
PHYSICAL REVIEW B 102, 085121 (2020)

Ab initio construction of symmetry-adapted k · p Hamiltonians for the electronic
structure of semiconductors
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While k · p Hamiltonians are frequently used for the description of electronic states in quantum nanostruc-
tures, a method is lacking to obtain them in their symmetrized form directly from ab initio band structure
calculations of bulk material. We developed a method for obtaining the parameters and the symmetry-adapted
form of the k · p Hamiltonian from the output of an ab initio band structure calculation. The method consists of
(i) evaluation of momentum matrix elements between the wave functions obtained from band structure
calculation; (ii) identification of the unitary transformation that transforms these wave functions to the symmetry-
adapted basis; (iii) transformation of the k · p Hamiltonian to the symmetry-adapted basis. We illustrate the
methodology by obtaining k · p Hamiltonians that describe the band structure of zinc-blende CdSe and then we
use the Hamiltonians obtained to calculate the electronic states in CdSe quantum wells. Excellent agreement
between density functional theory and k · p is obtained for the electronic structure, even for quite thin wells.
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I. INTRODUCTION

Semiconductor materials and nanostructures based upon
them are at the heart of the operation of almost all electronic
and optical devices. For this reason, there is a significant
interest in understanding the electronic states in these ma-
terials. The progress in developments of methodologies for
ab initio electronic structure calculations has led us to the
point where it is relatively straightforward to perform band
structure calculations of bulk semiconducting materials. Den-
sity functional theory (DFT) calculations based on local or
semilocal approximations for the exchange-correlation func-
tional give band gaps that are significantly smaller than experi-
mental band gaps [1]. However, improved treatments based on
the use of hybrid functionals [2,3] or many body perturbation
theory in GW (where G stands for the Green’s function and
W for screened Coulomb interaction) approximation [4] give
rather accurate band gaps and band structure of the bulk
material [5–7]. On the other hand, it is rather difficult to per-
form ab initio calculations of semiconductor nanostructures
because the calculation needs to be performed for a supercell
containing a very large number of atoms.

The method that proved to be both practical and successful
in treating the electronic states in semiconductor nanostruc-
tures is the k · p method [8–11]. It is based on the represen-
tation of the single-particle wave function in terms of Bloch
functions of the bulk material at a certain point in the Brillouin
zone (typically the � point) and slowly varying envelope
functions. The k · p Hamiltonian for a nanostructure is then
an operator that acts on the column of envelope functions
corresponding to each of the bulk bands.
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Despite the success in using the k · p method for de-
scription of bulk band structure around a certain point in
the Brillouin zone (usually the � point) and for treating the
semiconductor nanostructures, there is still no systematic way
to construct the k · p Hamiltonian for a given material and
obtain the parameters of the Hamiltonian. The parameters of
most conventional k · p Hamiltonians (such as the eight-band
Hamiltonian [10,12,13]) for a few most common classes of
semiconductors can be found in the literature [14,15] and
were obtained from the band gap and effective masses in the
valence and conduction band. Parameters of k · p Hamilto-
nians with larger number of bands (such as, for example,
the 30-band Hamiltonian [16–20]) and recently introduced
atomistic k · p [21] are typically obtained by fitting to the
calculated band structure of the material or to experimental
data. However, given a relatively large number of fitting pa-
rameters, it is questionable if the fit gives unique parameters.
It is also not clear what part of the Brillouin zone should be
used in the fitting procedure, since it is not expected that the
k · p method describes the bulk band structure throughout the
whole Brillouin zone.

Given the fact that new classes of semiconductor materials
and nanostructures based upon them emerge or find new
applications quite often, it would be of significant interest
to develop the procedure for construction of desired k · p
Hamiltonians. Since all parameters of the k · p Hamiltonian
are related to momentum matrix elements between single-
particle wave functions of the bulk, it is in principle possible
to obtain them from electronic structure calculation of the
bulk material. This is indeed done when k · p is used as a
method for interpolation of ab initio calculated band structure
to a more dense grid of k points [22–25]. However, there
is a certain shortcoming of this approach when it comes to
the construction of k · p Hamiltonians that should be used
in future applications. Namely, due to the symmetry of the
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crystalline material the energy levels in characteristic points
in the Brillouin zone are degenerate and for this reason
the choice of Bloch wave functions from the Hilbert space
spanned by the degenerate states is not unique. As a con-
sequence, one may end up with different forms of the final
k · p Hamiltonian depending on the particular choice of Bloch
functions from this space. The number of Hamiltonian param-
eters in these forms might be significantly larger than the true
number of parameters imposed by the symmetry of the crystal.

In this work, we develop the procedure for construction of
the k · p Hamiltonian in the symmetrized form with a minimal
number of parameters imposed by crystal symmetry. In Sec. II
we give a brief overview of the k · p method and present our
approach for the construction of the Hamiltonian. In Sec. III
we illustrate the method by applying it to bulk zinc-blende
CdSe and to CdSe quantum wells.

