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Vertex functions are a crucial ingredient of several forefront many-body algorithms in condensed matter
physics. However, the full treatment of their frequency and momentum dependence severely restricts numerical
calculations. A significant advancement requires an efficient treatment of the high-frequency asymptotic behavior
of the vertex functions. In this work, we first provide a detailed diagrammatic analysis of the high-frequency
structures and their physical interpretation. Based on these insights, we propose a parametrization scheme, which
captures the whole high-frequency domain for arbitrary values of the Coulomb interaction and electronic density,
and we discuss the details of its algorithmic implementation in many-body solvers based on parquet equations as
well as functional renormalization group schemes. Finally, we assess its validity by comparing our results for a
single impurity Anderson model with exact diagonalization calculations. The proposed parametrization is pivotal
for the algorithmic development of all quantum many-body methods based on vertex functions arising from both
local and nonlocal static microscopic interactions as well as effective dynamic interactions which uniformly
approach a static value for large frequencies. In this way, our present technique can substantially improve
vertex-based diagrammatic approaches including spatial correlations beyond dynamical mean-field theory.
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I. INTRODUCTION

One of the most challenging aspects in contemporary con-
densed matter research is the theoretical treatment of corre-
lation effects in the nonperturbative regime. While the state-
of-the-art theoretical tools allow for an accurate treatment
of quantum many-body correlations in specific cases, their
reliability is not guaranteed in general and is often limited
to particular parameter regimes. In the last decade, several
promising quantum field-theoretical schemes have been pro-
posed, but their actual implementation calls for a significant
improvement of the current algorithmic procedures. In partic-
ular, most of the novel nonperturbative schemes are based on
a Feynman diagrammatic expansion around a correlated start-
ing point. This means to replace the bare electronic interaction
with a dynamical effective one and the bare propagators by
dressed ones, which includes nonperturbatively, through the
two-particle vertex function and the self-energy, a significant
part of the correlations from the very beginning.

From a more general perspective, the two-particle vertex
has been the object of several focused studies [1–8] in the
last two decades. Apart from its technical importance for
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the above-mentioned development of new many-body ap-
proaches, it contains crucial physical information on its own.
In fact, the main frequency and momentum structures of
the vertex functions can be related to physical observables
such as susceptibilities [4]. Vertex corrections for the spin
susceptibility [9] and the optical conductivity [10], on the
other hand, often play a crucial role in correlated electron
systems. Moreover, vertex functions have also been used for
analyzing certain features in spectral functions by means of
the “fluctuations diagnostics” technique [11] and recently
unexpected divergences have been discovered in the low-
frequency regime of the irreducible vertex functions [12–20]
in strongly disordered or correlated electron systems.

The importance of the two-particle vertices is unfortu-
nately contrasted with the tremendous difficulties to treat
these correlation functions numerically, which becomes even
more challenging when turning to multi-orbital systems in the
future [21–23]. Hence, the development of efficient ways to
include them in the current algorithms is mandatory. Two-
particle vertex functions depend in general on three inde-
pendent frequencies and momenta, and additionally on spin
and orbital variables. Even in the SU (2) symmetric case, the
efficient computation of two-particle vertices becomes very
challenging for a reasonably large system at low temperatures.
Aside from the storage, the inclusion of the asymptotic be-
havior during the computation represents a major issue and
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requires to exploit a detailed understanding of its underlying
structure [4–7] in order to reduce the numerical effort [8].

To this aim, we present a detailed diagrammatic analysis
of the frequency and momentum structures of the vertex
functions, focusing on the algorithmic aspects relevant for
the development of improved parametrization schemes. After
defining the general guidelines of the algorithmic implemen-
tation, we present applications for many-body solvers based
on functional renormalization group [24] (fRG) schemes as
well as parquet equations [1,8,25–27]. In particular, the va-
lidity of the proposed parametrization algorithm could be
quantitatively assessed by comparing our results for the sin-
gle impurity Anderson model (SIAM) obtained by means
of fRG and the parquet approximation [27–29] (PA) with
exact diagonalization (ED) calculations. We emphasize that
the identification of the relevant asymptotic structures of
the vertex functions in frequency and momentum space and
the resulting reduced parametrizations are extremely valuable
for an efficient implementation of several other many-body
approaches beyond fRG and PA, such as the dynamical vertex
approximation [8,30–35] (D�A), the one-particle irreducible
(1PI) approach [36], DMF2RG [37,38], dual fermion [39–45]
(DF), TRILEX [46,47], and QUADRILEX [48].

The paper is organized as follows: We introduce the for-
malism and notation at the two-particle level in Sec. II, and
the parametrization of the asymptotics in Sec. III. The generic
implementation is presented in Sec. IV, with some technical
details specified in the Appendices. After a short discussion of
analytical results obtained in the atomic limit, we describe the
specific implementations for the fRG and the parquet solvers.
In Sec. V we then provide a discussion of the obtained results
together with a comparison to exact results of the SIAM. A
conclusion and outlook is eventually provided in Sec. VI.

II. DIAGRAMMATIC FORMALISM AT THE
TWO-PARTICLE LEVEL

In this section we define the various two-particle vertex
functions which will be employed in this work, and recall the
basic idea for investigating their frequency (and momentum)
dependence. In particular, in Sec. II A we introduce all vertex
functions (reducible, irreducible in one channel, and fully
irreducible) that constitute the parquet equations. Then, in
Sec. II B, we will concisely review the technique for describ-
ing the main frequency (and momentum) structures of all
these vertex functions by means of lowest-order perturbation
theory, as it was developed in Refs. [4,7].

A. Definitions and two-particle formalism

In the following, we will restrict ourselves, for the sake of
clarity, to one-band systems with a local Coulomb interaction.
Let us, however, note that the methods presented later can be
straightforwardly extended to more general systems includ-
ing, e.g., more orbitals or nonlocal interactions. An applica-
tion to models with retarded (frequency- or time-dependent)
interactions, on the other hand, would require significant
modifications.

We consider the Hamiltonian:

Ĥ =
∑
i j,σ

ti j (c
†
iσ c jσ + c†

jσ ciσ ) +
∑

i

Uini↑ni↓, (1)

where c(†)
iσ annihilates (creates) an electron with spin σ at

the lattice site i and niσ = c†
iσ ciσ . The hopping amplitude

for an electron between the lattice sites i and j is denoted
by ti j (for i = j this corresponds to setting the energy level
for an electron at site i), while Ui is a (site-dependent) local
interaction between electrons of opposite spin.

From the Hamiltonian in Eq. (1) one retains the standard
Hubbard model by choosing the parameters ti j = −t if i and
j are nearest neighbors and ti j = 0 otherwise, and Ui = U
(site independent). The restriction ti j = Vjδi0, tii = εi/2, and
Ui = Uδi0, on the other hand, corresponds to the SIAM, where
the lattice site i = 0 is the impurity. For these two situa-
tions let us introduce the notation used throughout this paper
by considering the one-particle Green’s function which, in
the SU (2) symmetric, time- and space-translational invariant
case, is defined as

G(k) = −
∑∫

dx
1

Z
〈T [ciσ (τ )c†

0σ (0)]〉eixk . (2)

Here, x denotes a generalized (imaginary) time/space index
which, for the Hubbard model, corresponds to x= (τ, R)
where τ is the imaginary time and R a lattice vector. For
the SIAM we consider only local correlation functions for
the impurity site (i.e., i=0) and, hence, x=τ . 〈T . . .〉=
Tr(T e−βĤ . . .) indicates the thermal average, where β =1/T
is the inverse temperature and T the time-ordering operator.
Further, Z =Tr(e−βĤ) denotes the partition function. The
generalized fermionic frequency/momentum index k is, for
the Hubbard model, given by k = (ν, k) where ν is a fermionic
Matsubara frequency and k denotes a momentum vector in
the first Brillouin zone. For the SIAM we have k =ν. In
the case of the Hubbard model, the integration/summation
in Eq. (2) is a generalized four-vector integration/summation
over imaginary times/lattice sites

∑∫
dx ≡ ∑

R

∫ β

0 dτ . Corre-
spondingly, we will consider in the following a generalized
summation/integration over Matsubara frequencies/momenta∑∫

dk ≡ 1
β

∑
ν

1
VBZ

∫
BZ dk where BZ denotes the first Brillouin

zone with the volume VBZ. Finally, xk is a shorthand notation
for xk ≡ντ −k·R in the Hubbard model while for the SIAM
xk ≡ντ .

Following the notation introduced above for the one-
particle Green’s function, the two-particle Green’s function in
frequency/momentum space reads as [4]

Gk1k2k3
2,σσ ′ =

∑∫
dx1dx2dx3 eix1k1 e−ix2k2 eix3k3

× 1

Z
〈T [c†

σ (x1)cσ (x2)c†
σ ′ (x3)cσ ′ (0)]〉. (3)

From the two-particle Green’s function one readily obtains the
(full) vertex F by removing all unconnected (“bubblelike”)
contributions and amputating the outer legs [4]

F k1k2k3
σσ ′ = −Gk1k2k3

2,σσ ′ − G(k1)G(k3)
(
δk1,k2 − δk2,k3δσ,σ ′

)
G(k1)G(k3)G(k2)G(k1 + k3 − k2)

. (4)
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FIG. 1. Notations of the vertex functions in the three different
scattering channels.

These definitions are given in a notation that depends solely
on fermionic frequencies, momenta, and spins. In this paper
we will, however, mainly consider two-particle quantities in
the particle-particle (pp), particle-hole (ph), and transverse
particle-hole (ph) notation, which can be obtained from the
purely fermionic one as (compare Fig. 1)

F kk′q
pp,σσ ′ = F k(q−k′ )(q−k)

σσ ′ ,

F kk′q
ph,σσ ′ = F k(k+q)(k′+q)

σσ ′ ,

F kk′q
ph,σσ ′ = F kk′(k′+q)

σσ ′ ,

(5)

which corresponds to adopt a mixed representation in terms of
fermionic (ν, k) and bosonic (	, q) variables. Note that the
aforementioned notations can be defined accordingly for all
other two-particle quantities. The full vertex F for the ↑↓ spin
combination is depicted diagrammatically (in pp notation) in
the upper leftmost panel of Fig. 2, while numerical results
for the SIAM detailed in Sec. V are shown in the bottom-left
panel.

