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Emergent Fermi surface in a many-body non-Hermitian fermionic chain
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Quantum degeneracy pressure (QDP) underscores the stability of matter and is arguably the most ubiquitous
many-body effect. The associated Fermi surface (FS) has broad implications for physical phenomena, ranging
from electromagnetic responses to entanglement entropy (EE) area law violations. Given recent fruitful studies
in condensed-matter physics under effectively non-Hermitian descriptions, it becomes urgent to study how
QDP and many-body interactions interplay with non-Hermitian effects. Through a prototypical critical one-
dimensional fermionic lattice with asymmetric gain/loss, a real space FS is shown to naturally emerge, in
addition to any existing momentum space FS. We carefully characterize such real space FS with the EE,
by a renormalized temperature that encapsulates the interplay of thermal excitations and non-Hermiticity.
Nearest-neighbor repulsion is also found to induce a competing charge density wave (CDW) that may erode
the real space FS. The underlying physics surrounding criticality and localization is further analyzed with
complex flux spectral flows. Our findings can be experimentally demonstrated with ultracold fermions in a
suitably designed optical lattice.
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In a wide variety of systems such as quantum Hall liquids,
superconductors, and neutron stars, it is the emergent many-
body effects, rather than the single-particle behavior, that give
rise to their respective signature properties. Arguably quantum
degeneracy pressure (QDP) represents the most ubiquitous
many-body effect, where the Pauli exclusion principle un-
derscores both the rigidity of everyday-life solids [1–3] and
the stability of neutron stars [4]. A primary consequence of
QDP is the formation of a Fermi surface (FS), which bounds
a sea of impenetrable fermions in optimal energetic config-
uration. Dictating the available quasiparticle excitations and
semiclassical contours, the shape of the FS crucially controls
transport, magnetization, and optical properties [5–14]. As an
extended critical region, a FS also violates the celebrated area
law for entanglement entropy (EE), whose deep relation with
many-body couplings have spurred the study of holographic
duality [15–26].

Non-Hermitian descriptions of condensed-matter systems
[27–63] have provided an effective and fruitful frame-
work to account for inelastic collisions [28], disorder ef-
fects [29–31,42,43,63], and system-environment couplings
[32–35]. This research avenue has extended the domain of
condensed-matter physics with inspiring insights. It is there-
fore necessary and urgent to study the implications of non-
Hermiticity for QDP. In particular, nonreciprocal hopping in a
lattice system defines a preferred pumping direction, thereby
causing all eigenstates at the single-particle level to accu-
mulate at the boundaries. However, this non-Hermitian phe-
nomenon, coined the non-Hermitian skin effect [48–59,61],
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cannot possibly persist in the presence of QDP and many-
body interactions, which will at the very least prohibit mul-
tiple occupancy at the boundaries.

In this work, we show that nonreciprocal pumping yields
an eigenstate spatial profile that not only resembles a Fermi
surface in real space [64], but also behaves as a genuine
FS at the level of entanglement entropy, characterized by a
renormalized temperature depending on both physical tem-
perature and hopping asymmetry. Though spatial particle
accumulation is not physically identical with the Fermi sea
condensation in energy space, universal scaling behaviors of
EE is a testimony to the fact that this emergent FS corresponds
to a bona fide FS. Furthermore, we observe the erosion of the
emergent FS by the charge-density wave (CDW) arising from
the nearest-neighbor (NN) repulsion. Finally, we visualize
these interplays in terms of spectral flows, and suggest a
cold-atom setup for future experimental demonstration.

Interacting fermions with asymmetric gain/loss. We con-
sider a minimal model that captures the interplay between
asymmetric non-Hermitian gain/loss and two types of many-
body effects: (i) fermionic QDP and (ii) NN repulsion. As
illustrated in Fig. 1(a), it consists of spin-polarized repulsive
fermions hopping along a chain of length L with open bound-
ary conditions (OBCs):

H =
L−1∑
x=1

{J (eαc†
xcx+1 + e−αc†

x+1cx ) + Unxnx+1}, (1)

where c†
x/cx is the fermion creation/annihilation operator at

site x and nx = c†
xcx is the corresponding fermion number

operator. Two fermions are forbidden from occupying the
same site, and will incur an energy penalty of U > 0 if they
occupy adjacent sites. The nonreciprocal left/right hoppings
Je±α can be understood as asymmetric gain/loss and are
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FIG. 1. (a) Our fermionic chain Eq. (1) with asymmetric
gain/loss Je±α and NN interactions U . (b) Its OBC density of
states (DOS) at U = 0, corresponding to a real gapless spectrum.
(c) Spatial density of the GS at U = 0 and half filling L = 2n = 12,
which reveals a real space FS that becomes sharper with increasing
α asymmetry.

within reach of experiments [65–68]. Unless otherwise stated,
we shall assume half filling (presence of n = L/2 fermions).

