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Effect of electronic correlations on the spectral and magnetic properties of ZrZn2
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We present results of a theoretical study of a prototypical weak ferromagnet ZrZn2. We use the density-
functional theory (DFT)+dynamical mean-field theory (DMFT) method to study the electronic and local
magnetic properties. The obtained DFT+DMFT electronic self-energies are Fermi-liquid-like, indicating a small
effective mass enhancement of the Zr 4d states m∗/m ∼ 1.1–1.3 accompanied by partly formed local moments
within the electronic states of t2g symmetry. The effect of electronic interaction is shown to be essential for
determining the correct topology of some of the Fermi surface sheets. To study in detail the pressure dependence
of the Curie temperature TC and corresponding pressure-induced quantum phase transition, we consider an
effective single-band model, constructed using the Zr 4d contribution to the total density of states. The model
is studied within static and dynamic mean-field theory, as well as spin-fermion approach. We show that the
spin-fermion approach yields the temperature dependence of susceptibility at ambient pressure and the pressure
dependence TC(p), including the first-order quantum phase transition at p ≈ 1.7 GPa, comparable well with the
experimental data.
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I. INTRODUCTION

ZrZn2 is a well-known weak ferromagnet. Despite that
its magnetic properties have been studied since the 1950s
[1], their peculiarities are still actively debated. At ambient
pressure this compound is ferromagnetic below the Curie
temperature TC ≈ 30 K. The ferromagnetism is, however,
suppressed by pressure [2] and disappears at p ≈ 1.65 GPa
[3,4]. It was argued in Ref. [5] that the quantum phase
transition in ZrZn2 under external pressure is in fact of the first
order; at finite magnetic field the corresponding metamagnetic
behavior is observed [5,6]. Near the quantum phase transition
in zero magnetic field the exponent of the resistivity ρ ∝ T α

changes [4] from the value α = 5/3, which is characteristic
for systems with ferromagnetic correlations [7,8], to α = 3/2,
characteristic for antiferromagnetic correlations.

Density-functional theory (DFT) band structure calcula-
tions [9,10] of ZrZn2 revealed an extended van Hove sin-
gularity due to a flat part of dispersion near the L point of
the Brillouin zone, similar to that in nickel [11]. This flat
part yields a peak of the density of states near the Fermi
level [10,12], characteristic to many ferromagnetic materials.
This peak on one hand promotes ferromagnetism [13], but on
the other hand, it makes the Stoner theory even qualitatively
inapplicable at finite temperatures, since competing channels
of electron scattering become important in this situation, as
it was studied actively in two-dimensional systems with van
Hove singularities [14]. In general, Stoner theory predicts
transition temperatures much larger than the corresponding
experimental data and does not explain the linear temperature
dependence of inverse susceptibility [8], which points to the

importance of correlation effects. The lowest-order param-
agnon interaction was described within the Moriya theory [8].
This theory was justified within the renormalization group
method [15] and allowed to predict the universal behavior
of weak itinerant magnets near quantum phase transitions.
At the same time, for numerical predictions of nonuniversal
properties it requires the knowledge of both the electronic dis-
persion and the (para)magnon spectrum. Moriya theory was
also extended to include the effect of higher-order diagrams
with respect to paramagnon interaction (expressed through
the density of states for sufficiently large correlation lengths)
[16–19].

However, these spin-fluctuation approaches were not inten-
sively applied to models with realistic densities of states; they
also may be insufficient by the following reasons: (i) above
mentioned interplay of different channels of electron scatter-
ing can yield a strong renormalization of particle-hole spin ex-
citations by other channels of electron interaction; (ii) strong
on-site correlations are not considered by these approaches.
In particular, in the multiorbital case the correlation-induced
physics is more reach due to the Hund interaction which may
trigger for example the Hund metal behavior [20–22], char-
acterized by (orbital-selective) formation of local moments.
Although in weak magnets the effect of Hund exchange is
expected to be less dramatic than in strong magnetic materials,
it should also be considered.

Therefore, weak ferromagnets pose a challenge for the-
oretical studies since both local and nonlocal correlations
are expected to be essential to describe their properties. Ac-
cordingly, at least two aspects of weak itinerant magnetism
should be investigated. The first aspect is the role of strong
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local Coulomb interaction and peculiarities of realistic den-
sity of states for quasiparticle and magnetic properties. For
that, state-of-the-art methods for calculation of electronic
properties based on a combination of density functional the-
ory and dynamical mean-field theory of correlated electrons
(DFT+DMFT) [23–25] have shown to be a powerful theo-
retical tool for studying the physics of real materials [26].
The second aspect is the applicability of effective single-band
models with realistic densities of states and a possibility to use
them to study magnetic properties of weak itinerant magnets.

In this paper, we explore the effect of local Coulomb cor-
relations on the electronic and magnetic properties of ZrZn2

(space group Fd 3̄m) within the DFT+DMFT method. We
interpret the results of multiorbital DFT+DMFT calculation
within the effective one-band model constructed using the
realistic density of states of ZrZn2 and solved by DMFT. To
understand details of the paramagnet to ferromagnet transition
we furthermore study an effective one-band model within
static mean field and spin-fermion model approaches.

The paper is organized as follows. In Sec. II A we de-
scribe the technical details of our DFT+DMFT calculations.
The corresponding results for spectral properties, local and
nonuniform spin susceptibility, and temperature dependence
of the uniform spin susceptibility of ZrZn2 are discussed
in Sec. II B. The effective single-band model is considered
in Sec. III within DMFT (Sec. III A), mean-field approach
(Sec. III B), and spin-fermion model (Sec. III C). Finally, our
results are summarized in Sec. IV. In Appendix A we discuss
behavior of the uniform particle-hole bubble at not too low
temperatures, while in Appendix B we provide details on the
equations of the spin-fermion model used to account for the
effect of spin fluctuations.