II. THEORETICAL APPROACH

A. k · p equation

We start this section by briefly reviewing the k · p method
to set the stage for description of our procedure for construc-
tion of k · p Hamiltonian. We start with the equation for an
electron in the periodic crystal that reads[

p2

2m0
+ U + Trk + HD + Hsoc

]
|�nk〉 = En(k)|�nk〉, (1)

where p2/(2m0) = −h̄2∇2/(2m0) is the kinetic energy opera-
tor and m0 is the free electron mass, U is the periodic crystal
potential (including nuclei, core and valence electrons), while
En(k) and |�nk〉 are the corresponding energy and wave func-
tion for the electron in band n at wave vector k in the Brillouin
zone. When the effects of spin-orbit interaction are included,
|�nk〉 is a two-component spinor. The last three terms in
brackets are the relativistic corrections accounting for kinetic
energy Trk = −p4/(8m3

0c2), fine structure through the Darwin
term HD = h̄2∇ · ∇U/(8m2

0c2) and spin-orbit coupling (SOC)
Hsoc = h̄(σ × ∇U ) · p/(4m2

0c2), where σ = (σx, σy, σz ) de-
notes a vector with Pauli matrices as its components.

For an electron in a periodic potential, the Bloch theorem
holds, by which the components of |�nk〉 are of the form

�
(a)
nk (r) = eik·ru(a)

nk (r), (2)

where u(a)
nk (r) are periodic Bloch functions satisfying the

condition u(a)
nk (r + R) = u(a)

nk (r), with R being the direct
lattice vector. Inserting Eq. (2) into Eq. (1), we obtain the
one-electron equation in terms of periodic Bloch functions:

[
H + h̄2k2

2m0
+ T ′

rk (k) + h̄k · psoc

m0

]
|unk〉 = En(k)|unk〉, (3)

where H = p2/(2m0) + U + Trk + HD + Hsoc is the initial
Hamiltonian from Eq. (1), psoc = p + h̄(σ × ∇U )/(4m0c2) is
the momentum modified with the SOC part and T ′

rk (k) is given
as

T ′
rk (k) = − 1

8m3
0c2

[4(h̄k · p)p2 + 4(h̄k · p)2

+ 4(h̄k)2(h̄k · p) + 2(h̄k)2 p2 + (h̄k)4]. (4)

We further express |uak〉 in the basis of orthonormal functions
|umk0〉:

|uak〉 =
∑

m

B(a)
m (k)|umk0〉, (5)

which are solutions of eigenproblem given by Eq. (3) at a
certain k0 with eigenvalues En(k0). Inserting Eq. (5) into
Eq. (3), multiplying from the left by 〈unk0 | and exploiting the
orthonormality condition we arrive at the equation

∑
m

[(
En(k0) + h̄2(k2 − k2

0 )

2m0

)
δnm

+ h̄(k − k0)

m0
· 〈unk0 |p|umk0〉

]
B(a)

m (k)

= E (a)(k)B(a)
n (k). (6)

We have omitted T ′
rk (k, k0) that would appear in Eq. (6)

because its contribution depends directly on the distance
between k and k0 and becomes significant at distances far
greater than the one where k · p theory is applicable. We have
performed a numerical check of this claim in case of zinc-
blende CdSe and we have shown that the influence of this term
on bulk eigenenergies is smaller than 0.3 meV throughout the
whole Brillouin zone. For similar reasons, we neglected SOC
modification to momentum (i.e., we take psoc ≈ p). We note
that SOC is fully included in our approach unlike in many
theoretical treatments where it is treated as a perturbation. We
further rewrite Eq. (6) in somewhat more convenient form by
exploiting the relation

〈�nk0 |p|�mk0〉 = h̄kδnm + 〈unk0 |p|umk0〉. (7)

We then obtain

∑
m

[(
En(k0) + h̄2(k − k0)2

2m0

)
δnm

+ h̄(k − k0)

m0
· 〈�nk0 |p|�mk0〉

]
B(a)

m (k)

= E (a)(k)B(a)
n (k), (8)

which takes the form of an eigenproblem:
∑

m

H (1)
nm B(a)

m = E (a)B(a)
n , (9)

where H (1)
nm is given by the term in square brackets in Eq. (8).

The indices m and n in Eq. (9) go over the bands that were
included in the expansion in Eq. (5). The accuracy of k · p
Hamiltonian can further be improved by adding the effect
of remote bands [the bands not included in the expansion in
Eq. (5)] perturbatively using the Löwdin’s perturbation theory
[11,26]. This yields additional term in the k · p Hamiltonian
which reads

H (2)
nm = h̄2

m2
0

∑
l

〈unk0 |K · p|ulk0〉〈ulk0 |K · p|umk0〉
[En(k0) + Em(k0)]/2 − El (k0)

, (10)

with K = k − k0 and the summation goes over the bands l
that were not included in the expansion in Eq. (5).
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B. Construction of symmetrized k · p Hamiltonian

The expression (8) can be, in principle, used to construct
the k · p Hamiltonian directly from ab initio calculation of
band structure of bulk. Namely, all Hamiltonian matrix ele-
ments can be calculated from band energies En(k0) at point
k0 and momentum matrix elements 〈�nk0 |p|�mk0〉 between
the wave functions at k0. However, an issue arises regarding
the uniqueness of the constructed Hamiltonian matrix as a
consequence of the fact that some of the eigenstates |�nk0〉
are degenerate. A typical choice for the k0 point is some high
symmetry point where band dispersions exhibit minima or
maxima (such as for example the � point) and the group Gk0

of the wave vector k0 is some high symmetry point group.
For this reason, there is a degeneracy between the eigenstates
at k0, where the degree of degeneracy is determined by the
dimensions of irreducible representations (irreps) of the group
Gk0 corresponding to each of the states. For example, in the
case of zinc-blende CdSe material used as an example in this
work, the top valence band is threefold degenerate and the
bottom conduction band is nondegenerate when spin degrees
of freedom are not taken into account and the effect of spin-
orbit interaction is not included. When spin-orbit interaction
is included, the bottom conduction band is twofold degen-
erate, while two top valence bands are twofold and fourfold
degenerate.

