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Changming Yue" and Philipp Werner"
Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

® (Received 1 April 2020; revised 4 June 2020; accepted 15 July 2020; published 3 August 2020)

The Hund’s coupling in multiorbital Hubbard systems induces spin freezing and associated Hund metal
behavior. Using dynamical mean-field theory, we explore the effect of local moment formation, spin, and
charge excitations on the entropy and specific heat of the three-orbital model. For fillings 2 <n < 3 and
low temperature, we demonstrate a substantial enhancement of the entropy in the spin-frozen metal phase to
values comparable to the half-filled Mott insulator. We also discuss the appearance of entropy plateaus and
peaks in the specific heat associated with the activation of spin and charge fluctuations at high temperature.
The temperature scale for charge excitations is almost independent of filling and given by ~0.2U, with U
the intraorbital repulsion. Local spin excitations become relevant for filling n > 1 and their characteristic
temperature is proportional to the Hund coupling J, with a filling-dependent prefactor. The analysis of the specific
heat in the atomic limit yields accurate predictions for these features in the strong-coupling regime.
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I. INTRODUCTION

The three-orbital Hubbard model [1] is relevant for the
description of transition-metal compounds with partially filled
I, shells [2]. For example, with one electron filling, it
describes the physics of SrVO; [3-6], with two electrons,
SrMoOs; [7,8], and at half filling, StMnO; [9,10]. The case
of two holes in the #, shell might correspond to SrRuO;
[11,12], and that of one hole to SrRhO; [13], to mention
just a few widely studied perovskite compounds. The same
model is also used in studies of alkali-doped fullerides with
half-filled molecular orbitals with #;,, symmetry [14—18] and
for the description of lacunar spinels GaM4Xg, which are
characterized by MyXy “molecules” [19-22]. More gener-
ally, the three-orbital Hubbard model plays an important role
in theoretical studies which try to reveal and quantify the
correlation effects resulting from the Coulomb interaction in
a multiorbital setup [23-27]. For a given electron number,
the Hund’s coupling J differentiates the energies of atomic
configurations with different orbital occupations and spin
states. In a lattice environment, it leads to local moment
formation and bad metal behavior with a nontrivial filling and
temperature dependence [23,27]. One reason for the dramatic
effect of J on the metallic state of multiorbital systems is the
fact that the screening temperature drops exponentially with
the magnitude of these local moments [1,28-33].

Previous dynamical mean-field studies of the three-orbital
Hubbard model in the paramagnetic state have demonstrated
the existence of a spin-freezing crossover between a con-
ventional Fermi-liquid-type metal in the weakly correlated
and strongly doped regime to a bad metal state with frozen
magnetic moments near half filling [23,27,34]. This crossover
regime is characterized by peculiar non-Fermi-liquid expo-
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nents, such as a self-energy which grows like the square root
of frequency in a wide energy window. This crossover has
significant effects on the normal state properties of stron-
tium ruthenates [23,35-39], iron pnictides [40—44], and other
correlated materials [45,46]. In models with negative Hund’s
couplings, relevant for the description of fulleride compounds,
an analogous orbital freezing crossover has been observed
[18,47].

Subsequent work has focused on clarifying the low-
temperature properties of these models and showed that the
screening of the orbital and spin moments in the metallic
phase eventually leads to Fermi-liquid behavior [48-50]. It
has also been shown that the enhanced local spin or orbital
fluctuations in the crossover regime to the frozen moment
state results in unconventional superconducting states at low
temperature, while the frozen moment regime itself is sus-
ceptible to magnetic or orbital order [34,51,52]. This pairing
mechanism is interesting because it naturally explains the
generic features of the phase diagrams of unconventional
superconductors, namely, a superconducting dome next to a
magnetically ordered phase, and a bad metallic state with
non-Fermi-liquid properties at elevated temperatures [34].

One aspect which has not been studied in-depth is the fate
of the frozen moment regimes and the associated crossovers
at elevated temperatures. Above some temperature scale con-
trolled by J, we expect the thermal activation of local spin
or orbital excitations, which should wash out the freezing
effect. The entropy of the system should be sensitive to the
appearance of long-lived magnetic or orbital moments and
can provide new perspectives on freezing-related phenomena.
The specific heat, as a closely related quantity, measures
fluctuations in the energy and can thus detect the activation
of spin, orbital, and charge excitations at high temperatures,
as well as the formation of a Fermi-liquid state at low
temperatures.

Recent studies have considered the entropy of multiorbital
impurity models in the very low-temperature regime and
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revealed plateaus associated with the appearance of un-
screened moments [53,54]. Here, we present a systematic
study of the entropy of the three-orbital lattice system, fo-
cusing on the intermediate- and high-temperature regime and
on the case of ferromagnetic Hund’s coupling. Our results
for the infinitely connected Bethe lattice reveal relatively
broad crossovers associated with the enhancement of the spin
entropy in the vicinity of Mott phases, below the activation
temperature for local spin excitations. Based on an analysis
of the atomic problem, we clarify how the activation tempera-
tures for spin and charge excitations and the associated peaks
in the specific heat depend on the model parameters.

The paper is organized as follows. In Sec. II, we describe
the model and the method used to compute the entropy and
specific heat. In Sec. III, we present the results for the entropy
and specific heat of the three-orbital model, while Sec. IV con-
tains a discussion and conclusions. Technical details related to
the simulation method and data analysis can be found in the
Appendices.

II. MODEL AND METHOD
A. Model

We consider a three-orbital Hubbard model on an infinitely
connected Bethe lattice. The local Hamiltonian reads Hj,. =
Hiy — 1 Za’g Ng.o, With a density-density interaction term

I_Iinl = Z Una,T”ot,i
a

=+ Z [U/nayo'nﬂy—a + (U/ - J)na,anﬁ.a]~ 1

a>f,0

Here, o labels the orbital and o the spin, n, , = cl,gca,g is
the orbital and spin-dependent density, U is the intraorbital
interaction, U’ is the interorbital same-spin interaction, J is
the Hund’s coupling, and p is the chemical potential. We
use U’ = U —2J. Because of the high numerical cost of
evaluating the entropy, we do not consider spin-flip and pair-
hopping terms [55]. This allows us to use the efficient segment
formulation of the hybridization expansion continuous-time
Monte Carlo (CT-HYB) method [56,57] for the solution of
the dynamical mean-field theory (DMFT) [58] equations,
which become exact in the limit of infinite dimensions [59]
(in this limit, the self-energies become local [60,61], also in
the multiorbital case, which enables an exact mapping to an
auxiliary quantum impurity model [62]).

In the case of an infinitely connected Bethe lattice, the
DMEFT self-consistency equations simplify to

Atx,(r == tzGimp,a,aa (2)

where Gimp,q«,o s the Green’s function for the DMFT impurity
problem defined by the local term Hj,. and the hybridization
functions A, . The density of states of the noninteracting
problem is semicircular with bandwidth 4¢. In the following,
we use D = 2t = 1 as the unit of energy.

Depending on the filling, temperature, interaction strength,
and sign of J, the three-orbital Hubbard model may ex-
hibit antiferromagnetic or ferromagnetic spin or orbital order
[24,34,52,63], spin-singlet or spin-triplet superconductivity
[34], as well as symmetry breaking at the two-particle level

[18]. In the present study, we consider J > 0 and suppress
long-range orders, i.e., restrict the solution to the paramag-
netic, orbitally degenerate normal state.