II. DFT+DMFT STUDY

A. Method

We first study the effect of local electronic correlations
on the electronic structure and magnetic properties of ZrZn2.
For that we have employed the DFT+DMFT method im-
plemented within the plane-wave pseudopotential approach
with generalized gradient approximation (GGA) in DFT [27].
We used a basis set of Wannier functions constructed by
means of the projection procedure [28,29] for an energy
window spanning occupied Zn 3d and partially filled Zr
4d bands. The realistic DFT+DMFT many-body problem
is solved by the continuous-time hybridization-expansion
quantum Monte-Carlo method (CT-QMC, segment algorithm)
[30]. In these calculations we neglect effects of spin-orbit
coupling. The Coulomb interaction term has been treated in
the density-density approximation with the average Hubbard
interaction U = 2.5 eV and Hund’s exchange J = 0.3 eV
for the Zr 4d orbitals [31]. To account for Coulomb interac-
tion energy already described by DFT we employ the fully-
localized double-counting correction Vdc = U (Nd − 0.5) −
0.5J (Nd − 1) self-consistently evaluated from local occupa-
tions Nd . We have verified that using the around-mean-field
form of the double counting term does not change essentially
our results. Spectral functions and orbital-dependent band
mass renormalizations were computed using the real-axis
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FIG. 1. Comparison of orbitally-resolved spectral functions of
paramagnetic ZrZn2 computed by DFT+DMFT (T = 464 K) and
DFT at ambient pressure. The inset shows DFT+DMFT results
obtained at p = 2 GPa. The Fermi energy is set to 0 eV.

self-energy �̂(ν) obtained from the Padé analytical approxi-
mation of the DFT+DMFT imaginary-axis self-energy �̂(iν)
[32]. In order to determine the lattice parameter of cubic
ZrZn2 under pressure we compute the total energy as a
function of volume using the GGA energy functional and shift
the experimental lattice constant according to the third-order
Birch-Murnaghan equation of state [33]. For simplicity, only
hydrostatic contraction and expansion of the cubic unit cell
are considered in these calculations.

Within DFT+DMFT we compute the uniform magnetic
susceptibility as a derivative of the field-induced magnetiza-
tion M(T ) with respect to the applied field H :

χ (T ) = ∂M(T )

∂H
= μ2

B
∂[n↑(T ) − n↓(T )]

∂Eh
, (1)

where nσ (T ) is the occupation of the spin-σ at a temperature
T , Eh = μBH is the bare splitting of electronic spectrum, and
μB is the Bohr magneton. In these calculations we check
an absence of polarization in the zero field and the linear
character of M as a function of Eh.

B. Results

1. Electronic properties

As a starting point, we discuss the effect of electronic cor-
relations on the electronic properties of ZrZn2. The spectral
functions of ZrZn2 calculated by DFT and DFT+DMFT for
the experimental crystal structure are presented in Fig. 1. In
agreement with previous theoretical investigations [12,34] our
results (both DFT and DFT+DMFT) show that the spectral
weight in the vicinity of the Fermi energy (EF) is due to
the Zr 4d orbitals and mostly originates from the t2g states.
These orbitals form a narrow band located in the interval
(−0.5, 0.5) eV with sharp peaks below and above the EF

(marked by arrows in Fig. 1). The eg spectral function also
shows a broad peaked feature above the Fermi level, but its
amplitude is almost five times smaller than that due to the t2g
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FIG. 2. Orbitally-resolved imaginary parts of the local self-
energy of paramagnetic ZrZn2 at ambient pressure on the Matsubara
mesh obtained with DFT+DMFT (T = 464 K).

states. In addition, we observe that the Zn-3d band is located
well below EF and is weakly hybridized with Zr-4d states
close to the Fermi level.

The Zr-4d spectral functions computed by DFT+DMFT
share a common shape with those obtained within DFT.
Correlation effects only lead to a shift and renormalization of
the quasiparticle bands near EF and do not induce a significant
transfer of the spectral weight. In particular, we observe that
the sharp peak originating from the t2g states emerges at
∼0.025 eV, almost twice closer to EF compared to its position
in DFT (∼0.05 eV). Such an effect of shifting the peak of the
density of states towards the Fermi level is common for other
correlated metallic systems. For example, it occurs in α- [35],
γ - [36], ε-iron [37], FeAl [38], and some two-dimensional
systems (see, e.g., Refs. [39–41]). The eg spectral function
shows a similar transformation. However, the eg-derived peak
is pushed from above to below the Fermi energy. The obtained
shape of the spectral functions is preserved in the whole
pressure range p < 2 GPa with all the features shifted to
higher energies with increasing pressure. In particular, at p =
2 GPa the peak of the eg states reaches the Fermi level.

To quantify electronic correlations in ZrZn2 we analyze the
local DFT+DMFT self-energy �̂(iνn) and the effective band
mass enhancement m∗/m = 1 − ∂Im�̂(iν)/∂ (iν))|iν→0. Here
iνn is the fermionic Matsubara frequency and the derivative
∂Im�̂(iν)/∂ (iν) is computed using Padé extrapolation of
�̂(iν) to iν = 0. Our results for the frequency dependence
of orbitally-resolved self-energies Im�̂m(iνn) (m = t2g, eg) at
an electronic temperature T = 464 K are presented in Fig. 2.
We observe that the eg self-energy exhibits a Fermi-liquid-
like behavior with insignificant damping of quasiparticles
(Im�̂eg (0) ∼ 0.002 eV) and yields the mass enhancement
m∗/m = 1.16. The t2g states are less coherent and show
a stronger renormalization with Im�̂t2g (0) ∼ 0.015 eV and
m∗/m = 1.34.

We proceed further with investigation of the effect of
electronic correlations on the Fermi surface (FS) and band
structure of ZrZn2. To compute the FS within DFT+DMFT

FIG. 3. Upper panel: Fermi surface of ZrZn2 at ambient pressure
as obtained within DFT (left) and that computed by DFT+DMFT
at T = 464 K (right). Lower panel: Band structure of paramagnetic
ZrZn2 computed by DFT+DMFT at T = 464 K (contours) and DFT
(dashed lines).

we locate poles of the analytically continued lattice Green
function Gk(ν = 0), diagonalized in the orbital space. In
Fig. 3 (upper panel) we compare our results for the FS
calculated by DFT and DFT+DMFT at ambient pressure.
Both DFT and DFT+DMFT approaches yield the FS that
shows four sheets centered at the � point. Specifically, the FS
consists of the innermost spherical sheet (not seen in Fig. 3)
surrounded by three other sheets with more complex shape.
We observe that upon inclusion of electronic correlations
topology of the inner sheet (Fig. 3, gray) changes near the L
point and the outer sheet (Fig. 3, blue) splits along the W − K
direction of the Brillouin zone, such that the DFT+DMFT
Fermi surfaces are in agreement with experimental data [42].
Analysis of the band structure (Fig. 3, lower panel) shows that
this transformation occurs due to a correlation-induced shift
of the bands at the L and K points of the Brillouin zone, from
above to below the Fermi level. Therefore, correlations are
crucially important to obtain the correct topology of the Fermi
surface of ZrZn2 (see also discussion in Ref. [42]).

