig. 17), i.e., 8t = 0 [see
Eq. (4)], the corrections are of order U2. We note that within
our approximate functional RG procedure not all terms of
order U? are kept. We thus do not control the value of these
U? corrections. We associate the deviations from the exponent
2 for U 5 0.01 (see the inset of Fig. 17) to small errors of the
data for QOp obtained by the numerical integration of the RG
flow equations. Note that the value of |Qg(U) — Qp(0)| for
y = 0 is already very small and that taking the logarithmic
derivative significantly enhances small errors.

In Fig. 18 we show Qg as a function of y for U = 0.089
and different A (symbols). The linearity in y for small A as
derived analytically for U = 0 [see Eq. (47)] and illustrated
in Fig. 5 is robust against small interactions. However, the
interaction enhances the corrections to the linear behavior and
for small A they appear to be independent of the bare gap.
This can be seen most clearly by comparing the insets of
Figs. 18 and 5, which show the logarithmic derivatives of the
data of the corresponding main panels with respect to y. For
A > W the same % quantization of the boundary charge as
derived for the noninteracting case in Eq. (50) and discussed
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FIG. 18. Main panel: Functional RG data for the boundary
charge of the interacting RM model as a function of y for different
A. The interaction is U = 0.089. Inset: Derivative of the data of the
main panel with respect to y. Black lines (lying almost perfectly
on top of the symbols) are data obtained for the noninteracting RM
model but with the single-particle parameters ¢, t,, and V replaced
by the bulk renormalized ones.

in connection with Fig. 5 can be found in Fig. 18. Thus, also
this feature is robust against small interactions.

The interaction effects found in Figs. 17 and 18 at small
A can all be understood from the behavior of the bulk
renormalized parameters. Taking the analytical solution (74)
of the RG flow equation derived in the small gap limit, the
renormalized y, which is determined by the ratio of §¢™"
and V™" [(see Eq. (4)], is U-independent. Considering an
effective single-particle picture the leading part of Eq. (47) is
thus unaffected by the interaction. However, using Eq. (A40)
the correction 1/(87)sin(2y )(A/W)? In(A/W) (to the non-
interacting expression) acquires an interaction dependence
via the renormalization of the gap A — A™" as well as of
the band width W — W™". For generic y this leads to a
correction to the boundary charge which is linear in U. For
small bare A the U dependence of the renormalized band
width W'™" dominates over the one of the renormalized gap
and the interaction correction of the boundary charge becomes
A-independent. Only for sin(2y) = 0, i.e., y being a multiple
of m, the correction linear in U vanishes. This explains the
interaction effects seen in Figs. 17 and 18. One can even
go one step further and make this quantitative. For this we
extracted the renormalized bulk values of the single-particle
parameters t;, t;, and V and inserted them in the expression
for the boundary charge of the noninteracting RM model.
The results shown as solid black lines in the inset of Fig. 18
perfectly match the functional RG data obtained for a chain
with an open boundary.

For A > W in Fig. 18 we find the same % quantization of
the boundary charge as in the noninteracting limit. However,
as long as A > U it was to be expected that this feature of Op
is robust against interactions.

We can thus conclude that the interaction effects on the
characteristic features (i)—(iv) of the boundary charge are
weak and, most importantly, can fully be understood from
the renormalized bulk properties. They are not altered by
the interaction induced modulation of the on-site energies

and hoppings close to the boundary. This must be contrasted
to the number of “effective edge states” (in-gap & peaks of
the single-particle spectral function) discussed in Sec. V A.
Therefore, the boundary charge might be the more appropriate
indicator of the relation of boundary to bulk properties in the
presence of two-particle interactions. We emphasize that it
is possible to show these properties of the boundary charge
only if in addition to the renormalization of the (low-energy)
gap also the renormalization of the (high-energy) band width
is properly captured. In contrast to low-energy field theories,
which do not allow to compute the latter, the functional RG
consistently provides the band width renormalization. This
constitutes another advantage (besides the direct applicability
to microscopic lattice models) of the functional RG over
effective low-energy field theories.