B. Calculation of the entropy

We compute the entropy per site at density n and tempera-
ture T using the formula
o0 C , T/
v(n, T") dT’.
T/
where the specific heat Cy (n, T') is calculated as the derivative

of the total energy per site E(n, T) with respect to tempera-
ture,

S(n,T):S(n,oo)—f 3)
T

0Ewor(n, T)

Cy(n,T)= 3T . “)
We choose the infinite-temperature entropy (rather than the
zero-temperature value) as the reference because the CT-HYB
method cannot access arbitrarily low temperatures. For a
three-orbital lattice model with N sites (N — o0o) and den-
sity n, there are Cg]’\\,’ ways of placing nN electrons on 6N
spin orbitals. At T = oo, all these configurations are equally
probable and, by using Stirling’s formula, we find

1 nN
S(n, 00) = lim N In Cgy

(-1 o

6[=in % +
= — —in -
6 6
The total energy can be measured in CT-HYB as [64]

Eio = <Hinl> - T(k), (6)

where (k) is the average total perturbation order of the hy-
bridization expansion and 7T is the temperature (—7 (k) is
the kinetic energy). Since Hjy is of density-density type, the
interaction energy can be measured accurately through the
sampling of segment overlaps [56], (Hin() Z Uij(ninj),

where i and j is a combined spin- 0rb1tal index. At very high
temperatures, T 2 Ty = U/2, the energy and specific heat of
the system can be well approximated by a Hubbard-I approxi-
mation (see Appendix A). Hence, in practice, we split the cal-
culation of the entropy into three parts, S(n, T) ~ S(n, 00) —

e WdT/ — [ &I g7 so that we only have to
use CT-HYB 51mulat10ns in the temperature range from
T to TH.

In the noninteracting case, the density of states is temper-
ature independent, so that the total energy (= kinetic energy)
can be numerically calculated from the n- and T-dependent

occupation.

C. Numerical procedure

We first compute the total energies with high accuracy at
many fixed temperatures on a roughly uniform density grid
n=~0.1,0.2,...,2.9,3.0. This density grid is further refined
near the integer fillings n = 1, 2, 3 if these solutions are Mott
insulating and hence dE(n, T)/dn is discontinuous. The
temperature grid is coarsely spaced for T >> J and densely
spaced for T < J, with a particularly fine grid around J/2 and
J in cases where local spin excitations result in a peak in the
specific heat near these energy scales (see Appendix E).

085102-2



ENTROPY AND SPECIFIC HEAT OF THE INFINITE- ...

PHYSICAL REVIEW B 102, 085102 (2020)

3.5 :
Fit, T=0.01
3.0/ CT-HYBT=0.01
Fit, T=4.0

2.5/ CT-HYBT=4.0 o

Etot
»
o

0.0+
os U=2,J=0.50
0.0 1.0 2.0 3.0
25.0 ! !
Fit,T=0.01 (b)
CT-HYB,T=0.01 e
20.0 Fit, T=4.0

CT-HYB,T=4.0 o

U=8,J=0.25

T
n 2.0 3.0

%0 10

FIG. 1. Tenth-order polynomial fit along the n axis (lines) to
the total energy E(n, T) computed by CT-HYB (dots). Here we
show representative data for low temperature (7 = 0.01) and high
temperature (7' = 4.0) for (a) U =2.0,J = 0.50 and (b) for U =
8.0, J = 0.25. In the latter case, due to the discontinuities at n = 1
and n = 2, separate fits are performed for n € (0, 1), n € (1, 2), and
n € (2, 3), respectively.

The Ey(n, T) data on this nonuniform n-7 grid are in-
terpolated to a fine and uniform grid using fitting functions.
More specifically, the data for fixed temperature are inter-
polated along the n axis using a tenth-order polynomial,
E(n,T) = 21111():1 cm(Ti)n™, as shown in Fig. 1. In this way,
the entropy is obtained on an equidistant grid of 301 n
points {0.00, 0.01, 0.02, ..., 2.99,3.00}. If Mott-insulating
solutions exist at n = 1 and 2, separate fits are performed
for n € (0,1), n e (1,2), and n € (2, 3); see Fig. 1(b). In a
subsequent step, the resulting E, data for fixed filling are
fitted along the T axis to eliminate small fluctuations. For the
low-temperature data points away from Mott phases, we use
a polynomial of 7 [65] and calculate Cy (T) by analytically
taking the derivatives of this polynomial. If the system is in or
very close to a Mott phase, we fit the data to a function of the
form

M
Ea(T)=E@©0)+ Y cue ™7, )

m=1

where E(0), A, and c,, are parameters chosen to minimize the
least-squares errors, and M is chosen as 1/4 of the number
of data points [66,67]. At high temperature, the noise is very
small and no interpolation is needed in practice, although the
fitting to Eq. (7) can still be used.

The simulations are performed using a modified version of
the iQIST library [68,69]. Since the entropy calculation re-
quires accurate data from very low to very high temperatures,

we employ some techniques to improve the sampling and
measurement efficiency. On the one hand, to reduce the noise
in the standard imaginary-time measurement of the Green’s
function at high T or large U, we use a measurement proce-
dure based on virtual updates, as detailed in Appendix B. This
estimator measures the atomic contribution to the Green’s
function when the average expansion order (k) — 0. On the
other hand, different kinds of global updates are used to avoid
trapping in certain configurations. Besides the previously
proposed global spin-flip update [57,70] and the global-shift
update [71], we use two additional global updates, which we
call double-swap update and global-shift update. The detailed
procedures are presented in Appendix C. The acceptance rates
of these global updates can strongly depend on the parameters
n, T, U, and J. In practice, we measure their acceptance
rates at the thermalization stage. Those global updates, which
are rarely accepted (less than 0.1%), are disabled during the
sampling.

Finally, the computational effort can be reduced by en-
suring a fast convergence of the DMFT loop. For noninteger
fillings, instead of using a simple mixing between the Green’s
functions of subsequent iterations, we use Broyden’s method.
This procedure has been introduced in Ref. [72] and it can
lead to a speed-up by up to a factor of three in well-behaved
cases.

III. RESULTS

A. Entropy surfaces

We consider two representative parameter sets for the inter-
acting three-orbital system: (i) U = 2,J =0.5and (ii) U = 8§,
J = 0.25. The first choice corresponds to a model which, at
zero temperature, is Mott insulating at half filling, but metallic
away from half filling, with a T-dependent crossover from a
spin-frozen to a Fermi-liquid metal phase [23,27]. The second
choice corresponds to a strongly correlated system that is
Mott insulating at fillings n = 1, 2, and 3. The smaller J/U
ratio in this model results in a clear separation between the
temperature scales associated with the activation of spin and
charge degrees of freedom. In order to reveal the correlation
effects, we will also compare the results from models (i) and
(ii) to the noninteracting system.

Contour maps of S(n, T') are shown in the left two columns
of Fig. 2, with the first row corresponding to the noninter-
acting model (U = J = 0), the second row to model (i), and
the third row to model (ii). For very low fillings, interaction
effects are negligible and the entropy contours of the three
models are almost identical. Clear differences, however, ap-
pear near half filling. Here, at low temperature, the interacting
models are in a Mott-insulating state with three electrons per
site. While the Hund’s coupling results in aligned spins, the
orientation of the resulting spin-3/2 moments is random in
our paramagnetic simulations, so that the system exhibits a
In 2 entropy per site (note that the spin-rotation invariance is
broken in the model with density-density interactions). An
even larger enhancement of the low-7 entropy is found in
model (ii) near filling n = 2 and n = 1. Here, due to the orbital
degree of freedom, there are six degenerate states with spin-1
and spin-1/2, respectively, resulting in a In 6 entropy per site
at low temperatures.
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FIG. 2. Contour maps of the entropy per site S(n, T) and color maps of the specific heat per site Cy (n, T') as a function of filling and
temperature. (a)—(c) The noninteracting system; (d)—(f) model (i) (U = 2, J = 0.50); and (g)—(i) model (ii) (U = 8, J = 0.25). Dashed lines
with dots in (d),(e) and (g),(h) show the locations of the maxima of A x,. (determined as a function of » at fixed T'). The gray scale of these