The set of all Feynman diagrams for F can be decom-
posed into four different classes regarding their two-particle
(ir)reducibility [1,25,26]: They are either fully two-particle
irreducible (2PI) (
2PI, see second diagram in the upper panel
of Fig. 2 for a lowest-order example) or reducible (�r) in one
of the three channels r ∈ {pp, ph, ph} (see the third, fourth,
and fifth diagrams in the upper panel of Fig. 2, respectively).
As each diagram belongs to precisely one of these four classes

F can be decomposed in the following way:

F = 
2PI + �pp + �ph + �ph, (6)

which is known as parquet equation. It has to be supple-
mented by three so-called Bethe-Salpeter equations (BSE)
which are presented here in a symbolical notation omitting
the frequency, momentum, and spin dependencies

F = �r + �r = �r +
∑∫

�r (GG)rF︸ ︷︷ ︸
�r

, (7)

where (GG)r denotes a product of two one-particle Green’s
functions which frequency/momentum arguments have to be
chosen according to the channel r ∈ {pp, ph, ph} (for the
details see Appendix A and Refs. [4,6,8]). �r is the set of
diagrams which are irreducible in channel r. Let us point out
an important difference between Fr,
2PI,r on the one and
�r, �r on the other side regarding the index r. The former
have no channel dependence and the index r ∈ {pp, ph, ph}
just denotes the representation in which these vertex func-
tions are given. For the latter, on the contrary, the index
r refers actually to three different functions (i.e., built on
sums of different diagrams). Hence, in principle, the latter
could also be expressed in each of the three notations. This
would require, apart from the index for the channel, another
one to specify the notation [48]. For simplicity, however,
we assume �r and �r always to be written in their natural
notation, which is the pp one for r = pp and analogously
for the ph cases. This is convenient also because in the
natural notation the BSE (7) can be written as simple matrix
multiplications in frequency/momentum space [1,4,6] with a
transferred bosonic frequency/momentum q (see Fig. 3). For
the parquet equation(s) (6), on the other hand, all vertices have
to be transformed to the same representation which requires
the corresponding shifts of arguments in �r and �r .

FIG. 2. The upper row shows the full vertex F↑↓ in pp notation, and the lowest-order diagrams (excluding the bare interaction) for each
of the four contributions to the parquet equation (6). The bottom row shows the numerical SIAM results for these vertices (U = 1, β = 20,
D = 1) and the corresponding decomposition through the parquet equation (6) using pp notation for vanishing transfer frequency 	 = 0. In the
diagrammatic representations used throughout this paper, all external legs are to be considered as the remainder of the amputated propagators.
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FIG. 3. Compact diagrammatic representation of the BSE in all
scattering channels. Each k′′ is integrated over.

B. Asymptotics of F from perturbation theory

While an extensive discussion of the general properties of
the two-particle vertex function can be found in Refs. [4,6],
because of the relevance for the algorithm and results of this
paper we will concisely recall here how the high-frequency
behavior of the various vertex functions can be qualitatively
understood already by means of lowest-order perturbation
theory. In the lower panels of Fig. 2, the dependence of the
local vertex functions F↑↓, 
2PI,↑↓, and �r,↑↓ (of a SIAM)
on the fermionic frequency arguments ν and ν ′ is shown,
where the pp notation for vanishing transfer frequency 	 =
0 is used. While we restrict ourselves here to the ↑↓ spin
combination, we stress that analogous features are found also
in F νν ′(	=0)

pp,↑↑ and even at finite transfer frequencies 	 	= 0. The

full vertex F νν ′(	=0)
pp,↑↓ (leftmost panel) has three main features:

(i) constant background different from the (constant) bare
Hubbard interaction U ; (ii) two diagonal structures which we
will refer to as main (for ν = ν ′) and secondary (for ν =
−ν ′) diagonal; (iii) a “plus”-like structure, i.e., an enhanced
scattering rate along the lines ν = ±π/β and ν ′ = ±π/β.
These features do not decay in the limit of large fermionic
frequencies and give rise to a highly nontrivial asymptotic
behavior of the vertex functions. This can be understood by
considering the frequency dependence of the lowest-order
diagrams for the building blocks of F , i.e., 
2PI and �r [see
Eq. (6)].

The fully irreducible vertex 

νν ′(	=0)
2PI,pp,↑↓ decays uniformly

in all directions of the two-dimensional (Matsubara) fre-
quency space (second plot in lower panel of Fig. 2). Hence,



νν ′(	=0)
2PI,pp,↑↓ does not contribute to the asymptotic structures

of the two-particle scattering amplitude F νν ′(	=0)
pp,↑↓ (except for

the trivial constant background given by the interaction U ).
This is visible already from the lowest-order fully irreducible
diagrammatic contribution, the so-called “envelope” diagram
(second upper panel of Fig. 2), which depends explicitly on ν

and ν ′ (and 	) and, hence, decays for a large value of any of
its frequency arguments.1

The vertex reducible in the particle-particle scattering
channel, i.e., �

νν ′(	=0)
pp,↑↓ (third lower panel in Fig. 2) exhibits a

constant background and a well-defined “plus”-shaped struc-
ture in the ν, ν ′ space. The former originates from bubble

1Every frequency dependence of a diagram originates from the
frequency dependence of its internal Green’s functions. The latter
decay in the high-frequency regime as 1/iν.

FIG. 4. The so-called “eye” diagrams in the pp channel.

diagrams such as U 2

β

∑
ν1

G(ν1)G(	 − ν1) (third upper panel
of Fig. 2), which does not depend explicitly on ν and ν ′. The
latter is generated, in lowest order, from the so-called “eye”
diagrams (see Fig. 4), which either on their left-hand or on
their right-hand side collapse into a bare vertex U . For this
reason (as detailed in Sec. III), they cannot explicitly depend
on both ν and ν ′, thus remaining constant upon increasing the
corresponding (unnecessary) frequency [4].

The vertex function reducible in the particle-hole (lon-
gitudinal) channel, i.e., �

νν ′(	−ν−ν ′ )
ph,↑↓ (fourth lower panel of

Fig. 2) exhibits a secondary diagonal structure along ν ′ = −ν.
This originates, in lowest (here third) order, from the di-
agrammatic contribution U 3

β2 [
∑

ν1
G(ν1)G(ν1 − 	 + ν + ν ′)]2

(fourth upper panel of Fig. 2), which depends only on the ph
transfer frequency 	 − ν − ν ′. For fixed pp transfer 	, its
value remains constant along a line 	 − ν − ν ′ = const and
generates the secondary diagonal structure.

Finally, the vertex reducible in the transverse particle-
hole channel (rightmost lower panel of Fig. 2), �

ν(	−ν ′ )(ν ′−ν)
ph,↑↓

accounts for the main diagonal in the full scattering amplitude
F νν ′(	=0)

pp,↑↓ . Its lowest-order (bubble) contribution (rightmost

upper panel of Fig. 2) reads as U 2

β

∑
ν1

G(ν1)G(ν1 + ν ′ − ν),

and depends only on the ph transfer frequency ν ′ − ν, hence,
its value remains constant along a line ν ′ − ν = const.

The above analysis demonstrates how the high-frequency
asymptotic features of the vertex functions in the weak-
coupling regime are determined at the second and third
order in U by two-particle reducible bubble- and “eye”-
like diagrams. A generalization of these conclusions to the
nonperturbative regime will be discussed in the following
section.

III. PARAMETRIZATION OF THE ASYMPTOTICS

In the following, we will generalize the intuitive discussion
of the previous section about the main asymptotic struc-
tures of the various vertex functions to the nonperturbative
situation. To this end, we first recall [4] that the reduced
complexity of specific diagrams regarding their frequency and
momentum dependence is not a peculiarity of low(est)-order
perturbation theory but rather a general consequence of the
frequency and momentum independence of the bare Coulomb
(Hubbard) interaction U . In fact, if any two external lines
of the vertex, e.g., the incoming momenta and frequencies
k1 and k3, are attached to the same bare vertex U (which is
possible only for two-particle reducible diagrams), energy and
momentum conservation requires k1 + k3 = k′ + k′′ where
k′ and k′′ denote internal frequencies/momenta which are
summed. Obviously, in this situation the entire diagram does
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FIG. 5. Diagrammatic representation of the asymptotic functions for the particle-particle channel. For a more rigorous definition see
Appendix B.

depend only on the linear combination k1 + k3 rather than k1

and k3 separately. Such behavior has already been observed
for lowest-order perturbative (bubble and “eye”) diagrams in
the previous section, and does not change, as a matter of
course, upon dressing these diagrams by means of vertex
corrections. These observations [4] hence suggest to intro-
duce the following subdivision of the reducible vertex func-
tion �

kk′q
pp (and correspondingly for the other two channels)

into three distinct classes, that are depicted diagrammatically
in Fig. 5:

(1) Class 1: The incoming and outgoing
frequencies/momenta are each attached to a single bare
vertex. These diagrams correspond to (dressed) bubble
diagrams (see first line of Fig. 5), and can hence be
parametrized by a single (bosonic) transfer frequency and
momentum q = k1 + k3. The sum of all diagrams of this class
will be denoted by Kq

1,pp.
(2) Class 2: Either the incoming or the outgoing

frequencies/momenta are attached to the same bare vertex.
These diagrams correspond to (dressed) eye diagrams (see,
e.g., Fig. 4 and first two diagrams in the second line of
Fig. 5). These diagrams depend on the bosonic transfer
frequency/momentum q = k1 + k3 and one fermionic fre-
quency k = k1 or k′ = k4, respectively. The sum of such types

of diagrams will be denoted as Kkq
2,pp and Kk′q

2,pp.
(3) Class 3: Every external frequency/momentum is at-

tached to a different bare vertex. These diagrams depend
independently on all three external arguments. Their sum will
in the following be referred to as the “rest” function, denoted
by Rkk′q

pp . It is illustrated diagrammatically by the last diagram
in the second row of Fig. 5.

Based on this classification, we can thus introduce an
(a priori exact) decomposition of each reducible � function
into these four terms.2 In the particle-particle channel it reads

2Note that for K1, K2, and K2, respectively, the index denotes the
reduced number of external arguments required to describe them.
These shall in the following be referred to as “necessary” arguments
for the corresponding term.

as3

�kk′q
pp = Kq

1,pp + Kkq
2,pp + Kk′q

2,pp + Rkk′q
pp . (8)

In the same way, we can decompose also the other scattering
channels ph and ph. It is important to note that the structures
arising due to K1, K2, and K2 extend to infinitely large
frequencies and, hence, generate a highly nontrivial high-
frequency asymptotic behavior of the corresponding vertex
function.