Let d be the degeneracy of the set of eigenstates
|φ1〉, |φ2〉, . . . , |φd〉 at k0 at let Hd be the Hilbert space
spanned by these states. The states |φ1〉, |φ2〉, . . . , |φd〉 form
an orthonormal basis of Hd but any other orthonormal basis
may well have been chosen. With the use of different basis, the
momentum matrix elements in Eq. (8) would be different and
the k · p Hamiltonian would have a different form. Moreover,
it might even appear that the Hamiltonian has a different
number of parameters. Our goal is to overcome this issue by
fixing the choice of the degenerate states and obtaining the
k · p Hamiltonian in the form where it has a minimal number
of parameters imposed by the symmetry group Gk0 of the
wave vector k0.

The set |φ1〉, |φ2〉, . . . , |φd〉 is obtained from DFT and they
form d × d matrices �(g) of the irrep of group Gk0 that are
given as

�mn(g) = 〈φm|P(g)|φn〉, (11)

where g is an element of the group Gk0 and P(g) is the
operator that applies the symmetry operation g on the given
wave function. The matrices �(g) are then obtained by directly
calculating the matrix elements in Eq. (11). We then calculate
the characters of � to match it with one of the equivalent
conventional irreps �′ of the point group Gk0 . The matrices
of irreps �′ can be found in databases of irreps of point
groups, for example in Bilbao crystallographic data server
[27]. The matrices �(g) and �′(g) are connected via a unitary
transformation

U †�(g)U = �′(g), (12)

which is satisfied for each g ∈ Gk0 . Therefore, to obtain the
basis of states in Hd which is adapted to conventional ma-
trices �′(g) in databases of irreps, one has to make a unitary

transformation of the basis

|ψ j〉 =
d∑

i=1

Ui j |φi〉. (13)

Now, the representation of the operator P(g) from Eq. (11)
in the new basis set |ψ j〉 is the conventional representation
�′. In the |ψ j〉 basis, the k · p Hamiltonian has a convenient,
symmetry-adapted form, in which relevant parameters of the
Hamiltonian can be straightforwardly identified.

It remains to define a procedure for obtaining the unitary
matrix U that connects the two representations � and �′.
Such a procedure has recently been developed in Ref. [28]
and we outline it here. One first obtains a set of coefficients
rab as

rab =
√

n�

|G|

⎛
⎝∑

g∈G

�aa(g)�′
bb(g−1)

⎞
⎠

1/2

, (14)

where �aa(g) and �′
bb(g−1) are known matrix elements for

symmetry operation (group element) g and its inverse g−1,
respectively, |G| is the order of group G while n� is the
dimension of representations � and �′. Then, one chooses the
pair (a, b) for which rab > 0. The existence of such a pair has
been proven in Ref. [28]. The matrix U is then given as

Ui j = 1

rab

n�

|G|
∑
g∈G

�ia(g−1)�′
b j (g). (15)

With this, we complete our procedure for construction of
symmetrized k · p Hamiltonian. For clarity, we review all
steps of the procedure here:

(i) Perform ab initio calculation of band structure for bulk,
using DFT with local functionals, hybrid functional DFT, or
by including quasiparticle energy correction within the GW
approximation.

(ii) Choose the point k0 in the Brillouin zone, that is most
suited for k · p expansion and extract band energies En(k0)
and their eigenstates |�nk0〉 from desired ab initio method.

(iii) Identify the groups of degenerate states at k0 and the
symmetry point group Gk0 . Select the groups of degenerate
states (usually those around the gap) that will form the k ·
p Hamiltonian. Extract these groups of degenerate states |φi〉
from ab initio eigenstates |�nk0〉.

(iv) For each of selected groups of degenerate states
calculate the matrices �(g) of corresponding irrep � using
Eq. (11). Using characters of �(g), match � to the equivalent
conventional representation �′ found in databases of irreps of
point groups.

(v) For each of selected groups of degenerate states, cal-
culate the unitary matrices U using sets of matrices �(g) and
�′(g) as inputs for Eqs. (14) and (15).

(vi) Proceed with calculation of the new, symmetry-
adapted basis, consisting of selected groups of degenerate
states |ψ j〉 using matrices U , obtained from the previous
step, and corresponding groups of degenerate states |φi〉 with
Eq. (13).

(vii) Evaluate the momentum matrix elements in the
new basis using Eqs. (7) (8), (9), and (10) which then
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give all parameters of the symmetrized k · p Hamiltonian
Hnm = H (1)

nm + H (2)
nm .

