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Construction of variational matrix product states for the Heisenberg spin-1 chain
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We propose a simple variational wave function that captures the correct ground-state energy of the spin-1
Heisenberg chain model to within 0.04%. The wave function is written in the matrix product state (MPS) form
with the bond dimension D = 8 and is characterized by three fugacity parameters. The proposed MPS generalizes
the Affleck-Kennedy-Lieb-Tasaki state by dressing it with dimers, trimers, and general q-mers. The fugacity
parameters control the number and the average size of the q-mers. Furthermore, the D = 8 variational MPS
state captures the ground states of the entire family of the bilinear-biquadratic Hamiltonian belonging to the
Haldane phase to high accuracy. The 2-4-2 degeneracy structure in the entanglement spectrum of our MPS
state is found to match well the results of the density matrix renormalization group (DMRG) calculation, which
is computationally much heavier. Spin-spin correlation functions also find an excellent fit with those obtained
by DMRG.
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I. INTRODUCTION

Examples of exact many-body ground states tied to
relatively simple Hamiltonians are extremely rare. A
well-known exception is the Affleck-Kennedy-Lieb-Tasaki
(AKLT) Hamiltonian [1,2]

HA =
∑

i

[
1

3
(Si · Si+1)2 + Si · Si+1 + 2

3

]
, (1.1)

which has a unique ground-state wave function |A〉 given
in simple analytic form. The simplicity of the ground-state
wave function is revealed also through its matrix product
state (MPS) form, first written down in Refs. [3,4], inspired
by the work of AKLT. (See also the general ideas set forth
in Refs. [5,6].) The size of the matrix, known as the bond
dimension, for the AKLT state is D = 2, the smallest dimen-
sion allowed in any MPS representation. In the meantime, the
ground state of the pure spin-1 Heisenberg model belongs
to the same Haldane [7] or the symmetry-protected topo-
logical (SPT) [8,9] phase as the AKLT state, and therefore,
the two states must in some sense be smoothly connected
to each other. One aspect of such adiabatic continuity is the
double degeneracy of the entanglement spectrum (ES), which
characterizes the whole Haldane (SPT) phase [8].

Although the entanglement aspect of the SPT phase has
been confirmed for some time by the numerical density matrix
renormalization group (DMRG) method [8], we have not yet
seen an active attempt to write down an adiabatic continuation
of the AKLT state in analytic form that spans the entire
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SPT phase. A recent noteworthy effort is Ref. [10], which
constructed the family of variational MPS ground states for
a spin-1 chain based on a fairly general SU(2) symmetry
consideration. Here we present the analytical construction of
the family of variational MPS (vMPS) wave functions that
spans nearly the entire SPT phase of the so-called bilinear-
biquadratic (BLBQ) spin-1 Hamiltonian. Despite the small-
ness of the bond dimension D = 8, our vMPS yields excellent
ground-state properties, quite comparable to those obtained
by DMRG.

In Sec. II we show how to utilize the perturbative argument
to aid one’s thinking in constructing proper vMPS wave
functions for the BLBQ Hamiltonian. This stands in contrast
to the much more formal approach of Ref. [10], which relied
heavily upon the symmetry constraint to narrow down the
form of the vMPS. In Sec. III some physical properties of
our D = 8 vMPS are calculated and compared with those
obtained by DMRG for the same BLBQ model Hamiltonian.
The agreements are quite good for energy and spin-spin
correlations and in regard to various entanglement properties.
In other words, the problem of finding ground-state wave
functions for the SPT phase of the BLBQ Hamiltonian is
practically solved.