On the contrary, the diagrammatic content of R implies a
decay in all frequency directions since each external fermionic
frequency will enter directly one of the inner diagrammatic
propagator lines by means of the frequency conservation at
its attached bare vertex. These decay properties are verified
numerically in Sec. V, and motivate our proposed approxi-
mation for treating the vertex asymptotics. Our strategy will
be the following: We will consider the full frequency de-
pendence of �

kk′q
pp only within a small (“inner”) box in the

three-dimensional frequency space which is spanned by the
intervals [Nbose

min , Nbose
max ] for the bosonic (	) and [N fermi

min , N fermi
max ]

for the fermionic (ν and ν ′) Matsubara frequencies, where typ-
ically Nbose

min = −Nbose
max and the fermionic interval is centered

around 	
2 (see Ref. [49]). If the value of one or more of these

three frequency arguments is located outside of the intervals,
we neglect only the contributions to �

kk′q
pp which decay with

increasing values of this (these) frequency argument(s) and
keep the terms which remain finite in the respective large-
frequency limit. This approximation can be summarized as

�
kk′q
pp,asympt. ≈ Kq

1,pp + Kkq
2,pp + Kk′q

2,pp, (9)

where Kq
1,pp, Kkq

2,pp, and Kk′q
2,pp are truncated to 0 outside of

their respective frequency grids. Hence, outside the “inner”
frequency box, the reducible vertex �

kk′q
pp is described by

3Let us remark that the concrete form of the argument(s) for
K1,pp/K2,pp depend(s) on the chosen frequency/momentum con-
vention. The dependence on one/two single argument(s) becomes
apparent only in its natural notation, while for other conventions,
K1,pp/K2,pp will depend on one/two linear combination(s) of all
frequencies/momenta. Nevertheless, these functions will be con-
stant along two-dimensional planes/one-dimensional lines in the
space of three frequencies/momenta (in the natural notation these
planes/lines are parallel to the coordinate axes).
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functions of at most two arguments in its asymptotic regime,
which drastically lowers the cost for its numerical treatment.
Let us stress that our approach represents a clear improvement
over a simple cutoff in frequencies where �

kk′q
pp = 0 outside

of the inner frequency box. By restoring the correct high-
frequency asymptotic behavior of this vertex function, we
are able to substantially mitigate the problems arising from
boundary effects due to finite-size frequency grids in vertex
based numerical algorithms.

Let us now discuss the physical content of the asymp-
totic functions K1 and K2. The former is directly related
to the susceptibility in the corresponding scattering channel
[3,4,7,36] as

Kq
1 = −U 2χq. (10)

We recall that the susceptibilities in the different channels are
defined as

χ
q
pp,σσ ′ = (1 − δσσ ′ )

∑∫
dk dk′ Gkk′q

2,c,pp,σσ ′

+ (1 − δσσ ′ )
∑∫

dk G(q − k)G(k), (11a)

χ
q
ph,σσ ′ =

∑∫
dk dk′ Gkk′q

2,c,ph,σσ ′

− δσ,σ ′
∑∫

dk G(k)G(k + q), (11b)

χ
q

ph,σσ ′ =
∑∫

dk dk′ Gkk′q
2,c,ph,σσ ′

+
∑∫

dk G(k)G(k + q), (11c)

where G2,c,r denotes the connected part of the two-particle
Green function.

K2 on the other hand encodes information about how the
electrons couple to different bosonic degrees of freedom. For
instance, for the generalized density in Fourier space nq =∑∫

dk
∑

σ c†
σ (k)cσ (k + q), we find the relation

U × 〈T nqcσ (k + q)c†
σ (k)〉c

= G(k)G(k + q)
∑
σ ′

(
Kq

1,ph,σσ ′ + Kkq
2,ph,σσ ′

)
. (12)

Here, 〈. . .〉c considers only connected contractions, and the
imaginary time ordering acts inside the Fourier integrals. The
above equation identifies the sum of K1 and K2 with the
expectation value 〈T nqcσ (k + q)c†

σ (k)〉c, which is directly
related to the electron-boson coupling (three-point or Hedin)
vertex as used in the ladder version of D�A [30,50] and in the
recently introduced TRILEX [46,47] approach.

Let us now turn our attention to the momentum dependence
of the vertex and, in particular, of its asymptotic functions K1

and K2. For the case of a purely local Hubbard interaction
U which is considered here, the momentum dependence of
K1 and K2 follows exactly the corresponding frequency de-
pendence (which has actually allowed us to use a combined
four-vector notation for frequencies and momenta). Hence,
in this situation the vertices �r exhibit their full dependence
on the three momenta k, k′, and q only in the domain of
small frequencies while at larger frequencies the momentum

structure is reduced alongside the corresponding frequency
dependence. Since the fully irreducible vertex 
2PI decays
to the bare interaction U in all frequency directions, strong
momentum-dependent parts of the full vertex F , e.g., the
contributions responsible for a d-wave scattering amplitude,
have to be localized in the frequency domain.

The situation is different for a nonlocal (but instantaneous)
interaction which (for a translational invariant system) can
depend on three momenta, i.e., U ≡ Ukk′q. In fact, while the
reduced dependence of K1 and K2 on the frequencies still
holds, the momentum dependence is more complicated as
it obviously contains contributions from the bare interaction
Ukk′q. The rest function R, which exhibits a strong momen-
tum dependence even in the case of local interactions, will
however still strongly decay for large-frequency arguments.
Hence, Eq. (9) and the methods for the improved treatment of
the high-frequency asymptotic regime of the vertex, which are
discussed below, remain applicable. Of course, the asymptotic
functions become more involved in this case as their explicit
full momentum dependence has to be considered (which also
prevents the use of the compact four-vector notation as the
dependence on frequencies and momenta is now different).

Let us finally also consider the case of a retarded, i.e.,
time- or frequency-dependent, interaction U ≡ U νν ′ω. While
formally a diagrammatic decomposition of �r into its contri-
butions K1, K2, and R is still possible, a reduced frequency
dependence of these objects can no longer be expected. In
fact, they explicitly depend on all (three) frequency arguments
due to the frequency dependence of the bare interaction.
Even more importantly, it is in general unclear whether the
rest function R decays for large-frequency arguments which
prevents the application of Eq. (9). The asymptotic methods
outlined in the next sections are nevertheless applicable if
the effective interaction U νν ′ω decays in all directions of
the frequency space. In this respect, we want to stress that
our high-frequency treatment is also applicable to methods
such as D�A and QUADRILEX, which use the local fully
irreducible vertex of DMFT as input to the parquet equations
since the latter approaches uniformly the static bare Hubbard
interaction U in the high-frequency regime.

Finally, a comment is in order regarding the choice of basis
for both the one- and two-particle Green’s functions: In this
work, we have restricted ourselves to the common frequency
and momentum representation which is particularly suited
when adopting the parquet equations. In this case, the BSE
(7) are just matrix multiplications and the parquet equation
(6) corresponds to a simple algebraic equation with frequency
shifts in the various vertex functions [see Eq. (18)]. While
the parquet equations might become more complicated in
other basis representations, it is nevertheless an interesting
question as to what extent our parametrization scheme could
be combined with the use of alternate basis functions in both
momenta [51,52] and frequencies [53–56] to further improve
the numerical performance. The investigation of these combi-
nations is an interesting future research direction.

IV. IMPLEMENTATION

In this section, we describe how the ideas presented in the
previous section can be practically exploited in analytical and
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numerical calculations based on two-particle vertex functions.
After a general presentation of the main concepts, we will
explicitly discuss the application of our scheme for analytic
calculations based on the atomic limit vertex, and for numeri-
cal implementations of the fRG in its second-order truncation
and the parquet approximation.

The observation that any diagram vanishes if one of its
necessary frequency arguments is taken to infinity allows us
to select the different diagrammatic contributions by taking
the corresponding limits in the frequency domain, i.e.,

lim
|ν|→∞

lim
|ν ′|→∞

�
kk′q
r,σσ ′ = Kq

1,r,σσ ′ , (13a)

lim
|ν ′|→∞

�
kk′q
r,σσ ′ = Kq

1,r,σσ ′ + Kkq
2,r,σσ ′ , (13b)

lim
|ν|→∞

�
kk′q
r,σσ ′ = Kq

1,r,σσ ′ + Kk′q
2,r,σσ ′ , (13c)

where r ∈ {pp, ph, ph}. We recall again that for a local inter-
action U , by taking limits in the frequency domain, we find
alongside the reduced frequency dependence also a reduced
momentum dependence. The remaining diagrammatic class 3
introduced in Sec. III, or rest function R, which requires the
full dependence on all arguments, can then be acquired by
inverting Eq. (8):

Rkk′q
r,σσ ′ = �

kk′q
r,σσ ′ − Kq

1,r,σσ ′ − Kkq
2,r,σσ ′ − Kk′q

2,r,σσ ′ . (14)

One advantage of performing this limiting procedure based on
the reducible vertex is that Eq. (13a) holds equally if |ν| and
|ν ′| are taken to infinity at the same time, i.e.,

lim
|ν | → ∞
|ν ′| → ∞

�
kk′q
r,σσ ′ = Kq

1,r,σσ ′ . (15)

This property allows for a simplified scanning procedure to
numerically extract asymptotic functions, which, depending
on the frequency ranges and parameters, provide a good ap-
proximation. The procedure is straightforward and applicable
in all channels (see also Fig. 6 and Ref. [8]):

I. For large |ν| and |ν ′| vary the transfer four-vector q to
acquire Kq

1.
II. For large |ν ′|, vary k and the transfer four-vector q and

subtract Kq
1 in order to obtain Kkq

2 .
III. Repeat II by replacing ν ′ → ν and k → k′ to deter-

mine Kk′q
2 .

The above described procedure proposed to determine K1

and K2 have some limitations. First, one can easily see that
if the scanning is not performed at sufficiently large |ν| (|ν ′|),
the rest function might not be fully decayed, giving rise to
an error in the K1 and K2 extraction. We found this error
to be particularly pronounced in the strong-coupling regime
(U = 4 for the comparisons in Sec. V) where the rest function
becomes comparable with the asymptotic functions in the
domain of small frequencies. Second, the scanning procedure
requires the knowledge of the reducible vertex functions �r ,
which are not directly available in some algorithms as, e.g.,
for the exact diagonalization. This raises the question whether
a similar set of limits can be formulated also for F . In fact,
as will be clarified in the following, the limits presented in

FIG. 6. Sketch of a reducible vertex function in frequency space
as a function of k and k′ for fixed q. It consists mainly of two
extensive stripes and a more dynamical localized structure centered
at a position determined by the transfer frequency. The two stripes
are described by Kkq

2,r and Kk′q
2,r , the local structure is contained in

the rest function R. The nearly constant background is described by
Kq

1,r .

Eq. (13) still hold, i.e.,

lim
|ν|→∞

lim
|ν ′|→∞

F kk′q
r,σσ ′ − (1 − δσ,σ ′ )U = Kq

1,r,σσ ′ , (16a)

lim
|ν ′|→∞

F kk′q
r,σσ ′ − (1 − δσ,σ ′ )U = Kq

1,r,σσ ′ + Kkq
2,r,σσ ′ ,

(16b)

lim
|ν|→∞

F kk′q
r,σσ ′ − (1 − δσ,σ ′ )U = Kq

1,r,σσ ′ + Kk′q
2,r,σσ ′ ,

(16c)

where again Fr denotes the representation of F in one of the
three mixed notations. However, the numerical equivalent of
the limiting procedure, i.e., the scanning procedure previously
described for the � functions, is not feasible in the case of F ,
which is directly related to the fact that Eq. (15) does not hold
equally for F . In order to numerically extract the asymptotics
from F directly we thus suggest an alternative approach
detailed in Appendix B. We implemented this diagrammatic
extraction to determine the exact asymptotic functions, as
presented in Sec. V, from ED calculations. Let us also remark
that the asymptotic functions K1 and K2 can be also directly
obtained from the impurity solver as discussed in Ref. [21] for
a quantum Monte Carlo based impurity solver and in Ref. [49]
for ED.