It is important to note that these steps constitute a well-
defined and straightforward procedure that gives the desired
k · p Hamiltonian starting from output of an ab initio calcu-
lation. It does not involve any kind of fitting which would
introduce certain arbitrariness.

Next, we discuss the form of the Hamiltonian that we
obtain and its relation to the form of the Hamiltonian that
would be obtained using Luttinger’s method of invariants
[11,29]. The form of the Hamiltonian that we obtain consists
of blocks B(�′

a, �
′
b), where each block originates from two

groups of states: the states |ψ (a)
1 〉, . . . , |ψ (a)

da
〉 that transform

in accordance with the representation �′
a of dimension da

and the states |ψ (b)
1 〉, . . . , |ψ (b)

db
〉 that transform in accordance

with the representation �′
b of dimension db. The Hamiltonian

consists of the terms quadratic in electronic momentum K ,
the terms linear in K and the terms that do not contain K .
Luttinger’s method of invariants [11,29] gives a systematic
way to obtain the form of each B(�′

a, �
′
b) for terms of given

order in K . For this reason, our procedure yields the same
form of the Hamiltonian as Luttinger’s method of invariants
applied to obtain the terms up to second order in K . By its
construction, Luttinger’s method fully exploits the point group
symmetry and yields the Hamiltonian in the form where a
minimal number of parameters appears. On the other hand,
it is clear that Luttinger’s method cannot give the values
of these parameters, since it exploits the symmetry of the
system only and does not consider other details of the sys-
tem. Our procedure in some sense links Luttinger’s method
from 1950’s to modern ab initio calculations as it enables to
obtain the form of the Hamiltonian that would be obtained
using Luttinger’s method and additionally gives the values of
these parameters starting from ab initio wave functions and
energies.

In Sec. III we apply our procedure to zinc-blende CdSe
crystal whose point group at the � point is the Td group.
However, we note that our procedure is by no means limited
to this particular crystal symmetry. It can be used for crystals
of any kind of symmetry, at any point k0 in the Brillouin
zone. Of course, benefits of this method will be greater if the
symmetry point group Gk0 at k0 is of higher order. Having a
symmetry-adapted form of the Hamiltonian also gives great
advantage when it comes to calculation of nanostructures.
Numerical codes for calculating nanostructures using k · p
Hamiltonians could be easily adapted to another material of
the same symmetry by just changing the numerical values of
the parameters, that can be straightforwardly obtained using
ab initio calculation for bulk material and the procedure
described in the paper.

Finally, we briefly discuss on the conventions for matrices
of the representations �′. In all examples in this work we have
taken the matrices from Bilbao crystallographic data server
[27] and consequently we used the conventions used therein.
Unfortunately, this is not the only convention in the literature.
The discussion on the effect of the choice of the convention
for �′ on the form of basis states |ψi〉 and the form of k ·
p Hamiltonian is given at the end of Secs. II B and II C of
Ref. [30].

III. RESULTS

In this section, we apply the methodology described in
Sec. II to bulk zinc-blende CdSe crystal and to zinc-blende
CdSe quantum well. We apply the methodology to obtain the
form and the parameters of the 8 × 8 (4 × 4) and 26 × 26
(13 × 13) symmetry adapted k · p Hamiltonian with (without)
spin-orbit interaction included for CdSe in the zinc-blende
structure. We will refer to the 8 × 8 (4 × 4) Hamiltonian as the
standard Hamiltonian, while 26 × 26 (13 × 13) Hamiltonian
will be referred to as the extended Hamiltonian.

The band energies and wave functions were obtained
from DFT where exchange-correlation energy was modeled
using the Perdew-Burke-Ernzerhof generalized gradient ap-
proximation revised for solids (PBEsol) [31]. Calculations
were performed using the Quantum Espresso code [32,33].
Core electrons were modeled using fully relativistic opti-
mized normconserving Vanderbilt pseudopotentials [34,35].
The 10 × 10 × 10 grid in reciprocal space of the Brillouin
zone was used, while the kinetic energy cutoff of the plane
waves used to represent the wave functions was 90 Ry. The
lattice constant of a = 6.096 Å, obtained by minimization
of the energy of the structure, was used in all subsequent
calculations.

Since local and semilocal approximations in DFT do not
give accurate values of the band gap [1], we have also
performed the band structure calculation using many-body
perturbation theory in the GW approximation [4]. Within
this approach, the electron self-energy is approximated us-
ing the expression containing the Green’s function G and
the screened Coulomb interaction W. In this work, we used
the G0W0 variant of GW approximation in which the self-
energy is obtained from Green’s function G0 of an electron
in DFT Kohn-Sham potential, without further iterations. The
calculations were performed using the YAMBO code [36,37],
with input Kohn-Sham wave functions obtained from a pre-
vious DFT calculation on the 4 × 4 × 4 grid in reciprocal
space. Plasmon-pole approximation was used to account for
the frequency dependence of the dielectric function. Kinetic
energy cutoff used for the calculation of dielectric function
in G0W0 calculation was 50 Ry. The corresponding number
of bands was 400 (800), while the number of bands used in
the evaluation of self-energy was 300 (600) in the case when
spin-orbit interaction is omitted (included). We estimate that
these values yield numerical accuracy of 20 meV or better for
band energy corrections.

