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Ab initio self-energy embedding for the photoemission spectra of NiO and MnQO
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The accurate ab initio simulation of periodic solids with strong correlations is one of the grand challenges of
condensed matter. While mature methods exist for weakly correlated solids, the ab initio description of strongly
correlated systems is an active field of research. In this work, we show results for the single-particle spectral
function of the two correlated d-electron solids NiO and MnO from self-energy embedding theory. Unlike earlier
work, the theory does not use any adjustable parameters and is fully ab initio, while being able to treat both the
strong correlation and the nonlocal screening physics of these materials. We derive the method, discuss aspects of
the embedding and choices of physically important orbitals, and compare our results to x-ray and angle-resolved
photoemission spectroscopy as well as bremsstrahlung-isochromat spectroscopy.
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I. INTRODUCTION

The ab initio simulation of periodic solids with strong cor-
relations is an important problem in condensed matter physics.
While reliable computational methods exist for weakly corre-
lated solids, they tend to be less suitable where the underlying
independent electron approximation fails, such as in systems
with d electrons. Where strong correlations are important, the
condensed matter community has historically resorted to the
construction of low-energy effective models, such as single-
orbital or multiorbital Hubbard models, in order to describe
effective low-lying degrees of freedom.

For systems where a treatment of the electronic structure in
addition to strong correlation physics is desired, embedding
methods such as a combination of the dynamical mean field
theory (DMFT) [1-3] with density functional theory (DFT)
electronic structure codes [4—6] led to a combination of both
approaches. These methods are very successful in their region
of applicability. However, they suffer fundamentally from
the need to determine free parameters, such as the double-
counting correction or the values of screened interaction pa-
rameters, at the interface between the electronic structure and
strong correlation calculations.

Diagrammatic perturbation theory provides an alternative
route to standard electronic structure methods such as DFT.
Perturbative methods are free from adjustable parameters,
and solutions of the (bare or self-consistent) second-order
perturbation theory [7,8] and several variants of Hedin’s GW
approximation [9—13] can be performed for realistic solids.
However, due to their perturbative nature, these methods
are not able to access the strong correlation regime. Never-
theless, the diagrammatic language in which these theories
are formulated lends itself ideally to embedding methods,
which aim to selectively enhance the solution of a weakly
correlated problem with nonperturbative strong-correlation
answers in a small but potentially strongly correlated subset
of orbitals. Moreover, the Green’s function language in which
they are formulated allows one to calculate experimentally
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observable quantities such as the (momentum- and energy-
resolved) spectral function, making them ideal candidates for
studying condensed matter systems.

A combination of extended DMFT (EDMFT) [14—16] with
a perturbative method such as GW lead to a formulation of the
GW +EDMFT approach [17-30], where the weakly correlated
electrons are treated at the GW level and the strongly cor-
related electrons are handled by an accurate nonperturbative
approach.

In this paper, we focus on the discussion and performance
assessment of another diagrammatic ab initio embedding
theory: the self-energy embedding theory (SEET) [31-33].
This theory combines the GW approximation [34] with the
nonperturbative solution of quantum impurity models. SEET
was extensively tested on molecular problems [33,35-40] and
very simple solids [41]. This paper presents tests for fully
realistic solids.

The two antiferromagnetic compounds NiO and MnO are
ideal materials for testing the capabilities of SEET. Corre-
lation effects in those materials are believed to be strong,
and Mott [42] considered NiO as a paradigmatic exam-
ple of a “Mott” insulator. The NiO solid has been care-
fully studied with a wide range of experiments, includ-
ing angle-integrated and angle-resolved photoemission and
bremsstrahlung-isochromat spectroscopy for NiO [43-54]
and MnO [53-58]. The material has also been studied with
a wide array of theoretical methods, including the Hartree-
Fock (HF) approximation [59], configuration interactions
within the metal-ligand clusters [60], density functional the-
ory (DFT) [61], LDA+U [62], different variants of the GW
approximation [11,63-66], the variational cluster approxi-
mation (VCA) [67], LDA+DMFT [68-70], and linearized
quasiparticle self-consistent GW +DMFT (QSGW-+DMFT)
[28].

This paper proceeds as follows. Section II introduces the
GW approximation and presents the self-energy embedding
theory. Section III describes the computational details nec-
essary for reproducing our calculations. Section IV shows
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theoretical photoemission results as compared to experiment,
and Sec. V presents our conclusions.

II. METHOD

We model a solid as an arrangement of atoms in a Bravais
lattice with periodicity in all three directions. We employ
the Born-Oppenheimer approximation and choose a basis of
single-particle wave functions. In this work we use Bloch
waves constructed from Gaussian basis functions as

i (1) = Y pr(r)e™k, ey

R

where qb[R (r) is a Gaussian atomic orbital centered in Bravais
lattice cell R. These states are not orthogonal and define the
overlap matrix

Sij :/Qdl‘¢1t,.,,-(1‘)¢k,,j(l‘)5ki,k;~ (2)

The electronic structure Hamiltonian in second quantization
is

1 +
H = Zhl} C; Cjo + 5 Z vijklcio_cl.i(r/Cla’ng, 3)
ij,o ijkl
oo’

where c¢;j, (c ) are annihilation (creation) operators corre-
sponding to the single-particle state ¢, ;(r), with spin o and
index i(j, k, I) denotes the combined orbital-momenta index
i = (i, k;). The single-particle operator h?j and two-particle
operator v;ji are defined, respectively, as

Zy
/dwk (r)|: —Vv2— Zr
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where Z, is the nuclear charge of atom «, 7, = |r — 1| is
the distance to nucleus « at r,, 2 is the volume of the unit
cell, and V is the volume of the system.