2. Local spin susceptibility

We consider further the local spin susceptibility χ (τ ) =
〈ŝz

i (τ )ŝz
i (0)〉 [where ŝz

i (τ ) is the instantaneous spin at the site
i at imaginary time τ and 〈. . .〉 denotes the thermal average
computed by CT-QMC] and its Fourier transform χloc(iωn) =∫ 1/kBT

0 χ (τ ) exp(iωnτ )dτ , ωn being bosonic Matsubara fre-
quencies. Our results for the temperature dependence of the
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FIG. 4. Upper panel: Temperature dependence of the inverse
local spin susceptibility χ−1

loc of paramagnetic ZrZn2 and the inverse
of the corresponding t2g contribution, computed by DFT+DMFT.
The inset shows a fit of the t2g contribution to local susceptibility
(circles) by the universal dependence T χloc(T/TK ) for the Kondo
model [43] (triangles), allowing us to obtain the Kondo temperature
TK. Lower panel: Local spin correlation function χ (τ ) = 〈ŝz

i (τ )ŝz
i (0)〉

of paramagnetic ZrZn2 as computed by DFT+DMFT at T = 464 K.
Orbitally-resolved Fourier transform of χ (τ ) as a function of the real
energy is shown in the inset.

inverse static local spin susceptibility χ−1
loc = (χloc(0))−1 are

shown in Fig. 4 (upper panel). Calculated χ−1
loc and the cor-

responding inverse partial contributions of t2g and eg states
to a good approximation are linear functions of temperature.
The contribution of eg states to the susceptibility (not shown)
is much smaller than that of the t2g states. From the fit of
the t2g contribution by the universal temperature dependence
T χloc(T/TK ) of the impurity susceptibility of the Kondo
model [43], we find a rather large Kondo temperature TK ≈
680 K, which shows that local moments are fully screened
at low temperatures. The presence of a flat part of time
dependence of χ (τ ) (see lower panel of Fig. 4) is indicative
of short-lived local moments in the t2g band. Their inverse
lifetime is characterized by the half width of the peak of
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χ0 q (
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/e
V

)
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FIG. 5. Momentum dependence of the particle-hole bubble χ0
q

in ZrZn2 computed by DFT+DMFT at ambient pressure (a.p.) and
2 GPa.

the analytical continuation of χ (ω) at the half height [36]
and it is equal to 0.16 eV. This value corresponds to the
lifetime 25 fs, which is approximately twice longer than that
discussed previously for the iron pnictides [44] and ε-iron [37]
but much shorter than the lifetime of local moments in such
strong magnet as α-iron [35]. At the same time, almost no
local moments are formed in the eg states. These results are
in line with orbital-selective behavior of the self-energy and
imply a different degree of electronic coherence for different
orbitals of the Zr 4d shell, indicative for orbital-selective local
moments.

3. Momentum dependence of the nonuniform
magnetic susceptibility

To study preferable types of magnetic correlations in
ZrZn2, in Fig. 5 we show the momentum dependence of
the nonuniform magnetic susceptibility, represented by the
particle-hole bubble,

χ0
q = −(

2μ2
B/β

) ∑
k,νn

Tr[Ĝk(iνn)Ĝk+q(iνn)], (2)

where Ĝk(iνn) is the one-particle DFT+DMFT Green func-
tion on Zr atom, which is a matrix in the space of d orbitals,
β = 1/kBT . One can see that apart from the peak at q� = 0,
which shows a tendency to ferromagnetic order, there is a
strong peak of χ0

q at qL = (π, π, π ), showing the presence of
spin density wave correlations. Detail analysis of contribution
of different momenta shows that this peak originates from
the nesting between wide necks of the FS sheets close to the
W − K edge of the Brillouin zone (Fig. 3, green) and corners
of the pillowlike FS centered at the X points (Fig. 3, blue).
The tendency towards spin density wave may explain the
experimentally observed T 3/2 dependence of the resistivity in
the paramagnetic state under pressure [4].

4. Uniform magnetic susceptibility

To complement the analysis of magnetic properties of
ZrZn2 we consider the temperature dependence of inverse uni-
form magnetic susceptibility χ−1(T ). In Fig. 6 we compare
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FIG. 6. Temperature dependence of the inverse uniform spin
susceptibility χ−1(T ) of paramagnetic ZrZn2 computed by
DFT+DMFT at ambient pressure (squares) in comparison with
experiment (broken line) [45]. The straight solid lines represent
least-square fits to χ−1(T ) in the temperature range [400,1200] K and
[2000,4000] K. Temperatures corresponding to excitation energies
of the peaks in the density of states are indicated by arrows. The
inset shows the pressure dependence of T ∗

C as calculated from the
low-temperature fit of χ−1(T ).

our DFT+DMFT results for χ−1(T ) to experimental data of
Shimizu et al. [45]. To highlight the regions of Curie-Weiss
behavior, we show least square linear fits to the computed
points. One can see that the Curie-Weiss law is fulfilled at
T > TCW ≈ 400 K; the slope of inverse susceptibility changes
at the temperature T ′

CW ≈ 2000 K. The temperatures TCW and
T ′

CW approximately correspond to the energy of the two peaks
of the DFT t2g density of states, closest to the Fermi level
(ε1 ≈ −0.15 eV and ε2 ≈ 0.05 eV, respectively), cf. Fig. 1.
The reason for the change of magnetic susceptibility at T =
TCW and T ′

CW is that the electronic correlations are strongly
enhanced by peaks of the density of states.

At T > T ′
CW we find a magnetic moment μ = 2.38 μB.

This value corresponds to weakly interacting electrons [μ =
2.39 μB is obtained from the lowest order bubble contribution
(2) for Zr states, relevant in the considered temperature range,
see Appendix A]. At the same time, at TCW < T < T ′

CW
we find a reduced magnetic moment μ = 1.72 μB. Via the
relation

μ2 = (gμB)2 p(p + 1), (3)

where g = 2, this value corresponds to an effective spin p =
0.49. This value can be interpreted as corresponding to a
correlated electronic state with partial localization of one hole
in the t2g band (filling nt2g = 4.5), which agrees with the
discussion in Sec. II B 2.

