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In bilayer Crl;, experimental and theoretical studies suggest that the magnetic order is closely related to
the layer staking configuration. In this work, we study the effect of dynamical lattice distortions, induced by

nonlinear phonon coupling, in the magnetic order of the bilayer system. We use density functional theory to
determine the phonon properties and group theory to obtain the allowed phonon-phonon interactions. We find
that the bilayer structure possesses low-frequency Raman modes that can be nonlinearly activated upon the
coherent photoexcitation of a suitable infrared phonon mode. This transient lattice modification in turn inverts
the sign of the interlayer spin interaction for parameters accessible in experiments, indicating a low-frequency

light-induced antiferromagnet-to-ferromagnet transition.

DOI: 10.1103/PhysRevB.102.081117

Introduction. The control of ordered states of matter such
as magnetism, superconductivity, or charge- and spin-density
waves is one of the more sought after effects in the field.
In equilibrium, this can be achieved by turning the knobs
provided by temperature, strain, pressure, or chemical com-
position. However, the nature of these methods limits the
possibility to integrate the materials into devices for tech-
nological applications due to undesirably slow control and
nonreversibility. In recent years, a new approach has emerged
which allows in situ manipulation: driving systems out of
equilibrium by irradiating them with light [1-33]. Recent
experiments have demonstrated the existence of Floquet states
in topological insulators [34,35], the possibility to transiently
enhance superconductivity [36-38], the existence of light-
induced anomalous Hall states in graphene [39], light-induced
metastable charge-density-wave states in 17-TaS, [40], opti-
cal pulse-induced metastable metallic phases hidden in charge
ordered insulating phases [41,42], and metastable ferroelectric
phases in titanates [43].

Finding suitable platforms to realize nonequilibrium tran-
sitions represents the first main challenge. Recently, interest
in the van der Waals bulk ferromagnet chromium triiodide
(Crl3) [44,45] has been renewed with the discovery that it
is stable in its monolayer form, where the chromium atoms
arrange in a hexagonal lattice and the iodine atoms order on
a side-sharing octahedral cage around each chromium atom
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as shown in Figs. 1(a) and 1(b). Monolayer Crl; presents
out-of-plane magnetization stabilized by anisotropies [46]
and a Curie temperature 7 ~ 45 K [47]. The origin of the
anisotropies is still a subject of intense theoretical and experi-
mental investigations [48-50].

In bulk form, Crl; exhibits a structural phase transition
near 7 = 210-220 K. This structural transition is accom-
panied by an anomaly in the magnetic susceptibility, but
no magnetic ordering [45]. At T =61 K, Crls exhibits a
transition from paramagnet to ferromagnet [45], with an easy-
axis perpendicular to the two-dimensional planes. Evidence
suggests that Crl; is a Mott insulator with a band gap close
to 1.2 eV [44,45]. Recent experiments have measured large
tunneling magnetoresistance [51,52], suggesting potential ap-
plications in spintronics devices.

Bilayer Crls (b-Crl3) presents an antiferromagnetic (AFM)
ground state [47,52-55], with monoclinic crystal struc-
ture [Figs. 1(c) and 1(d)]. Single-spin microscopy [56]
and polarization-resolved Raman spectroscopy [57] measure-
ments have established a strong connection between the mag-
netic order and the stacking configuration in few-layers Crl;.
Furthermore, it has been shown that the magnetic order can
be controlled in equilibrium by doping [58] and applying
pressure [59] to b-Crls. These results have been accompa-
nied by theoretical studies, which find that the AFM order
is linked to the lattice configuration [60—63]. In particular,
orbital-dependent magnetic force calculations show that the
stacking pattern can suppress or enhance the e,-f, interaction
and correspondingly favor an AFM or ferromagnetic (FM)
order [61].

©2020 American Physical Society
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FIG. 1. (a) Monolayer Crl; lattice structure. The conventional
unit cell is shown with solid lines. (b) Cr*> atoms surrounded by
an edge-sharing I octahedral cage. (c) b-Crl; crystal structure with
space group C2/m associated with the AFM ground state. The top
layer is shifted with respect to the bottom layer by [1/3 0 0]. (d) Top
view with I atoms suppressed for clarity. The red arrow indicates the
relative shift. The black box indicates the conventional unit cell. The
lattice structures were created with VESTA [64].