The OBC spectrum of this simple ansatz system is always
real and gapless [Fig. 1(b)], as seen through the spatially
inhomogeneous similarity transform c†

x → c†
xexα , which elim-

inates the e±α factors in Eq. (1) and keeps ni invariant [69].
As such, familiar concepts like the ground state (GS) and
energy gaps remain applicable. Since the spectrum is agnostic
to the non-Hermitian asymmetry α, the interplay between
many-body effects and non-Hermiticity is only manifested
at the eigenstate level. Henceforth we focus on the right
eigenstates |ψR〉 defined by H |ψR〉 = ε|ψR〉 with normaliza-
tion condition |〈ψR|ψR〉|2 = 1, except when studying broader
implications on bulk-boundary spectral correspondences.

Emergent real space Fermi surface. Demarcating the oc-
cupied Hilbert space boundary, a FS plays a dual role to the
entanglement cut and allows the EE to be expressed in a
position-momentum symmetric manner [70–72]. As such, a
real space FS can coexist on an equal footing with an ordinary
momentum space FS.

Here we show how a real space FS emerges natu-
rally from the interplay of non-Hermiticity and QDP. Con-
sider first the case without NN repulsion (U = 0). At the
single-particle level, H |U=0 possesses non-Bloch eigenstates
ψ j (x) = N je−xα sin π jx

L+1 with corresponding eigenenergies

ε j = 2J cos π j
L+1 and normalization constants N j [73]. For

α > 0, the eigenstates are all exponentially localized at the
left boundary (x = 1) with localization length α−1, as implied
by the above-mentioned similarity transformation. Physically,
they also represent the steady-state solutions of a biased
random walk on a bounded one-dimensional (1D) chain.

Multiple fermions, however, will not be allowed to all
localize at x = 1 due to QDP. We characterize the spatial
density of an n-fermion state ψR

μ (x1, . . . , xn) by ρμ(x) =
〈ψR

μ |nx|ψR
μ〉, and define the thermal-weighted density ρ(x) =

(N
n )

−1 ∑
μ e−βEμρμ(x) with temperature β−1, where Eμ is

the energy of ψμ. For β → ∞, we obtain the GS density
ρ(x)(GS).

From Fig. 1(c), ρ(x)(GS) is seen to be spatially uniform
for reciprocal hopping (α = 0). As α increases, we observe

a competition between asymmetric hoppings e±α and QDP:
While even a tiny α has the propensity to localize each
fermion towards the left boundary, the QDP forces all the
n fermions to forbid another from occupying the same site.
As such, ρ(x)(GS) is symmetric about the n and (n + 1)th
site, with the profile controlled by the exponential tail of a
single-fermion eigenstate. In the extremely asymmetric limit
of |α| → ∞, hoppings become unidirectional, and the density
profile becomes a jump discontinuity. Note that this nontrivial
compromise of QDP and asymmetric gain/loss only applies to
fermions, since multiple bosons will be allowed to condense
macroscopically at one boundary, just like isolated bosons.

From Fig. 1(c), ρ(x)(GS) very closely resembles a
Fermi-Dirac spatial profile of the form ρFD(x) = (1 +
e�(x−n−1/2))−1, with � ∼ 4α rigorously derivable from the
Slater determinant [73]. Attractive as this identification looks,
� cannot represent an effective inverse temperature because it
is conjugate to position, not energy. To transcend this subtlety
and determine the exact sense in which we have an emer-
gent real space FS, a universal recourse is the entanglement
entropy, whose scaling behavior reveals both the temperature
and FS properties. Conformally transforming standard results
[16,74], the EE Sent,β of a finite critical half-filled 1D system
scales like

Sent,β ∼ c

6
ln

[
β

π
sinh

πLA

β

]
+ const, (2)

where β is the inverse temperature, LA is the length of the left
subsystem, and c = 1 is the central charge for our fermionic
model. Its logarithmic form violates the area law of EE
scaling, which states that the EE of a gapped 1D system
should plateau beyond a sufficiently large system size. In
the following, we shall also investigate how this violation is
further modified by non-Hermiticity α.