The slope of χ−1(T ) in the range TCW < T < T ′
CW, and,

therefore, the respective magnetic moment, is in agreement
with experimental data, although with some shift of the in-
verse susceptibility, which origin is to be clarified by future
investigations. Orbitally resolved contributions χα (α = t2g,
eg) to the total susceptibility (not shown) indicate that the

temperature evolution of χ (T ) in a wide temperature range
mostly originates from the t2g orbitals. The contribution of the
eg states is an order of magnitude smaller and becomes notable
only in the low-temperature region.

At lower temperatures T < TCW ∼ TK theoretical χ−1(T )
dependence shows an upturn, which is likely related to the
Kondo screening of the local moment formed by t2g states.
Such upturn is found in DFT+DMFT studies of many Hund
metals with van Hove singularity, slightly shifted off the Fermi
level [36–38,40,46], although it is not observed in the experi-
mental temperature dependence of the susceptibility of ZrZn2.
The obtained upturn of χ−1(T ) at low temperatures physically
implies a tendency towards a nonferromagnetic ground state.
Our results demonstrate that this tendency, which originates
from the Kondo screening of local moment, formed by the t2g

states, is overestimated in the DMFT approach for ZrZn2. As
a result, DFT+DMFT is applicable to the considered system
only at not too low temperatures.

To proceed further with the results of DFT+DMFT ap-
proach, we extract a characteristic temperature T ∗

C of the onset
of strong ferromagnetic correlations (which is approximately
identified with the Curie temperature TC) by extrapolating the
dependence of susceptibility at high temperatures according
to the Curie-Weiss law, χ−1 ∝ T − T ∗

C . The extrapolation of
the fit to χ−1 = 0 at ambient pressure gives the temperature
T ∗

C ∼ 32 K, close to the value reported in Ref. [45].
Upon increasing pressure we observe a growth of χ−1(T )

in the temperature range T < 1200 K. The effect of pressure
is accompanied by a monotonic reduction of T ∗

C (Fig. 6, inset).
In particular, at p = 1 GPa we obtain a drop of T ∗

C to ∼20 K
which further develops to ∼4 K at p = 2 GPa. This behavior
is in overall qualitative agreement with experimental tendency
of decreasing the Curie temperature under compression of the
lattice [3–6].

Reconciling the results of DFT+DMFT approach with the
experimental data at low temperatures requires consideration
of nonlocal correlations. The treatment of nonlocal spin cor-
relations within the spin-fermion model is presented below,
in Sec. III C. In Sec. IV we also discuss possible reasons of
inapplicability of DMFT in the low-temperature region.

III. EFFECTIVE SINGLE-BAND MODEL

A. The model and the dynamical mean-field theory

To study the phase transition to ferromagnetic phase in
more detail, we consider an effective single-band model.
To construct this model we use a cut of the realistic total
density of states of ZrZn2 computed by DFT in an energy
window chosen to span the full width of Zr-4d band. The
normalized density of states ρ(ε) (Fig. 7, upper panel) defines
a single-band model which is solved by dynamical and static
mean-field theory, as well as investigated within the spin-
fermion model approach. In these calculations the occupation
at each pressure is fixed at its value obtained by using the
Fermi level position in DFT calculation (e.g., at p = 0 GPa
after normalization this procedure yields a total occupation
n = 1.56, which is close to the averaged occupation of Zr-d
Wannier states).
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FIG. 7. Top: Noninteracting density of states of a one-band
model at ambient pressure (a.p.) and its evolution close to the Fermi
level (0 eV) at p = 1 GPa and p = 2 GPa (inset). Bottom: Tempera-
ture dependence of the inverse uniform susceptibility χ−1(T ) of the
one-band model as computed by DMFT at ambient pressure using
the Coulomb parameter U = 4.5 eV (squares). The dot-dashed lines
show linear fits; the dashed line corresponds to the experimental data
of Ref. [45]. The inset shows the pressure dependence of T ∗

C extracted
from a linear fit to the low-temperature part of χ−1(T ).

In the dynamical mean-field theory we consider a standard
single-impurity Anderson model (AIM), supplemented by
the self-consistency condition

∫
ρ(ε)/(iνn − ε − �(iνn)) =

g(iνn) where g(iνn) is the local Green’s function and �(iνn) is
the local self-energy, obtained within the AIM. We note that
previously a similar approach was used for study a ferromag-
netic instability in systems with model densities of states [47].
Here, we use the ab initio density of states ρ(ε), constructed
as discussed above. To compare our DMFT results for the
single-band model with those of Sec. II B for a realistic
multiband model, we use in the DMFT approach to the single
band model the local Coulomb interaction U = 4.5 eV chosen
such that the value of characteristic temperature T ∗

C at ambient
pressure is close to that obtained for the multiband model.

The corresponding DMFT results for the inverse spin sus-
ceptibility, multiplied by a number of relevant orbitals of the

real compound, i.e., [5χ (T )]−1, are shown in Fig. 7, lower
panel. These results are quite similar to those of the multior-
bital model. In particular, in the low-temperature region the
computed inverse susceptibility shows an upturn in the low-
temperature region. We note that similar upturn was obtained
also in earlier studies of the single-band Hubbard model
with the peak of the density of states shifted off the Fermi
level [40]. By analogy to the multiorbital case we extract the
characteristic temperature T ∗

C of the onset of strong ferro-
magnetic correlations from a linear fit of the low-temperature
part of χ−1(T ). At ambient pressure our calculations yield
T ∗

C ∼ 30 K which drops to ∼7 K at p = 2 GPa in qualitative
agreement with the realistic DFT+DMFT calculation (Fig. 7,
lower panel, inset). Studying the paramagnetic to ferromag-
netic phase transition requires an account for nonlocal corre-
lations supplemented by a comparison of energies of para- and
ferromagnetic states. We note that the importance of nonlocal
correlations for stability of ferromagnetism was emphasized
earlier in the DMFT study of a single-band model in Ref. [47].
As we show in the following subsections the transition to the
ferromagnetic state can be successfully described by employ-
ing a simplified spin-fermion model.