II. CONSTRUCTION OF THE VARIATIONAL
MPS WAVE FUNCTION

A. Perturbative approach

A useful way to think about the Heisenberg Hamiltonian
HH is as an AKLT model with perturbation HH = HA +
λ

∑
i Si · Si+1, in the limit λ → ∞. In this view, modification

of the AKLT state occurs by the action of the quadratic
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FIG. 1. Schematic figures for the AKLT state |A〉, the single-
dimer state |Di〉, and the extended dimer state |D′

i〉. Each wavy line
connecting the points represents a singlet bond s† defined in the text.

exchange Si · Si+1 on the AKLT state |A〉. We find

Si · Si+1|A〉 = −|A〉 + (1/2)|Di〉. (2.1)

The new state |Di〉, shown in Fig. 1, has a pair of adjacent
sites (i, i + 1) locked into the total spin-0 dimer, while the
rest of the sites continue to remain in the AKLT state. In
the Schwinger boson (SB) notation for the singlet creation
operator s†

i j = a†
i b†

j − b†
i a†

j , we can express the one-dimer
state as

|Di〉=
⎡
⎣

⎛
⎝ ∏

j �=i−1,i,i+1

s†
j, j+1

⎞
⎠s†

i−1,i+2

⎤
⎦(s†

i,i+1)2 |v〉 ,

with |v〉 being the SB vacuum. The terms inside the square
bracket give the AKLT state over the chain with two sites,
i and i + 1, missing. The appearance of an isolated dimer
according to Eq. (2.1) was noted by Arovas quite some time
ago [11].

According to the first-order consideration above, the
ground state of the Heisenberg model differs from the AKLT
state by the appearance of a single dimer. At the next order in
perturbation we find

Si · Si+1 |Di〉 = −2 |Di〉 ,

Si−1 · Si |Di〉 = |A〉 + |Di〉 + |D′
i〉 ,

Si+1 · Si+2 |Di〉 = |A〉 + |Di〉 + |D′
i+1〉 ,

S j · S j+1 |Di〉 = − |Di〉 + 1

2
|DiDj〉 , (2.2)

where j �= i − 1, i, i + 1 in the last equation. As one can
see, the appearance of the double-dimer configuration |DiDj〉
at the nonoverlapping bonds (i, i + 1) and ( j, j + 1) is the
obvious new feature of the second-order perturbation. The
other notable feature at second order is the emergence of
the configuration denoted |D′〉, shown graphically in Fig. 1.
This new state |D′

i〉, also discovered by Arovas [11], can be
decomposed as the superposition of the AKLT state, one-
dimer states |D〉, and a new, length-2 dimer state defined
over the second-nearest neighbors (i, i + 2). Seeing how this
comes about requires a little bit of preparatory work.

First of all, a simple identity can be proven for the singlet
creation operators:

s†
i j s

†
kl + s†

iks†
l j + s†

il s
†
jk = 0. (2.3)

This identity can be used to prove, among others, the follow-
ing relations:

s†
12s†

23s†
34s†

41 + s†
13s†

34s†
42s†

21 = (s†
12)2(s†

34)2,

s†
12s†

23s†
34s†

41 + s†
13s†

32s†
24s†

41 = (s†
14)2(s†

23)2. (2.4)

FIG. 2. Graphical proof showing how state |D′〉 breaks down as
the AKLT state and several one-dimer states.

A simple counting argument suggests that there can be three
independent ways of producing a tetramer (a spin singlet
made out of four spin 1’s). They are represented in the SB lan-
guage as s†

12s†
23s†

34s†
41|v〉, (s†

12)2(s†
34)2|v〉, and (s†

14)2(s†
23)2|v〉,

respectively. All other ways of producing a tetramer, for
example, s†

13s†
34s†

42s†
21|v〉, become their linear combinations

according to the identity (2.4).
One can now exploit Eq. (2.4) to prove relations shown

graphically in Fig. 2. The |D′〉 state, as mentioned above, is
generated by the second-order action of the exchange Hamil-
tonian on the AKLT state. Then according to the graphical
proof of Fig. 2, the state |D′〉 breaks down as a linear com-
bination of the AKLT state, some compact one-dimer states,
and the long-range one-dimer state shown in the final line
of Fig. 2. The main additional feature of the second-order
perturbation is therefore the appearance of the long-range
dimer.