points represents — log,, A Xjoc-

A zoom into the low-temperature behavior of model (i)
is shown in Fig. 3(a), with the entropy contour line corre-
sponding to In2 highlighted (thick dashed line). Evidently,
the entropy of the correlated metal is enhanced at low tem-
peratures (T < 0.2) and low dopings (2 < n < 3) compared
to a conventional Fermi liquid, and comparable in magnitude
to the entropy of the n = 3 Mott insulator. In fact, in a Fermi
liquid, the entropy behaves as S(n, T) = y (n)T, with y(n) =
limy_oCy(n, T)/T, and in the absence of spin freezing we
would expect y(n) o 1/|n — 3|. This scaling has been ex-
plicitly demonstrated for the single-band Hubbard model in
Ref. [73]. It implies entropy contours which are straight lines
emanating from the point (n = 3, T = 0). For large enough
doping (n < 1.5), the low-entropy contours in Fig. 3(a) indeed
exhibit this expected Fermi-liquid behavior, but for n 2 1.5,
one observes a downturn of the entropy lines and the forma-
tion of a high-entropy plateau with a value of approximately
In2. This is the manifestation of spin freezing in the doping
and temperature dependence of the entropy. Indeed, this filling
and temperature range correspond to the spin-frozen regime of
this three-orbital system, which has been identified in previous
DMEFT investigations via an analysis of the self-energy [23],
local spin susceptibility [34], and quasiparticle weight [27].

At very low temperatures (not accessible with CT-HYB),
the frozen moments will be screened [33] and the entropy
of the resulting strongly renormalized Fermi liquid will go
to zero as T — 0. This physics has been demonstrated and

explored in recent DMFT studies employing the numerical
renormalization group (NRG) impurity solvers [49], and in
related works on multiorbital impurity models [53,54].

Cuts of the entropy surfaces at fixed temperatures are
shown in Fig. 4. The blue line in Fig. 4(a) illustrates the spin-
freezing-related increase of the entropy in model (i) and the
approximate In 2 plateau in the filling range 2 < n < 3. The
low-temperature results for both models furthermore confirm
the theoretically expected entropy values of the Mott phases
at integer fillings (see horizontal dashed lines). By comparing
the entropies for different temperatures to the noninteracting
result, we see how local moment formation in and near the
Mott phases leads to a substantial increase in the entropy at
low temperatures, while the suppressed charge fluctuations
in the interacting systems reduce the entropy at very high
temperatures.

B. Spin freezing

As shown in Figs. 5(a)-5(c), at low temperatures, the local
spin susceptibility

B
fioe = /0 d7(5.(2)S.(0)) ®)

for model (i) starts to increase rapidly with filling around
n ~ 1.8. This increase of i, is the direct manifestation of
spin freezing. In Ref. [34], the location of the spin-freezing
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FIG. 3. (a) Contour map of the entropy of model (i) (U =2,J =
0.50) at low T'. The increment of the contour lines is % The thick
black dashed lines (including the one at n = 3) show the In 2 contour,
while the orange dashed line is a guide to the eye. The points with
variable gray scale indicate the locations of the maxima of Ay, at
fixed T (spin-freezing crossover line). The red dash-dotted line is a
fit of the form a(3 — n)* to this line, using the four data points with
the lowest 7. (b) The magnitude of Ay, along the spin-freezing
crossover line, plotted as a function of temperature. The green arrow
indicates the temperature corresponding to the spin-excitation peak

inCy(n,T).

crossover has been defined by measuring the maximum in the
fluctuating contribution to the local spin susceptibility,

AXioe = Xioc — B(S:(8/2)S.(0)). &)

This quantity is shown by the blue lines in Fig. 5 and exhibits
a peak at low temperatures in the filling region where the local
spin susceptibility starts to grow, i.e., in the region where local
moments start to form.

We indicate the thus-defined spin-freezing crossover points
by the gray dots in Figs. 2 and 3. In Figs. 4(a) and 4(b), we
show the filling corresponding to the peak in A xjo. for model
(i) by the blue arrow. It is clear from these dotted lines and
arrows that the spin-freezing crossover indeed explains the
enhancement of the entropy near n ~ 2 at low temperature.

Note that the amplitude and sharpness of the peak in A yjoc
decreases with increasing temperature, such that a reasonably
sharp crossover point can only be defined for 7 < 0.2. In
Fig. 3(b), we plot Ay as a function of T along the spin-
freezing line. Around 7 =~ 0.2, there is a kink in this log-
log plot, which marks a temperature T that separates the
temperature range with a sharp spin-freezing crossover (T <
Tis) from the higher-temperature region with no well-defined
spin-freezing crossover. As we will see below, this tempera-
ture corresponds to the activation temperature for local spin
excitations in model (i) at n = 2 [green arrow in Fig. 3(b)].
A clear effect of the spin-freezing crossover on the entropy
contours is, however, only visible for temperatures that are
ten times lower since the spin-freezing line crosses the In2
contour near T =~ 0.025.

As a side remark, we note that the T -n behavior of our spin-
freezing line seems to be different from the results reported in
Fig. 15 of Ref. [48], which shows a spin-screening temper-
ature of the form (3 — n)* with an exponent « in the range
from 2 to 3 (depending on parameters). A power-law fit to the
lowest-temperature points of our spin-freezing crossover line
yields an exponent « ~ 7.5-8.5. We see two possible reasons
for this discrepancy: (a) the actual power-law scaling of this

-(a) In(64) - (b)... ~(c)
4.00] 4.00] 4.00
] Non-nt. —— ] 1
4 - U=2,)=0.50 —— 4| — q -
300 T=001 ym2-050 300 T=0.05 300 T=0.10
mz.oq In(6) 2.00] 2,00
1.00] /l\JnLZ) 100, v 1.00]

00850 o050 1.00 150 200 250  3.00°%00 050 ~ .00

: 0.00- :
150 " 200 250  3.00°%00 o050 1.00 150 " 2.00 250 " 3.00

A(d) 1(e) 1M
4.00] 4.00] 4.00]
3.00 T=0.20 300 T=0.50 3.00] T=2.40
92, 00, 2,00/ 2.00]

1.00] /

0%%0 o050 100 150 ' 200 250 ~ 3.00°%00 " obo 160

‘ 0.0
150 200 250  3.00°%00 o050  1.00 17.*33 200 ' 250 ' 3.00

FIG. 4. Filling dependence of the entropy per site S(n, T') at six different temperatures, 7 = 0.01, 0.05, 0.10, 0.20, 0.50, 2.40, respectively.
The red lines are for the noninteracting system, the blue lines for model (i) (U = 2,J = 0.50), and the green lines for model (ii)) (U = 8,J =
0.25). The blue solid arrows in (a) and (b) indicate the filling at which A yj,. reaches its maximum [see Figs. 5(a) and 5(b)].
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FIG. 5. Filling dependence of the local spin susceptibility at (a),(d) 7 = 0.01, (b),(e) T = 0.05, and (c),(f) T = 0.20. (a)—(c) model (i)
(U =2,J =0.50) and (d)—(f) model (ii) (U = 8, J = 0.25). The red line shows y,., the green line shows the frozen moment contribution
B(S:(8/2)S:(0)), and the blue line shows the fluctuating contribution A y,.

crossover line may be restricted to temperatures which are
lower than the T = 0.005 reached in our study, and (b) the
exponent « is likely larger in the model with density-density
interactions considered here than in the spin-rotation-invariant
model of Ref. [48]. In fact, it was previously shown that the
model with density-density interactions has a more extended
spin-freezing region and a sharper onset of the spin-frozen
regime [34].