The primary object of interest in this paper is in the
single-particle imaginary-time Green’s function G (1) for
Hamiltonian H and indices i and j:

G (1) = _%Tr[e—(ﬂ—f)(H—MN>Ci’ae—r(H—uN)c;’”]. )
Here, Z = Tr[e #*~#M] is the grand partition function,
is the chemical potential, j is the inverse temperature, and N
is the number of particles in the system. We define the non-
interacting Green’s function as G?]:‘T(t) = GZO"’(t), where

H® =Y,  hicl cjo, and the interacting one as Gf(r) =
GZ’“ (7). Translation symmetry implies that Green’s functions
are diagonal in reciprocal space but dense in orbital space and

can be defined as
Gif (r) = Gjj(1), ©)
with k = kl' = kj.

The Matsubara frequency Green’s function is defined
through the Fourier transform

Gjwn) = / dt G (o), )
0

where w, = (2n + 1)% is the fermionic Matsubara frequency
with n integer. The self-energy is defined by the Dyson
equation

=7 (@0) = (G (@0) ™ = (GG(wn) . ®)

Knowledge of the single-particle Green’s function allows the
computation of the spectral function or density of states as

) AT (@)™
G?,(x) = /dw—l . ©)

A. GW approximation

In a first step, we solve the system in the fully self-
consistent finite-temperature GW approximation introduced
by Hedin [34]. This approximation is thermodynamically con-
sistent and conserving but neglects second-order and higher
exchange terms. The GW self-energy is given by

g 1 o
Z,l; (a)n) = _ﬁ_V |:G§(k (U)n + Qm) }(ngk(gm)
k’r,nkl
-y Gﬁ‘k’*“kwm)v:;',z‘;"‘}, (10)
where 2, = 2"};” are the bosonic Matsubara frequencies and

kk'k'k ;

the “screened interaction” W, k18 defined as

1

m1i2i3i4(9n) = vi1i2i3i4 + ‘/Vi]i2i3i4(9n)v
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isisii
with the approximate polarization operator
1
Maiis () = 5 > G (0m)GYy (@ + Q). (12)

Equation (10) can be written as

o k,o o
=5 (@) = (52');7 + EVE (@), (13a)
o 1 o
(M (wn) = — i ZG}‘k (@n + QWi (@),
k’ kl
(13b)

where (zgoW)}‘]:" is the Hartree-Fock self-energy. The self-
consistent GW correction to the Hartree-Fock self-energy
(=W )t‘j’“ (wy) contains an infinite series of “bubble” diagrams
as shown in Fig. 1.

In our GW implementation, we use a Coulomb integral
decomposition since due to its size, it is not practical to store
the full four-index Coulomb integral. Several ways to employ
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FIG. 1. Diagrams beyond the Hartree diagram in the self-
consistent GW approximation. Wiggly lines denote bare interactions
v, lines with arrow dressed Green’s functions G.

its symmetry to decompose it are known, such as Cholesky
decomposition [71] or the resolution of identity (also known
as density fitting) [72-74]. Here, we erte Vi\isiais =

iy i3y

where Q is an auxiliary index and V3, is a three-point integral

l

defined as
v ; (0@, () xp() _1q
Ir —r|
with momentum transfer q = k;, — k;, =k;; — k;,, xp d(r') an
auxiliary basis function, and J=! = J ~2J1 the inverse of
qx q.
xp (0xo")
Ipo = / drdr 22— 7 (15)
Q Ir —r’|
This allows to simplify Eq. (11) to
‘i/i]izi3i4(9n) = - Z ‘/thzPQqQ’(Q )‘/”QM (16)
where the renormalized polarization matrix P9(S2,,) is
PUQ,) = [1 - Pl@)] PS) (7

and
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Equation (13b) then simplifies to

1
Eka(f)——v Z VQkk qu qU(r)

i 11,14 13,14
q, 03,04
0,0
pa 0 k- qk
x Py Q,(v:)Vm2 (19)

We diagrammatically represent this decomposition in Fig. 2.

q
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k
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I'3

—-q

/
¥
J

FIG. 2. Diagrams of Fig. 1 expressed with the decomposition
of Eq. (13b). Interrupted wiggly lines denote the auxiliary basis
decomposition indices Q and Q'.

B. Self-energy embedding method

GW is an approximate method with well-known limita-
tions. To capture correlation effects beyond the GW approxi-
mation, either high-order diagrammatic methods or quantum
embedding methods can be used. Embedding theories that are
® derivable and based on diagrammatic expansions such as
DMFT, GW +EDMFT, SEET, or self-energy functional theory
aim to systematically improve low-order perturbative results.
These embedding theories satisfy conservation laws and are
thermodynamically consistent.