B. Mean-field approximation

Before analyzing magnetic properties of the single-band
model within the spin-fermion approach, we consider the
static mean-field approximation, described by the action

SMF =
∑
k,σ

c†
k,σ

(−iνn + εk − μ)ck,σ + U (n↑n↓)MF, (4)

where c†
k,σ

, ck,σ are Grassmann variables, νn are fermionic
Matsubara frequencies,

(n↑n↓)MF = 〈n↑〉n↓ + 〈n↓〉n↑ − 〈n↑〉〈n↓〉
= n〈n〉/2 − 2〈sz〉sz − 〈n〉2/4 + 〈sz〉2, (5)

n = n↑ + n↓, sz = (n↑ − n↓)/2, nσ = ∑
k c†

k,σ
ck,σ ,

k = (k, νn) is the momentum-frequency 4-vector, εk is
an electronic dispersion of the one-band model, and μ is the
chemical potential. This leads to well-known self-consistent
equations for 〈n〉 and 〈sz〉,

〈n〉 =
∑

σ

∫
f (ε̃ + σU 〈sz〉)ρ(ε)dε, (6a)

〈sz〉 = −1

2

∑
σ

σ

∫
f (ε̃ + σU 〈sz〉)ρ(ε)dε, (6b)

where ε̃ = ε − μ + U 〈n〉/2, σ = ±1, f (ε) = (1 +
exp (βε))−1 is the Fermi function, and ρ(ε) is the density of
states per one spin projection.

We solve the equations (6) for μ and 〈sz〉 for a given
electron concentration per orbital 〈n〉, obtained in DFT cal-
culations. This yields paramagnetic (μPM, 〈sz〉 = 0) and fer-
romagnetic (μFM, mFM = 〈sz〉 �= 0) solutions. To find an en-
ergetically preferable solution, we compare the values of
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FIG. 8. Pressure dependence of the Curie temperature TC(p) in
the mean-field analysis of the single-band model for U = 1.8 eV.

thermodynamic potential

�(μ; 〈n〉, 〈sz〉) = U (〈sz〉2 − 〈n〉2/4)

− β−1
∑

σ

∫
ln [1 + e−β(ε̃+σU 〈sz〉)]ρ(ε)dε.

(7)

If �(μPM; 〈n〉, 0) < �(μPM; nPM, 〈sz〉PM), where nPM and
〈sz〉PM �= 0 fulfill the mean-field equations for μ = μPM, then
the paramagnetic solution is considered energetically prefer-
able, while in case �(μFM; 〈n〉, mFM) < �(μFM; nFM, 0),
where nFM and 〈sz〉 = 0 is the solution of MF equations for
μ = μFM, the ferromagnetic solution dominates.

Solution of the equations (6) and (7) in the ground state for
moderate Coulomb interaction shows that the ferromagnetic
ground state is energetically preferable for positions of the
peak of the density of states close to the Fermi level (suffi-
ciently low pressures), while paramagnetic state is energeti-
cally preferable for peak positions far from the Fermi level.

We note that the effective interaction U in the static mean-
field theory is typically smaller than the bare Coulomb interac-
tion of the one-band model, since it accounts for the screening
processes, cf. Refs. [48,49]. We choose below the effective
Coulomb interaction U = 1.8 eV from the condition that the
first-order quantum phase transition occurs at the pressure pc

close to the experimental value pc = 1.65 GPa.
The calculated dependence of Curie temperature TC(p) in

the mean-field theory is presented in Fig. 8. The obtained
pressure dependence of TC is in qualitative agreement with
the experimental data [5,6]. However, the obtained Curie
temperatures overestimate experimental values by an order
of magnitude, which is usual for mean-field theory of weak
magnetic systems [8]. In the narrow region of pressures near
quantum phase transition, where none of the above criteria of
preference of paramagnetic or ferromagnetic solution is ful-
filled, the phase separation between para- and ferromagnetic
phases occurs. We do not study this region in details since it
is rather narrow for ZrZn2.

C. Spin-fermion model

To improve the results of the mean-field approximation, let
us take into account the effect of spin fluctuations in the spin-
fermion model. To this end, we consider the partition function

Z =
∫

D[c, c†]
∫

d3S̃ exp (−βSeff ) (8)

with the effective action

Seff = SMF + 2U sS̃ + DS̃2, (9)

containing the fluctuating field S̃; s =
(1/2)

∑
k,σ,σ ′ c†

k,σ
σσσ ′ck,σ ′ corresponds to the spin of

itinerant degrees of freedom, σ = (σx, σy, σz ) is the vector
of Pauli matrices, and D is the strength of spin fluctuations.
For simplicity we consider here only the effect of spin
fluctuations of static uniform (q = 0, ωn = 0) spin mode,
which can be justified at sufficiently large correlation
lengths [16–19,50]. We also note that at finite temperatures
the classical fluctuations in dimension d = 3 are relevant
from the renormalization group point of view, in contrast to
quantum fluctuations, having dimension d + z, where z = 3 is
the dynamic critical exponent [15]. To be consistent with the
mean-field action (4), we keep the spin-fermion interaction
equal to 2U , cf. Ref. [18]. This yields the following equations
for the electronic density and the magnetization in the absence
of magnetic field (see Appendix B)

〈n〉 = A
∫

d3S̃ exp(−βDS̃2)

×
∑

σ

∫
f (ε̃ + σγ )ρ(ε)dε, (10)

〈sz〉 = −AU

2

∫
d3S̃ exp(−βDS̃2)

〈sz〉 − S̃z

γ

×
∑

σ

σ

∫
f (ε̃ + σγ )ρ(ε)dε, (11)

where γ = U (〈sz〉2 − 2〈sz〉S̃z + S̃2)1/2, A = (βD/π )3/2.
For numerical solution of equations (10) and (11) we keep

the value U = 1.8 eV which was chosen in Sec. III B for
the mean-field analysis and choose temperature-independent
D−1 = 0.15 eV−1, which allows us to achieve the Curie tem-
perature at ambient pressure, which is approximately equal
to the experimental value. As in the mean-field approach we
solve first the system of equations (10) and (11) for given
concentration of electrons 〈n〉, obtained in DFT, and then com-
pare thermodynamic potentials � of para- and ferromagnetic
solutions with the same chemical potential (see Appendix B
for the explicit expression of � for the spin-fermion model).