In this work, we shall define the density matrix with
respect to the right eigenvectors to compute EE, because
we are interested in the eigenstates themselves, rather than
computing probability-conserving expectation values of ob-
servables [75,76]. From [ρRR]μν = |ψR

μ〉〈ψR
ν |, we can trace

out degrees of freedom other than those in the left subsystem
A and define a reduced density matrix ρRR

A = TrAc |ψR〉〈ψR| =∑
r λ2

r |ψR
r,A〉〈ψR

r,A|, where |ψR〉 = ∑
r λr |ψR

r,A〉 ⊗ |ψR
r,Ac〉 is the

Schmidt decomposition of a representative |ψR〉 and Ac is the
right subsystem, i.e., the complement of A. The entanglement
entropy with respect to the entanglement cut separating A and
Ac is the corresponding von Neumann entropy,

Sent,A = −Tr
[
ρRR

A lnρRR
A

]
= −

∑
r

[λr lnλr + (1 − λr )ln(1 − λr )], (3)

where λr is the eigenvalue of ρRR
A . EE is a good measure of

entanglement for a pure quantum state, while it is not for a
mixed state since the von Neumann entropy mixes quantum
and classical correlations [74].

From Fig. 2(a), Sent behaves very differently across the
regimes of weak and strong α, demarcated at α0 = 0.8ln(L −
1) ≈ 2 [73] for L = 12. In the weak α regime, which is further
elaborated in Fig. 2(c), Sent varies strongly with both α and
inverse temperature β, suggestive of their strong interplay.
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FIG. 2. EE behavior of the left subsystem A giving rise to renormalized temperature and hopping asymmetry. (a) OBC EE vs α at different
inverse physical temperatures β with L = 2LA = 12 at half filling. The β-independent α > α0 (Region 2) and logarithmically scaling α < α0

(Region 1) are detailed in (b) and (c), respectively. (b) Large α regime fitted to Eq. (4) with renormalized asymmetry αe = η(α − α0), where
α0 = 2, η = 1. (c) Small α regime fitted to Sent,βe from Eq. (2) with renormalized inverse temperature βe = e0.9αβ. (d) OBC EE vs α at zero
temperature for different subsystem lengths LA and L = 12 at half filling. Equation (4) still fits excellently, with α0 = {0.5, 0.8, 1.2, 1.5, 2.0}
and η = {3.0, 2.7, 2.5, 1.7, 1.0} for LA = {2, 3, 4, 5, 6}.

In the strong α regime [Fig. 2(b)], however, Sent shows
little dependence on β, suggesting that sufficiently strong
hopping asymmetry e±α generates a robust real space FS
that dominates any smudging effect from the original thermal
ensemble.

Renormalized temperature and gain/loss asymmetry. In-
terestingly, the effect of the α in the weak asymmetry regime
α < α0 at finite temperature can be understood as a renor-
malization of the effective inverse temperature [77]. Intu-
itively, asymmetric gain/loss pushes all fermions towards
one side, decreasing their configurational freedom and hence
increasing the cost of “’excitations.” At the level of EE, this
reduction of freedom reduces the entanglement, mirroring the
entanglement drop with decreased thermal excitations. This
is substantiated by the fitted curves in Fig. 2(c), where the
EE for 0 < α < α0 is shown to agree very well at finite
temperature with its Hermitian (α = 0) expression Eq. (2),
but at a renormalized inverse temperature βe = e0.9αβ for
LA = L/2 = 12.

As explained in the Supplemental Material [73], the
renormalized temperature generically follows the form βe =
ec(L)αβ, where c(L) has a rather weak dependence on L and
saturates to a constant in the limit of L → ∞. For practical
size in feasible calculations such as ours here, c(L) ≈ 0.9.
This observed trend of βe indicates that nonreciprocal pump-
ing is exponentially effective in reducing the available degrees
of freedom. Furthermore, substituting βe into Eq. (2), we

obtain an EE expression that severely violates the area law
with an exotic temperature dependence.