Here, we briefly summarize the SEET equations used in
this paper. In this section we assume that all quantities are
expressed in an orthogonal basis, which we will discuss later.
The real-space Green’s function and the lattice (k-space)
Green’s function are related by the Fourier transform

GRR Z elkRGk (wn )e—lkR/ . (20)

The GW momentum-resolved Green’s function of the entire
lattice is defined as

(G (@) = (@, + )1 — h*F — (V7L @D

where (ZY)k = (2 )k + (29 (w))¥. As a result of em-
bedding procedure, we define a lattice Green’s function in the
following way:

(G(w)* = [(w+ )L — K% — x¥71 (22)

where

_ EGW)” +Z lmP EDC GW) )8(zj)€A (23)

with TimP = $10P 4 RiMP (¢, ) containing nonperturbatively
added self-energy diagrams and XPCOV = pDCOW 4
xPEOW () subtracting those diagrams that are contalned
both in the GW solution and the nonperturbative construction.
Subsets A of impurity orbitals with indices ij € A, sometimes
also called active orbitals, are defined as groups of the
most physically relevant orbitals for the problem that have
correlations that are necessary to be included at a higher than
perturbative level.

To define the self-consistency condition used in SEET, we
perform Fourier transform of (G(a)))k, >k and A%¥ from
momentum to real space obtaining GRR', ZRR' and pO-RR’
The Fourier transform results in the following structure of the
self-energy matrix in the real space

ZRR (EGW)
+ Z 1mp

for unit cells away from central cell (R # R’) the self-energies
are treated at the weakly correlated level Z}}R’ = (=" )}ER’
while the local, central cell self-energy for R = R’ includes
nonperturbative corrections (S4™);; for every orbital group
A.

This leads us to a definition of an embedding condition in
SEET, where we apply the block-matrix inversions of real-
space quantities and absorb all terms containing contributions

ED ) »)8RR’8(1‘]‘)€A7 (24)
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connecting orbitals in A to the remainder of the system in the
matrix AA (w) in the following way:

A ()]
(25)

(Gln))Ry = [(@n + )L — hEE — =R, —

The hybridization matrix AA (w,) arises since an inverse
of a subset is not equal to a subset of an inverse,
namely, (G(w,) ),,GA # [(G(n)®®)RR, = [(0 + )1 —
KRR _ $RR 171 Note that Eq. (25) can further be rewritten

ijeA ijeA
as
(G = (i, + w1 — IORY
- IR ) — B8, - A,

(26)

il(»]fRR — h(.)IRR + (EGW)RR _ ybc

~ij 1s the renor-

where
malized noninteracting Hamiltonian, and Zcorr RR(on) =

(EGW)II}R(a)n) - Egc(a)n) is the local correction from the
weakly correlated method.

We em]%)hasize that, in SEET, the substantial contribution
of Ef";R (w,) to the local correlated orbitals is included ex-
pliCitly in the real-space self-consistency condition in Eq. (25)
and is not included as a part of hybridization as done in
the GW+DMEFT schemes described in Refs. [25,29]. These
contributions stem from GW diagrams that have both external
legs i and j in the active space but contain one or more
internal indices on the remaining orbitals. Furthermore, the
explicit treatment of ZfogARR (wy) prevents us from observing
noncausality problems with hybridization as described in
Ref. [25] since AA (wy) as defined in Eq. (25) is always causal.

We also empha51ze that, while the total chemical potential
is adjusted to give a fixed number of particles in the unit cell,
each impurity subspace A may have any noninteger occu-
pancy. In addition, the number of particles in each subspace
may change substantially during the iterative procedure as
electrons shift from the subspaces to the rest of the system
and back, while maintaining the total number of particles.

To evaluate Z: c4» We define the auxiliary propagator

Gr'(@n) = G3 (@) — B, 27)

where the zeroth order QX’_I (w,) is defined as

hO RR

i (@n) = (o, + )by — B = Afj(@,). (28)

As realized in the context of DMFT [3], a propagator of the
form of Eq. (27) can be obtained by solving the quantum
impurity model with impurity orbitals defined as the active
orbitals from a space A. In SEET, the two-body interactions
in the impurity remain the bare, unchanged interactions of
the original lattice Hamiltonian, since screening is included
by the explicit treatment of Efj";‘RR(wn) at the level of the
embedding condition and Eq. (26).

The fact that the bare interactions do not need to be
adjusted in the impurity model is a major difference to
formulations of GW4+EDMFT, as implemented, e.g., in
Ref. [26]. The GW +EDMFT double-counting correction due
to the presence of screened Wi™(w,) removes local correc-
tion to the self-energy from the weakly correlated method,

therefore, {?™*®(w,) =0 [18]. This GW+EDMFT con-

struction containing WimP(g,) leads to an impurity model
with a different hybridization and noninteracting Hamilto-
nian and, as the model needs to take into account corre-
lations outside the active space accordingly, to a rescaling
of the interactions. However, while operationally different,
both GW+EDMEFT and SEET are consistent, conserving, and
contain RPA screening by GW diagrams.