A. Bulk zinc-blende CdSe

We used the procedure described in Sec. II to obtain
the standard and extended k · p Hamiltonian in symmetry-
adapted form. � point was chosen as the point k0 in our
procedure, since zinc-blende CdSe exhibits a direct gap at
the � point. The corresponding group Gk0 is then the point
symmetry group of the crystal, which is the Td group in the
case of zinc-blende structures. We will denote irreps of this
group using the convention of Ref. [38].

We will refer to the states that are included in the standard
k · p Hamiltonian as the main states, while remaining states
included in the extended Hamiltonian will be referred to as
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FIG. 1. The form of k · p Hamiltonian obtained when spin-orbit interaction is (a) omitted; (b) included. Each block of the matrix contains
the terms that originate from matrix elements between the states that transform according to irrep specified on the left and above the matrix.
The superscripts v, m, and c denote the lower valence band states, the main states, and the higher conduction band states. The central square
marked with thick black lines denotes the standard Hamiltonian.

lower valence band and higher conduction band states. When
spin-orbit interaction is omitted, main states used to construct
the standard Hamiltonian are the threefold degenerate �4 and
nondegenerate �1 states that lie below and above the gap,
respectively, giving a total of four states. Extended Hamil-
tonian is constructed by adding the twofold degenerate �3

and threefold degenerate �4 valence states and �4 and �1

conduction states, yielding a total of 13 states. When spin-
orbit interaction is included, the states transform according
to irreps of the double Td group. The states corresponding
to �4 will split into fourfold �8 and twofold degenerate
�7 state, the states corresponding to �3 become fourfold
degenerate �8 and the states corresponding to �1 become
twofold degenerate �6 states. The characters of the irreps of
the single and the double point group Td are given in Sec. I of
Ref. [30].

In Fig. 1, we show the form of both extended and standard
Hamiltonian, in cases when the effects of spin-orbit interac-
tion are omitted and included. The Hamiltonian is divided
into blocks, where each block originates from two groups of
degenerate states with the corresponding irrep shown on the
left and above the matrix. These blocks can be absolutely
diagonal (connecting same irreps from same states), irrep-
diagonal (connecting same irreps from different states) and
off-diagonal. When our procedure is applied, each block is
obtained in the form with smallest number of parameters
in the block, determined by the point group of the crystal.
Analytical expressions for the elements of all blocks of the
k · p Hamiltonian are given in Sec. II of Ref. [30]. We have
checked that the same form of the blocks of the Hamiltonian
is obtained when Luttinger’s method of invariants [11,29] is
applied. Numerical values of each parameter appearing in the
blocks of the Hamiltonian are given in Sec. III of Ref. [30]. We
note that the standard four-band Hamiltonian that we obtain
coincides with the second-order four-band Kane Hamiltonian
[11]. The standard eight-band Hamiltonian that we obtain
coincides with Weiler eight-band Hamiltonian [11,12] after
an appropriate unitary transformation is made. The details of
this unitary transformation are given in Sec. II B of Ref. [30].

To better illustrate the advantage of using a symmetry-
adapted form of the k · p Hamiltonian (that is obtained from
symmetrized wave functions |ψi〉) rather than the form of the
k · p Hamiltonian that would be obtained directly from DFT
wave functions |φi〉, we compare the number of parameters
in the two forms of the Hamiltonian. The two forms of the
four-band Hamiltonian are presented in Sec. II C of Ref.
[30]. The number of parameters of the symmetrized form
is significantly smaller (1 versus 9 parameters for the terms
linear in k and 5 versus 46 parameters for the terms quadratic
in k), which clearly shows its advantage in terms of simplicity
for further use in the study of nanostructures.

In Fig. 2 we plot the band structure of zinc-blende CdSe
obtained from DFT calculation and by diagonalizing the
standard and extended k · p Hamiltonian in cases with and
without the effects of spin-orbit interaction. As expected,
extended Hamiltonian gives results that are qualitatively and
quantitatively closer to full DFT than the standard one. It
should be noted that it is preferable to add the states in
extended Hamiltonian symmetrically around the main states.
We found that expanding the standard Hamiltonian by a
noneven number of valence and conduction states can lead
to closing of the gap at points far away from � point. This
was more prone to happen if the number of conduction states
added was greater than number of valence states added. The
presence of such spurious states then prevents the application
of the k · p Hamiltonian to the nanostructure. Our choice of 13
(26) bands used to construct the extended Hamiltonian was
therefore a compromise between (i) the goal to accurately
describe the band structure within the part of the Brillouin
zone which is as large as possible; (ii) the desire to use the
number of bands (and therefore the number of parameters
of the k · p Hamiltonian) that is not extremely large; (iii)
the aim to avoid the appearance of spurious states that close
the gap. To quantify in more detail the ability of derived
k · p Hamiltonians to reproduce the ab initio calculated band
structure, we plot in Fig. 3 the maximal difference between
k · p and DFT results within the sphere of radius kr (which is
centered at the � point) for main bands. We find that standard
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(a) (b)

FIG. 2. Band structure of zinc-blende CdSe calculated using DFT and using standard and extended k · p Hamiltonian when the effects of
spin-orbit interaction are (a) omitted; (b) included.