In model (ii), with three Mott-insulating solutions at low
temperatures, local moments form near n =1, 2, and 3,
resulting in several maxima in Axj. [see Figs. 5(d)-5(f)].
As temperature increases, these maxima become weaker and
shift away from the integer fillings, which eventually results
in three weak humps near fillings 0.5, 1.5, and 2.5. The
spin-freezing crossover associated with the n = 3 Mott state,
evident in the doping evolution of ), also exists around n ~
2, similar to the case of model (i) (compare upper and lower
panels in Fig. 5), but it is masked in A xjo. by the presence
of the n = 1 and n = 2 Mott states. Hence, the meaning of
the gray dots in models (i) and (ii) is different, especially
at the higher temperatures, and only in model (i), where the
spin freezing occurs in a filling and interaction regime that
is clearly separated from the Mott solutions, should we talk
about Hund metal behavior.

Concerning local moment formation, it is interesting to
note that in the strongly correlated regime of model (ii), the
fidelity susceptibility allows an even more sensitive detection
of such moments than A xjoc [74].

C. Entropy and specific heat at integer fillings

The data in Fig. 4 show that the entropy of the Mott-
insulating solutions at » = 1,2, and 3 is pinned at In6 and
In 2, respectively, below a temperature which depends on J,
U and filling. In the insulating case, we expect that local spin
excitations become relevant at a temperature scale determined
by J, while charge excitations contribute to the entropy above
a temperature scale determined by U and J. In Figs. 6(a), 6(c)

and 6(e), we plot the T dependence of the entropy for the
integer fillings n = 1, 2, and 3. In the n = 1 case, the Hund’s
coupling should play a minor role and indeed we observe only
a single crossover in the entropy from the low-temperature
value of In 2 (0) for the Mott insulator (metal) to the infinite-
temperature value of In6 + 5 lng [Eq. (5)]. This crossover
is associated with charge excitations, and thus occurs at a
higher temperature in the Mott-insulating case [green line,
model (ii)].

For n = 2, the entropy curve for parameter set (ii), with a
clear separation between J and U, exhibits an intermediate-
temperature plateau that likely corresponds to a regime with
activated spin, but still frozen charge fluctuations. To support
this interpretation, we plot in Fig. 6(c), as a horizontal line, the
In 15 value, which corresponds to the entropy of the 15 atomic
states with two electrons in three orbitals. A similar but less
prominent intermediate plateau is also evident for n = 3; see
Fig. 6(e). At this filling, there are 20 local states, so that the
intermediate plateau appears around In 20.

Model (i), which is also Mott insulating for n = 3, exhibits
what appears to be a single crossover from the In 2 entropy of
the Mott state to the In 64 entropy of the infinite-temperature
state. As we will see below, this is because spin and charge
excitations are activated in the same temperature range for
this parameter set. More interesting is the behavior of the
entropy of model (i) at n = 2, which is in the metallic phase.
As Fig. 6(c) shows, the entropy per site of this metal remains
above In2 for temperatures down to about 7 = 0.01, and
then rapidly drops to zero. This rapid drop is masked by the
logarithmic scale in the main panel, but is clearly evident
in the inset, which uses a linear temperature axis. The steep
increase of the entropy at low temperatures (compared to the
noninteracting model, red line) is the result of spin freezing,
i.e., of the emergence of long-lived composite spin-1 moments
in the metal phase, as discussed in the previous section.
Conversely, the rapid drop of S(n =2,T) below T =~ 0.01
is due to the screening of these local moments and the for-
mation of low-temperature Fermi-liquid states. At the lowest
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(o) ‘ ‘ In(64)

In(20)

0.8

FIG. 6. (a),(c),(e) Entropy and (b),(d),(f) specific heat as a function of T for model (i) and model (ii) at the integer fillings (a),(b) n = 1,
(c),(d)n =2, and (e),(f) n = 3. Inset of (c): Entropy at n = 2 plotted on a linear T instead of alog,, T' axis to show the onset of the Fermi-liquid
crossover in model (i). (d),(f) The thin dashed lines locate the positions of Tyu,q, While the thick dashed lines locate the positions of Teharge, as
listed in Table II. (b) The thin dashed line shows the more accurate estimate of the charge peak position atn = 1 TU=Y = 0.214(U — 3J) (see

Appendix D 2).

temperatures accessible to our CT-HYB simulations, it is
possible to see the onset of this screening. With the help
of NRG solvers, the complete crossover to the Fermi-liquid
ground state has recently been demonstrated [48,49].

It is clear from the relation between the entropy and
specific heat [Eq. (3)] that the crossovers in the temperature
dependence of S(n, T') are associated with peaks in Cy (n, T),
as is explicitly shown in Figs. 6(b), 6(d) and 6(f). Since the
specific heat measures energy fluctuations, the latter peaks
reflect the different types of excitations in the system. Cy(T)
has been previously computed and discussed for the half-filled
one-band Hubbard model. A two-peak structure [58,65,66,75]
has been observed in the strongly correlated metallic phase at
U = 2D. The narrower low-energy peak is associated with the
emergence (respectively, screening) of a local moment, and
thus similar to the peak associated with the crossover from
the Fermi-liquid to the spin-frozen state discussed above. The
characteristic energy scale for this peak is the renormalized
Fermi energy € = ZD, with Z the quasiparticle weight. The
broader peak at high energies 7 ~ U has been attributed to
charge fluctuations.

In the three-orbital case, the situation is more complex.
First of all, €} is substantially reduced near half filling because
the formation of the Fermi-liquid state requires the screening
of a large composite moment (spin ~3/2) [33]. Furthermore,
there are spin and orbital moments. In the paramagnetic phase
of the 1/3-filled three-band Hubbard model with rotationally
invariant interaction, four different low-energy scales have
been identified [50], which mark the onset and the completion
of screening in the orbital and spin channels, respectively.

While in a Mott state, we expect a charge excitation peak
at an energy scale determined by U, similar to the one-band
case, there should also be a lower-energy feature associated
with local spin excitations. We will call such a peak in the
specific heat the “Hund excitation” peak.

> “charge

D. Hund and charge excitations

In the following, we will use an analysis of the specific heat
in the atomic limit to identify the characteristic energy scales
for the Hund and charge excitations at filling n = 1, 2, and 3.

The atomic Hamiltonian Hioe = Hin — 14 ), , Maio [S€E
Eq. (1)] can be solved by exact diagonalization. The eigen-
states may be categorized into sectors, or subspaces, labeled
by the occupation number Nr. All eigenvectors, eigenvalues,
and their degeneracies are listed in Table I. The chemical
potential u needs to be properly adjusted to ensure the correct
average filling n.

The atomic partition function reads

6
Z = Tre~ P Xao teo)/T — Z ZdS,ieiE"’/T, (10)

s=0 ies

where the sum is taken over all eigenstates labeled by the
sector number s and an index i referring to a subgroup
of states within this sector (d;; denotes the corresponding
degeneracies; see Table I). The probabilities of the atomic
multiplets are

ds,ieiEx’i/T
VA

To avoid numerical problems due to large exponentials, we

employ an energy shift [76] E;; — E,; — EJ’, where E:Z

denotes the lowest energy for all eigenstates at a certain j.
The total atomic energy

psi(T) = an

6
1 _E.
Ean.T)= 23 jdsiEue™ /T +pun (12)
s=0 ies
yields the electronic specific heat per atom via Eq. (4), which
we numerically evaluate by a finite-difference method on a
fine enough 7' grid.
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TABLE I. Eigenvectors and eigenvalues of Hiy — 1), , fa.o." We classify the sectors according to their occupation Np. a # b # ¢ =

1, 2, 3 is the orbital index, while o =1, | denotes the spin.