In practice, our method starts from a self-consistent finite-
temperature GW solution of the lattice problem. It then pro-
ceeds by solving all independent impurity problems for the
different disjoint subspaces A independently. The nonpertur-
bative solution of 21711) is used to update the lattice self-energy
and the Green’s function from Egs. (23) and (22), followed
by a new calculation of the real-space Green’s function and
hybridization [Eq. (25)] and a subsequent solution of the im-
purity model. In principle, after obtaining the self-consistent
solution of Eq. (25), the GW solution would need to be
iterated again. This has not been done in this work.

III. COMPUTATIONAL ASPECTS
A. Basis and lattice structure

We study the electronic properties of antiferromagnetic fcc
NiO and MnO with lattice constant a = 4.1705A [75] and
4.4450 A [76] at temperature T ~ 451 K (8 = 700 Ha™').
In order to capture the type-1I anti-ferromagnetic ordering we
double the unit cell along the [111] direction. The resulting
unit cell is rhombohedral with two transition metal atoms and
two oxygen atoms. Any small rhombohedral distortion below
the Neél temperature is neglected. For both systems we use the
gth-dzvp-molopt-sr basis [77] with gth-pbe pseudopotential
[78]. The def2-svp-ri basis is chosen as the auxiliary basis
for the Coulomb integral decomposition [79]. The finite-size
errors of the GW exchange diagram are corrected by the
Ewald probe-charge approach [80,81]. The Coulomb integrals
[Eg. (14)] and noninteracting matrix elements [Eq. (4a)] are
prepared by PYSCF [82].

The use of a finite basis of Gaussian orbitals introduces an
error which is difficult to assess independently. We therefore
compared results of simple DFT calculations of our systems
in this basis to those obtained in a plane-wave code [83] and
found satisfactory agreement.

B. Imaginary-time/Matsubara frequency grid

All dynamical functions, such as the Green’s function, po-
larization, or self-energy, are computed in an imaginary-time
formalism. We use the compact intermediate representation
(IR) [84] with sparse frequency sampling [85] for their storage
and manipulation. The IR has one dimensionless parameter A
that should be chosen larger than Swpmax, Where wpmax 1s the
bandwidth of the system (difference between highest and low-
est single-particle energy). In this work we use A = 10000
and generate the IR basis functions using the IRBASIS [86]
open-source software package. Other representations such as
Legendre [87,88] or Chebyshev polynomials [89] and other
sparse grids [90] could be used instead.
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C. Orthogonalization

We solve the GW approximation in the basis of atomic
orbitals. In this basis, obtaining analytically continued results
is difficult as the spectral functions of Eq. (9) are not strictly
positive, nor normalized, and straightforward application of
the maximum entropy method [91] is not possible. In addition,
most impurity solvers (including the exact diagonalization
solver used in this work [92]) require orthogonal orbitals. Fi-
nally, to perform the SEET embedding procedure, the Green’s
functions have the be in an orthogonal basis. It is therefore
convenient to orthogonalize the basis and express the GW
Green’s function in it before performing further analysis.

In this paper we use two types of orbital orthogonalization,
G™ = X GX*, which differ in the transformation matrix X
employed. Symmetrical orbital orthogonalization [93] uses
X =S, with s = §257, and s defined in Eq. (2). In the
canonical orthogonalization [93] the transformation matrix is
X = (Vss%)‘l, where Vg is the matrix constructed from the
eigenvectors of the overlap matrix s and s is the diagonal
matrix constructed from the square roots of the corresponding
eigenvalues of the overlap matrix [93].

D. Analytical continuation

The k-space spectral function measured in ARPES,

AXw) =) A% (), (29)
J

is the trace of the orbitally resolved spectral functions A'j? (@)
which are determined by the Green’s functions Gg‘j(r) accord-
ing to Eq. (9). In the orthogonal basis A‘;j(a)) is normalized to
one and strictly positive. It can therefore be obtained from a
maximum entropy continuation [91]. We use the open-source
ALPS [94] MAXENT package [95] with a truncated continuation
kernel, with the Green’s functions defined on the grid points
of the IR basis [85]. We have verified for select data points
that our results are consistent with the Padé continued fraction
method. Alternative methods for continuation exist, includ-
ing the stochastic optimization method [96] and the sparse
modeling [97] approach. In addition, continuations of derived
quantities, such as the cumulant [98] or the self-energy [99],
are possible. We have not explored these methods.

In order to obtain the local spectral function, we first
perform the summation over momenta and then continue the
resulting orbitally resolved local Green’s function Gl%°(t) =

ij
% > Gb(r) as

loc —
A (w)e™ ™

G¥(1) = /da) gy (30)
While continuation and linear transforms, such as basis
change and transforms to real space, commute in principle,
in practice analytically continued data will depend on the
order of these operations due to the ill-conditioned nature
of the analytical continuation kernel. The total local spectral

function is defined as

A () =Y A (o). (1)

E. Attribution of the orbital character

In order to gain additional understanding of the spectral
function, it is useful to ascribe orbital character to analyt-
ically continued function. The basis transformation to the
orthogonal orbitals allows such an identification by writing
the spectral function of an orthogonalized orbital as a sum of
contributions from various atomic orbitals.

We find that the symmetrical orthogonal basis provides
an almost unique correspondence between orthogonal and
atomic states. Basis functions in the canonical orthogonal ba-
sis typically mix several atomic states, such that the attribution
to a single atomic state is more difficult. However, we find that
in some cases orbitals of similar type, such as Ni ,, states, are
grouped together.