We examine another aspect of the higher-order perturba-
tion on the AKLT state, starting with the familiar relation

(2Si · Si+1 + 2)|A〉 = |Di〉. (2.5)

Arranged in this way, it appears that 2Si · Si+1 + 2 is playing
the role of the dimer creation operator. In fact this inter-
pretation makes sense once we rewrite the operator in the
equivalent form

[(Si + Si+1)2 − 2]|A〉 = |Di〉. (2.6)

The AKLT state |A〉 contains, by construction, only those
configurations that have total spin S = 0 or S = 1 for the
(i, i + 1) pair of sites. By acting on it with the projection
operator (Si + Si+1)2 − 2, one ends up eliminating the S = 1
component over the (i, i + 1) bond. The state that remains
after the projection must be the total spin singlet S = 0, which
we previously called the dimer.

Following a similar line of reasoning, the trimer state
(a spin singlet composed of three spin 1’s) may be created
by the operation

[(Si−1+Si+Si+1)2−2][(Si−1+Si+Si+1)2−6]|A〉.
Out of the three possible total spins S = 0, 1, 2 for the
(i − 1, i, i + 1) bond, only the S = 0 state will survive after
the projection. After expanding, we get

(Si−1 · Si+Si · Si+1+Si+1 · Si−1)

×(Si−1 · Si+Si · Si+1+Si+1 · Si−1+2)|A〉 ≡ |Ti〉
as the trimer state. Hence, it turns out the trimer projection
operator also requires the second-order action of the exchange
operators on the AKLT state. Gathering all the heuristic
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FIG. 3. General graphical representation of the MPS consisting
of an alternating site tensor (square with a vertical arm) and bond
tensor (diamond, no dangling arm).

arguments thus far, we arrive at a good picture of the kinds
of influences that the Heisenberg term exerts on the AKLT
state at each order of perturbation.

In the next section, we will apply this sort of perturbative
thinking to arrive at a good prescription for the vMPS ground
wave function of the Heisenberg model in particular and the
BLBQ Hamiltonian in general.

B. Construction of the MPS tensor

The MPS wave function has the general structure of being
given by the product of alternating site and bond tensors, as
depicted in Fig. 3. We first present the D = 8 site tensor in its
final form:

T = T1 + T2 + 4ab2 T t
2 − 2b T3 − 3c T4. (2.7)

It consists of four tensors T1 through T4 and three mixing
parameters a, b, c that are adjusted to lower the energy. The
components of the tensors are given out explicitly as

[T1]s
ii′, j j′ = [

CG1
1
2

1
2

]s

i jδi′3δ j′3,

[T2]s
ii′, j j′ = [

CG0
1
2

1
2

]
i j
δi′3δ j′s,

[T3]s
ii′, j j′ = [

CG0
1
2

1
2

]
i j

[
CG1

11

]s

i′ j′ ,

[T4]s
ii′, j j′ = [

CG1
1
2

1
2

]s

i j

[
CG0

11

]
i′ j′ ,

[B]ii′, j j′ = [
CG0

1
2

1
2

]
i j

([
CG0

11

]
i′ j′ + δi′3δ j′3

)
. (2.8)

The bond tensor B (represented by diamonds in Fig. 3)
is shown in the last line. T t

2 in Eq. (2.7) is obtained
by taking the transpose of the virtual indices, [T t

2 ]s
ii′, j j′ =

[T2]s
j j′,ii′ . Clebsch-Gordon (CG) coefficients CGs

s1s2
for com-

bining two spins s1 and s2 into the spin s are employed
above. In the case of CG0

11 and CG1
11, the virtual indices

i′, j′ run only over the three possible spin states 0, 1, 2.
Nevertheless, we introduce a fourth component, i′, j′ = 3, and
make them four-dimensional. This mathematical contraption
plays a crucial role in our construction. Meanwhile the un-
primed indices are two-dimensional, i, j = 0, 1, for a total of
(2 × 4 = 8)-dimensional virtual indices, or D = 8. The wave
function for a given spin basis |s1s2 · · · sN 〉 is obtained by
taking the tensor product T s1 BT s2 B · · · T sN B and contracting
the two end indices either with a trace or some boundary
vectors.