The obtained dependence of Curie temperature TC(p) (see
Fig. 9) is almost linear and demonstrates a quantitative
agreement with the experimental data [5,6]. The position of
the first-order quantum phase transition pc is only weakly
changed in comparison to the mean-field theory and therefore
remains also close to the experimental value. Therefore, we
find that static almost uniform classical spin fluctuations are
sufficient to successfully explain the pressure dependence of
the Curie temperature, observed experimentally.

Finally, we analyze the temperature dependence of the
inverse uniform susceptibility in the mean-field approach and
spin-fermion model (see explicit expressions in Appendix B).
Our results rescaled with the number of orbitals are shown in
the lower panel of Fig. 9 in comparison with the experimental
data and the results of DMFT for the single-band model
(Fig. 7). We observe that in the region T > 2000 K the inverse
susceptibility computed by DMFT becomes almost indistin-
guishable with the mean-field result. This shows correctness
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FIG. 9. Magnetic properties of ZrZn2 obtained within spin-
fermion model (solid lines) in comparison to the experimental data
(circles). Upper panel: Pressure dependence of the Curie temperature
TC(p). The experimental data are taken from Ref. [5]. Lower panel:
Temperature dependence of inverse susceptibility, rescaled with the
number of orbitals, [5χ (T )]−1 at ambient pressure, compared to the
respective results of the mean-field approximation (dashed line), and
DMFT for single-band model (squares, cf. Fig. 7). The experimental
data are taken from Ref. [45] (without rescaling).

of account of screening of the interaction by choosing a
reduced value of the Coulomb interaction in the mean-field
approach (cf. Ref. [49]) and confirms a view on the T > T ′

CW
state as on the weakly correlated state. Although at lower
temperatures the susceptibility calculated by DMFT is sup-
pressed by local correlations, these correlations, similarly to
the results of the multiband model in Fig. 6, are not sufficient
to describe the experimental data. At the same time, the result
of calculation of uniform magnetic susceptibility within the
considered spin-fermion model shows further suppression of
susceptibility by nonlocal correlations at moderate tempera-
tures, but at the same time, its enhancement (in comparison to
DMFT) in the low-temperature region. The resulting inverse
susceptibility closely follows the experimental data. This
shows again sufficiency of account of almost uniform classical
fluctuations to achieve a good agreement with experiment.

IV. CONCLUSION

In conclusion, by employing a combination of the
DFT+DMFT method and analytical model-based techniques
we investigated the electronic and magnetic properties of a
prototypical itinerant ferromagnet ZrZn2. Our DFT+DMFT

results show that electronic correlations in ZrZn2 are rather
weak but not negligible as characterized by an effective mass
renormalization of the Zr-4d states m∗/m ∼ 1.1–1.3. Most
importantly, we demonstrate that the 4d t2g electronic states
of Zr are partly localized by Coulomb interaction, yielding an
orbital-selective formation of local magnetic moments, which
are screened at low temperatures.

We also show that the effect of local Coulomb correlations
is essential for determining the correct topology of some of
the Fermi surface sheets. The shape of the Fermi surface
computed by DFT+DMFT supports antiferromagnetic corre-
lations, which compete with the tendency to ferromagnetism
and may explain a change of the temperature dependence of
resistivity from T 5/3 to T 3/2 accompanying the destruction of
ferromagnetic order.

Extrapolation of the linear high-temperature part of the
inverse uniform susceptibility χ−1(T ) of ZrZn2 calculated
by DFT+DMFT to χ−1(T ) = 0 yields an estimate of the
characteristic temperature of the onset of strong ferromagnetic
correlations T ∗

C ∼ 32 K at ambient pressure and T ∗
C ∼ 4 K

at p = 2 GPa in qualitative agreement with experimental
behavior of the Curie temperature.

We would like to emphasize that the peaks of the density
of states close to the Fermi level are a rather common fea-
ture of many metallic compounds and they can significantly
influence the physical properties [51]. In general, these peaks
on one hand enhance the tendency to ferromagnetic ordering,
but on the other hand, they promote formation of the local
moment and the corresponding Kondo screening at low tem-
peratures. The offset of the peak of density of states from the
Fermi level increases the corresponding Kondo temperature
[35–37,40,46], and, therefore, serves as another source of
suppression of ferromagnetism, apart from the suppression of
the density of states.

Accordingly, at low temperatures the shape of χ−1(T ),
computed by DFT+DMFT, shows a significant deviation
from the linear behavior (an upturn). In view of the obtained
partial localization of the Zr 4d t2g states this upturn may be
explained by a competition of the ferromagnetic ordering with
the Kondo effect, which is similar to that considered previ-
ously for Kondo lattices [52–57]. This competition was also
considered a possible source of weak ferromagnetism [58],
and it is expected to be quite sensitive to spatial correlations.

Importance of the Kondo physics for of ZrZn2 is sup-
ported by the observation that the shape of χ (T ) obtained by
DFT+DMFT is similar to that of FeAl where ferromagnetism
is destroyed by the Kondo screening [38]. While the peak
of the density of states of ZrZn2 is closer to the Fermi level
than that for FeAl, DFT+DMFT for ZrZn2 also yields a
paramagnetic ground state, although with a lower temperature
of the susceptibility upturn. Since in case of a single impurity
the Kondo temperature is typically larger than the Kondo
coherence temperature for the lattice, the paramagnetic state
in DMFT for ZrZn2 may be a consequence of an overestimate
of the Kondo effect by this approach. A possible reason for
this overestimate is that suppression of the Kondo effect by
nonlocal magnetic correlations is not accounted for by DMFT
approach. While the upturn of calculated inverse susceptibility
in ZrZn2 can be explained in terms of the Kondo screening,
which is overestimated by DMFT, the effect of the approxi-
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mations employed within the CT-QMC method, namely Ising-
type Hund exchange and the neglect of the effect of spin-orbit
coupling, requires further consideration.

We note also that approaching (and even underestimating)
the experimental Curie temperature by DFT+DMFT is ob-
tained for such a simple magnet as nickel. Specifically, in this
case DMFT approach with Ising [or SU(2)] Hund exchange
yields TC = 700 K (or 600 K) [11,59] vs the experimental
TC = 630 K. The effective spin of Ni p = 0.45 as determined
via Eq. (3) using the experimental magnetic moment μ =
1.6 μB appears to be slightly less than 1/2. This along with the
proximity of the Kondo temperature TK ≈ 800 K, extracted
from the local susceptibility of Ref. [11], to the Curie tempera-
ture, also conforms to the presence of a weak Kondo screening
in this magnet and shows a possibility of underestimation of
the Curie temperature within DFT+DMFT.