In this Rapid Communication, we leverage these theoret-
ical and experimental results in equilibrium, and consider
the possibility to dynamically tune the magnetic order in
b-Crl; using low-frequency light to coherently drive suitable
phonon modes. We start with a group theory analysis to
determine the feasibility of the nonlinear phonon process
required. Then, we perform first-principles calculations to
find phonon frequencies, eigenmodes, and nonlinear phonon
coupling strengths. We then analyze the equations of motion
for the driven phonons and their impact on the lattice struc-
ture. Finally, we determine the effect of such transient lattice
deformations on the magnetic order and find the possibility
to induce a sign change in the interlayer exchange interaction
using experimentally accessible parameters.

Group theory analysis. Recent first-principles studies in-
dicate that there is a direct relation between the magnetic
ground state and the relative stacking order between the
layers [60,62,65]. The FM phase presents an AB stacking
with space group R3 (point group Sg), while the AFM ground
state is accompanied by an AB’ stacking with space group
C2/m and point group Cy;, [60] [Fig. 1(d)]. AFM and FM
structures are related by a relative shift of the layers leaving
each individual layer unaltered. Since experiments find AFM
order in the ground state [47], in our analysis we assume
the configuration corresponding to the Cy;, space group. The
primitive unit cell contains 4 Cr and 12 I atoms, for a total
of N =16 atoms. The conventional to primitive unit cell
transformation, and the C,, point group character table are
listed in [66]. The total number of phonon modes is then 3N =
48. We obtain that the equivalence representation is given
by IV = 54, @ 3B, @ 3A, @ 5B,. In the Cy;, point group,
the representation of the vector is I'ye. = 24, @& B,, which
leads to the lattice vibration representation Iy vip, = [eauv
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FIG. 2. (a) b-Crl; phonon frequencies in the space group C2/m
and AFM ground state. The blue dots correspond to Raman modes
involving layer relative shifts. The gray dots correspond to IR modes
that directly couple to the light pulse. The acoustic modes are not
shown. (b)—(d) b-Crl; low-frequency Raman phonon displacements
relevant for the nonlinear dynamics.

Fyee = 134, ® 11B, @ 114, @ 13B,,. From the symmetry of
the generating functions (see the Supplemental Material [66]),
24 modes are Raman active (13 with totally symmetric A,
representation and 11 with B, representation) and 24 infrared
active modes [67].

Here, we posit that a Raman mode involving a relative
shift between the layers might influence the magnetic or-
der. In order to test if such a mode is allowed by symme-
try, we construct the projection operators [68—70] ISk(lr") =

% c, [D,(Cl;")(C(,)]*P(Ca), where I',, are the irreducible rep-

resentations, C, are the elements of the group, D,(cl; ")(Ca) is
the irreducible matrix representation of element C,, & is the
order of the group, and /, is the dimension of the irreducible
representation. Finally, P(C,) are 3N x 3N matrices that form
the displacement representation. Applying the projection op-
erators P4 and PP to random displacements of the atoms,
we find that modes with one layer uniformly displaced in the
[1 1 0] direction, while the other in the [1 1 0] direction is
allowed by symmetry and belong to the totally symmetric A,
representation [Fig. 2(c)]. Similarly, modes where one layer
is displaced in the [0 O 1] direction and the other one in the
[0 0 1] belongs to the A, representation [Fig. 2(b)]. On the
other hand, layer displacements in the directions [1 1 0] and
[1 10] belong to the B, representation [Fig. 2(d)]. We will
show that these Raman modes can be manipulated via indirect
coupling with light to control the magnetic order.

Phonons. Once we determine that relative-shift modes are
allowed by symmetry, we calculate the phonon frequencies
using density functional perturbation theory and finite differ-
ence methods as implemented in QUANTUM ESPRESSO [71,72]
and VASP [73,74], respectively. We find excellent agreement
among all the approaches considered (see [66] for details).