Sector and Nr Degeneracy Index Label Eigenvector I Eigenvalue

0 1 1 $o ) 0

1 6 2 ¢ lao) —u

2 6 3 b6 lao, bo) U-3]-2u
6 4 b2 lao, ba) U-2]-2n
3 5 0 latal) U-2u

3 2 6 b36 |laobo co) 3U —9J —3u
6 7 b3 laobo co) 3U -7 —3u
12 8 b3z latal,bo) 3U —5J —3u

4 6 9 buc latal,boco) 6U — 13J —4pu
6 10 da1 latal,boco) 6U — 12J —4u
3 11 foye) latal,brbl) 6U — 10J —4u

5 6 12 s latal,btbl,co) 10U —20J — 5u

6 1 13 o6 14+10,2912],3131)) 15U —30J — 6

*Here we consider the Ising-type Hi, [see Eq. (1)], which contains density-density interactions only. In the presence of pair-hopping and

spin-flip terms, the eigenvalues and degeneracies will be different.

In Fig. 7, we plot p,;(T) and Cy (T') for the three integer
fillings n = 1, 2, and 3, respectively. Figures 7(a)-7(c) are for
model (i) and Figs. 7(d)-7(f) are for model (ii). The x axis is
the index of the states defined in the third column of Table I,
while the temperature-dependent probability of these states
is indicated by the color. The figure shows that the peaks in
Cy(T) are directly related to the temperature evolution of the
atomic probabilities.

Let us first discuss the results for model (ii), which has
a large U and J < U. In the case of n = 1 [Fig. 7(d)], the
specific heat exhibits a single broad peak near T & 1.5. This
peak correlates with the population of states in the Nr = 0 and
Nr = 2 sectors and thus originates from thermally activated
charge excitations. Local spin excitations do not play a role
at low temperatures since the dominant N = 1 sector does
not admit such excitations. As shown in Appendix D, if we

4 T B I S N S 10 4L 1 1 Lo 17 L I 10 4L 1 1 Il Y Y N RO S | 1.0
(a 1(b) 1(c)
] 08 | 08 | 0.8
3 B 3 L 3 L
- ] ] 1
e ] ]
S lo 06 | L Bos 06
Il 16 Sector 2 1 H 1 Sector 2 Sector 3 Sector 4
=Y &2—g <> - 2 s 2 «—> «—> «—> =
o~ : - : 1
I @ 0.4 : 04 0.4
) 1 : ] i 1
1 ik 1] ;L 1] R
ithqo2 02 { | . 0.2
o “l oo ol ALTFPN 00 o ! ------------- 0.0
1 545857 80510112213 Hbl45é‘réé1'o1'1121'3 "2 5 45 78 51011213
4 T N N N N N SO TR T B 10 4L 1 1 1 00000011 10 4L L 1 11111111 ) 1.0
1« 1(e) 1 (f)
] 08 | 08 | 08
3] L 3 B 3 B
0 1 1 . 1
N 1 : i
S : 06 | H 06 | 06
A 2] - 2] . 2] -
oﬁ) - 04 | : 04 | 0.4
) 1 H :
1 oLk 1 P 1 voob
02 | 02 | \ 0.2
o L Lloo o e lllog ol M e 0.0
T 2545678 810M 213 12345678 810M 213 T 254567 881N 1213
index index index

FIG. 7. Temperature-dependent probability distribution [Eq. (11)] of the atomic multiplets (see Table III) and corresponding atomic specific
heat Cy (T') calculated by the numerical derivative of the atomic energy [Eq. (12)]. (a)—(c) model (i) (U = 2,J = 0.50) and (d)—(f) model (ii)
(U = 8,J = 0.25). The fillings are (a),(d) n = 1; (b),(e) n = 2; and (¢),(f) n = 3.

085102-8



ENTROPY AND SPECIFIC HEAT OF THE INFINITE- ...

PHYSICAL REVIEW B 102, 085102 (2020)

TABLE II. Positions of the Hund peak and charge peak in the
electronic specific heat Cy (T') of the three-orbital atom.

Filling n Hund peak Charge peak
1/6 1 0.201U
1/3 2 0.455J 0.198U
1/2 3 0.873J 0.197U

neglect J and only consider the sectors 0, 1, and 2, the charge
excitation peak in Cy(T) is located at Tcggfg? = 0.201U,
which agrees well with the full calculation for model (ii).

At filling n = 2 [Fig. 7(e)], the specific heat shows two
peaks: a low-energy peak near 7 = 0.1 and a high-energy
peak near T = 1.5. As the distribution of the probabilities
ps.i(T) clearly reveals, the low-energy peak originates from
excitations within the dominant Ny = 2 sector, and is thus
associated with Hund excitations. The higher-energy peak,
on the other hand, correlates with the population of the
neighboring Ny = 1 and Nt = 3 sectors, and thus is a charge
excitation peak analogous to the one discussed for n = 1.
The calculation in Appendices E1 and D shows that the

temperature of the Hund peak is roughly given by Tézn:j) =

0.455J and that of the charge peak by T.\"~>) = 0.198U.

Similarly, the model at half filling (n = 3) exhibits a Hund
excitation peak originating from local spin excitations within
the Nr = 3 sector, and a charge excitation peak at higher
temperature; see Fig. 7(f). The estimates for the corresponding
peak temperatures are T}(IZ:; ) = 0.873J and Tcgf;;) = 0.198U;
see Appendices E 2 and D.

In Table II, we list Tyyng and Tepae Obtained from the
atomic model analysis. We note that while the position of
the Hund peak is proportional to J, as expected, there are

nontrivial prefactors. Also, the result for the charge peak is

very different from naive estimates of the charge gap (such as
U — W, with W the bandwidth).

The results for model (i) show qualitatively similar fea-
tures, but in this case J is not much smaller than U and,
for a quantitatively correct estimate of the charge peak, one
needs to take into account the effect of J on the energies of
the individual states in sectors N = 2, 3, and 4. For example,
in the model with n = 1 [Fig. 7(a)], a more accurate estimate
of the charge peak is TC(}:::gL) = 0.214(U — 3J); see Appendix
D2. In the model with n =2, the probability distribution
reveals that the low-energy peak in the specific heat near 7 =
0.1 originates from both charge and spin excitations, while
the higher-energy peak comes from charge excitations to the
higher-energy (i.e., low-spin) states within the N = 3 sector.
Also, in the model with n = 3, the spin excitations within the
Nr = 3 sector are activated at roughly the same temperature
as the charge excitations to the neighboring N =2 and 4
sectors, which results in a single broad Cy(T) peak near
T = 0.4. Because of the smaller U, the Nr = 1 and 4 sectors
get populated at 7 2 1, which leads to a broadening of the
peak.

Figure 8 illustrates how well the atomic model analysis
allows one to explain the features in the specific heat of the
lattice model. The red curves in the figure show the DMFT
results for integer fillings [Figs. 8(a)-8(c) for model (i) and
Figs. 8(d)-8(f) for model (ii)]. These results are compared
to the atomic model solution, which considers the dominant
sector Ny = n and the two neighboring sectors n — 1 and n 4
1 (yellow), and to an atomic model calculation, which takes
into account only spin excitations (green). The dashed blue
line, obtained by setting J = 0, represents the contribution
from charge excitations. It is found that in model (ii), which is
Mott insulating at n =1, 2, and 3, the atomic model analysis
almost perfectly explains the origin of the peaks in the specific

- (c)
1,2,3
08| > H
(=]
3 1,2,3(J=0)
ﬁ 0.6 CT-HYB —— |
3]
N 04
Il
0.2
0.0
0.
1.0
08 1,2,2
[T
N 1,2,3(J=0)
ﬁ’ 0.6 CT-HYB —— |
=S
°|‘|’ 0.4
=}
0.2

20
T

FIG. 8. Comparison between the specific heat of the DMFT solution obtained by CT-HYB and the atomic specific heat calculated by
applying sector truncations (see Appendices D and E). (a)—(c) model (i) (U = 2,J = 0.50) and (d)—(f) model (ii) (U = 8,J = 0.25). The
integer fillings are (a),(d) n = 1; (b),(e) n = 2; and (c),(f) n = 3. Numbers in the legends refer to the corresponding sectors listed in Table 1.
The orange lines represent calculations which take into account both U and J, while the blue dashed lines show the charge peak obtained by
setting J = 0. The green lines at n = 2 and n = 3 show the Hund peak calculated by considering only the dominant sector.
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heat. On the other hand, in model (i), which is metallic
for n =1 and 2 and has a small gap at n = 3, there is no
quantitative agreement between the atomic model and DMFT
data. In particular, the specific heat in the metallic systems is
substantially larger than predicted by the atomic model. Still,
the Hund and charge peaks identified in the atomic model
explain the positions and widths of the peaks in Cy (T').