While the attribution of the orbital character is quite
straightforward in reciprocal space, where each k point can
be analyzed independently, it may be problematic in real
space since the basis transformation will mix Gaussian basis
functions centered in different unit cells. However, we found
that in the symmetrical orthogonal basis the configuration
(contribution from different atomic orbitals) of each orthogo-
nal orbital remains the same for different k points. In the local
unit cell, each orthogonal orbital can therefore be uniquely
traced back to its corresponding atomic orbital.

F. Solution of the impurity model

SEET is based on the embedding of a nonperturbative
impurity model into a self-consistently adjusted hybridization
with the environment. Solving impurity models is a compu-
tationally difficult problem and requires a quantum impurity
solver such as quantum Monte Carlo (QMC) [100], numerical
renormalization group (NRG) [101], exact diagonalization
(ED) [102], configuration interaction (CI) [103,104], or cou-
pled clusters [105,106].

SEET requires the solution of impurity problems with gen-
eral off-diagonal interactions and hybridizations at potentially
strong interaction. However, the ability to treat multiple active
spaces keeps the size of the impurities to be treated relatively
moderate. We found ED to be an ideal impurity solver for
SEET problems with 2-5 orbitals. ED requires discretization
of the continuous hybridization function A(w,) in Eq. (28)
and its approximation by a finite, typically small, number of
discrete bath sites.

In the symmetric orthogonal basis, off-diagonal elements
of the hybridization function are in our experience 1-2 orders
of magnitude smaller than diagonal elements. This allows us
to neglect them entirely and fit A?(w,) by minimizing the fit
residue

N 0 ) )0 *

2 o ib”ib
o= E Al (w,) — E —=2 1, 32
XO'I . f(l’l) il (a) ) 1 ia)n - E}(; ( )

with weight function f(n) chosen to suppress high-frequency
contributions to Af(w,) [we usually choose f(n) = 1/w,].
Using a bound-constrained nonlinear least-square method
[107,108] we enforce the constraint that V;;, be positive and ¢,
in the vicinity of the Fermi energy. For two-orbital problems
we use 5 bath sites per orbital; for three orbitals we use 3, and
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FIG. 4. Orbitally resolved k-space spectral function obtained

with GW in the canonical orthogonal basis at the I point. Dashed
black line: experimental ARPES data near I" [45].

truncation effects due to the incompleteness of the basis set are
possible in addition. These effects have not been assessed in

this work due to the prohibitive computational cost and linear
iy dependency issues in Gaussian basis sets.

Spectral function from the self-consistent GW method do
not consist of sharp peaks but rather exhibit smooth, broad
features. This smoothness is a result of the analytical contin-
uation procedure which leads to a significant broadening of
features, especially at energies far from the Fermi level.

The self-consistent GW response function in Fig. 3 cor-
responds to photoemission (occupied part) and inverse pho-
toemission (unoccupied part). Note that this theoretical as-
signment is done while neglecting the effect of element- and
energy-dependent photoemission cross sections present when
collecting experimental data. [In angle-resolved photoemis-
sion spectroscopy (ARPES), the registered spectrum is equal

to a sum of orbital photocurrents multiplied by cross-section
matrix elements.]

Energy [eV]

FIG. 3. Local total density of states of NiO (top panel) and MnO
(bottom panel), for systems of size 2 x 2 x 2 (dashed green), 4 x

4 x 4 (dashed-dotted dark red), and 6 x 6 x 6 (orange), obtained
with self-consistent GW .

for four orbitals we use 3. We solve impurity problems using
the open-source ED impurity solver of Ref. [92].

IV. RESULTS

B. NiO
A. Finite-size effects in NiO and MnO

ARPES obtains the k-resolved spectral function of materi-
als. Traditional band-structure simulations can then be used to
attribute features in the spectral function to their atomic ori-
gin. In the case of moderately to strongly correlated materials,

Figure 3 shows the self-consistent GW approximation to
the local spectral function A'°(w), as defined in Eq. (31),

obtained for NiO (top panel) and MnO (bottom panel). We
show curves for three different momentum discretizations,
2x2x2,4x4x4, and 6 X 6 x 6, to examine finite-size

effects. These appear to be substantial between 2 x 2 x 2
and 4 x 4 x 4 lattices. Increasing lattice size further to 6 x
6 x 6 shows the saturation of the local density of states. In
particular, in both NiO and MnO the size of the gap shrinks
substantially (~2 eV) as the system size is enlarged from 2 x
2 x 2to4 x 4 x 4, with an additional correction of 0.5 eV as
the system size is enlarged to 6 x 6 x 6. An extrapolation in
the inverse linear size to the infinite system size limit suggests
that an additional reduction of the gap size by 0.5-0.7 eV is
present when comparing the 6 x 6 x 6 lattice to the thermo-
dynamic limit. Consequently, when analyzing all our results
from the embedding procedure presented in the subsequent
sections one should be aware that they will be affected by the
presence of the finite-size effects and the resulting gaps should
be “rescaled” by an additional 0.5-0.7 eV. Additional basis

where band-structure methods may become unreliable, this
attribution may break down, due to both broadening effects
and shifts of the spectral functions caused by the presence of
higher level correlations.