In the strong asymmetry regime of α > α0, the EE be-
comes almost independent on the physical temperature β−1,
indicating that the EE is dominated by the sharp real space
FS. This can be further understood through a two-qubit
model, where it is the asymmetry parameter α that becomes
renormalized instead. Due to the sharp FS, we can approx-
imate a generic state when α � α0 by |ψ〉 ∝ eαe/2|1A0Ā〉 +
e−αe/2|0A1Ā〉, where the states |1A0Ā〉 and |0A1Ā〉 can be under-
stood as |11 . . . 11〉A|00 . . . 00〉Ā and |11 . . . 10〉A|10 . . . 00〉Ā,
respectively, with the last digit in A being the occupation
number of the nth site and the first in Ā the (n + 1)th site,
and A, Ā are the left and right subsystems, respectively, de-
marcated by an entanglement cut. Taking a partial trace over
the Ā qubit in the density matrix ρ = |ψ〉〈ψ |, we obtain
the reduced density matrix ρA = e2αe/(1 + e2αe )|0A〉〈0A| +
1/(1 + e2αe )|1A〉〈1A|, which possesses the EE

Sent,A = − 2αe

1 + e−2αe
+ ln(e2αe + 1), (4)

which from Fig. 2(b) agrees very well with the actual EE of
our model Eq. (1) when α > α0, with the renormalized α

simply given by αe = α − α0. This validates our two-qubit
caricature in the α > α0 regime, below which thermal exci-
tations are sufficiently strong to break down this two-level
picture and produce EE beyond ln2 ≈ 0.69.
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FIG. 3. NN interaction U which induces CDW interplay with α, all with n = 7 and L = 13. (a) Spatial GS density, with FS destabilized
by increasing U . (b), (c) IPR/γCDW of the GS vs α, both of which are nonmonotonic with α. (d) GS spatial profiles at U = 4 and various α

as indicated by the purple dots in (c). As α increases, the CDW gives way to the FS, with the localization (IPR) minimized at an intermediate
stage.

At zero temperature, our two-qubit model remains fully
applicable even when the entanglement cut does not coincide
with the real space FS, i.e., LA 
= n, where n = L/2 in our
case for half filling. Shown in Fig. 2(d) are excellent fits of
the EE Sent with Eq. (4) for LA = 2 to 6 (n = 6), with details
of αe given in the caption. For sufficiently large α, Sent drops
sharply when the emergent real space FS is not aligned with
the entanglement cut, implying that the FS harbors most of the
entanglement.

Competing CDW and asymmetric gain/loss. We now turn
on the NN repulsion U and study how it can destabilize
the emergent FS. Like QDP, nonzero U > 0 also serves to
counteract boundary mode accumulation through repulsion.
Indeed, as portrayed by Fig. 3(a), increasing U smooths out
the FS in a way naively reminiscent of decreasing the α

asymmetry.
A closer examination of the individual eigenstate profiles

reveals striking differences between QDP, which acts relent-
lessly on all fermions, and U repulsion, which only assigns
finite energy penalties. We consider the inverse participation
ratio (IPR) [78] defined as IPR (μ) = 1

n

∑L
x=1 |〈ψR

μ |nx|ψR
μ〉|2.

IPR (μ) hence reveals the real space locality of the μth right
eigenstate ψR

μ : IPR (μ) = n/L or 1 in the extreme cases where
ψR

μ is spatially uniform or each fermion is localized on one
site, respectively. Focusing on the GS (μ = GS) which is
minimally penalized by U , we observe an enigmatic trend in
Fig. 3(b) where the IPR can vary nonmonotonically with α.
In the U = 0 limit, the IPR simply increases monotonically

with α to its maximal value as the FS becomes sharper.
But with nonzero NN repulsion U , the IPR actually dips
before rising again, signifying a competing delocalizing
influence.

Intuitively, the NN repulsion can favor CDWs because it
repels adjacent fermions but allows them to accumulate freely
as next NNs. To check if this intuition corroborates with the
nonmonotonic IPR behavior, we compute the CDW imbalance
parameter γCDW(μ) = 2

L

∑L−1
x=1 |ρμ(x + 1) − ρμ(x)| for μ =

GS, which ranges from 0 to 2 depending on how closely
the GS assumes a ferromagnetic or antiferromagnetic spatial
density profile. From Fig. 3(c), it is evident that around the
dip in IPR, the GS γCDW is indeed small even for moderately
strong U . To completely interrogate this CDW behavior, we
examine the density profiles of the U = 4 case at various α

[Fig. 3(d)]. Indeed, the large IPR at small and large α are
due to different reasons, namely, CDW and FS localization,
respectively.