This is also confirmed in Figs. 6(b), 6(d) and 6(f), where
the positions of the atomic spin (charge) peaks are indicated
by thin (thick) dashed lines. Here, we have used the values in
Table II, except for the blue dashed line in Fig. 6(b), which
shows the more accurate estimate Tcggigle) =0.214(U - 3J)
(see Appendix D 2).

Finally, let us refer to Figs. 2(g)-2(i), which shows the
specific heat of the noninteracting model, model (i), and
model (ii) for arbitrary fillings. In model (i), which is Mott
insulating only at n = 3, we recognize at T =~ 0.4 the com-
bined spin and charge excitation peak of Fig. 7(c) at half
filling, which persists as filling is reduced and merges into the
higher-energy charge excitation feature evident in Fig. 7(b).
The lower energy spin/charge peak of the n = 2 model, on the
other hand, is continuously connected to the charge excitation
feature at n = 1, and down to lower fillings, where it becomes
hardly distinguishable from the peak in the noninteracting
model. In the results for model (ii), we recognize the spin peak
at n = 3, the weak spin peak at n = 2, and the completely
absent spin peak at n = 1, while the charge peaks are similarly
prominent at all the fillings, but do not extend very far into the
doped metal regimes. On the other hand, the spin peak persists
in the filling range 2 < n < 3, which is consistent with our
previous remark that this entire filling region, at low (but
nonzero) temperatures, should be regarded as a spin-frozen
region associated with the n = 3 Mott insulator.

IV. DISCUSSION AND CONCLUSIONS

We have calculated the entropy and specific heat of the
three-orbital Hubbard model on the infinitely connected Bethe
lattice. At moderate U, where only the half-filled solution
is Mott insulating, the Hund’s coupling induces pronounced
spin-freezing and non-Fermi-liquid effects in a wide doping
and temperature range. The entropy and specific heat provide
an interesting perspective on this Hund metal behavior. In
particular, we showed that the entropy per site in the spin-
frozen metal is enhanced (S 2 In2) and smoothly connected
to the In 2 entropy of the half-filled Mott state. The crossover
to the Fermi-liquid state at low temperatures is associated with
a screening of the local moments and hence with a rapid drop
of the entropy per site from ~1n2 to 0.

The crossover to the spin-frozen region is associated with
a maximum in the dynamical contribution to the local spin
susceptibility, A xjoc, as previously suggested in Ref. [34].
The corresponding crossover line is meaningful in particular
at low temperatures, where the peak in A xj, is pronounced.
We showed that above the characteristic temperature scale for
the activation of local spin excitations, the peak amplitude
drops quickly so that the spin-freezing crossover loses its
significance. This is natural because the thermal population of
different local spin states washes out the spin-freezing effect.

The activation of spin and charge fluctuations is associated
with peaks in the specific heat. We have analyzed these peaks
in the atomic model with integer fillings and showed that these
results provide a qualitative understanding of Cy(n, T) for
arbitrary fillings n. In particular, we found that the temperature
scale Ty for Hund excitations is determined only by J (as
expected), but with a nontrivial prefactor that depends on the
filling. We also showed that for large enough U and small
enough J/U, the charge excitation peak in the specific heat
occurs at Teharge = U/5. Especially at large U, this is much
smaller than naive estimates of the charge gap, which shows
that in the three-orbital model, in contrast to the single-orbital
Hubbard model, the Mott gap is not very robust against
temperature.

In our model (i) with U = 2, J = 0.5, the spin and charge
excitations are activated at a comparable temperature, so
that there is only a single high-temperature crossover in the
entropy from the low-temperature Fermi liquid or the In2
plateau to the infinite-temperature value of —6[% In g + (1 —
£)In(1 — 2)]. In model (ii) with U =8, J = 0.25, Tin and
Teharge are clearly separated, so that the entropy exhibits an
intermediate plateau corresponding to a system with thermally
activated local spin excitations, but still suppressed charge ex-
citations. The spin-freezing behavior of model (ii) is different
from what has been previously discussed in the Hund metal
literature because this model is Mott insulating at n = 1, 2,
and 3. The system hence exhibits local moment formation
near all these integer fillings. Nevertheless, the evolution of
the local spin susceptibility and of A xj,. show that the spin
freezing associated with the half-filled Mott state affects the
metallic solutions down to fillings below n = 2, similar to the
case of model ().

While the aim of this work was to establish how the
entropy and specific heat depend on filling, temperature, and
interaction parameters in a simple, but generic model system,
let us also briefly comment on some implications for realistic
materials and experiments. The entropy in the spin-freezing
regime of multiorbital models is of interest in connection with
typical Hund metals, such as Ca;_,Sr,RuQy [77]. In these ma-
terials, the experimentally accessible temperatures correspond
to the crossover from the frozen moment regime to the low-
temperature Fermi-liquid regime, which is characterized by a
large specific heat and hence a rapid increase of the entropy
with temperature. Even though these systems are metallic,
their entropy quickly reaches values comparable to those of
the disordered half-filled Mott insulator. Also, their entropy is
strongly filling dependent at low temperatures. Such materials
may thus be interesting playgrounds for “entropy cooling
schemes.” As was recently discussed in different contexts,
the reshuffling of entropy between different subsystems (e.g.,
between different spatial regions [78], different orbitals [79],
or electronic and spin sectors [80]) can result in a substantial
cooling of quasiparticles, which may be a key concept to
understand phenomena such as light-induced electronic orders
[81,82].

As far as the Hund and charge excitations are concerned, it
is clear that the O(eV) energy scale of the charge peak in most
materials is too high for an experimental detection. The Hund
peak, on the other hand, should be observable in materials
whose low-energy description involves extended molecular
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orbitals, such as fulleride and other aromatic compounds, and
the lacunar spinels mentioned in Sec. I. In these materials,
J < 0.1 eV [83], so that the characteristic temperature scale
for Hund excitations is a few-hundred Kelvin.

In future studies, it would be very interesting to comple-
ment the present picture of the entropy and specific heat in the
temperature range 0.005 < 7 < oo with a systematic analysis
of the very low-temperature behavior near and in the spin-
frozen region. Because of the very low Fermi-liquid coherence
scale near half filling, the crossover from the high-entropy
spin-frozen metal with S 2 In 2 to the Fermi-liquid metal with
S o« T cannot be studied with CT-HYB and likely requires
an NRG-based investigation [48]. It will also be interesting
to extend the current study to models with effective static
J < 0, relevant for fulleride compounds. The orbital-freezing
crossovers and spontaneous orbital-selective Mott phases [18]
in these models should lead to nontrivial structures in the
specific heat and entropy surfaces.
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APPENDIX A: HUBBARD-I APPROXIMATION

At very high temperature, 7 >> t, the correlated system
approaches the atomic limit where the local Green’s function
can be well described by the Hubbard-I approximation [84],

Gyiw,) ~ G (iw,)

_ g (et g P
A iw, — (Er — Er)

. (AD

where Z = Zr e PEr is the atomic partition function, and Er
is the eigenvalue of Hi, in the eigenstate I'. The imaginary-
time Hubbard-I Green’s function reads

Ggub»l(_t) - _ Zpr Ze*T(Er/*Er)|<F|da|F’>|2,
r

r

(A2)

where pr = e #Er /Z denotes the probability of the eigenstate
I'and 0 < © < B. The energy in the Hubbard-I approximation

3.5

is [64,73]

g

E(n, T) = tzZ/ drG"™ (DG (=) + ) prEr,
a 70 r

(A3)

where the first term represents the kinetic energy for a Bethe
lattice and the second term is the local energy. A comparison
between the numerically exact total energy sampled by CT-
HYB and that calculated with the Hubbard-I approximation is
shown in Fig. 9. At T = 1.0, there is still a slight discrepancy
between these two results in the U = 2.0, J = 0.50 system,
while the difference is already negligible in the U = 8.0, J =
0.25 model which is closer to the atomic limit. At the higher
temperature 7 = 4.0, the CT-HYB total energy can be well
approximated by the Hubbard-I energy in both cases.