Our result of the stability of the boundary charge against
short-ranged two-particle interactions is a microscopic man-
ifestation of the important property of insulators that local
fields (either external or interaction-induced ones) of arbitrary
size lead only to local charge redistributions, i.e., charges can-
not be displaced beyond a characteristic length scale (given
roughly by W/A for our model). This principle, also called
the nearsightedness principle (NSP) [80,81], is responsible for
many universal properties of topological insulators such as
charge pumping [82,83], the bulk-boundary correspondence
[28-35], and the exponential localization of the charge density
at boundaries [84]. Recently, the NSP has also been used
to derive the characteristic features (i), (ii), and (iv) of the
boundary charge [45] (see Sec. I C). Therefore, the estab-
lishment of the NSP for an interacting microscopic lattice
model is a very important step for a full understanding of
the universal properties of insulators and their stability. In
this regard the functional RG is a very useful tool as it can
capture the microscopic details of the band structure and two-
particle interactions on all energy scales. In contrast, other
methods are either restricted to noninteracting systems (exact
diagonalization) or to the regimes of small gaps (effective
low-energy field theories). Computing the boundary charge
for small gaps (low-energy limit) using the numerical DMRG
is computationally very challenging. It requires the use of very
large systems as the inverse system size sets a low-energy
cutoff.

VI. SUMMARY AND OUTLOOK

We studied the local single-particle spectral function, the
local density, as well as the boundary charge of the non-
interacting and interacting RM model for periodic chains
and such with open boundaries. For U = 0 our main fo-
cus was on the boundary charge. We showed that results
recently obtained in the low-energy limit A <« W within
an effective low-energy theory hold for surprisingly large
gaps. In addition we found a universal % quantization of
the boundary charge for large gaps. We explicitly illustrated
the four main characteristics of the boundary charge for the
model under consideration which all follow from properties
of the bulk Hamiltonian. We showed that this relation to
bulk properties is robust towards small two-particle inter-
actions employing a functional RG approach, which, for
small interactions, provides reliable results on all energy
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scales. In contrast, interaction spoils the relation between
the number of in-gap & peaks, i.e., the number of “effective
edge states,” and renormalized bulk properties. Interaction-
induced peaks are generated by the spatial variation of the
self-energy close to the boundary. These also affect the local
density close to the boundary. Our results provide a hint that
the fractional part of the boundary charge is an interesting
quantity to study the relation of boundary physics to bulk
properties.

For noninteracting and clean systems the relation to bulk
properties for the fractional part of the boundary charge is
established via its relation to the Zak-Berry phase (also called
“surface charge theorem”). It is also applied within density
functional theory (DFT) and mean-field theories (MFT) under
the restrictive assumption that two-particle interactions can
be treated within such methods [41]. For 1D systems and
in the limit of small gaps this assumption does not hold.
The relation between the Zak-Berry phase and the fractional
part of the boundary charge holds up to an unknown integer
since there is a freedom of how to choose the gauge of the
Bloch states. For systems with disorder or true many-body
correlations, e.g., interacting 1D systems in the limit of small
A, the Zak-Berry phase is not defined and one should directly
study the physical observable, namely, the boundary charge.
Therefore, its determination in terms of renormalized bulk
parameters and the stability analysis of its universal properties
is a central task of many-body methods. The functional RG
is a very useful tool in this respect since it can capture true
many-body correlations on all energy scales not accessible
by DFT and MFT. This is of particular importance for 1D
systems where Tomonaga-Luttinger liquid physics is very
important for vanishing A.

Furthermore, functional RG is very flexible and has the
potential to be applied to a variety of interacting systems. It
will be of interest to study the validity range of universal low-
energy results for larger values of the wavelength Z of the ex-
ternal modulation (as compared to Z = 2 for the RM model)
and for disordered systems. In addition, one can study systems
with spin, e.g., the 1D Hubbard model and multichannel
systems with several orbitals per site. Besides the boundary
charge, the interface charge is expected to have comparable
universal properties [45] and can be directly calculated from
the local density. Furthermore the functional RG can be
used to study the density-density correlation function and the
fluctuations of the boundary charge, and is in principle not
restricted to one-dimensional systems. Therefore, we expect
the functional RG to be a very useful tool to study topological
properties in the presence of many-body correlations and
disorder.
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APPENDIX: THE NONINTERACTING
RICE-MELE MODEL

In this Appendix we derive analytical expression for the
density and the boundary charge of the noninteracting RM
model. We start with the bulk density of the infinite system
and prove Eq. (18). Using Eq. (17) we close the integration
contour over k in the upper half of the complex plane