The product of a site tensor T s with the adjoining bond
tensor B is symbolically written T B = T . In components,

[T 1]
s
ii′, j j′ = [

CG1
1
2

1
2

]s

ik

[
CG0

1
2

1
2

]
k jδi′3δ j′3,

[T 2]
s
ii′, j j′ = (−δi j/2)δi′3

[
CG0

11

]
s j′ ,[

T
t
2

]s

ii′, j j′ = (δi j/2)δi′sδ j′3,

FIG. 4. Exemplary configurations containing (a) multiple com-
pact dimers, (b) two dimers and one trimer (all compact), and
(c) long-range q-mers. The black solid line stands for the singlet
made out of two S = 1/2’s, while the thick green ones are the dimers
and trimers.

[T 3]
s
ii′, j j′ = (−δi j/2)

[
CG1

11

]s

i′k′
[
CG0

11

]
k′ j′ ,

[T 4]
s
ii′, j j′ = (δi′ j′/3)

[
CG1

1
2

1
2

]s

ik

[
CG0

1
2

1
2

]
k j

. (2.9)

The two relations [CG0
1
2

1
2
]ik[CG0

1
2

1
2
]k j = −δi j/2 and [CG0

11]i′k′

[CG0
11]k′ j′ = δi′ j′/3 were used. Summations over repeated

indices are implicit. Note that [CG1
1
2

1
2
]
s

ik
[CG0

1
2

1
2
]
k j

≡ As
i j is

precisely the MPS tensor that defines the AKLT state. In the
simplest case a = b = c = 0, the product of T1 tensors repro-
duces the AKLT state. The meanings of the full tensors given
in Eqs. (2.7) through (2.9) are not easy to grasp at first sight.
Below, we explain their meanings by examining specialized
cases with only the T1 and T2 tensors being nonzero and so on.

To start off, we keep T1, T2 and its transpose and examine
the resulting MPS state. From the tensor structure shown in
Eq. (2.9), one finds that T 2 can be followed only by T

t
2 and not

by T 1. This constraint effectively binds T 2 and its transpose
into a pair,

[T 2]s
ii′,kk′

[
T

t
2

]s′

kk′, j j′ = (−δi j/4)δi′3δ j′3
[
CG0

11

]
ss′ .

The expression [CG0
11]ss′ is nothing but the wave function of a

dimer singlet. The factor (−1/4) in the above combines with
the prefactor 4ab2 in Eq. (2.7) to give the factor −ab2 to the
one-dimer configuration |Di〉 depicted in Fig. 1. T

t
2 can be

followed either by T 2, creating a second dimer in succession
to the first, or by T 1, terminating the dimer and restoring
the AKLT chain. The expansion of the tensor product (still
omitting T3 and T4) gives the series

|ψDG〉 =
∞∑

n=0

∑
�

(n)
DG

(−a)nb2n
∣∣�(n)

DG

〉
, (2.10)

where the sum n spans the number of dimers and �
(n)
DG

refers to all possible arrangements of the n dimers (n = 0
gives the AKLT state). The two exponents in (−a)nb2n count
the number of dimers n and the total length of the dimers
(2 × n = 2n), respectively. For the same fugacities, i.e., the
same n, one has all dimer configurations contributing with
equal weight to the above sum, a situation we refer to as the
dimer gas (DG). An example of the multidimer configuration
is shown in Fig. 4(a). The one-dimer configurations in the
above sum contribute with a minus sign, −ab2, in accordance
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with the prediction of the first-order perturbation. Numerical
minimization of the MPS energy indeed proves that a > 0 for
the variational ground state. Note that all the dimers appearing
in the multidimer configuration in Eq. (2.10) are defined over
the nearest neighbors; that is, the dimers are “compact.”

Next, we restore T3 but not yet T4. In addition to the
dimer-giving product T 2T

t
2 already discussed, the product

T 2(T 3)mT
t
2 with any number of m’s is possible. An explicit

calculation gives

[
T 2T 3T

t
2

]s1s2s3

ii′, j j′ = (δi jδi′3δ j′3/8)

× [
CG0

11

]
s1α

[
CG1

11

]s2

αβ

[
CG0

11

]
βs3

. (2.11)

The local trimer wave function shown in the second line ap-
pears with the weight −ab3, with the exponent 3 representing
the presence of a q-mer with q = 3. The product T 2(T 3)2T

t
2

generates the local tetramer wave function
[
CG0

11

]
s1α

[
CG1

11

]s2

αβ

[
CG0

11

]
βγ

[
CG1

11

]s3

γ δ

[
CG0

11

]
δs4

. (2.12)