APPENDIX B: VIRTUAL UPDATES FOR MEASURING THE
GREEN’S FUNCTION AT HIGH TEMPERATURES

ko

D.se

nm

detAl™
n—
detA,

o I
TI‘L

The conventional estimator [85] for the one-particle
1
Gaa(‘[) = -7

Green'’s function reads
) , (BD
P >MC

where, for simplicity, we consider the case where the hy-
bridization matrix A and the Green’s function matrix are diag-
onal in the flavors (spin orbitals) {«}. Here, Afx”’”) represents
the matrix with the row and column corresponding to the
mth annihilation operator and nth creation operator removed.
We can separate the contributions to G,,(7) in Eq. (B1) into
contributions from the different expansion orders k,:

8(r,t

m

o0
Gua(T) =Y _ (G (7)), (B2)
ky=0
where
o) 1 & detA™ )
Gaa (T):—E;Sgnmg( T — Ty ) (B3)

The conventional estimator is based on the removal of hy-
bridization lines between pairs of creation and annihilation
operators in a kyth-order diagram of the partition function, so
that the zeroth-order configurations contribute zero to Gy, (7).
As a consequence, G, (T) becomes noisy when the zeroth-
order diagrams of the partition function are dominant, i.e.,
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FIG. 9. Filling dependence of the total energy measured by CT-HYB and in the Hubbard-I approximation at the high temperatures 7 = 1.0

and 7 =4.0.(a) U =2.0,J =0.50 and (b) U = 8.0,J = 0.25.
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FIG. 10. Comparison of the imaginary-time Green’s functions obtained by the conventional estimator and virtual updates estimator to
the atomic Green’s function for U = 8, J = 0.25, T = 4.0. The chemical potential is (a) u = 12.5 and (b) u = 18.75. The results are for a
one-shot calculation with a symmetric, noninteracting hybridization function as input.

the average expansion order (k,) — 0, since higher-order
diagrams are rarely generated. This problem can become
serious in the large-U limit, weak hybridization limit, or in
the high-temperature limit. To reduce the noise, one may
resort to a worm sampling algorithm [86]. Alternatively, this
noise problem can be solved by virtual updates between the
expansion orders 0 and 1. The word “virtual” here means that
such kinds of updates are merely performed for the sake of
measurement, not in the actual sampling process.

The procedure is as follows. In the CT-HYB simulations,
the Green’s function is measured periodically, after a certain
number of updates which depend on the autocorrelation time.
At the time of measurement, we perform virtual updates in
configurations with perturbation order O and 1:

(1) If k, = 0, a virtual hybridization insertion is proposed
with d,, randomly located at 7; and d at t}. The new estimator
at k, = O reads

Bil,a(‘[) = <P?)C—C>1G£[k§:1)(7)) + <(1 - P%il)G&kgzo)(T))
= (P, Gle=" (1)),

where we used that G%=9(7) = 0. The proposal probability
for a virtual insertion is the same as for a normal insertion
update [56] from k, = 0 to k, = 1, and the acceptance prob-
ability reads

2
e =min{1, (jr)z:i_;:}’ (B4)
with
P (dt)*Trg[Tre P dy (11)d] (5)1 Aa(T1 — 12) (BS)
Po Trg[e=PHc] '

If the acceptance probability for the virtual move from O to
1 is less than one, as is typically the case if diagrams with
k, = 0 dominate, the estimator becomes

2.6 )

1 P /2
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Tl Tee Pidy (2)d(0)

— Galom(ry.
Try [e—ﬁHloc] o (@)

o

If, on the other hand, the acceptance rate is 1, we measure
G%=D(7) for the corresponding virtual configuration with
ky = 1. The sampling with virtual updates thus accumulates
the following Green’s function estimator at k, = 0:

GMom (1) if p© | G%=1 (1) otherwise. (B6)

<1,

(2) If k, =1, one proposes a virtual hybridization line
removal update. The new estimator at k, = 1 reads

0.0 (T) = (P15 0Goe = () + (1 = pi%,0)Gle=" (1))
=((1 - pi<)Gl=" (@),
with

Dl = min — (B7)

B* Ipil
This means that we perform the usual measurement in the
configuration with k, = 1 if the virtual update to the empty
configuration is rejected, otherwise we measure 0.

(3) If k4 > 2, use the conventional estimator G*)(7).

This modified sampling method is exact and automatically
yields the atomic Green’s function in parameter regimes
where the average perturbation order goes to zero.

In Fig. 10, we compare the Green’s function measured by
the conventional estimator (red) and the virtual updates esti-
mator (green) to the atomic Green’s function of the impurity
model with parameters U = 8, J = 0.25 at high temperature
T = 4. The results demonstrate that the new estimator can
substantially reduce the noise and allows one to access the
atomic limit.

acc . {1’ (dr)z |P0| }

APPENDIX C: GLOBAL UPDATES

When the system is near a Mott state at low temperatures,
the Monte Carlo sampling can be trapped in certain configu-
rations. Global updates which exchange the segments of two
spin orbitals have been proposed [57]. However, such global
updates alone are not enough to get rid of trapping. Here
we propose additional global updates. One is the “double-
swap” update, where occupied segments in two different
spin orbitals are replaced with unoccupied antisegments;
see Fig. 11(b)—11(a). This is equivalent to exchanging the
creation and annihilation operators, without changing the
imaginary times and flavors. A special case of this update
(for perturbation orders 0) is the exchange of a full line in
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FIG. 11. Global updates of the segment version of CT-HYB. Two different spin orbitals «o and «'c’ are randomly selected for these
updates. While the black thin dashed lines represent the unoccupied antisegments, the black and red solid lines denote the occupied segments in
these two spin orbitals. (c)— (f) represents an update where the segments of two spin orbitals are exchanged. (b)— (a) represents a double-swap
update, where segments and antisegments are swapped within two spin orbitals. (d)—(e) shows an exchange of a full line in one orbital and
an empty line in another. (b)— (c) represents a single-orbital global-shift update where the operators in a randomly selected orbital (here, &’c")

are shifted by 6t € (—8, +8).

one flavor with an empty line in another flavor, as shown in
Fig. 11(d)—11(e). This update is helpful at integer fillings
and at high temperatures, where the expansion order is low.
The second global update is a global-shift operation which is
similar to the “global t shift update” proposed in Ref. [71].
Here, instead of shifting all the operators by 7, we shift only
the operators for a single flavor by T € (=g, +f). This update
is equivalent to k,, removal updates and k,,, insertion updates,
where k. is the expansion order of the selected flavor avo'.

APPENDIX D: ATOMIC SPECIFIC HEAT: CHARGE PEAK

The “Hund peak” and “charge peak” positions of the
atomic electronic specific heat at integer fillings have been
collected in Table II. In this section, we explain how the
charge peak positions are obtained using subspace truncations
of the atomic Hamiltonian Hy.., whose eigenstates are listed
in Table I.