The limiting procedure Eq. (16) is particularly suited in
the case that analytical expressions for F are available, as
demonstrated for the atomic limit case in Sec. IV A. Let us in
the following argue why the generalization of Eq. (13) holds.
It relies on the property that any reducible diagram vanishes
if the corresponding transfer frequency, being a necessary
argument, is sufficiently large, i.e.,

lim
|	|→∞

�
kk′q
r,σσ ′ = 0. (17)
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We have to further consider that in order to take the limits in
Eq. (16), we should formulate Eq. (6) in the corresponding
mixed notation. For example, for the particle-particle channel
we have to translate �ph and �ph to the pp notation as follows:

F kk′q
pp,σσ ′ =�

kk′q
pp,σσ ′ + �

kk′(q−k′−k)
ph,σσ ′ + �

k(q−k′ )(k′−k)
ph,σσ ′

+ 

kk′q
2PI,pp,σσ ′ .

(18)

It now becomes clear that for fixed 	 and ν ′, the bosonic
frequencies of the ph and ph channels, that is 	 − ν ′ − ν and
ν ′ − ν, will lead to a vanishing of the respective scattering
channels for |ν| → ∞. This behavior can also be observed
in Fig. 2, and holds equally for the other scattering channels.
Since 
2PI decays in all frequency directions to the bare in-
teraction, we conclude that lim|ν|→∞ F kk′q

r,σσ ′ − (1 − δσ,σ ′ )U =
lim|ν|→∞ �

kk′q
r,σσ ′ , while the same argument can be made for the

other limits in Eq. (16).

A. Atomic limit

As a first showcase of these ideas we discuss the vertex
decomposition for a system that can be treated analytically,
i.e., the atomic limit, whose Hamiltonian reads as

Ĥ = U

[
n̂↑n̂↓ − 1

2
(n̂↑ + n̂↓)

]
. (19)

Here, n̂σ = ĉ†
σ ĉσ is the number operator for fermions of spin

σ , and we have imposed the half-filling (particle-hole symme-
try) condition μ = U/2. The Hilbert space is spanned by the
four eigenstates |0〉, |↑〉, |↓〉, and |↑↓〉, allowing for a direct
calculation of the two-particle Green’s functions by means of
the Lehmann representation. The resulting two-particle vertex
function [4,5,57] is, for our purposes, split into four terms4

(note Fr 	= Fr)

F↑↓ = Fodd + Fpp + Fph + Fph, (20)

which are defined in the following. The first term contains
only odd orders in the interaction, and takes the most compact
form using a function dependent on four fermionic frequen-
cies

F ν1ν2ν3ν4
odd = U − U 3

8

∑
i ν

2
i∏

i νi
− 3U 5

16

∏
i

1

νi
, (21)

while frequency conservation is implicitly assumed. The link
to the purely fermionic notation introduced previously is then
given as F ν1ν2ν3

odd = F ν1ν2ν3(ν4=ν1−ν2+ν3 )
odd . The functions Fr with

r ∈ {pp, ph, ph}, however, are more conveniently expressed
in their respective mixed notation (see Sec. II A)

F νν ′	
pp = −β δ	,0

U 2

2
Dνν ′

f

(
U

2

)
, (22a)

F νν ′	
ph = −β δ	,0

U 2

4
Dνν ′

[
f

(
U

2

)
− f

(
−U

2

)]
, (22b)

F νν ′	
ph

= β δ	,0
U 2

2
Dνν ′

f

(
−U

2

)
, (22c)

4We consider here only the ↑↓ component, as it allows to calculate
all the remaining ones, given that SU (2) symmetry holds.

with Dνν ′ = 1
ν2ν ′2 (ν2 + U 2

4 )(ν ′2 + U 2

4 ) and the Fermi function
f (ε) = 1

1+eβε . Note that, at this stage, the decomposition for
the full vertex F is motivated solely by algebraic reasons,
while the connection to the physical scattering channels will
be established in the following.

Let us now use the limits in Eqs. (16) to identify the
contributions arising from the different diagrammatic classes.
This task can be performed by considering each term in
Eq. (20) separately. Let us illustrate this procedure for the pp
channel, beginning with the first term, Fodd. Here, we have to
translate from the purely fermionic notation to the mixed pp
notation:

F νν ′	
odd,pp =F ν,	−ν ′,	−ν,ν ′

odd = U − 3U 5

16

1

ν(	 − ν ′)(	 − ν)ν ′

− U 3

8

ν2 + (	 − ν ′)2 + (	 − ν)2 + ν ′2

ν(	 − ν ′)(	 − ν)ν ′ .

(23)

The large-frequency limits then result in

lim
|ν|→∞

lim
|ν ′|→∞

F νν ′	
odd,pp = U, (24a)

lim
|ν ′|→∞

F νν ′	
odd,pp = U − U 3

4

1

ν

1

ν − 	
, (24b)

lim
|ν|→∞

F νν ′	
odd,pp = U − U 3

4

1

ν ′
1

ν ′ − 	
. (24c)

As for the limits of the second term, Fpp, we have

lim
|ν|→∞

lim
|ν ′|→∞

F νν ′	
pp = −β δ	,0

U 2

2
f

(
U

2

)
, (25a)

lim
|ν ′|→∞

F νν ′	
pp = −β δ	,0

U 2

2

[
1 + U 2

4

1

ν2

]
f

(
U

2

)
,

(25b)

lim
|ν|→∞

F νν ′	
pp = −β δ	,0

U 2

2

[
1 + U 2

4

1

ν ′2

]
f

(
U

2

)
.

(25c)

Determining the contributions from the remaining terms Fph

and Fph, which involves a translation from their respective
mixed notation to the pp notation, we find that their con-
tributions vanish. This leads to the final expressions for the
asymptotic functions in the pp channel

K	
1,pp,↑↓ = −β δ	,0

U 2

2
f

(
U

2

)
, (26a)

Kν	
2,pp,↑↓ = U 2

4

1

ν

1

ν − 	

(
K	

1,pp,↑↓ − U
)
, (26b)

while the K2 can be acquired by means of the symmetry
properties reported in Appendix C. Performing the analogous
procedure for the remaining two channels yields

K	
1,ph,↑↓ = −β δ	,0

U 2

4

[
f

(
U

2

)
− f

(
−U

2

)]
, (27a)

Kν	
2,ph,↑↓ = U 2

4

1

ν

1

ν + 	

(
K	

1,ph,↑↓ − U
)

(27b)
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FIG. 7. Schematic diagrammatic representation of the localized
structure presented in Eq. (29).

for the ph channel, and

K	

1,ph,↑↓ = β δ	,0
U 2

2
f

(
−U

2

)
, (28a)

Kν	

2,ph,↑↓ = U 2

4

1

ν

1

ν + 	

(
K	

1,ph,↑↓ − U
)

(28b)

in the ph case.
Now that we have determined all asymptotic functions

of the atomic limit vertex, let us consider its structures that
are localized in the frequency domain. We proceed again
in a term-wise fashion, beginning with Fodd. By subtracting
all asymptotic contributions arising from this term, we find
that only the fifth-order term − 3U 5

16

∏
i

1
νi

survives, while it
remains unclear whether this term can be attributed to the fully
irreducible vertex function or the rest functions.

For the Fr terms, let us again consider the pp channel as
an example. Here we find

F νν ′	
pp − lim

|ν ′|→∞
F νν ′	

pp − lim
|ν|→∞

F νν ′	
pp + lim

|ν|→∞
lim

|ν ′|→∞
F νν ′	

pp

=
(

U 2

4

1

ν

1

ν − 	

)
× K	

1,pp,↑↓ ×
(

U 2

4

1

ν ′
1

ν ′ − 	

)
.

(29)

This term contains three factors, i.e., a fermion-boson vertex
[48] that describes the coupling to a pairing field, the bosonic
propagator in the pp channel, and an additional fermion-boson
vertex, as depicted schematically in Fig. 7. We can thus argue
diagrammatically that this localized term belongs to the rest
function Rpp,↑↓. For the other channels, we find equally that
the localized structures belong to the respective rest function,
and hence Fr ∈ �r,↑↓.

Note that to obtain the full rest functions as well as the
fully irreducible vertex function, it would require the analytic
expressions for all the reducible � functions. The latter have
been derived in Ref. [17], where it has been shown that the
corresponding expressions for the reducible vertices � and the
fully irreducible vertex 
2PI are very involved. The simplifi-
cation 
2PI,↑↓ + ∑

r Rr,↑↓ = − 3U 5

16

∏
i

1
νi

is far from obvious,
and the complexity of the expressions can be directly linked
to the multiple vertex divergencies [12,14,16,58,59] appearing
in the � functions for T �

√
3

2π
U . These divergencies are,

however, exactly canceled by corresponding terms in 
2PI.
These cancellations are in fact a strong argument for vertex-
based methods built upon the sum of frequency-localized
structures [60] 
2PI + ∑

r Rr .

B. Implementation for the fRG solver

The functional renormalization group approach [24,61]
implements Wilson’s renormalization group idea in a general
field-theoretical framework. By introducing a scale depen-
dence into the quadratic part of the action, i.e., the noninter-
acting propagator

G0(iν) → G

0 (iν),

one can derive an exact functional flow equation [62] for
the 1PI generating functional, also named “effective action.”
This flow equation describes the gradual evolution of all
correlation functions as the scale 
 is varied from the initial
to the final value. Being an exact reformulation of the initial
problem, it serves as a basis for further approximations, and
has been used in many different applications ranging from
high-energy physics to condensed matter theory. In the fRG,
this approximation consists in an expansion in orders of the
fields, resulting in an infinite hierarchy of coupled ordinary
differential equations for all 1PI n-particle vertex functions,
e.g., the self-energy �, the two-particle vertex F , and so on.
This hierarchy is typically truncated at the two-particle level,
rendering the fRG perturbative in the interaction strength [63].

For the flow-parameter dependence, we consider in the
following two different schemes: The so-called 	 flow [64]

G

0 (iν) = ν2

ν2 + 
2
G0(iν), (30)

and the U flow [65]

G

0 (iν) = 
 · G0(iν). (31)

The 	 flow introduces an energy cutoff into the system, that
allows to successively integrate out the different energy scales
from high to low. This approach is very much in the spirit
of other renormalization group approaches. The U flow on
the other hand introduces a frequency-independent regulator
into the Green function that treats all energy scales on equal
footing. In this sense, the U flow is more similar to common
perturbative approaches.

The flow equations resulting from a second-order trunca-
tion of the flow-equation hierarchy can be summarized as fol-
lows, where, for simplicity, we consider the SU (2) symmetric
case. At the level of the self-energy, the derivative takes the
simple form

�̇(k)
 =
∑∫

dk′ S
(k′) × [
F
,kk′(q=0)

ph,↑↓ + F
,kk′(q=0)
ph,↑↑

]
, (32)

where we have introduced the so-called single-scale propaga-
tor

S
(iν) = ∂
G
(iν)|�
 fixed.