(extended) k · p results differ no more than 4 eV (1.75 eV)
inside the sphere inscribed in the first Brillouin zone, with a
difference not greater than 45 meV (35 meV) inside a sphere
of radius kr = 0.2 in units of 2π/a, where a is the lattice
constant. Figure 3 shows that in the reasonable vicinity of �

point, in any direction, extended k · p Hamiltonians produce
a band structure that is significantly closer to DFT results,
than the standard k · p Hamiltonians. The use of extended
Hamiltonians is necessary in many practical cases. If one
wishes to study only the low field electrical properties or the
optical properties at photon energies just above the band gap,
the standard Hamiltonians are usually sufficient. However, if
one is interested in optical properties in a wider energy range
(which is relevant, for example, for solar cells) or transport
at larger electrical fields (which is relevant in field-effect
transistors) extended Hamiltonians are required to properly
describe all relevant electronic states.

For the results presented so far, the k · p Hamiltonian was
constructed starting from the wave functions and energies of
Kohn-Sham orbitals obtained from DFT using the PBEsol

functional. It is well known that the DFT band gap is typ-
ically significantly smaller from experimental gap and for
this reason the same applies to k · p band structure obtained
starting from DFT wave functions and energies. The method-
ology that we described is by no means limited to using the
DFT wave functions and energies. To demonstrate this, we
have calculated the self-energy corrections to energies En(k0)
within the G0W0 approximation. The G0W0 calculation gives
the band gap values of 1.77 and 1.60 eV without and with
inclusion of spin-orbit interaction, respectively. These results
are in good agreement with experimental value of 1.71 eV
[39]. As expected, this is a great improvement over DFT,
which underestimates the gap at 0.47 eV (without spin-orbit
interaction) and 0.40 eV (with spin-orbit interaction).

The energies En(k0) obtained from G0W0 calculation were
then used in Eqs. (10) and (8) to construct the standard
and extended k · p Hamiltonian. The parameters of these
Hamiltonians are given in Secs. III G and III H of Ref. [30],
while the band structure obtained from diagonalization of
these Hamiltonians is presented in Fig. 4.
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FIG. 3. Maximal absolute difference 	E between the band energy obtained from DFT and k · p within the region of the Brillouin zone in
the shape of a sphere of radius kr centered at � when the effects of spin-orbit interaction are (a) omitted; (b) included. The difference is shown
for main bands where the results obtained using standard k · p Hamiltonian are shown using empty symbols, while the results obtained using
the extended k · p Hamiltonian are shown using filled symbols. Insets show a zoom of the same graph in the region around kr = 0.
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FIG. 4. Band structure of zinc-blende CdSe calculated using
standard and extended k · p Hamiltonian parametrized starting from
band energies obtained in G0W0 calculation. DFT results are given
for comparison.

B. CdSe quantum well

We finally demonstrate the usefulness of the procedure
developed and the Hamiltonians derived by applying them to
calculate the electronic states in zinc-blende CdSe quantum
wells of various well widths. We perform the calculation both
using the k · p method and using DFT and we compare the
results that we obtain using the two approaches.

Within DFT, we perform the calculation of electronic states
of a quantum well by considering the slab of CdSe material
whose surfaces are perpendicular to the [001] direction. We
terminate the slab with Cd layer at both surfaces and add
pseudohydrogen atoms of charge 1.5 to passivate the dangling
bonds at surfaces. Pseudohydrogen atoms are positioned at
a distance of 1.58 Å from the corresponding Cd atom. For
slabs of the width � 6a (>6a), the vacuum region of the
width equal to 3a (half of the slab width) was added on both
sides of the quantum well, to avoid the interaction of the
quantum well with its images caused by periodic boundary
conditions in the calculation. The calculation was performed
for quantum wells containing from 1 to 18 CdSe unit cells.
We define the quantum well width as the distance between
the two pseudohydrogen passivating layers. We performed
the calculation without the effect of spin-orbit interaction
included to lower the computational cost and therefore extend
the range of well widths for comparison of DFT and k · p
results.

In the case of a quantum well whose plane is perpendicular
to the z direction, electronic states within the k · p model can
be obtained by solving the eigenvalue problem

∑
n

Hmn

(
kx, ky,−i

d

dz

)
� (a)

n (z) = E (a)� (a)
m (z), (16)

where Hmn(kx, ky,−i d
dz ) is the k · p Hamiltonian of the bulk

with kz component of the wave vector replaced by the differ-
ential operator −i d

dz , � (a)
n (z) is the envelope function corre-

sponding to the state (a) of band n, while E (a) is the energy
of that state. We solve the eigenvalue problem using the plane
wave expansion method [40–45]. The well is embedded in the
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FIG. 5. Dependence of zinc-blende CdSe quantum well band
gap on well width. The results obtained from DFT without the
effects of spin-orbit coupling and from standard 4 × 4 and extended
13 × 13 k · p models are presented. The inset shows the zoom of the
same dependence to the narrower range in the figure. The horizontal
dashed line denotes the bulk DFT band gap.

region of length Lz and the envelope functions are expanded
into a linear combination of plane waves