To study details of the paramagnet-ferromagnet transition
in ZrZn2, we have constructed an effective single-band model
by using the Zr 4d contribution to the total density of states.
We have shown that for an appropriate choice of the Coulomb
repulsion DMFT solution of this model yields results, close to
those of the realistic multiband model.

Our results for the effective single-band model obtained
within the static mean-field approximation show a second-
order paramagnet-ferromagnet phase transition with decreas-
ing temperature at small pressures. Upon increasing pressure
the first-order quantum phase transition into the paramagnetic
phase occurs in agreement with experimental data. Yet, in
contrast to DMFT the static mean-field approximation over-
estimates the transition temperature by almost an order of
magnitude.

To reconcile the results of static and dynamic mean-field
approaches to the single-band model, we have also considered
a spin-fermion approach to the single-band model. Similarly
to DMFT, this approach yields reasonable values of transition
temperatures and, at the same time, it preserves the second-
order phase transition with changing temperature at low pres-
sures and the first-order quantum phase transition into para-
magnetic phase at elevated pressures. Within this model com-
puted pressure dependence of the Curie temperature and the
temperature dependence of susceptibility at ambient pressure
are in good quantitative agreement with experimental data.

The considered spin-fermion model relies on considera-
tion of ferromagnetic correlations, putting aside other types
of correlations and possible Kondo effect (which should be
undoubtedly studied in the future). On one hand this approach
allows us to obtain physically valuable information about
ferromagnetic properties of ZrZn2. Therefore, it is perspective
to study magnetic properties of other weak itinerant magnets.
On the other hand, this calls for further development of
methods describing both local and nonlocal correlations in
weak magnets. These approaches can be based on diagram-
matic nonlocal extensions of DMFT [60]. Correct treatment
of Kondo effect in ZrZn2 may also require account of the
nonlocal correlations within the Kondo lattice or periodic An-
derson model. Despite these models were intensively applied
to describe magnetism of heavy-fermion systems (see, e.g.,
Ref. [61]), their possible relevance for weak magnets with
peaks of the density of states (cf. Ref. [58]) has to be further
explored.
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APPENDIX A: UNIFORM SUSCEPTIBILITY AT
TEMPERATURES HIGHER THE WIDTH OF THE PEAK

We consider the uniform static susceptibility of the multi-
band model in the form of a single bubble, Eq. (2) at q = 0,

χ0 = −2μ2
BT

∑
k,iνn,m,m′

Gk,mm′ (iνn)Gk,m′m(iνn), (A1)

where Gk,mm′ = 〈c+
k,m,σ

(0)ck,m′,σ (τ )〉iνn is the electronic Green
function, c+

k,m,σ
, ck,m′,σ are the electron creation and destruc-

tion operators with momentum k, orbital m and spin pro-
jection σ . Using the spectral representation for the Green’s
functions we find

χ0 = −2μ2
BT

∑
iνn,m,m′

Ak,mm′ (ν)Ak,m′m(ν ′)
(iνn − ν)(iνn − ν ′)

(A2)

= 2μ2
B

∑
k,m,m′

∫
dν

∫
dν ′Ak,mm′ (ν)Ak,m′m(ν ′)

× f (ν) − f (ν ′)
ν ′ − ν

(A3)

= 2μ2
B

∑
k,m,m′

∫
dν

∫
dν ′Ak,mm′ (ν)Ak,m′m(ν ′)

× [1 − f (ν)] f (ν ′)
exp[(ν ′ − ν)/T ] − 1

ν ′ − ν
, (A4)

where Ak,mm′ (ν) = (−1/π )ImGk,mm′ (ν) is the spectral weight
of the Green’s function, and f (ν) is the Fermi function. The
1/T contribution to susceptibility originates from the integra-
tion region |ν − ν ′|  T . Together with ν � −T and ν ′ � T
restricted by the Fermi functions, this implies |ν|, |ν ′| � T in
that region.

Let us consider the contribution to the susceptibility from
some relevant energy range ν, ν ′ ∈ [εmin, εmax], which con-
tains peaks of the density of states near the Fermi level. In our
case this refers to Zr 4d states. The reason is that such contri-
butions, resummed within the random-phase approximation,
provide the Curie-Weiss law up to relatively low temperatures
T � max(|εmin|, εmax). Indeed, at T � max(|εmin|, εmax) we
have |ν − ν ′| < εmax − εmin  T , such that the abovemen-
tioned 1/T behavior of the bubble takes place. We obtain for
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the considered contribution

χ0 = 2μ2
B

T

∑
k,m,m′

∫
dν

∫
dν ′Ak,mm′ (ν)Ak,m′m(ν ′)

× [1 − f (ν)] f (ν ′) (A5)

= 2μ2
B

T

∑
k,m,m′

〈ck,mc+
k,m′ 〉〈c+

k,m′ck,m〉. (A6)

In the considered temperature range the averages in the last
line weakly depend on k and their local value can be taken,
which yields

χ0 = 4μ2
B

3T
〈S2〉 = μ2

3T
, (A7)

where 〈S2〉 is the average square of spin on the relevant
orbitals (4d Zr in our case). For ZrZn2 we obtain from
DFT+DMFT calculations of the multiorbital model 〈S2〉 =
1.43. This yields a corresponding magnetic moment μ =
2.39 μB, which agrees well with the moment extracted from
inverse susceptibility in the temperature range T > T ′

CW
(see Sec. II B 4). Note that obtained in DFT+DMFT in-
traorbital contributions to this value, μ = ((3/2)

∑
m nm(2 −

nm))1/2 μB = 2.16 μB, so that the interorbital correlations are
relatively weak.