At the level of the 1PI two-particle vertex, the flow equation
is composed of contributions from three scattering channels
(particle-particle, particle-hole, and transverse particle-hole)

Ḟ
 = T 

pp + T 


ph + T 


ph
, (33)

where

T 
,kk′q
pp,↑↓ =

∑∫
dk′′ [S
(k′′)G
(q − k′′) + S ↔ G]

× F
,qkk′′
pp,↑↓ F
,qk′′k′

pp,↑↓ , (34a)
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FIG. 8. Diagrammatic representation of the particle-particle con-
tribution Tpp (34a) in the vertex flow equation. The dashed line
denotes the single-scale propagator S
.

T 
,kk′q
ph,↑↓ = −

∑∫
dk′′ [S
(k′′ + q)G
(k′′) + S ↔ G]

× [
F
,kk′′q

ph,↑↑ F
,k′′k′q
ph,↑↓ + F↑↑ ↔ F↑↓

]
, (34b)

T 
,kk′q
ph,↑↓ =

∑∫
dk′′ [S
(k′′ + q)G
(k′′) + S ↔ G]

× F
,kk′′q
ph,↑↓ F
,k′′k′q

ph,↑↓ . (34c)

These terms can be depicted diagrammatically as shown in
Fig. 8 for the pp channel. To understand the diagrammatic
content generated by each channel let us refer to the previ-
ously introduced parquet equation, that holds for any scale 
:

F
 = 


2PI + �


pp + �

ph + �


ph
. (35)

Considering the vertex flow Eq. (33) (see also Fig. 8), it is
obvious that at this level of truncation, the only diagrammatic
content than can be generated by the flow is two-particle

reducible, meaning 


2PI = 



ini

2PI . We can thus separate the
different two-particle reducible terms in Eq. (33), and identify

�̇

pp = Tpp, �̇


ph = Tph, �̇


ph
= Tph. (36)

This allows us to make use of the parametrization scheme
described in Sec. III during the fRG flow. While keeping
track of the reducible vertex functions on a finite frequency
grid, we also track the flow of the previously introduced
asymptotic functions. In fact, we can directly perform the
limits in Eq. (13) to compute the corresponding derivatives

K̇
,q
1,r,σσ ′ = lim

|ν|→∞
lim

|ν ′|→∞
�̇


,kk′q
r,σσ ′ , (37a)

K̇
,kq
2,r,σσ ′ = lim

|ν ′|→∞
�̇


,kk′q
r,σσ ′ − K̇
,q

1,r,σσ ′ , (37b)

K̇

,k′q
2,r,σσ ′ = lim

|ν|→∞
�̇


,kk′q
r,σσ ′ − K̇
,q

1,r,σσ ′ . (37c)

The limits above are explicitly performed by replacing the
associated vertex functions F


r in Eqs. (34) by the asymptotic
forms presented in Eqs. (16b) and (16). During the fRG flow
we then track the flow of the asymptotic functions in addition
to the flow of the � functions.

Due to the numerical costs involved in treating the full
argument dependence of the vertex function, a simplified
parametrization scheme [66]

�kk′q
pp ≈ Kq

eff,pp = Kq
1,pp + K(�	/2�−ν0,k)q

2,pp

+ K(�	/2�−ν0,k′ )q
2,pp +R(�	/2�−ν0,k)(�	/2�−ν0,k′ )q

pp

(38)

FIG. 9. Derivative of the lowest-order contribution to K

2,ph.

has found extensive use in the fRG community. Here, ν0 =
π
β

denotes the first positive Matsubara frequency, and �. . .�
will round up to the next bosonic Matsubara frequency.5

This scheme considers only the dominant transfer frequency
dependence of the K2 and R functions, and will be compared
to the full parametrization in Sec. V C. Performing the same
approximation in the momentum domain limits the scattering
to the s-wave type, while higher harmonics can be captured by
means of a form-factor expansion [51].

The fRG flow equations in their second-order truncated
form account for the feedback of F
 into the flow up to
the second order. If we in addition consider partially the
neglected contribution of the 1PI three-particle vertex in the
flow equations, it is possible to account fully for the feedback
up to O[(F
)3]. In practice this is achieved by taking into
account both self-energy6 and vertex corrections from dia-
grams with overlapping loops [67,68], which is possible with
a manageable numerical effort [68]. These corrections will in
the following be referred to as two-loop (2�) corrections to
distinguish this scheme from the conventional one-loop (1�)
one.

When considering the flow of the asymptotic functions, we
find that including the two-loop corrections gives a substantial
improvement of the two-particle vertex results. While a quan-
titative comparison between the one- and two-loop scheme
will be presented in Sec. V B, we can already understand
from a simple diagrammatic argument that the lowest-order
contribution to K2 is not fully captured in the one-loop
scheme. Here, the derivative includes four contributions, as
depicted in Fig. 9. The one-loop scheme accounts only for
the first two diagrams, while the two-loop scheme includes
all of them. In particular for the U flow, the contribution
from all four diagrams is equal, meaning that in its one-loop
implementation the flow reproduces exactly 1

2 of the exact
value for U → 0. This is verified numerically in Sec. V B (see
Fig. 22). A similar argument can be made for the lowest-order
diagram of R, where the resulting factor is 1

3 .

5The parametrization scheme presented in Eq. (38) was originally
implemented at zero temperature, where the flow of each channel was
approximated, in a representation using only bosonic frequencies
(	pp, 	ph, 	ph ), by setting the transfer frequency of the other two
channels to zero. At finite temperature, this choice is only possible
for every other transfer frequency, as the condition ( β

2π

∑
r 	r ) mod

2 = 1 needs to hold. This leads to ambiguities in the definition.
6The self-energy correction S → ∂
G
 is generally referred to as

Katanin substitution [67].
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C. Implementation for the parquet solver

The self-consistent solution of the parquet equations re-
quires, through the equation F = 
2PI + ∑

r �r , the repeated
recombination of vertex functions with different frequency
conventions. The associated transformation to one common
convention will lead to the loss of grid points in numeri-
cal implementations, making the understanding of the high-
frequency behavior an essential component in the iterative
solution of the parquet equations. Previous works have ne-
glected the treatment of asymptotics [27,29] and were faced
with numerical stability problems. We will discuss in this
section how the asymptotic functions Kq

1 and Kkq
2 can be used

during the solution of the parquet equations. While the use of
the scanning procedure outlined in Sec. IV was explored7 in
Ref. [8] we will in the following focus on how the limiting
procedure can be used to determine the asymptotic functions
during the self-consistent solution of the parquet equations.
Finally, we will demonstrate how the diagrams of K1, K2,
and R, starting from the lowest order, emerge naturally in a
self-consistent solution of the parquet approximation.

Given the fully irreducible vertex function 
2PI, the par-
quet equations [1] form a closed set of equations for the vertex
functions F , �r , and �r as well as the self-energy �. They can
be summarized schematically as

F = 
2PI +
∑

r

�r, �r = 
2PI +
∑
r′ 	=r

�r, (39a)

�r = �rGGF, � = U · GGG · F, (39b)

while the detailed explicit forms of these equations are pre-
sented in Appendix A.

In the following we consider the SU (2) symmetric case,
which allows us to decouple the BSE by introducing the
density (d), magnetic (m), singlet (s), and triplet (t) channels

�d = �ph,↑↑ + �ph,↑↓, �m = �ph,↑↑ − �ph,↑↓, (40a)

�s = �pp,↑↓ − �pp,↑↓, �t = �pp,↑↓ + �pp,↑↓, (40b)

and Fr , �r , Rr , K1,r , and K2,r for r ∈ {d, m, s, t} are defined
in the same way.

As observed in Ref. [8] and detailed in the previous sec-
tions, the reducible two-particle vertices �r play a funda-
mental role in the correct treatment of the two-particle vertex
function F , and thus for the solution of the parquet equations.
The closed set of equations (39) is solved self-consistently
by using the iterative procedure described in the following.
For this solution of the parquet equations, the fact that the
asymptotic functions K1 and K2 allow us to determine the
vertex functions on the whole frequency domain is essential,
as every step of the solution requires translations between the
different notations as, e.g., demonstrated in Eq. (18). If the
vertex functions were known only on a finite frequency grid,

7We note that the “kernel functions” �q
r and �qk

r introduced in
Ref. [8] are related to K1 and K2 as �q

r = Kq
1,r and �qk

r = Kq
1,r +

Kkq
2,r .

these translations would lead to a loss of frequencies with
every iteration of the parquet equations.

The only approximation that enters in the solution of the
parquet equations is the choice of the fully irreducible vertex

2PI. In the parquet approximation, it is approximated by its
lowest-order contribution 
2PI ∼ U , while the D�A [8,30,69]
and QUADRILEX approximate 
2PI by the local one of the
effective impurity model. A typical procedure for the solution
of the parquet approximation can then be outlined as follows:

(1) Choose a finite but sufficiently large-frequency range
[−λ, λ] for the problem studied.

(2) Initialize � and the vertex functions �r to 0, or make
some educated guess for their starting values. Initialize F and
�r according to Eq. (39a).

(3) Calculate the reducible vertex functions �
kk′q
r with

frequency arguments in the range [−λ, λ] from the BSE
[Eq. (39b) left].

(4) Update the values of the asymptotic functions using

Kq
1,r = lim

|ν|→∞
lim

|ν ′|→∞
�kk′q

r = UGG(U + K1,r + K2,r ),

Kkq
2,r = lim

|ν ′|→∞
�kk′q

r −Kq
1,r = (�r −U )GG(U + K1,r + K2,r ).

The above expressions are found by performing the corre-
sponding limits on the BSE [Eq. (39b) left].8

(5) Compute the vertex functions F kk′q
r and �

kk′q
r using the

updated values of �
kk′q
r [Eq. (39a)]. When any of the three

frequency arguments of k, k′ or q fall outside of the range
[−λ, λ], we approximate

�
kk′q
pp,asympt. ≈ Kq

1,pp + Kkq
2,pp + Kk′q

2,pp.

(6) Calculate the self-energy from F through the
Schwinger-Dyson equation [Eq. (39b) right].

(7) Go back to step 3 and iterate until convergence is
achieved.