In Fig. 2(a), we plot the full set of frequencies of the
I'-point phonons. We find that the three low-frequency modes
(apart from the three omitted zero-frequency acoustic modes)
are Raman active, and correspond to relative displacement
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between the layers in different directions, in agreement with
the group theory results. The lowest-frequency mode, Q2 =
0.460 THz, belongs to the A, representation, and the real-
space displacement is shown in Fig. 2(c). The next phonon
mode is very close in frequency, Q2 = 0.467 THz; however, it
belongs to the B, representation [Fig. 2(d)]. The mode with
frequency €2 = 0.959 THz belongs to the A, representation
and corresponds to a relative displacement perpendicular to
the layers, as shown in Fig. 2(b).

Nonlinear phonon processes have been proposed for tran-
sient modification of the symmetries of the system, which
can be accompanied by changes in the ground-state proper-
ties [3,4,7-9,12-15]. Now, we derive the nonlinear phonon
potential resulting from coupling between infrared (Qir) and
Raman (Qg) active modes in b-Crls. In an invariant polyno-
mial under the operations of a given group, coupling between
two modes is allowed only if it contains the totally symmetric
representation [68—70]. In principle, an IR mode is allowed to
couple nonlinearly to all A, and B, Raman modes in the Cy;
point group. However, as we will show, we can focus on the
modes involving relative motion between the layers because
they possess very low frequency, compared with the rest of
the Raman phonons. Up to cubic order, the nonlinear potential
functional including the three low-frequency phonon modes is
given by

VIO, Ori]

3
1 1
= EQIZRQ%R + § 59122(1')Q121<i>
i=1

2 2
Bi
+ Z §Q13z(1) + Ok Z ¥iOra) + 8Qr1)Or)
P

i=1

2
+ €Or1) QR0 + CRes) Z iOrqi)- (H
i=1

The numerical value of the coefficients is obtained us-
ing first-principles calculations. In the Supplemental Mate-
rial [66] we outline the procedure we used following Ref. [4],
we plot the energy surfaces obtained by varying the corre-
sponding phonon mode amplitudes, and display the numerical
values of the coefficients obtained by fitting Eq. (1).

Under an external drive with frequency €2, the poten-
tial acquires the time-dependent term [75,76] Vp[Qr] = Z* -
Ey sin(21)F (t)Qir, where Ej is the electric field amplitude,
and Z* is the mode effective charge vector [75,77]. F(t) =
exp{—t%/(21?)} is the Gaussian laser profile, with variance
2. Assuming that damping can be neglected, the general
differential equations governing the dynamics of one in-
frared mode coupled to m Raman modes are obtained from
the relations BEQR@ = —aQR(UV[Q[R, QR(,')], fori=1,...,m,
and 8,2Q1R = —00, VIO, Or()], which corresponds to a set
of m 41 coupled differential equations that we solve nu-
merically in the general case. In the absence of coupling
with the Raman modes, the IR mode dynamics are de-
scribed by 8,2Q[R = —Q%RQIR — Z*Ey sin(Q2t)F (t). In the res-
onant case 2 = Qg, and impulsive limit Qr7 < 1, we find
OR(t) = ~27Z*Eot /SR cos (rt) sinh[(Qr7)* e @r?’
with boundary conditions Qr(—00) = 9,Qr(—00) =0 [4].

The amplitude of the excited IR modes scales linearly with
the electric field and the mode effective charge.

Now we add coupling with one A, Raman mode. The
potential in Eq. (1) simplifies to V[Qr, Or] = %Q%RQ%R +
%QZRQ]% + y Q2% Or. The cubic term y is responsible for the
ionic Raman scattering [76,78]. Within this mechanism, the
infrared active mode is used to drive Raman-scattering pro-
cesses through anharmonic terms in the potential, and leads
to coherent oscillations around a new displaced equilibrium
position. Theoretical works have also proposed this cubic
nonlinear coupling mechanism to tune magnetic order in
RTiO; [16,17], investigate light-induced dynamical symmetry
breaking [4], modulate the structure of YBa,;Cu3O and related
effects in the magnetic order [18]. On the experimental side,
the response of YBa,;Cu3Og¢, to optical pulses has been in-
vestigated [79], and experimental detection of possible light-
induced superconductivity has been reported [38].