� (a)
n (z) = 1√

Lz

Nz∑
nz=−Nz

c(a)
n,nz

ei 2π
Lz

nzz
, (17)

where c(a)
n,nz

are expansion coefficients that have to be deter-
mined and Nz is an integer that defines the total number of
plane waves. After substitution of Eq. (17) into Eq. (16) we
obtain the eigenvalue problem of the Hermitian matrix that
we diagonalize using standard numerical routines to obtain the
coefficients c(a)

n,nz and the energies E (a). For a fair comparison
with DFT calculation of CdSe slab in vacuum, we perform the
calculation for a quantum well inside a large energy barrier.
We therefore model the region outside the quantum well as
an artificial material whose all parameters are the same as
CdSe parameters except the band energies at the � point. In
this artificial material, we increase all energies of conduction
bands by 	E with respect to corresponding energies in CdSe
and decrease all energies of valence bands by the same
amount 	E . In the calculation we use the values 	E = 5 eV,
Lz = 20 nm and Nz = 50. We have checked that these are
sufficiently large values whose further increase would not
affect the results.

In Fig. 5 we present the dependence of the band gap on
well width obtained within DFT and within the k · p model.
For a fair comparison, the results of DFT calculation without
the effects of spin-orbit interaction were compared with k · p
models without spin-orbit interaction; the 4 × 4 and the 13 ×
13 model. The agreement between DFT and k · p results and
between the results of the two k · p models is excellent. For
quantum well widths of three lattice constants and larger the
band gap differences are smaller than 20 meV. The agreement
is quite satisfactory even for rather thin wells of 1 and 2 unit
cells, where one might not have expected that k · p performs
so well. It is also important to note that the calculation of
electronic structure of the quantum well using the k · p ap-
proach takes only up to a few seconds on a single-core desktop
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(d)(a)

(e)

(f)

(b)

(c)

FIG. 6. The wave-function moduli squared of quantum well
states obtained from DFT without the effects of spin-orbit cou-
pling and the four-band k · p model. The DFT wave functions
are presented by performing the in-plane average of wave-function
moduli squared. The k · p wave functions are presented by a sum∑

n |�n(z)|2. The wave functions that are presented in the figure
correspond to the following states: (a) VBM-4, (b) degenerate VBM-
3 and VBM-2, (c) degenerate VBM-1 and VBM, (d) CBM, (e)
CBM + 1, (f) CBM + 2, where VBM (valence band maximum)
denotes the highest energy state in the valence band, while CBM
(conduction band minimum) denotes the lowest energy state in the
conduction band.

computer, regardless of the width of the quantum well. DFT
calculations, however, take minutes or hours depending on
the width of the quantum well on a computing cluster with
several nodes. For example, our calculation times range from
approximately 3 min (using 32 cores) to 21 h (using 64 cores)
for narrowest and widest quantum wells calculated by DFT,
respectively. In the case of nanostructures confined in all three
spatial directions, such as quantum dots, the advantages of
k · p over DFT become even more pronounced. Due to a
lack of periodicity in any direction, one needs to calculate
supercells with quite a large number of atoms in DFT and the
problem becomes computationally intractable for DFT. On the
other hand, k · p is almost routinely used to study quantum
dots, see for example, Refs. [40–45].

We next discuss the origin of somewhat surprisingly good
agreement between DFT and k · p for thin wells. Within k · p
the atomistic wave function (shown in Fig. 6 in full lines) is
represented in terms of the product of slowly varying envelope
functions (shown in Fig. 6 in dashed lines) and rapidly varying
bulk Bloch functions, while the only additional approximation
in k · p with respect to the atomistic method (DFT in our case)
comes from truncation of the wave-function expansion to a
limited set of bands. For this reason, we believe that excellent
agreement between k · p and DFT results for wide wells is
expected because basis functions used in k · p provide a good
basis set in this case. In the case of very thin wells, one could
argue that the representation of the wave function in terms of
the product of envelope functions and bulk Bloch functions
for a few bands only cannot be a good representation because
the system is rather different from bulk and therefore the basis
formed from bulk Bloch functions cannot be a good basis.
Our results for CdSe wells confirm that such an argument is
certainly valid to some extent because the agreement between
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FIG. 7. Well width dependence of zinc-blende CdSe quantum
well band gap calculated using the k · p method. The parameters
of the k · p Hamiltonian were extracted from G0W0 calculation of
bulk band structure. The results obtained with and without the effects
of spin-orbit interaction are shown, respectively, in full and empty
squares. The results obtained from k · p Hamiltonians parametrized
from DFT are shown for comparison in full (the case with spin-
orbit interaction) and empty (the case without spin-orbit interaction)
circles.

DFT and k · p becomes somewhat worse for quite thin wells.
Nevertheless, we find that the agreement between DFT and
k · p is quite satisfactory even then and we note that it would
be quite interesting to investigate in the future if this is also
the case for other materials. It should be noted as well that the
use of pseudohydrogen surface passivation also contributes
in making the wave functions of thin wells closer to wave
functions of bulk material.