Let us now consider diagrams (see Fig. 10 for the d
channel) generated in the first iterations of the parquet ap-
proximation solution (assuming initial conditions �r = 0),
and attribute them to the diagrammatic classes I (K1), II
(K2,K2), and III (R). After the first iteration the reducible
vertex functions �

kk′q
r read as

�
kk′q
d = U 2χ

q
0,ph, �kk′q

m = U 2χ
q
0,ph, (41a)

�kk′q
s = −2U 2χ

q
0,pp, �

kk′q
t = 0, (41b)

where χ0 denotes the noninteracting bubble (see first diagram
in Fig. 10 for the d case). This corresponds to the lowest-
order perturbation theory for �r , which is only dependent
on the transfer frequency and momentum q, and can thus be
attributed to K1,r . The dependence of � on the fermionic ar-
guments is only generated when the updated vertex functions
F and �, e.g., for the d channel

F kk′q
d = U − 2U 2χ k′−k

0,ph − U 2χ
k+k′+q
0,pp + U 2χ

q
0,ph, (42a)

�
kk′q
d = U − 2U 2χ k′−k

0,ph − U 2χ
k+k′+q
0,pp , (42b)

8Note that an alternative implementation based on the scanning
procedure outlined in Sec. IV was used in Ref. [8].
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FIG. 10. The Feynman diagrams for the reducible vertex function �
kk′q
d generated in the first two iterations of a parquet approximation

calculation. They can be attributed to (I) Kq
1,d , (II) Kkq

2,d , and (III) Rkk′q
d , respectively.

are inserted into the BSE in the second iteration. This pro-
duces the remaining diagrams in Fig. 10, and thus the first
contributions to the K2 (II) and R (III) functions. Iterating this
procedure, we generate successively all reducible diagrams.
Results obtained by this approach for a SIAM are presented
in the following Sec. V.

V. COMPARISON TO EXACT RESULTS OF THE SIAM

In this section we illustrate the high quality of the descrip-
tion of the vertex asymptotics obtained using the algorithmic
implementations discussed in the previous sections.

In particular, we present results for the asymptotic func-
tions as obtained from the fRG (	 flow including two-loop
corrections) and parquet approximation for a single impurity
Anderson model and compare them with exact diagonal-
ization data, which were acquired following the procedure
outlined in Appendix B. Aside from the asymptotic functions,
also results for the rest function and the self-energy will be
shown. In Sec. V B we will further discuss a detailed compari-
son between the fRG in its one- and two-loop implementations
for both the 	 as well as the U flow. We first consider
the regime of weak coupling where the fRG and the PA,
as approximation schemes, are expected to be quantitatively
correct. Hence, in this regime, the comparison with the exact
results of ED will represent a stringent test for our treatment
of the high-frequency asymptotics. After having demonstrated
that the error introduced in the high-frequency asymptotics of
the vertex function is negligible, we proceed by applying our
fRG and PA algorithms, including the high-frequency treat-
ment, to the intermediate to strong-coupling regime. In this
case, the comparison to the ED will allow us to assess directly
the intrinsic performance of the two approximations in the
nonperturbative parameter region since sizable errors, which
typically arise from a poor treatment of the high-frequency
regime of the vertex functions, are strongly mitigated by the
present approach.

The system of interest in this section is a SIAM, i.e., a
single impurity site with local repulsive Coulomb interaction

U coupled to a noninteracting bath [see Sec. II A, Eq. (1)]. In
our specific case, we consider a boxlike density of states

ρ(ω) = 1

2D
�(D − |ω|), (43)

where D denotes the half-bandwidth, which will be used as
our unit of energy, i.e., D = 1. This bath is coupled to our
impurity site by means of a hopping t = √

2/π , such that the
resulting hybridization function reads as �(ω) = πt2ρ(ω) =
2ρ(ω). This choice results in �(0) = D = 1, allowing us to
directly relate our unit of energy to the one used in wide-band
limit calculations [66], namely, the hybridization function
evaluated at the chemical potential.

However, the exact diagonalization of the SIAM is not
possible for ρ(ω) of Eq. (43). Hence, we have determined a
set of four optimized bath energy levels εn and hoppings tn
with the resulting hybridization function

�ED(iν) =
4∑

n=1

t2
n

iν − εn
, (44)

in order to mimic the continuous bath of Eq. (43) in the best
way possible within a discretized ED scheme [70,71]. Follow-
ing a somewhat similar strategy as in the ED algorithms for
DMFT, we determine our bath parameters such that the norm∑

iν

|�ED(iν) − �(iν)|2 (45)

is minimized. For an inverse temperature β = 20, which
was used for all numerical calculations presented in
this paper, we have εn = −0.7,−0.15, 0.15, 0.7 and tn =
0.45, 0.34, 0.34, 0.45. Note also that, since we are consider-
ing the particle-hole symmetric case, all two-particle quanti-
ties are purely real, while the self-energy is purely imaginary.9

9Let us stress, however, that our decomposition scheme holds
equally in parameter regimes where particle-hole symmetry is bro-
ken.
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FIG. 11. K	
1,↑↓ for all three scattering channels. We present results obtained by fRG (left, solid), PA (right, solid), and ED (right, dashed)

for the SIAM with U = 1, β = 20, and D = 1.

Unless mentioned otherwise, calculations are performed with
a frequency grid of 128 × 128 × 256 Matsubara frequencies
for the � functions, while grids of 128 × 256 and 256 are
chosen for K2 and K1, respectively.

Let us start considering the weak-coupling case (U = 1).
The data for K1,↑↓, K2,↑↓, and R↑↓ are presented in Figs. 11,
12, and 13 and 14, respectively.10 For this parameter choice,
we find an excellent agreement between the different ap-
proaches and the exact solution for all quantities. At the level
of the asymptotic function K1,↑↓, no distinction can be made
between the results of the different schemes, while for K2,↑↓
the fRG shows some minor deviations w.r.t. PA and ED in the
pp and ph channels. Even at the level of the rest function R↑↓,
which has as a leading order U 4, we find excellent agreement
between PA and ED, while only minor deviations are again

10The contour plots are created such that every small square of
equal color represents the value of the function at the bottom left
corner of this square.

observed for the fRG. Note that, contrary to the plotting
conventions adopted in previous Refs. [4,8], the fermionic
frequencies are shifted by ±	/2 for K2 and R, because the
main frequency structures move outward as 	 is increased.11

This observation suggests to include a corresponding shift
also in the notation used in the numerical implementation,
such that the localized frequency structures can be more
efficiently captured by means of the finite grid even in the
case of finite transfer frequency. Similar trends are observed
for the self-energy shown in Fig. 15. While PA and ED agree
perfectly, we find that the fRG self-energy deviates from the
exact results, especially in its tail.

All this numerical evidence proves the reliability of our
treatment of the high-frequency asymptotics within the differ-
ent schemes (see also the results for U = 2 in the Supplemen-

11We note that both, the fRG and the parquet solver, are making use
of this shift by ±	/2 in the implementation to keep the structures of
K2, R and � centered in the frequency grids (in contrast to Ref. [8]).

FIG. 12. Kν	
2,↑↓ for all three scattering channels as a function of ν and for different values of 	. We present results obtained by fRG (left,

solid), PA (right, solid), and ED (right, dashed) for the SIAM with U = 1, β = 20, and D = 1.
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FIG. 13. Rest function Rνν′	
↑↓ for all three scattering channels as a function of ν and ν ′ plotted for 	 = 0. We present results obtained by

fRG (first row, left) and PA (second row, left) for the SIAM with U = 1, β = 20, and D = 1. The right side always shows the corresponding
ED result.

FIG. 14. Same as Fig. 13, but for a finite transfer frequency 	 = 8 2π

β
.
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FIG. 15. Im �(iν ) as obtained by fRG (red, solid), PA (green,
solid), and ED (blue, dotted) for the SIAM with U = 1, β = 20, and
D = 1.

tal Material [72]), allowing us to evaluate in an unbiased way
their intrinsic performance in the most challenging strong-
coupling regime.

Due to the perturbative nature of fRG and PA, the situation
changes drastically in the regime of stronger coupling. The
corresponding results for U = 4 are presented for K1,↑↓ and
K2,↑↓ in Figs. 16 and 17, respectively. Note that, for this
value of the interaction, we are clearly in the nonperturbative
regime, as divergencies [12–14,58,73] are already present in
the exact vertices obtained by ED.

For both PA and fRG, K1,↑↓ shows already strong devia-
tions from the exact results, while the qualitative structures
are still captured. These deviations are particularly enhanced
in the ph and ph channels. In the case of K2,↑↓ qualitative
features are missed by the PA and fRG, in particular for
	 = 0, while a qualitative agreement is still achieved for finite
transfer frequency. As the main structures of the rest function
R are neither reproduced by PA nor by fRG, we show only
one example for this comparison in Fig. 18 (the full vertices
are reported in the Supplemental Material [72]). Since this
diagrammatic class is at least fourth order in the interaction,

the strongest deviations were to be expected here. Finally,
we note that for the self-energy, shown in Fig. 19, strong
deviations are observed in both cases.

A. Neglecting the asymptotics

Let us now discuss the importance of considering asymp-
totic functions in numerical implementations. In this regard,
we present in Fig. 20 results for Im �(iν0)/U 2 as a function
of U calculated by fRG and PA, with and without asymptotic
functions, and compare them with the exact ED data. For these
calculations, a frequency grid of 64 × 64 × 128 (NGrid = 64)
Matsubara frequencies was used for the reducible vertex
functions. In the large-frequency domain, we used Eq. (9) and
�r,asympt. ≈ 0, respectively.

We observe that the results for both fRG and PA are
strongly affected if we include the asymptotic functions in the
calculations: The comparison with the exact result improves
by a substantial amount. This is a strong indication of the
importance of a correct description of the high-frequency part
of the vertex function in all vertex-based numerical implemen-
tations.

To get a deeper understanding on the convergence proper-
ties we show in Fig. 21 calculations at fixed U = 1 for mul-
tiple values of NGrid. We observe that the results that treat the
asymptotic functions properly are almost converged already
for the smallest grid size NGrid = 16, while the calculations
which approximate �r,asympt. ≈ 0 fail to converge even for
NGrid = 128. This convergence is slower for the PA. We expect
this to be directly linked to the fully self-consistent nature of
PA, which then leads to an enhancement of the rough high-
frequency approximation in the iterative solution. The bottom
panel of Fig. 21 analyzes the deviation from the converged
result in a log-log plot for the calculations without asymptotic
functions. We observe that, through a proper treatment of
the high-frequency asymptotics, numerical accuracy can on
average be improved by three orders of magnitude. The linear
dependence shows that the convergence w.r.t. the grid size
follows a power law. Overall we observe a faster convergence
(i.e., larger exponent α) when the asymptotics are taken into
account. Only for the fRG case (dark green) do we observe a

FIG. 16. Same as Fig. 11, but for U = 4.
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FIG. 17. Same as Fig. 12, but for U = 4.

FIG. 18. Comparison of Rph,↑↓ obtained by means of PA with
the exact result. Here, U = 4.

FIG. 19. Same as Fig. 15, but for U = 4.

change in the scaling at large grid sizes, possibly attributed to
a change in the leading source of error.

B. Higher-order corrections in fRG

In this subsection, we provide a quantitative comparison
between the SIAM results as obtained by means of fRG in
its one- and two-loop implementations [68]. To this aim, we
compare in Fig. 22 the quantities K	=0

1,ph,↑↓, Kν0(	=0)
2,ph,↑↓ , as well

as maxνν ′ |Rνν ′(	=0)
ph,↑↓ | normalized by their leading order12 in

U , to the exact ED results as well as to the PA. Consistently to
our expectations, we find that the two-loop corrections yield
a systematic improvement of the K1, K2, and R functions
acquired during the flow, in particular for larger values of the
interaction.