GW is expected to remain reliable for stronger correlation
strengths than standard band-structure calculations. Conse-
quently, for NiO in Figs. 4 and 5, we attempt to assign an
atomic orbital character to the features present in the GW
spectrum. Figure 4 presents the orbitally resolved spectral
function in canonical orthogonal orbitals at the I point while

Fig. 5 shows results in symmetric orthogonal orbitals for a
point in the A direction at

% distance between I" and X.
Note that in the canonical orthogonal basis, orbitals do not

correspond to a single atomic state but to a linear combination
of atomic states. However, in our case they are dominated (for
the curves shown on the level of 70%—-80%) by a specific

atomic state. We label the important orbitals near the Fermi
085105-6
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FIG. 5. Orbitally resolved k-space spectral function obtained
with GW in the symmetrical orthogonal basis at % of the distance
between I and X (i.e., closer to X). Dashed black line: experimental
ARPES data [45].

energy by the dominant atomic orbital character. Figure 4 su-
perimposes the experimental ARPES data from Ref. [45]. Ex-
perimental data are shifted such that the highest occupied state
lies at zero energy. As discussed earlier, our GW calculations
suffer from the finite-size effects identified in Fig. 3 estimated
to be of 0.5-0.7 eV, introducing an additional relative shift.
Nevertheless, even with this shift a clear identification of the
main feature with atomic orbitals is possible. We find that
the dominant peak stems from the Ni #,, orbitals, whereas the
states closest to the Fermi energy contain a mixture of both
nickel and oxygen p states.

Figure 5 shows data for the point at % distance along the A
direction, between the I" and X points, along with identifica-
tions of dominant atomic contributions. Ni; and Ni, denote
the two antiferromagnetically ordered nickel contributions.
Data are obtained in the symmetric orthogonal orbital basis,
where we find that atomic orbital character can be attributed
almost uniquely (~95%) for each of the linear combinations
present in this basis. While ARPES shows a sequence of
clearly distinct peaks, our results are smoother and only allow
a general attribution of the dominant contribution in a broad
energy window, which we indicate in the plot.

We emphasize here that these GW results, when accounting
for the systematic error due to finite-size effects, are quali-
tatively correct for NiO. This means that as a result of em-
bedding procedure, we only expect small improvements and
we predict that SEET results should remain mostly unchanged
when compared to GW.

C. Effect of strong electron correlations in NiO

We now turn our attention to results from our embedding
construction. The identification of the orbitals near the Fermi
level in Figs. 4 and 5 suggests a choice of active orbital set
as Ni eg, Ni 15, and O p states. These orbitals will be used to
construct impurity models in SEET.

We perform the SEET embedding in symmetrical orthog-
onal orbitals, where (i) the attribution to atomic orbital char-
acter is straightforward and (ii) off-diagonal hybridization el-
ements are 2-3 orders of magnitude smaller than the diagonal
ones. Note that in SEET we do not use any Wannierization

TABLE I. Choice of the active space for NiO. Imp denotes the
number of distinct disjoint impurity problems. Orb stands for the
number of impurity orbitals in the largest impurity problem.

Name Imp Orb Description

a 2 2 Nije,: Nise,

b 1 4 Nl| €g + Nizeg

[¢ 4 3 Nileg; Nizeg; Ni]l’zg; Nizlzg

d 6 3 Nileg; Nize‘g; Ni]lzg; Nizfzg; 01]9; Oz[)

procedure as it is commonly done in LDA+DMFT or
GW +EDMFT. The ability to embed multiple impurities is
crucial, as nonperturbative impurity solvers such as the ED
solver used here scale exponentially in the number of impurity
orbitals.

Table I shows four choices of embedded orbital subsets.
Subset a consists of two disjoint impurities on each of the
nickels, made out of two Ni e, orbitals. Subset b combines
those two impurities into a single four-orbital impurity. Subset
c builds four impurities consisting of two disjoint Ni e, and
two additional disjoint Ni #,, orbitals (each with three impurity
orbitals). Subset d supplements the four impurities of subset
¢ with two additional disjoint three-orbital impurities of the
oxygen p orbitals.

1. Local DOS for NiO

Figure 6 shows the orbitally resolved local spectral func-
tion of NiO for the four impurity choices of Table I. Shown are
also the orbitally resolved GW results corresponding to Fig. 3,
as well as experimental local spectral functions obtained with
x-ray photoemission (XPS) and bremsstrahlung-isochromat-
spectroscopy (BIS) [44]. Note that the gap edge of XPS is
shifted to zero energy and the relative height of XPS and
BIS data is arbitrary. The experimental error present in this
experiment [44] is estimated as 0.6 eV and the resulting band
gap, measured at half-maxima of both XPS and BIS peaks, is
estimated to be 4.3 = 0.6 eV.