Pouk () = ! + (—1)’1 f]g dk-. (AD)

2 i Jo &

Here C is a closed curve defined via straight lines on the seg-
ments —7 — 7 — T + 100 - —x + ico — —m. This can
be done since the additional segments do not contribute. The
two segments w — m 4+ ico and —m + ico — —m cancel
each other due to periodicity under the shift of k by 2.
The segment 7 4 ico — —m + ioco is zero due to the infinite
imaginary part of k. Using Eq. (13) for € one finds a branch
cut starting at the branching point ky. where €;,, = 0, leading
to kpe = 7 + ixpe and kpe given by Eq. (20). Choosing the
branch cut in the direction of the positive imaginary axis and
closing the integration contour around the branch cut, we find
for the bulk density

P = 5 — (1Y 5 Im / de——. A
petik
Using
€kperik+0+ = I/ —R(K), (A3)

with R(«) defined in Eq. (19), we arrive at Eq. (18).

To calculate the Friedel density from Eq. (27) we again
close the integration contour over k in the upper half of the
complex plane

i) = =5 § dhLO DR, A
Using the form (15) of the Bloch states we find a pole
of the integrand for ¢, = —V and a branch cut starting at
kvc. The pole is present only for #, > #; and V < 0 and the
residuum can be shown to be such that the contribution to the
integral (A4) cancels the edge state density (26) for u = 0;
see Ref. [49] for details. This proves Eq. (29). Closing the
integration contour around the branch cut, we find for the
branch cut contribution to the Friedel density

pr(n, i) = —e " Im / dK X4 ieror ()27 (AS)
Inserting Eq. (15) and using

N ieror = 2R(6) + 2iV/=R(x), (A6)
= a S

Ko +ik+0+ 2J/=R()IV? = R(x)]

2
v +Zf«;c+ik+o+) - _"R(K), (A8)
kpe+ik+0T v

we find Egs. (30) and (31).
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To prove the asymptotic behavior (36) of the branch cut
contribution

C:
(bC)(n l) ~ __16721('30}1

VO
we consider the regime of small gap A < W = 2t and note

that «p,. & 2WA in this case. Therefore, for n > % = 2"1;1»

we get Kk ~ ﬁ <« Ky for the integration variable in Egs. (30)
and (31). Expanding R(x) for k < kp. by using Eq. (19)
we find

w
n> X > 1, (A9)

R(k)~ =W Ak. (A10)

Inserting this result in Eq. (31) for p(bc)(n, 2) and performing
the integration we obtain Eq. (A9) for i = 2 with

1%
TWA’

= (A11)
To prove Eq. (A9) for i = 1, we consider the case V 2 8¢ such
that A ~ V and
WA
Rik) ~ WAk ~ — K A2~ V2 (A12)
n
Therefore, we can use V2 — R(x) &~ V? in the integrand of
Eq. (30) and, together with Eq. (A10), can calculate the
integral with the result (A9) for i = 1 and
28t — A)?
= g (A13)
V/aWA
To prove Eq. (42) for the boundary charge we split Qg =
Op + 603 via Eq. (39). To calculate Qp we insert Eq. (18) in
Eq. (40) and get

Vo[ 1
e O

To obtain 60 we use Eq. (35) for §p(j) = ,O(bc)(J) in
Eq. (41), and use Eqs. (30) and (31) for the branch cut con-
tribution of the Friedel density. Adding Qp from Eq. (A14),
we find after a lengthy but straightforward calculation

(Al4)

Op=1+D1, (A15)
with
I = —ﬂ/ d ! (A16)
1= ar Sy TSROV —RM)
_ _Vl]lz o0 sinh(kpe + &)
LT ) MR =R A

Inserting Eq. (19) for R(k), the integral I, can be analytically
calculated with the result

L = —isgn(V). (A18)

Taking Egs. (A15), (A16), and (A18) together we arrive at
Eq. (42).