12For the particle-hole channel in the ↑↓ spin configuration the bare
bubble vanishes, resulting in a leading order O(U 3).

FIG. 20. Comparison of Im �(iν0 )/U 2 for the SIAM with β =
20 and D = 1 as obtained by fRG and PA with and without (K1 =
K2 = 0) high-frequency asymptotics, compared with ED for ν0 = π

β

and different values of U .
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FIG. 21. (Top) Comparison of Im �(iν0) for the SIAM with
β = 20, U = 1, and D = 1 as obtained by fRG and PA with and
without (K1 = K2 = 0) high-frequency asymptotics for ν0 = π

β
and

different values of the grid size NGrid. (Bottom) Deviation of the data
presented in the top panel from the converged result (NGrid = ∞)
using a log-log plot. Convergence w.r.t. the grid size follows a power
law Im �(iν0, NGrid ) = Im �(iν0, ∞) + O(N−α

Grid ). Estimates for the
scaling exponents are shown.

More specifically, for K1,ph,↑↓ the two-loop correc-
tions have a minor effect in the weak-coupling regime,
whereas an excellent agreement with the exact results is
achieved already at the one-loop level. At larger U , the
one-loop scheme strongly overestimates K1,ph,↑↓. Here, the
two-loop corrections yield a substantial improvement over
the one-loop scheme, while underestimating K1,ph,↑↓. We also
note the strongly improved agreement of the two-loop fRG
with the PA, which is a trend to be expected, since the two-
loop scheme allows to include higher orders of the reducible
diagrams in an exact way.

As for K2,ph,↑↓, we observe that already in the limit U → 0
the one-loop scheme fails to reproduce the exact result. This
can be attributed to the fact that the lowest-order diagram in
K2,ph,↑↓ is of order U 3, and is thus not captured exactly in the
one-loop scheme. In particular for the U flow, we numerically
verify the factor 1

2 (w.r.t. the exact result) already predicted
diagrammatically at the end of Sec. IV B, while for the 	 flow

we find, numerically, a factor of ∼0.89 in all channels. For
larger values of U , we observe a behavior similar to the one
described for K1,ph,↑↓, that is, a systematic improvement of
the results if the two-loop corrections are included in fRG.

For Rph,↑↓ the trend is similar, while, being a function of
O(U 4), the relative deviations from the exact results increase
substantially. The predicted factor 1

3 for U → 0 is verified
numerically, while for the 	 flow we find factors 0.78, 0.25,
and 0.78 in the pp, ph, and ph channel, respectively.

As for the comparison between the flow schemes, consis-
tently with the ratios in the weak-coupling regime, we observe
that the simpler U flow performs overall worse than the 	

flow.

C. Efficiency of simplified parametrization schemes

In this subsection we present results for the simplified
parametrization scheme [66] described by Eq. (38). It has
found extensive use in the fRG community [5,37,51,64,68,74–
91] and beyond [92–97], as it allows for a substantial speedup
of numerical calculations. In the left two panels of Fig. 23
we compare the self-energy at the first Matsubara frequency
Im �(iν0)/U 2 as well as its tail limν→∞ Im ν�(iν)/U 2 for
fRG one-loop and two-loop in their full and simplified (Keff )
implementation with PA and the exact results from ED.

For the self-energy at the first Matsubara frequency, we
find a good agreement between the simplified parametrization
scheme and the fully parametrized fRG implementation for
both the one- and two-loop scheme, while the simpler scheme
performs slightly worse in reproducing the exact results. In
the case of the self-energy tail, the situation is reversed. Here,
the aforementioned deviations of the fRG from ED are indeed
cured by the simplified parametrization scheme.

To capture the effect of the simplified approximation
scheme on the two-particle quantities, we compare in the right
panel of Fig. 23 the corresponding susceptibility in the ph
channel for the two-loop case. It is important to note that χ

cannot be directly extracted from Keff using Eq. (10) due to
the effective inclusion of K2 and R. Instead, we calculate
the susceptibility after the flow by calculating explicitly the
bare and vertex-corrected bubble according to Eq. (B1b)
(VC). This is compared, for an interaction value U = 4, to
χ = K1/U 2 and the corresponding PA and ED data. We
find that the simplified parametrization fails to qualitatively
reproduce the exact susceptibility, while the other approxima-
tions, although underestimating χ , compare qualitatively well
with ED.13

While the parametrization scheme of Eq. (38) performs
well for one-particle quantities, we find that the qualitative
features of the susceptibility are badly reproduced. Further,
we observe that the ambiguities in the definition of the flow
equations for the case of finite temperatures turn out to have a
substantial effect on the results for larger values of the inter-
action. These are strong arguments for the fully parametrized

13We note that χ calculated after the full two-loop flow by means
of Eq. (B1) yields a result different from K1/U 2. This is connected
to the specific approximations introduced in the fRG, and is absent
in the fully self-consistent PA.
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FIG. 22. Comparison of K	=0
1,ph,↑↓/U 3, Kν0 (	=0)

2,ph,↑↓ /U 3, and maxνν′ |Rνν′ (	=0)
ph,↑↓ |/U 4 (ν0 = π

β
) for fRG in the one-loop (1�) and two-loop (2�)

implementation, for both the 	 and U flow, with ED and PA. We note that the one-loop U flow diverges for U = 3 or larger.

schemes, that capture, consistently, all frequency structures of
the two-particle vertex function.

VI. CONCLUSIONS AND OUTLOOK

We have presented a detailed analysis of the diagrammatic
content of the two-particle vertex functions, focusing on the
terms controlling their high-frequency structures. This infor-
mation is extremely valuable, also at a practical level, be-
cause the efficient algorithmic treatment of the vertex asymp-
totics is fundamental for several recently proposed quantum
field-theoretical approaches based on expansions around a
correlated starting point. In particular, by focusing on the
two-particle reducible parts of the vertex function, we could
identify the different contributions to their high-frequency
asymptotics as diagrammatic classes with a reduced frequency
(and momentum) dependence, and establish a connection to
the (physical) susceptibilities and the fermion-boson vertices.
The gained insights are essential in order to devise efficient
parametrization schemes for the two-particle vertex functions.
We then discussed the algorithmic details necessary for the
implementation of these ideas in numerical (and analytical)
studies, considering as specific examples the functional renor-
malization group approach and the parquet approximation. In
order to verify the correct treatment of the high-frequency
asymptotics, we benchmarked our numerical implementations
for a SIAM against exact calculations from ED. Finally, we
tested the intrinsic performance of the approaches also in the
intermediate-to-strong-coupling regime.

This algorithmic progress paves the way toward a full
numerical treatment of correlations at the two-particle level,
which is pivotal for all vertex-based quantum many-body
methods. In particular, these ideas are directly applicable in
the treatment of nonlocal correlations beyond the dynamical
mean-field theory by means of its cutting-edge diagrammatic
extensions [98], such as DF, DMF2RG, D�A, and the recently
introduced TRILEX and QUADRILEX approach. They are
further crucial for numerically reliable implementations of
vertex-based fRG [99–101] and its recently proposed multi-
loop extension [102,103]. Moreover, our approach, which has
been derived and applied for a purely static and local Hub-
bard interaction in a half-filled system, can be systematically
applied to more realistic situations out of half-filling [21] and
longer range interactions. An extension to retarded interac-
tions on the other hand requires a comprehensive analysis of
the effect due to the frequency dependence of the coupling
which represents an interesting future research direction.
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APPENDIX A: EXPLICIT EQUATIONS

Here, we want to present some explicit forms of the parquet equations depicted schematically in Sec. IV C. Let us begin by
showing the BSE in their spin-resolved version14

�
kk′q
pp,↑↓ =

∑∫
dk′′ G(k′′)G(q − k′′) × �

kk′′q
pp,↑↓F k′′k′q

pp,↑↓, (A1a)

�
kk′q
ph,↑↓ = −

∑∫
dk′′ G(k′′ + q)G(k′′)

[
�

kk′′q
ph,↑↑F k′′k′q

ph,↑↓ + �
kk′′q
ph,↑↓F k′′k′q

ph,↑↑
]
, (A1b)

�
kk′q
ph,↑↓ =

∑∫
dk′′ G(k′′ + q)G(k′′) × �

kk′′q
ph,↑↓F k′′k′q

ph,↑↓. (A1c)

In the SU (2) symmetric case they can be diagonalized by introducing the density (d), magnetic (m), singlet (s), and triplet (t)
channels as introduced in Sec. IV C,

�
kk′q
d/m =

∑∫
dk′′ G(k′′ + q)G(k′′) × �

kk′′q
d/m F k′′k′q

d/m , (A2a)

�
kk′q
s/t = ±1

2

∑∫
dk′′ G(k′′)G(q − k′′) × �

kk′′q
s/t F k′′k′q

s/t . (A2b)

Given the fully irreducible vertex function 
kk′q, the other two-particle vertex functions can be calculated through the parquet
equations as shown below:

F kk′q
d = 


kk′q
d + �

kk′q
d − 1

2
�

k(k+q)(k′−k)
d − 3

2
�k(k+q)(k′−k)

m + 1

2
�kk′(k+k′+q)

s + 3

2
�

kk′(k+k′+q)
t , (A3a)

F kk′q
m = 
kk′q

m + �kk′q
m − 1

2
�

k(k+q)(k′−k)
d + 1

2
�k(k+q)(k′−k)

m − 1

2
�kk′(k+k′+q)

s + 1

2
�

kk′(k+k′+q)
t , (A3b)

F kk′q
s = 
kk′q

s + �kk′q
s + 1

2
�

k(q−k′ )(k′−k)
d − 3

2
�k(q−k′ )(k′−k)

m + 1

2
�

kk′(q−k−k′ )
d − 3

2
�kk′(q−k−k′ )

m , (A3c)

F kk′q
t = 


kk′q
t + �

kk′q
t − 1

2
�

k(q−k′ )(k′−k)
d − 1

2
�k(q−k′ )(k′−k)

m + 1

2
�

kk′(q−k−k′ )
d + 1

2
�kk′(q−k−k′ )

m . (A3d)

Similarly, the channel-dependent irreducible two-particle vertex �
kk′q
r is obtained as �

kk′q
r = F kk′q

r − �
kk′q
r .