The local q-mer is the trivial representation of the SU(2) spin
rotation regardless of its length. One can now read off the
general structure of the q-mer wave functions generated by
the (T1, T2, T3) construction as

|ψQG〉 =
∑
�QG

(−a)nbl
∣∣�(n,l )

QG

〉
. (2.13)

The symbol �QG refers to any one of the possible mixed q-mer
configurations. Configurations with the same total number
of q-mers n and their total lengths given by l = ∑

i qini

(qi = 2, 3 for dimers and trimers, respectively) contribute to
the wave function with the same weight in this q-mer gas (QG)
wave function |ψQG〉. An example with one trimer and two
dimers (n = 3, l = 7) is shown in Fig. 4(b). Each q-mer in the
expansion is still compact, or defined over q consecutive sites.

As with T3, the insertion of T4 can take place only between
T2 and T t

2 . The role of T4 is to take a compact q-mer and
“stretch” it over nonconsecutive sites, without changing the
q value. To see this, we include T1, T2, T4 but not T3 in the
site tensor. Possible structures are T 2(T 4)mT

t
2 with arbitrary

m. For instance,
[
T 1T 2T 4T

t
2T 1

]s1s2s3s4s5

ii′, j j′

= −(δi′3δ j′3/12)As1
ik As3

kl A
s5
l j

[
CG0

11

]
s2s4

. (2.14)

Indeed, the dimer bond [CG0
11]s2s4

is now over the second
neighbors, while the AKLT tensors connect nonadjacent sites
1, 3, and 5. This is precisely the noncompact dimer configura-
tion generated at the second-order perturbation, as mentioned
earlier. Expansion of the MPS state (still omitting T3) gives
rise to the long-range dimer gas (LDG),

|ψLDG〉 =
∑
�LDG

(−ab2)n(−c)m
∣∣�(n,m)

LDG

〉
. (2.15)

The number mi of insertions of T4 in a given dimer gives m =∑
i mi. It is straightforward now to see that keeping all four

tensors gives the expansion of the variational MPS state:

|ψLQG〉 =
∑
�LQG

(−a)nbl (−c)m
∣∣�(n,l,m)

LQG

〉
. (2.16)

Each q-mer has the length qi + mi. A trimer defined over
nonadjacent sites 1, 3, and 5 will contribute n = 1, l = 3, m =
2, for instance, to the weight. This picture of the long-range
q-mer gas (LQG) sums up the nature of the variational MPS
state we propose in Eqs. (2.7) through (2.9).

The q-mer expansion (2.16) of our vMPS gives a glimpse
into the structures of the many-body wave function written
in the tensor product form. As one moves away from the
exactly solvable AKLT point, the ground state gets dressed by
various q-mers of both compact and noncompact natures. The
degree to which these q-mers proliferate is governed by the
fugacities, of which there are three in our construction. Such
intuition is difficult to provide in sheer numerical approaches
such as DMRG or in the method adopted in Ref. [10]. It is in-
teresting, to say the least, that the simple-minded perturbative
thinking can go a long way in constraining the correct form of
the tensor.

In Sec. III we will explore the properties of the D = 8
vMPS constructed in this section. Before that, however, it is
worth making a critical examination of certain aspects of our
vMPS with some mathematical rigor. The following section is
devoted to that task.

C. Former aspects of vMPS

Forming a singlet made out of two or three S = 1 spins can
be done in a unique way; that is, the definitions of the dimer
and trimer are unambiguous. On the other hand, there are
multiple ways to form the q-mers with q > 3. Only one type
of q-mer for a given q is generated by our tensor construction,
however, and it is important to go over their precise definition.
First, we note that the CG tensor [CG1

11]s
i j fuses two S = 1

spins into S = 1. In order to visualize this process better, we
can assign directions on the bonds of the CG tensor as follows:

(2.17)