From the equilibrium condition 99, V[QOir, Or] =0,
we find that the potential is minimized when Qg =
—yQIZR / SZZR [7]. Therefore, we obtain larger displaced equi-
librium positions effects for low-frequency Raman modes.
This argument allows us to limit our discussion to the three
low-frequency Raman modes shown in Figs. 2(b)-2(d). Now,
considering the cubic term as a perturbation, we find

ym (Z*EyT3)? QIZR 2
1) = ———— —| Q cos(2Qr?
QR() (45_212R_912z) 912{[ R ( IR)
+2(Qfx — Q) cos(Qr1) + Qg —4QR]. ()

In the resonant limit Qr =2Qm)r, the solution is
given by Qr(t) = —)/J'E(Z*Eor3)2 sin(Q2r?)[sin(Qr?) +
Qrt cos(Qrt)]/2.

Additional constraints for the IR mode selection arise from
current experimental capabilities for strong terahertz pulse
generation. Strong fields of up to 100 MV cm™! have been
achieved in the literature in the range 15-50 THz [80,81].
Now we investigate numerically the nonlinear dynamics of
the three Raman phonon modes of interest in response to the
excitation of a single IR mode. We consider the IR modes with
frequencies Qr = 6.104 THz (Qr(4)) and Qr = 6.493 THz
(Or(s)), which couple to electric fields parallel to the y and
x directions, respectively. The numerical solutions for Qi)
and Qg(;) are shown in Figs. 3(a) and 3(b) for £y = 4 MV /cm,
and T = 0.2 ps. Or(2) shows the largest amplitude, followed
by QOrq) which involves displacements in the Z direction,
perpendicular to the layers. Qr(3y with B, representation does
not participate in the dynamics due to the weak coupling
with Qr1y and Qgr(z), and the absence coupling with Qir(a)
at cubic order. In Fig. 3(c) [Fig. 3(d)], we plot the averaged
displacements (Qgr(;)) as a function of Ej in response to
excitation of Qrwu) (Qres)) with T =0.3 ps (r = 0.8 ps).
Therefore, the direction of the shift between the layers can be
controlled by selectively exciting Qir4) or Qr(g). Next, we
will study the magnetic order and show that the induced layer
displacements accessible using nonlinear phonon processes
can switch the sign of the interlayer exchange interactions.

Effective  spin  interaction. Recently, theoretical
work [82,83] and a combined study employing group theory
and ferromagnetic resonance measurements [49] proposed
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FIG. 3. (a) Infrared Q) and (b) Raman modes Qg oscil-
lations as a function of time for b-Crl; for a laser incident in
the y direction with £ =4 MV/cm, v = 0.2 ps. (¢) [(d)] Average
displacement of Qg) nonlinearly coupled to the laser-excited Qg
(QIR(B)) with frequency Q]R = 6.104 THz (Q[R = 6.493 THZ) In
(c)t =03 psandin(d) T = 0.8 ps.

that Crl; is described by the Heisenberg-Kitaev [84,85]
Hamiltonian H = Hingra + Hiners Where the intralayer
Hamiltonian is given by

Hintra = Z Jsi-sj+ Ks}si + T (s}sh +s1's)),
(ijyern(v)

and contains J Heisenberg and K Kitaev [84] interactions
with off-diagonal exchange I' [85]. The Heisenberg-Kitaev
Hamiltonian Hiy, has been studied extensively. For example,
the equilibrium phase diagram [85] and the magnon contri-
bution to thermal conductivity has been determined [86], and
the spin-wave spectrum has been shown to carry nontrivial
Chern numbers [87]. In Ref. [49], the intralayer interaction
constants for Crl; were determined experimentally to be J =
—0.2meV, K = —52meV,and I' = —67.5 ueV.