APPENDIX B: EXTRACTING ASYMPTOTICS FROM F

In this Appendix we describe an approach that extracts the asymptotic functions directly from the full vertex function F . This
procedure was employed to acquire all presented high-frequency results for the ED vertices, and is based on the fact that one can
write explicit Feynman diagrams for all asymptotic functions. These consist of all possible ways of pinching two external legs of
F into one bare vertex U [6,50]. Since the latter is purely local in space and time, the dependence on two fermionic arguments
is replaced by a single bosonic (transfer) one. The resulting diagrams for K1 are shown in Fig. 24, and read as explicitly

Kq
1,pp,σσ ′ = U 2(1 − δσσ ′ )

∑∫
dki G(k1)G(q − k1)F k1k2q

pp,σσ ′G(q − k2)G(k2) − U 2(1 − δσσ ′ )
∑∫

dk1 G(q − k1)G(k1), (B1a)

Kq
1,ph,σσ ′ = U 2

∑∫
dki G(k1)G(k1 + q)F k1k2q

ph,σσ ′G(k2)G(k2 + q) + U 2δσ,σ ′
∑∫

dk1 G(k1)G(k1 + q), (B1b)

Kq

1,ph,σσ ′ = U 2
∑∫

dki G(k1)G(k1 + q)F k1k2q

ph,σσ ′G(k2)G(k2 + q) − U 2
∑∫

dk1 G(k1)G(k1 + q). (B1c)

14We want to point out the fond similarity between Eqs. (A1), which are the basis for the iterative parquet approximation solver, and the
channel-resolved fRG flow Eqs. (34), which technically allows for very similar implementations of the two approaches.
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FIG. 24. Diagrammatic representation of the K1 functions in the three different channels. As denoted in the first diagram, the external
lines are to be excluded, making the k and k′ arguments redundant. Here, σ denotes the opposite spin of σ , and SU (2) symmetry is explicitly
assumed.

Here σ denotes the opposite spin of σ , and SU (2) symmetry is explicitly assumed. In the case of K2 one introduces just one
additional bare vertex, as shown in Fig. 25. Note that here, the previously determined K1 has to be subtracted. The equations in
all scattering channels then read as

Kkq
2,pp,σσ ′ = −U

∑∫
dk1 G(q − k1)F kk1q

pp,σσ ′G(k1) − Kq
1,pp,σσ ′ , (B2a)

[1ex]Kkq
2,ph,σσ ′ = U

∑∫
dk1 G(k1)F kk1q

ph,σσ ′G(k1 + q) − Kq
1,ph,σσ ′ , (B2b)

[1ex]Kkq

2,ph,σσ ′ = −U
∑∫

dk1 G(k1)G(k1 + q)
[
δσσ ′F kk1q

ph,↑↓ + (1 − δσσ ′ )F kk1q

ph,↑↓
] − Kq

1,ph,σσ ′ . (B2c)

Further, by exploiting the symmetry relations shown in Appendix C, one can easily derive K2 from K2.
As it is typical within an ED algorithm for a SIAM, the values for F are known numerically for a finite grid in the frequency

domain. Thus, in the first calculation of the aforementioned diagrams according to Eqs. (B1) and (B2) we have to make a rough
approximation for F (i.e., F = U ) in the large-frequency domain, which will introduce an error. To improve on this “one-shot”
calculation of the diagrams, we exploit a self-consistent scheme:

I. Initialize the K1’s and K2’s to 0. Their grids may deviate from the grid for F .
II. Calculate a set of new K1’s and K2’s according to Eqs. (B1) and (B2).
III. Rebuild the vertex in an arbitrarily large region (as needed) using the updated asymptotic functions.

FIG. 25. Diagrammatic representation of the K2 functions in the three different channels. Here, σ denotes the opposite spin of σ , while
SU (2) symmetry is explicitly assumed.
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TABLE I. Symmetry table for K1 and K2. Here, � = (π, π, . . . ) represents the (d-dimensional) “antiferromagnetic momentum” in the
case of a simple (hyper)cubic lattice with lattice constant a = 1.

Symmetries K1,r K2,r

SU (2) Kq
1,r,σσ ′ = Kq

1,r,σ σ ′ Kkq
2,r,σσ ′ = Kkq

2,r,σ σ ′

Kq
1,r,σσ = Kq

1,r,σσ ′ + Kq

1,r,σσ ′ Kkq
2,r,σσ = Kkq

2,r,σσ ′ + Kkq

2,r,σσ ′

Time reversal Kq
1,r,σσ ′ = Kq

1,r,σ ′σ Kkq
2,r,σσ ′ = K2

kq

r,σσ ′

Particle hole (Kq
1,r,σσ ′ )

∗ = K(	,−q)
1,r,σσ ′ (Kkq

2,r,σσ ′ )
∗ = K(ν,�−k)(	,−q)

2,r,σσ ′

IV. Continue from II until convergence.
Once the asymptotic functions are fully converged, we can directly determine the localized structures using


2PI +
∑

r

Rr = F −
(∑

r

K1,r + K2,r + K2,r

)
. (B3)

Further, since, at this point, we have F available in the full frequency domain, we can use this additional information to determine
also all the � functions on an arbitrarily large-frequency grid by means of the BSE (7). If needed, R and 
2PI can then be
determined by Eq. (14) and Eq. (6), respectively.

The approach described in this Appendix was used to
compute all the exact asymptotic functions and reducible
vertices presented in Sec. V, from ED calculations, originally
performed on a fermionic frequency grid of 128 × 128 × 128
Matsubara frequencies. While here we are dealing with a
purely local vertex, we stress that this approach is equally
applicable in the nonlocal case.

APPENDIX C: SYMMETRIES

1. Symmetries of K1 and K2

In this section we summarize the symmetries of the pre-
viously introduced asymptotic functions. Before addressing
the specific physical symmetries of the system of our interest,
which provide useful relations for K1 and K2, we provide
some fundamental relations which hold [1,4,6] independently
of the system under investigation. First, we consider the ex-
change of two (fermionic) annihilation operators in the time-
ordered matrix element of Eq. (3), which, as a consequence
of the Pauli principle, yields a minus sign (also referred to
as “crossing symmetry” [1,4,6]). Diagrammatically speaking,
this corresponds to an exchange of two outgoing lines. For K1,
this operation leads to the following relations:

Kq
1,pp,σσ ′ = −Kq

1,pp,σσ ′ , (C1a)

Kq
1,ph,σσ ′ = −Kq

1,ph,σσ ′ , (C1b)

Kq

1,ph,σσ ′ = −Kq
1,ph,σσ ′ . (C1c)

Here, σσ ′ denotes a spin configuration of the external
indices where spins are crossing. While for the pp channel one
finds relations between different spin configurations within
the same channel, the ph and ph channels are interchanged.
Similarly, for K2 one finds

Kkq
2,pp,σσ ′ = −Kkq

2,pp,σσ ′ , (C2a)

Kkq
2,ph,σσ ′ = −Kkq

2,ph,σσ ′, (C2b)

Kkq

2,ph,σσ ′ = −Kkq
2,ph,σσ ′ . (C2c)

A second generic operation involves the simultaneous ex-
change of both annihilation and creation operators in Eq. (3).
Diagrammatically, this corresponds to an exchange of both the
incoming and outgoing particles. In this case we end up with
the following relations for K1:

Kq
1,pp,σσ ′ = Kq

1,pp,σ ′σ , (C3a)

Kq
1,ph,σσ ′ = K−q

1,ph,σ ′σ , (C3b)

Kq

1,ph,σσ ′ = K−q

1,ph,σ ′σ
. (C3c)

For K2 one obtains

Kkq
2,pp,σσ ′ = K(q−k)q

2,pp,σ ′σ , (C4a)

Kkq
2,ph,σσ ′ = K(k+q)(−q)

2,ph,σ ′σ , (C4b)

Kkq

2,ph,σσ ′ = K(k+q)(−q)
2,ph,σ ′σ . (C4c)

While for this operation all the corresponding channels are
conserved, the diagrammatic class changes from K2 to K2 in
the case of the ph and ph channels.

To conclude the discussion of the fundamental relations,
we consider the complex conjugation operation, that leads to
the following relations for K1:(

Kq
1,pp,σσ ′

)∗ = K(−	,q)
1,pp,σ ′σ , (C5a)(

Kq
1,ph,σσ ′

)∗ = K(	,−q)
1,ph,σ ′σ , (C5b)(

Kq

1,ph,σσ ′
)∗ = K(−	,q)

1,ph,σ ′σ
, (C5c)

and for K2: (
Kkq

2,pp,σσ ′
)∗ = K(−	+ν ′,q−k′ )(−	,q)

2,pp,σ ′σ , (C6a)(
Kkq

2,ph,σσ ′
)∗ = K(−	−ν,q+k)(	,−q)

2,ph,σ ′σ , (C6b)
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TABLE II. Symmetry table for R. Note that the same table holds
for the two-particle reducible vertex functions �r .

Symmetries Rr

SU (2) Rkk′q
r,σσ ′ = Rkk′q

r,σ σ ′

Rkk′q
r,σσ = Rkk′q

r,σσ ′ + Rkk′q
r,σσ ′

Time reversal Rkk′q
r,σσ ′ = Rk′kq

r,σ ′σ

Particle hole (Rkk′q
r,σσ ′ )∗ = R(ν,�−k)(ν′,�−k′ )(	,−q)

r,σσ ′

(
Kkq

2,ph,σσ ′
)∗ = K(−ν ′,k′ )(−	,q)

2,ph,σ ′σ
. (C6c)

Using these fundamental relations, we can formulate
the system-related physical symmetries, namely SU (2),
time-reversal, and particle-hole symmetry, in a channel-
independent way. The results are summarized in Table I. Note
that for the particle-hole symmetry, the relations differ for the
frequency and momentum dependence. While in the purely
local case, this symmetry implies a vanishing imaginary part
of all two-particle quantities, this holds only for specific
lattice-dependent k vectors in the nonlocal case.

2. Symmetries of R
For the sake of completeness we report the symmetries of

the remaining diagrammatic class, namely, the rest function
R, which holds equally for the reducible vertex functions
�. As shown above, the first set of fundamental relations

results from exchanging two outgoing particles. We find the
following relations for R in the different channels:

Rkk′q
pp,σσ ′ = −R(k)(q−k′ )q

pp,σσ ′ , (C7a)

Rkk′q
ph,σσ ′ = −Rkk′q

ph,σσ ′ , (C7b)

Rkk′q
ph,σσ ′ = −Rkk′q

ph,σσ ′ . (C7c)
By means of the simultaneous exchange of both incoming

and outgoing particles we obtain

Rkk′q
pp,σσ ′ = R(q−k)(q−k′ )q

pp,σ ′σ , (C8a)

Rkk′q
ph,σσ ′ = R(k′+q)(k+q)(−q)

ph,σ ′σ , (C8b)

Rkk′q
ph,σσ ′ = R(k′+q)(k+q)(−q)

ph,σ ′σ
. (C8c)

Finally, the complex conjugation operation leads to the
following relations:

(
Rkk′q

pp,σσ ′
)∗ = R(−	+ν ′,q−k′ )(−	+ν,q−k)(−	,q)

pp,σ ′σ , (C9a)(
Rkk′q

ph,σσ ′
)∗ = R(−	−ν,q+k′ )(−	+ν ′,q+k)(	,−q)

ph,σ ′σ , (C9b)(
Rkk′q

ph,σσ ′
)∗ = R(−ν ′,k′ )(−ν,k)(−	,q)

ph,σ ′σ
. (C9c)

In the same way as for K1 and K2, the fundamental
relations for R allow us to express the physical symmetries
in a channel-independent way (see Table II).
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