We finally present the results of the calculation of CdSe
quantum well electronic states, using the k · p Hamiltonians
parametrized from G0W0 calculation of bulk band structure
(the parameters of these Hamiltonians are given in Secs. III F
and III H of Ref. [30]). To obtain an accurate quasiparticle
band gap, we add to the band gap obtained from k · p Hamil-
tonian the correction which takes into account the dielectric
mismatch between the quantum well and the vacuum, i.e., the
image charge effect. The correction was added using the ana-
lytical formula presented in Ref. [46], which was also recently
applied in a DFT study of CdSe nanoplatelets [47]. The results
obtained are presented in Fig. 7 along with the results obtained
from k · p Hamiltonians parametrized from DFT, which are
given for comparison. As expected, we obtain significantly
larger band gaps using k · p Hamiltonians parametrized from
G0W0 calculation of bulk. We note that we focused in this
work on single particle energies and the reported gaps are the
quasiparticle band gaps. To obtain the optical gap, one would
additionally need to consider excitonic effects, which was also
recently done for CdSe nanoplatelets in Ref. [47].

IV. CONCLUSION

In conclusion, we presented the method that allows
automatic construction of k · p Hamiltonians in their
symmetry-adapted form starting from output of ab initio band
structure calculation of bulk material. We then presented
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the application of the method to construct the k · p Hamil-
tonians for zinc-blende CdSe material. These Hamiltonians
were subsequently used to calculate the electronic states in
CdSe quantum wells. Interestingly, excellent agreement was
obtained between the results obtained from k · p and DFT
calculations of quantum wells, even for rather thin wells.
While construction and parametrization of k · p Hamiltonians
is usually believed to be a rather difficult and time consuming
task, we expect that the method that we presented will change
this situation and that it will be straightforward in the future
to obtain k · p Hamiltonians for new materials and apply
them to study electronic properties of nanostructures based

on these materials without the need to perform any kind of
fitting.

ACKNOWLEDGMENTS

The authors acknowledge funding provided by the In-
stitute of Physics Belgrade, through the grant by Ministry
of Education, Science and Technological Development of
the Republic of Serbia. Numerical simulations were run on
the PARADOX-IV supercomputing facility at the Scientific
Computing Laboratory, National Center of Excellence for the
Study of Complex Systems, Institute of Physics Belgrade.

[1] J. P. Perdew, Density functional theory and the band gap prob-
lem, Int. J. Quantum Chem. 28, 497 (1985).

[2] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mix-
ing exact exchange with density functional approximations,
J. Chem. Phys. 105, 9982 (1996).

[3] C. Adamo and V. Barone, Toward reliable density functional
methods without adjustable parameters: The PBE0 model,
J. Chem. Phys. 110, 6158 (1999).

[4] L. Hedin, New method for calculating the one-particle Green’s
function with application to the electron-gas problem, Phys.
Rev. 139, A796 (1965).

[5] M. Shishkin and G. Kresse, Self-consistent GW calculations for
semiconductors and insulators, Phys. Rev. B 75, 235102 (2007).

[6] W. Chen and A. Pasquarello, Band-edge levels in semicon-
ductors and insulators: Hybrid density functional theory ver-
sus many-body perturbation theory, Phys. Rev. B 86, 035134
(2012).

[7] Y. Hinuma, Y. Kumagai, I. Tanaka, and F. Oba, Band alignment
of semiconductors and insulators using dielectric-dependent
hybrid functionals: Toward high-throughput evaluation, Phys.
Rev. B 95, 075302 (2017).

[8] J. M. Luttinger and W. Kohn, Motion of electrons and holes in
perturbed periodic fields, Phys. Rev. 97, 869 (1955).

[9] E. Kane, Energy band structure in p-type germanium and sili-
con, J. Phys. Chem. Solids 1, 82 (1956).

[10] C. R. Pidgeon and R. N. Brown, Interband magneto-absorption
and Faraday rotation in InSb, Phys. Rev. 146, 575 (1966).

[11] L. C. Lew Yan Voon and M. Willatzen, The k · p Method: Elec-
tronic Properties of Semiconductors (Springer-Verlag, Berlin,
2009).

[12] M. H. Weiler, R. L. Aggarwal, and B. Lax, Warping- and
inversion-asymmetry-induced cyclotron-harmonic transitions
in InSb, Phys. Rev. B 17, 3269 (1978).

[13] T. B. Bahder, Eight-band k · p model of strained zinc-blende
crystals, Phys. Rev. B 41, 11992 (1990).

[14] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band pa-
rameters for III-V compound semiconductors and their alloys,
J. Appl. Phys. 89, 5815 (2001).

[15] I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-
containing semiconductors, J. Appl. Phys. 94, 3675 (2003).

[16] M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, Band
structure and optical gain of tensile-strained germanium based
on a 30 band k · p formalism, J. Appl. Phys. 107, 013710
(2010).

[17] S. Richard, F. Aniel, and G. Fishman, Energy-band structure of
Ge, Si, and GaAs: A thirty-band k · p method, Phys. Rev. B 70,
235204 (2004).

[18] S. Boyer-Richard, F. Raouafi, A. Bondi, L. Pédesseau, C. Katan,
J.-M. Jancu, and J. Even, 30-band k · p method for quantum
semiconductor heterostructures, Appl. Phys. Lett. 98, 251913
(2011).

[19] Z. Song, W. Fan, C. S. Tan, Q. Wang, D. Nam, D. H. Zhang, and
G. Sun, Band structure of Ge1−xSnx alloy: A full-zone 30-band
k · p model, New J. Phys. 21, 073037 (2019).
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