Figure 6(a) shows results from two disjoint two-orbital
impurities that only consist of the nickel e, states. Substantial
shifts that arise due to embedding are evident for e, states. All
other orbitals are adjusted only via the Dyson equation (8),
and these changes are small. As discussed previously, the GW
results and consequently SEET results are biased by finite-
size effects. Introducing a correction due to fine-size effects
will shrink the current GW gap (which is around 5.6 eV for
the 6 x 6 x 6 lattice when measured at half peak height) by
0.5-0.7 eV resulting in the GW band gap between 5-5.5 eV.
SEET widens this gap to 6.5-6.7 eV resulting in a band gap
of 5.5-6.0 eV after accounting for finite-size effects.

Results for Fig. 6(b) are obtained with a single four-orbital
impurity that contains the same active orbitals as subset a
but they are contained within a single impurity. Plots from
Fig. 6(b) are essentially indistinguishable from Fig. 6(a), indi-
cating that cross correlations at the GW level are sufficient for
describing the coupling between those two disjoint impurities.

In Fig. 6(c), where additional #,, states are considered, a
small change of the magnitude but not of the overall peak
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FIG. 6. Orbitally resolved SEET local spectral function for NiO. Panels in the plots correspond to impurity choices from Table I.
[Specifically, the panel (a) corresponds to impurity choice (a), etc.] Dashed-dotted lines: GW, solid lines: SEET; dashed lines: experimental

data (see Ref. [44]).

position is visible for Ni #,, while the ¢, orbitals are compara-
ble to the ones in Figs. 6(a) and 6(b).

Adding additional correlations on the oxygen p orbitals
[in Fig. 6(d)] substantially shifts all states including Ni #,,
and e, states, causing a buildup of the shoulder density for
frequencies between —5 and —10 eV. Here, the contributions
from Ni #,, together with oxygen p start to be responsible for
this buildup.

Note that these results allow us to determine the atomic
character of peaks and the size of the band gap is reasonably
matching the experimental results when accounting for finite-
size effects, experimental uncertainties of 0.6 eV, as well as
possible inaccuracies stemming from using a Gaussian basis
set.

2. Momentum-resolved DOS for NiO

Figure 7 shows k-resolved spectral functions at I and
at % distance between I' and X for the impurity choices of
Table I. These calculations and plots were performed in the
symmetrical orthogonal basis. The spectral function at the I"
point shows similar behavior to Fig. 6. However, a notable
difference is in the Ni 4s orbital. This orbital while present
near the gap edge at the I" point, it rapidly moves to higher
energies away from I' point thus contributing only little to
the local spectral function. Data between I" and X look more
complicated as the nickel #,, and oxygen p states split away
from the high-symmetry I'" point. The assignment of orbital

character that arises due to SEET is largely consistent with the
angle-resolved photoemission experiment presented in Fig. 2
of Ref. [45]. Only the features at low energies (lower than
—8 eV) cannot be assigned without doubt, most likely due
to the deficiencies of analytical continuation and artificial
broadening of existing features at these energy ranges.

3. Local magnetic moment in NiO

Finally, we briefly discuss the staggered magnetization of
NiO. A Mulliken analysis (see, e.g., [109]) yields the values
of Table II. It is evident that the most important contribution
to magnetism comes from the Ni e, states, which we treat
nonperturbatively in all four choices of active space. Changes
between different impurities (corresponding to the influence
of strong correlations on #,, or oxygen p orbitals) are much
smaller.

TABLE II. Local magnetic moment of Ni from Mulliken analy-
sis. Impurity choices a, b, ¢, and d correspond to the rows of Table 1.
The experimental data are obtained from Refs. [110,111].

GW+SEET
Expt. HF GW a b c d
NiO 1.77,1.90(6) 1.816 1.701 1.750 1.751 1.752 1.754
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FIG. 7. k-resolved SEET (solid lines) and GW (dashed lines) spectral functions for NiO at I (left column) and at % distance between I'
and X (right column). Different impurities were chosen in each of the rows. These impurity choices correspond to the rows of Table I, with
first to fourth rows corresponding to impurities chosen in a—d rows of Table I, respectively.

D. Effect of strong correlations in MnO
1. Local DOS for MnO

For MnO solid, similarly to NiO, we solve the problem
in symmetrical orthogonal orbitals and, after identification of
the relevant orbitals, choose a set of disjoint impurities for
higher-order treatment within SEET. Active space choices a,
b, and c (see Table III) correspond to a, c, and d in Table L.

For MnO, active space d combines some of the Mn e, orbitals
with neighboring oxygen p states.

We emphasize that while an a priori identification of the
best orbital combination may in principle be possible, here we
make our orbital choice based on physical/chemical intuition
and the available data from GW calculation that precedes
SEET.

085105-9



ISKAKOV, YEH, GULL, AND ZGID

PHYSICAL REVIEW B 102, 085105 (2020)

TABLE III. Choice of the active space for MnO. Imp denotes
the number of distinct disjoint impurity problems. Orb stands for the
number of impurity orbitals in the largest impurity problem.