In experiments [48,49], the interlayer Hamiltonian has
been assumed to be Hiner = Z(mem Jisi-sj, with |J, | =
0.03 meV in Ref. [49], and |/, | = 0.59 meV in Ref. [48], as
extracted from ferromagnetic resonance and inelastic neutron-
scattering measurements in bilayer and bulk Crl;, respec-
tively. Although both experiments propose different intralayer
spin models, both find that the interlayer energy scale is
much smaller than the intralayer energy scale. Here, we map
the interlayer Hamiltonian into a Heisenberg model of the
form Hiner = % > jeint JijSi - 8j, and determine J;; from first
principles (generalized gradient approximation with Hubbard
U =1 eV fixed to reproduce the b-Crl; critical temperature
Te = 45 K) using a Green’s function approach and the mag-
netic force theorem (for a detailed explanation of the method
and applications, see Ref. [88]).

The coupling between the spin and the phonons enters
through the interatomic distance dependence of the exchange
constants [89]. Under a lattice deformation, and for small
deviations from the equilibrium position, the exchange in-
teraction is given by J[u(t)] =J° + 8J8 - u(t) + Ofu(t)?],

0.6
N
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FIG. 4. Left: Interlayer exchange interaction among magnetic
moments, up to third-order nearest neighbors, as a function of the
Raman displacement Qg(y). Right: b-Crl; sketch, where the arrows
indicate the nearest and next-nearest neighbors.

where J© corresponds to the equilibrium interaction, 8. is the
strength of the first-order correction in the direction 8, andu(r)
is the real-space phonon displacement. Given that the infrared
phonon frequencies we propose to use (Q2;r = 6.49, 6.1 THz)
are much larger than the relevant interlayer interactions
(<1 meV), to leading order, Floquet theory indicates that
the effective interlayer exchange interaction becomes J¢i =
JO+ 6878 - (uRr), where (uR) is the time-averaged Raman mode
displacement. Therefore, to determine the effect of the nonlin-
ear phonon displacements, we compute the effective exchange
interactions in b-Crl; for layers displaced with respect to each
other in the direction of the low-frequency Raman modes.
The interlayer exchange interactions J;; (up to third-order
nearest neighbors) are shown in Fig. 4 as a function of the
Raman displacement amplitude Qr(2), revealing the complex-
ity of the interlayer magnetic order in b-Crls. In order to
compare our theoretical result for the interlayer interaction
with experiments, we define J, = (1/2) ), ;Jij. The effec-

tive Floquet exchange interaction is then Jj_ff((QR(z))) = JE +
SJJ_(QR(Z)). We find JO = —0.366 meV and 8JJ_ = —0.0713
meV/(A/amu), with J* > 0, thus preferring FM order, for
(Ore2y) < —5.13 A /amu which corresponds to a real-space
displacement of ~3.13% of the Cr-Cr interatomic distance.
However, Jﬂ overestimates the experimental value for b-
Crl; [49]. Using JE as a fitting parameter from experiments,
and 8J, from our calculations, we find Jeff( (Or2))) > 0 for
(Or(2)) < —0.42 Aamu, ~0.3% of the Cr-Cr interatomic
distance.

Experimentally, (Qr(2)) =~ 0.5 A./amu can be achieved by
driving Qir(a) with Eg =4 MV /cm and © = 0.2 ps. This leads
to Or(4) maximum amplitude oscillations ~2 A./amu. On
the other hand, driving Qr(py with Ey =20 MV/cm and © =
0.8 ps, leads to (Qr2)) &~ —0.53 A/amu with Qg reaching
maximum amplitude oscillations ~1.6 A./amu. Notice that
to obtain negative (Qr(z)) displacements, stronger electric
fields are required due to the relatively weak coupling of
Oir(p) With the laser pulse, since the effective charge is |Z}| =
0.034¢//amu, compared to |Z;| = 0.740583e/+/amu for
OR(4)-

Conclusions. In this work, we studied theoretically b-Crls
driven with low-frequency light pulses. We found that co-
herently driving an infrared mode can activate low-frequency
Raman modes involving relative displacements between the
layers, which oscillate around new shifted equilibrium po-
sitions due to nonlinear phonon processes. These relatively
small transient lattice distortions can modify the exchange
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interactions and change the sign of the interlayer interaction.
This provides the opportunity to change the magnetic order
in a system via low-frequency drives. Similar results should
be possible for other layered magnetic materials with weak
interlayer bonds.
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