The two inward arrows denote the spins to be fused, while the
outward arrow stands for the fused spin. In fact, those direc-
tions are related to the so-called quantum number flow [12],
particularly the Sz quantum number in our ansatz. That is,
the sum of the incoming quantum numbers is identical to
the outgoing quantum number. The empty arrow in the above
diagram is just to reflect the antisymmetric property of the
CG tensor, i.e., [CG1

11]s
ji = −[CG1

11]s
i j . We should also note

the following identity in the quantum number flow:

[
CG0

11

]
ik

[
CG1

11

]s

k j = 1√
3

[
CG1

11

] j

si,

or, identically,

(2.18)
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As a result, after multiplying the two CG tensors, the resulting
CG tensor fuses a virtual spin i and the physical spin s into
another virtual spin, j. As an example, let us consider the five-
mer tensor network:

(2.19)

By absorbing the bond tensor (CG0
11, green diamond in the left

diagram) into the site tensor (CG1
11, yellow square in the left

diagram), the quantum number flows are changed by virtue
of Eq. (2.18), such that the two leftmost (physical) spins are
fused into a virtual spin 1, which is then fused with a third
physical spin into another virtual spin 1 and so on. In such
a way, the physical spin continues to get fused with a virtual
spin 1 into another virtual spin 1, until the final virtual spin 1
combines with the final physical spin 1 into the spin singlet.
The process is depicted on the right side of Eq. (2.19). This is
the precise definition of the q-mer used in this paper.

Our vMPS ansatz preserves the spin rotational symmetry
by remaining in a spin singlet state. In other words, the state
transforms trivially under an arbitrary global spin rotation
R(θ ) = ⊗

i Ri(θ ), with Ri(θ ) = eiθ n̂·	Si and an arbitrary unit
vector n̂, i.e., R|ψ〉 = eiφ|ψ〉. The AKLT state is already a
spin singlet, and it remains to prove that various q-mers are
also singlets. In what follows, we show how the structure
of the bond tensor guarantees the spin singlet nature of
the q-mers. To this end, we first notice the following two
mathematical relations:

R(θ )ikR(θ ) jk′
[
CG0

11

]
kk′ = [

CG0
11

]
i j,

R(θ )ss′
[
CG1

11

]s′

i j = R(θ )kiR(θ )k′ j
[
CG1

11

]s

kk′ , (2.20)

or, diagrammatically,

Interpretation of the first identity is as follows. One may
well consider the CG matrix as a vector by combining the two
indices [CG0

11]i j → [CG0
11](i j), and then this new CG vector

can be regarded as a wave function representing the singlet
state of the two S = 1 spins. Consequently, it transforms
trivially under R(θ ). For the second identity, we can interpret
the left side of the equation as the R matrix rotating the
physical spin s′, which was in turn made by fusing two virtual
spins (i, j). On the other hand, two virtual spins (k, k′) are
rotated before being fused into the physical s on the right side
of the equality. Therefore, the second identity implies that the
rotation of the physical spin after the fusion of two virtual
spins is identical in its effect on the rotation of two virtual
spins before the fusion takes place. Using these two identities,
one can prove that the arbitrary q-mer is a spin singlet.

As an example, the tetramer wave function under the spin
rotation is shown diagrammatically as

(2.21)

The second relation in Eq. (2.20) is used for the equality of
the first and second diagrams, and the first relation is used for
the second diagrammatic identity above. It clearly shows that
R(θ )|tetramer〉 = |tetramer〉 regardless of θ . The argument
easily generalizes to arbitrary q-mer states.

III. GROUND-STATE PROPERTIES

A. Heisenberg model

To test the validity of |ψLQG〉 as a good variational ground
state of the Heisenberg model, first, we calculate the average
of the nearest-neighbor spin interaction

E (a, b, c) = 〈ψLQG|Si · Si+1|ψLQG〉. (3.1)

To warm up, we first include only the (T1, T2) tensors and
vary the coefficient 4ab2 in Eq. (2.7) to find that this sim-
ple ansatz already gives EDG = −1.3920, in good compari-
son to the value found by DMRG [13], which is EDMRG =
−1.4015. This is a clear improvement over the energy of
the AKLT state E = −4/3 = −1.3333. Energy improves
progressively with the inclusion of more tensors, ELDG =
−1.3991 and EQG = −1.3998, until ELQG = −1.40097 at
(a, b, c) = (6.8990, 0.2116, 0.3564) becomes only 0.04%
higher than EDMRG despite the small bond dimension D = 8. It
is remarkable that such a simple three-parameter optimization
can produce an energy that is comparable to DMRG and
modern tensor network algorithms [14,15], which is typically
done by optimizing about D2 ∼ 104–106 parameters.