Name Imp Orb Description

2 2 Mn, e,; Mnye,

4 3 Mn;e,; Mnye,; Mn 5, Mnsty,

6 3 Mn,ey; Mnse,; Mnity,; Mnoty,; O p; Ozp

6 3 Mnldzz + O]])Z; Mnldxz_yz + Olpx» Pys Ml’l]lzg

Mnyd2 + Oyp;; andxz,yz + Oypx, py: Minaty,

o0 o

Figure 8 shows the orbitally resolved local spectral func-
tion of MnO for the four impurity choices of Table III
Figure 8(a) shows that similarly to the case of NiO, there is a
significant adjustment of the Mn e, orbitals when embedding
is performed. Adding only Mn #5,, as illustrated in Fig. 8(b),
keeps e, states unchanged and introduces additional renormal-
ization in f, states, as expected. However, adding oxygen p
orbitals [as shown in Fig. 8(c)] has a large effect and leads to
adjustment of all the bands, both e, and #,,. Embedding active
orbitals from subset d [in Fig. 8(d)] with combined Mn and O
orbitals has little effect when compared to Fig. 8(c).

In Ref. [56], to define the band gap from experimental
XPS and BIS data, the top of the valence band is taken at
50% of the intensity of the shoulder and the end of the gap
is defined at 10% intensity of the rising Mn 3d structure.

25

Energy [eV]

This yields the experimental band gap of 3.9 + 0.4 eV. The
GW band gap using the same method of evaluating it as in
experiment is approximately equal to around 5.0 eV. Note
that as we discussed previously, the GW result itself displays
finite-size effects that, on a 6 x 6 x 6 lattice, we estimate to
be around 0.5-0.7 eV. After accounting for these effects, we
estimate the GW gap to be between 4.3—4.5 eV. SEET inherits
the finite size and yields the band gap of 4.8-5.0 eV after
accounting for them.

2. Momentum-resolved DOS for MnO

Figure 9 shows k-resolved spectral functions at I (left
column) and at % distance between I'" and X (right column)
for the impurity choices of Table III. Note that similarly to
our previous discussion concerning local density of states
(DOS) of MnO inclusion of both e, and #,, orbitals into
embedding subspace (shown in the second row) leads to a
large adjustments of these bands. However, adding oxygen p,
with a large contribution near the Fermi energy, has even a
larger effect resulting in substantially renormalized bands as
shown in the third row. This is different from the case of NiO,
where the inclusion of oxygen orbitals led to much smaller
changes. As observed previously for local DOS, embedding
active orbitals from the subset d (fourth row) with combined
Mn and O orbitals has little effect when compared to subset ¢
(presented in the third row).

25

20

15

DoS

DoS

Energy [eV]

FIG. 8. Orbitally resolved SEET local spectral function for MnO with impurity choice of Table III. Panels in the plots correspond to
impurity choices from Table III. Specifically, the panel (a) corresponds to impurity choice (a), etc. Dashed-dotted lines: GW, solid lines:

SEET; dashed lines: experimental data (see Ref. [56]).
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FIG. 9. k-resolved SEET (solid lines) and GW (dashed lines) spectral functions for MnO at I" (left column) and at % distance between
I' and X (right column) for the impurity choices of Table III. Different impurities were chosen in each of the rows. These impurity choices
correspond to the rows of Table III, with first to fourth rows corresponding to impurities chosen in a—d rows of Table III, respectively.

3. Local magnetic moment in MnQO TABLEIV. Local magnetic moment of Mn from Mulliken analy-
sis. Impurity choices a, b, ¢, and d correspond to the rows of Table III.

Staggered magnetic moments from a Mulliken analysis are The experimental data are obtained from Refs. [110,111].

shown in Table IV. In contrast to NiO, where only changes

due to inclusion of e, were observed, the major cor.rectlon to GW -+ SEET
GW comes here from both Mn e, and Mn #,, orbitals to an
equal degree. This effect can be explained by the fact that in Expt. HF  GW a b c d

MnO both 7, and ¢, states are partially occupied, whereas — n1.6 479 4583) 4937 4.870 4.887 4.897 4897 4.897
in NiO only e, states contribute to the local magnetization
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since the #,, ones are occupied. Correlations from oxygen do
not influence the population on Mn sufficiently to have an
influence on the magnetization.

V. CONCLUSIONS

We have presented results from our implementation of the
self-energy embedding theory for realistic materials. For both
solid NiO and MnO, our results agreed with experimental data
reasonably well and were used to assign orbital character to
the local DOS and ARPES spectra.

SEET is thermodynamically consistent and conserving
and, after the selection of active orbitals that is done on the
basis of a previous weakly correlated calculation, it does not
contain any ad hoc choices of parameters such as a choice
of density functional, downfolding scheme, double-counting
correction, or ad hoc truncation and readjustment of screened
interactions.

We have shown that in SEET, we do not need to rely on
quantum impurity constructions with more than a few orbitals.
While treatment of large impurity problems is possible using
modern quantum chemistry impurity solvers such as zero-
temperature coupled cluster solvers, the results of such a
treatment may not be correct when correlations within the
impurity are strong. In SEET, the size of the impurity is

moderately small since much of the weakly correlated physics
including screening at the level of GW is absorbed properly
when the embedding condition from Eq. (25) is defined.

At present, when running SEET, some of the methodologi-
cal aspects still require physical insight (such as the choice of
active spaces), or suffer from technical limitations (such as the
analytic continuation step), or are otherwise computationally
expensive (such as the simulation with larger Gaussian bases
or more momentum points); however, we believe that despite
these short-term technical limitations SEET is a practicable
embedding theory that can be applied to interesting correlated
materials.
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