1. Estimates for J = 0

In the following, we set J = 0 and prove that the charge
peak is located at a temperature ~0.2U for all integer fillings
nef{l,...,2M — 1}, where M is the number of orbitals.

The relevant subspaces for filling n are the sectors n — 1,
n, and n+ 1. Since Hund’s coupling is set to zero here, the
eigenvalue for sector n is as simple as

E, = CU — np, (D1)

with degeneracy C7,,. Hence, the partition function restricted
to the relevant sectors reads

n+1

Z= Z e Pl

m=n—1

(D2)

To ensure the correct average filling n,  is tuned such that

1 n+1
n=— mC" e PEn
7 Z M

m=n—1

(D3)

which results in C};,'e PE-1 = CptlePEr1 | illustrating that
sector n — 1 and sector n 4 1 have the same weight in Z. The

explicit expression for the chemical potential is

U o 2 T Gy
p= (G ) - Gt
U T CI‘L+1
=—Qn—1)— =In 2L, (D4)
2 2 Gy
and the total energy becomes
1 n+1 i
E[ot(n)=z E EnCyye” "™ + pun. (D5)

m=n—1

After tedious but straightforward calculations [insertion of
Egs. (D1) and (D4) into Eq. (D5)], we arrive at the following
general expression for Eyy:

) %Uc,,
Etol(T) = CnU + v
exr + ¢,

(D6)

3

where ¢, is a constant determined by the degeneracies of the
relevant subspaces,

! 2M —n

n+1 2M —n+1

n—1
Gy _ n

e[L,2),

Chn = 2
D7)

and thus is a function of the filling n and the number of
orbitals M.

The specific heat is obtained by taking the derivative of
E(T) with respect to T,

c,U 2037
GM)=——3 (D8)
4T2 (cn + eﬁ)
and its peak position is determined by requiring
IC/(T)  cU%er [eir (U —4T) — c,(4T + U)]
T 8T4(cn+e%)3 B
(D9)
This is equivalent to finding the positive root x of
e?(x —4) — c,(4+x) =0, (D10)
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FIG. 12. The root x, of Eq. (D10) as a function of ¢,. The charge
peak position is given by 1/x,U. The box and triangle symbols show
results for the three-orbital model (M = 3) with fillingn = 1,n = 2,
and n = 3 (from left to right), respectively.

where x = U/T. The lower bound of xy is 4 and the upper
bound is 6 based on the fact that ¢, falls in [1,2); see Eq. (D7).
The root and its inverse as a function of ¢, can be calculated
numerically and the results are plotted in Fig. 12. It turns out
that the estimate

Tenarge = Xy 'U ~ 0.2U (D11)

for the charge peak position holds irrespective of the number
of orbitals and for integer fillings n # 0, M. The values for
Teharge for M =1,2,3, and 5 are listed in Table III. While
the results are consistent with Eq. (D11), there is still a clear
tendency as shown by the right-hand column in the table
and the green dashed line in Fig. 12: a larger number of
degenerate states in the excited sectors (larger c,) implies a
smaller Tipqrge-

2. More accurate estimate forn =1 (J # 0)

According to Eq. (D11), the charge peak position for
model (i) (U = 8, J = 0.25) is located at 1.61, which is only
slightly larger than the value of 1.50 obtained by CT-HYB [see

TABLE III. The charge peak positions Teharee in the atomic spe-
cific heat of an M-orbital Hubbard model with integer filling n. ¢, is
a constant depending on both M and n; see Eq. (D7). Teharee = %, ' U,
where x; is the root of Eq. (D10).

M n Cn Teharge
1 1 1 0.208U
1 V372(1.225) 0.203U
2 1(1.333) 0.200U
3 1 V573(1.291) 0.201U
2 J32715(1.461) 0.198U
3 3/2 0.197U
5 1 J975(1.342) 0.200U
2 J64727(1.540) 0.196U
3 V2178(1.620) 0.195U
4 /96/35(1.656) 0.194U
5 5/3(1.667) 0.194U

Fig. 8(d)]. However, Eq. (D11) gives 0.40 for model (i) (U =
2,J = 0.50), which substantially overestimates the CT-HYB
peak at 0.11 [see Fig. 8(a)]. For this smaller U and larger J/U,
the Hund’s coupling effect on the charge excitations needs to
be taken into account to obtain a good estimate of the charge
peak position.

If J/U is large, the relevant sectors are the sectors 0, 1,
and the multiplets ¢, in sector 2, as shown in Fig. 7(a). The
partition function restricted to these subspaces reads

3J-U+2u

Z=1+6e%+6e T

(D12)

The chemical potential u corresponding to n = 1 is given by

u= % — %T. The total energy becomes
Ea(T) = (U =32+ Vée 7)™, (D13)
and the specific heat is
Jw syt
G (T) = (D14)

1224 Vo)

The peak position in the specific heat is determined by requir-

ing that % = 0, which is equivalent to finding the root of
the equation
3. 4
Zel = )i (D15)
2 x—4

withx = U%y The numerical solution is xy ~ 4.6821, so that
the more accurate estimate for the charge peak position at n =
1is

U-3J

X0

T("=1) ~

charge

~ 0.2136(U — 3J). (D16)

According to Eq. (D16), the peak position of the
atomic specific heat at n =1 is controlled by U —3J.
We find T[§n=:2}}:0.5 ~ 0.107 and le;zsfj)=0.25 ~ 1.548, respec-
tively, which agrees well with the peak positions in Cy(T)
obtained by CT-HYB [see Figs. 8(a) and 8(d)]. Note that
Eq. (D14) underestimates the peak height of Cy (T") measured
by CT-HYB in model (i) since the kinetic contribution is
important when U is comparable to the bandwidth W (here,
U=W=2).

APPENDIX E: ATOMIC SPECIFIC HEAT: HUND’S PEAK
1. Hund peak atn = 2

As shown in Figs. 7(b) and 7(e), excitations within sector 2
define the Hund’s peak at n = 2. The lowest-energy multiplets
¢o¢ are sixfold-degenerate high spin states. The first-excited
states ¢, are also sixfold degenerate, but with antiparallel
spins in different orbitals. This spin flip costs an energy
J compared with the energy of ¢,s. The second-excited
states ¢,y are threefold degenerate and doubly occupied in
one orbital. The excitation from ¢,; to ¢, costs another
energy 2J.

The atomic partition function truncated to these subspaces
of sector 2 reads

Z = U6 T 4 6627 + 3], (E1)
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and the total energy becomes

6(U —=3J)+6(U —2N)e /T 43U /T

Etot(T) = 6+ 6e—/T 4 3e—3J/T

. (E2)

Note that the chemical potential term drops out. The specific
heat is

2eT (4 + 9T 4 263?])./2

G (T)=
(14 2e7 +2¢7)°T?

) (E3)
which is a function of J/T only. The peak position of Cy (T')
is located at

(n=2)
T =~ 0.455J. (E4)

2. Hund peak atn = 3

The active subspace for the Hund peak at n = 3 is sector 3.
The atomic partition function at low temperatures can thus be

approximated by

7 = e(3/L73U)/T[269J/T +6e7l/T + 12@5J/T], (ES)
and the total energy by
Eo(T)

_ 26U =90)eT +6(3U —1)e™/T +12(3U —57)e>/T

2%/T 4+ 6e7/T 4125/ ’
(E6)

where the chemical potential term also drops out. The specific
heat becomes

12J2¢7 (8¢7 +e7 +6)
T2(3¢¥ +e¥ +6)°

G (T) = ; )

and is again a function of J/T. The peak position of Cy (T') is
located at

T."=3) ~ 0.873J. (E8)

Hund
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