The spin-spin correlation function of the LQG
state, shown in Fig. 5(a), is in good agreement with
the DMRG results with 〈S0 · Sn〉LQG/〈S0 · Sn〉DMRG =
0.9996, 0.9948, 0.9852, 0.9541, 0.9085 for n = 1, 2, 3, 4, 5,
respectively. Meanwhile, there is a significant change
in the estimated correlation length ξ , which grows as
ξDG < ξQG < ξLDG < ξLQG < ξDMRG, as specified in the
caption of Fig. 5. The entanglement spectrum shown in
Fig. 5(b) displays the 2-4-2 degeneracy regardless of the
(a, b, c) parameters chosen, except at a = 0 (AKLT state),
where only a single pair of degenerate levels appears. The
double degeneracy is the characteristic of the SPT phase
protected by the Z2 × Z2 spin rotation symmetry [8]. In fact,
the virtual legs in our D = 8 tensor accommodate the spin
representation 1

2 ⊗ (0 ⊕ 1), which is identical to 1
2 ⊕ 3

2 ⊕ 1
2 ,

leading to the 2-4-2 degeneracy. Furthermore, the two
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FIG. 5. (a) Spin-spin correlation function ln(|〈Si · Si+n〉|) [omit-
ting the oscillatory factor (−1)n] obtained from the four variational
MPS states: DG, QG, LDG, and LQG. DMRG results are shown
for comparison. Corresponding inverse slopes, also called correlation
lengths, are 5.0940 (DMRG), 3.2143 (LQG), 3.0299 (LDG), 2.6580
(QG), and 1.9249 (DG) by fitting the large-n parts of the data with the
linear function. (A larger correlation length of 6.03 was obtained in
Ref. [13] using a different fitting procedure.) (b) Entanglement spec-
trum obtained from the LQG state and DMRG. The degeneracy of
each level is indicated beside the levels. All variational calculations
are performed to optimize the Heisenberg exchange energy, Eq. (3.1).

lowest-lying entanglement spectra from the LQG state
compare favorably with those of DMRG and modern state-
of-the-art algorithms [14,15]: − ln σ 2 = 0.7207, 5.0060,

8.5652 for MPS and 0.7242, 4.9045, 7.8227 for DMRG [16].

B. BLBQ model

The Heisenberg and the AKLT models are two special
examples of the BLBQ spin Hamiltonian [17],

H (θ ) =
∑

i

[cos θ (Si · Si+1) + sin θ (Si · Si+1)2], (3.2)

with θ = 0 and θA = tan−1(1/3) corresponding to the Heisen-
berg and AKLT points, respectively. We performed optimiza-
tion of the LQG for 0 � θ � θA, with various results shown in
Fig. 6. The variational energy of the LQG [Fig. 6 (a)] remains
in excellent agreement with the DMRG for the whole range
of θ . In addition, the entanglement spectrum and entropy
are captured well all over the phase diagram, as shown in
Figs. 6 (b) and 6 (c), respectively. The weight a, mainly
responsible for the average number of dimers in the ground
state, increases linearly with θ , as shown in Fig. 6(d). The
other parameters b and c, having to do with the control over
the average size q and the spatial extent of the q-mer, remain
nearly constant throughout the phase diagram.