The results (A6) and (A7) can be extended to the uniform
susceptibility in DMFT, which can be represented in the form
[24,60]

χDMFT
q=0 = 2μ2

B

∑
ν, m, m′,
ν ′, m′′, m′′′

[
δνν ′ χ̂−1

0,ν − �̂
]−1

ν m m′,
ν ′m′′m′′′,

(A8)

where χ̂0 is the matrix in orbital indexes of the bubbles of
Green’s functions, similar to the Eq. (A1),

χ̂mm′,m′′m′′′
0,ν = −T

∑
k

Gk,mm′′ (iν)Gk,m′′′m′ (iν),

and �̂ is the irreducible vertex (which is also considered as
a matrix in frequency and orbital space). Assuming that the
vertex � is weakly frequency and orbital dependent, using
spectral representation for Green’s functions, which is similar
to that in Eq. (A4) and considering the contribution of the
energy range |ν|, |ν ′| � T , we arrive at the random-phase
approximation (RPA)-like results for the susceptibility, which
fulfills the Curie-Weiss law, with the Curie constant given
approximately by Eq. (A7). The main effect of the vertex �

in this case is in the shift of the inverse susceptibility with
respect to the Curie law (A7), i.e., introducing a finite Weiss
temperature.

APPENDIX B: DERIVATION OF THE EQUATIONS
OF THE SPIN-FERMION MODEL

The action (9) can be written as the quadratic form of
fermionic operators as follows:

Seff =
∑

k,σ,σ ′
c†

k,σ
Mσ,σ ′ (k)ck,σ ′ + DS̃2 + E0, (B1)

where E0 = U (〈sz〉2 − 〈n〉2/4),

M=
(−iνn+ε̃k−HMF/2 + US̃z U (S̃x − iS̃y)

U (S̃x + iS̃y) −iνn + ε̃k+HMF/2−US̃z

)
,

(B2)

HMF = H + 2U 〈sz〉, we have added the magnetic field H for
completeness, and

ε̃k = εk − μ + U 〈n〉
2

.

After integrating out the fermions in Eq. (8), we get the
partition function Z in the form

Z = e−βE0

∫
d3S̃ exp

(
−βDS̃2 +

∑
k,n

ln (β2 det M)

)
. (B3)

Using Eq. (B2), we obtain

det M = (−iνn + ε̃k )2 − γ 2, (B4)

where

γ 2 = H2
MF/4 − UHMFS̃z + U 2S̃2. (B5)

The Matsubara sum in Eq. (B3) can be carried out exactly,
yielding∑

k,n

ln (β2 det M) =
∑
k,n,σ

ln (β(−iνn + ε̃k + σγ ))

= −
∑
k,σ

ln (1 − f (ε̃k + σγ )). (B6)

Substituting this result in Eq. (B3), the partition function
finally becomes

Z = e−βE0

∫
d3S̃ exp (−βDS̃2 − R(S̃)), (B7)

where R(S̃) = ∑
σ

∫
dερ(ε) ln (1 − f (ε̃ + σγ )). Therefore,

in the presented spin-fermion model, the average total occu-
pation 〈n〉 is given by

〈n〉 = −∂�

∂μ
= e−βE0

Z

∫
d3S̃ exp (−βDS̃2 − R(S̃))

×
[∑

σ

∫
f (ε̃ + σγ )ρ(ε)dε

]
(B8)

and the average magnetization 〈sz〉 is

〈sz〉 = − ∂�

∂H
= −e−βE0

Z

∫
d3S̃ exp(−βDS̃2 − R(S̃))

×
[∑

σ

σ

∫ HMF
2 − US̃z

2γ
f (ε̃ + σγ )ρ(ε)dε

]
, (B9)

where � = −β−1 ln Z is the thermodynamic potential.
The expansion of logarithmic contribution R(S̃) in the

exponents of Eqs. (B7)–(B9) in powers of γ contains only
even powers and corresponds to weak magnetization of the
spin-fluctuation field (the first order in S̃ term), the renormal-
ization of the value of D (for the second-order term), and mul-
tiparamagnon interactions (higher-order terms). We neglect
the weak magnetic field acting on S̃ and multiparamagnon
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interactions effects and assume that the value of D is already
renormalized. These approximations imply replacement of γ

in these logarithmic contributions by its S̃ = 0 value. At fixed
〈n〉 = 2

∫ εF

−∞ ρ(ε)dε, H = 0, T , D, the equations (B8) and
(B9) reduce therefore to the equations (10) and (11) of the
main text.

To calculate the susceptibility we differentiate Eq. (B9),
neglecting the logarithmic contribution in the exponent, over
H . Using

dHMF

dH
= 1 + 2Uχs, (B10)

where χs = d〈sz〉/dH , we find at H → 0

dγ

dH
= U

2γ
(〈sz〉 − S̃z )(1 + 2Uχs),

d

dH

(
HMF/2 − US̃z

2γ

)
= U 2

S̃2
x + S̃2

y

4γ 3
(1 + 2Uχs). (B11)

In the following we assume paramagnetic phase 〈sz〉 = 0. In
this case the derivative dμ/dH does not contribute to the
susceptibility χ since the corresponding term is odd in S̃z.
Collecting all the terms together we obtain RPA-like result

χ = 4μ2
Bχs = 2μ2

B

χSF
0

1 − UχSF
0

, (B12)

where

χSF
0 = (2Z0)−1

∑
σ

(F σ − σDσ ), (B13)

we have introduced

F σ = 4π

3

∫ ∞

0
dS̃S̃2Bσ (S̃) exp (−βDS̃2), (B14)

Dσ = 8π

3U

∫ ∞

0
dS̃S̃Aσ (S̃) exp (−βDS̃2), (B15)

and

Aσ (S̃) =
∫

f (ε̃ + σγ )ρ(ε)dε, (B16)

Bσ (S̃) = −
∫

∂ f (ε̃ + σγ )

∂ε
ρ(ε)dε, (B17)

Z0 =
∫

d3S̃ exp (−βDS̃2). (B18)

Integrating by parts, equation (B15) can be written as

Dσ = 4π

3βDU

[
Aσ (0) − σU

∫ ∞

0
dS̃Bσ (S̃) exp (−βDS̃2)

]
.

(B19)

Substituting Eqs. (B19) into Eq. (B13), we obtain

χSF
0 = 2π

3Z0

∫ ∞

0
dS̃

(
S̃2 + 1

βD

) ∑
σ

Bσ (S̃) exp (−βDS̃2).

(B20)

In the absence of spin fluctuations (D → ∞), i.e., in mean-
field approach, we find the RPA result of Eq. (B12) with
χSF

0 → − ∫
ρ(ε) f ′(ε̃)dε, which is the bare spin susceptibility.

The resulting temperature dependence of the inverse suscep-
tibility in the mean-field and spin-fermion model is discussed
in Sec. III C.
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