Alternatively, one can write Eq. (42) for the boundary
charge also via an integration over the real axis

O = =30t —t)sgn(V) +1, (A19)

with
- WV 8t dk
I =— / % (A20)
8wt J_, gk(—’ + 1+ cos k)
Vét 41t 2./t
_ < 122’ 122 ) (A21)
oW 4t1t2+A2 w 4t1t2+A2

where IT is the complete elliptic integral of the third kind.
Closing the integration contour of Eq. (A20) in the upper half
of the complex plane, we split this integral into a pole and a
branch cut contributions

[ = [0 4 [0, (A22)

A straightforward calculation gives for the pole contribution

[® = 10(1, — 1)sgn(V) — sgn(V), (A23)
while the branch cut contribution 7® is identical to I;;
see above. Taking all together we find the equivalence of
Egs. (A19) and (42).

Using the representation (A20) we study the limit |V| <
|6¢|. Approximating &; ~ \/48t2 + 2t11p(1 4 cos k), we im-
mediately get

Va4t t
w

\%4
Op ~ ——@(tz —t)sgn(V) — —E(

i ) (A24)

where E is the complete elliptic integral of the second kind.
This proves Eq. (48). Assuming additionally [§f] < W, we
can use the low-energy result (47) and get

1 Vv
Op ~ =500 —t)sgn(V) — — (A25)

4m st
For large |V| > W, |6t| (atomic limit) we approximate

1 1

Ek |V|\/1+211t7 2&2 +1+C0Sk)

1 | nt 28t2 14 k (A26)
XN —|1-—=|— cos .
\4 V2 \ nn
It follows
N w Vet [T dk
o _ sgn(V) / 2 ' (A27)
8ttty — 5’ ~ + 1 +cosk

Wsgn(V)dt sgn(V)(St
+ 4v2 + w

4
0(%). (A28)

(A29)

Evaluating Eq. (A27) with the result
sgn(V') sgn(8t)
4 ki

we obtain for the boundary charge in this parameter regime

(A30)

W ét
V2

1
Op ~ —ngn(V)|:1 - — .

This proves Eq. (50).
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The case |6¢| < |V| <« W is treated by approximating

1 1

1a (A31)
£k \/Vz +1W2(1 4 cosk)

and
S v /” dk
4aw? J_. ‘tf/—’; + (1 +cosk)
1
x (A32)

v“/,—zz + %(1 + cos k)

It is necessary to estimate the latter integral for the two small
parameters % < 'X,—' <« 1. The main contribution is received
from the vicinity of k = m. Expanding %(1 + cosk) = %2,
with x = k — m, and extending the integration limits to infini-
ties, we obtain

- 2V &t /"o
[~ — >
W2 J_»

dx 1
16512 2 > :
W2 +x /‘:}VLZ + x2

To perform this integral we deform the integration contour in
the complex upper half-plane to embrace the pole x =i %

and the branch cut starting at x = { % Thus we obtain to the
order O(6t/V)

(A33)

sgn(V )sgn(5t ot
_sen(VysgnGr) | 8t

I~ . A34
4 Vv ( )
Adding the other contributions, we obtain the result
05 ~ —Ssgn(v) + (A35)
A ——sgn —_—
BTy zV

for this parameter regime. Together with Eq. (50) this proves
Eq. (49).

Finally, to derive the low-energy result (47) for small gap
|A] < W, a convenient starting point is the representation
(A22) together with I; = I expressed as

I W A?sin2y o0 dx
1 =
16711t24/2t11y Ji,, coshk — cosh kpe + %
1

X . (A36)
J/cosh k — cosh ki,

In particular, by introducing the integration variable x =
—ZAMZ J/cosh k — cosh k. in Eq. (A36), we cast it to

/ _ Wsin2y /’Oo dx
"7 T 4mA o x%+costy
1

X
\/(x2+1)(x2+1+4;+?)

(A37)

In the low-energy limit we have W & /41,1, as well as

I~ sin 2y /0" dx 1
! 4w Jo x24+cos?y /x2 1
1
Y — e, (A38)

= 7 - E lr<y<in sm<y<2m>

where the last equality holds for 0 < y < 2. Combining this
result with the other contributions, namely, with

—isen(V) = —3+301, ., (A39)

we arrive at Eq. (47).
On the basis of Eq. (A37) we also estimate the leading
correction to Eq. (47), which amounts to

sin2y [ A 2 A
— | In—.
8 w w

Due to the large denominator, this correction is negligible
even for A ~ W, and therefore the low-energy result (47)
remains quantitatively accurate up to these gap values.
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