Now we let θ vary over the entire Haldane (SPT) phase
−π/4 < θ < π/4 of the BLBQ Hamiltonian. Figure 7 shows
the energy of the optimized MPS state (LQG state) at various
θ values of the BLBQ Hamiltonian. The DMRG values for the
energy are also plotted for comparison. Two different kinds of
runs were done for DMRG, the one where the maximum bond
dimension D was fixed to 8 (the same as our variational MPS)
and one where a much bigger maximum bond dimension
was used. The energy difference between our vMPS and the
DMRG typically occurs in the third significant digit, except
when θ is close to either of the critical points θ = ±π/4. The
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DMRG
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DMRG

(a) (b)

(c) (d)

FIG. 6. Variational MPS optimization for the BLBQ model
H (θ ). (a) Variational energy vs θ . Lines are from D = 8 variational
MPS after optimization, and squares are from the DMRG. Differ-
ences in energy occur in the fourth significant digits. (b) Entangle-
ment spectrum vs θ . The two lowest sets of levels agree very well
between variational MPS and DMRG. (c) Entanglement entropy vs
θ . (d) Optimized (a, b, c) vs θ . The a values have been scaled down
by a factor of 10 for clarity.

DMRG energy was evaluated by taking the average of the
local Hamiltonian Hi = cos θ (Si · Si+1) + sin θ (Si · Si+1)2 for
i at the middle of the open chain. The chain size employed in
the DMRG was 3 × 103. No size dependence in the energy is
discernible at this lattice size.

Finally, Fig. 8 shows the spin-spin correlation functions
obtained by optimized MPS (LQG) and by DMRG at several
θ values of the BLBQ model. Again, one finds very good
agreement, leaving little doubt that our D = 8 vMPS captures
various aspects of the ground-state wave function with very
high accuracy for the whole Haldane phase of the BLBQ
model.

IV. DISCUSSION

All in all, the variational MPS state with a small bond
dimension D = 8 does a good job expressing the ground
states of the Haldane phase. Employing a variational MPS
state with an even larger bond dimension will improve the

- /4 0 A /4
-3

-2

-1

0

FIG. 7. Energy per site obtained by optimized MPS (LQG) and
DMRG. Two different DMRG runs were done and are indicated by
the subscript DMRGD with the maximum bond dimension D used in
the calculation.
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FIG. 8. The spin-spin correlation functions obtained by opti-
mized MPS and DMRG.

accuracy of the entanglement entropy and the correlation
length compared to the DMRG, at the expense of employing
further variational parameters. Indeed, a theory of formal ex-
pansion of MPS tensors in terms of irreducible representation
of SU(2) was developed and applied to the spin-1 BLBQ
model before [10] and found energies that are better than what
our D = 8 vMPS can predict. In a way this is expected, as
dozens of optimization parameters could be employed in such

an approach. Note that even the DMRG calculation with the
restricted D = 8 bond dimension yields better energetics than
the three-parameter vMPS we have proposed, meaning that
further fine tuning with even more variational parameters is
possible within the D = 8 space for minute improvement in
energetics.

It is worth summarizing the advantages of the analytic
vMPS form that we propose. Besides the ability to capture
good energetics with a simple tensor form and a small number
of variational parameters, our vMPS can help us understand
the robust 2-4-2 degeneracy structure of the entanglement
spectrum through the Haldane phase. Any attempt to capture
the ES structure correctly will have to involve a bond dimen-
sion no less than 8 (= 2 + 4 + 2), and in that regard our vMPS
provides a sort of minimal wave function for which the 2-4-2
structure can possibly be reproduced.

Second, as the careful argument in Sec. II suggests, there
is a certain connection between the usual perturbative way to
find corrections to the zeroth-order wave function, i.e., the
AKLT state in our case, and what such perturbations imply
for the MPS-type wave function. We find that such hybrid
thinking (perturbation + MPS) can lead to fruitful results.

For sure, no clever choice of the vMPS wave function
can defeat the DMRG in terms of sheer energetics. On the
other hand, the wave function finally produced by the DMRG
machinery will be incapable of providing the kind of intuitive
picture of the ground state, which the vMPS may easily do. In
the case of the BLBQ family of Hamiltonians, the physical
picture of the ground state over the whole Haldane phase
−π/4 < θ < π/4 is that of the AKLT parent state, dressed
by proliferation of various dimers, trimers, and so on. The
number and extent of the q-mers are controlled by a handful of
fugacity parameters, as the expansion (2.16) clearly indicates.
This is a valuable insight provided by the analytic vMPS
construction.
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