Spectral analysis of interplay. Ultimately, the real space
FS is a consequence of fermion accumulation under OBCs,
but not periodic BCs (PBCs). To understand the OBC accu-
mulation more deeply at the level of the entire spectrum, we
interpolate between OBC and PBC by adiabatically turning
on the hoppings Je±α and repulsion U between the first
and the last sites from 0 to 100%. In general, PBC and
OBC spectra and their respective eigenstate profiles can be
drastically different. A longer OBC-PBC spectral flow tra-
jectory implies stronger spatial accumulation [73], as shown

081115-4



EMERGENT FERMI SURFACE IN A MANY-BODY … PHYSICAL REVIEW B 102, 081115(R) (2020)

FIG. 4. (a)–(c) PBC vs OBC spectra for two fermions with various NN repulsion U = 1, 5, 20, and how the PBC-OBC spectral evolution
reflects the interplay between NN repulsion and asymmetric gain/loss pumping. In the center row, the PBC/OBC eigenenergies are
depicted by circled purple/small yellow dots. PBC and OBC spatial profiles of the lowest/highest Re(E ) eigenstates, where U is effectively
attractive/repulsive, is shown in the top and bottom rows. Shorter PBC-OBC evolution curves correspond to more similar spatial localization
lengths. We used α = 1 and L = 10 throughout.

in Fig. 4 for various NN repulsion strengths U between two
fermions, where yellow-purple curves connecting the PBC
eigenenergies (circled purple dots) collapse onto real OBC
eigenenergies (small yellow dots). In the weakly repulsive
U = 1 case, both PBC and OBC spectra are gapless (forming
a single cluster), but larger U repulsions leads to the formation
of a high-energy eigenenergy cluster (band), opening up a real
OBC Mott gap.

The dispersion of this high-energy band, as well as
the insulating gap width, can be partially understood from
the OBC-PBC spectral flow. In the large U = 20 limit, a
high-energy state experiences strong effective attraction in-
stead of repulsion, and contains both fermions in adjacent
sites. Since the localization property of this configuration
is largely agnostic to boundary conditions, we expect its
PBC to OBC trajectories to be very short (i.e., without an
appreciable change in the inverse decay length of the eigen-
states), with almost identical PBC and OBC eigenenergies
and minute intraband dispersion. As U decreases, the PBC-
OBC flow trajectories from the higher band necessarily get
longer, and will eventually intersect with those from the
lower band, as for U = 5. This gives a scenario where the
OBC spectrum is gapped while the PBC spectrum is criti-
cal, which we also see is inevitable from the spectral flow
analysis.

Proposed demonstration with cold atoms. Our emergent
FS and competing CDW can be qualitatively realized in
any fermionic lattice with effectively asymmetric hopping.
Recently, it was realized that such nonreciprocal hopping can
be effectively implemented (in a rotated representation) by
introducing atom loss only [35,68,79]. This implementation
is especially feasible in cold-atom systems trapped in optical
lattices [80,81].

As an example, we propose a two-level setup H = H0 +
HnH + Hint , with the Hermitian noninteracting part

H0 = −
∑

j

[itqĉ†
j,↑ĉ j,↓ + td (ĉ†

i,↑ĉ j+1,↓ − ĉ†
i,↑ĉ j+1,↓)

+ tp(ĉ†
j,↑ĉ j+1,↑ − ĉ†

j,↓ĉ j+1,↓)] + H.c., (5)

on-site dissipation HnH = −igĉ†
i,↓ĉi,↓ added to

the pseudospin-down component, and Hint =∑
j

∑
σ,σ ′ Unj,σ n j+1,σ ′ (σ = ↑,↓) being the NN interaction

tunable by Feshbach resonance [80,81]. Note that H0

has already been realized in a “two-tone” periodically
shaken lattice with harmonic trapping frequencies of
(ωx, ωy, ωz ) ≈ 2π × (41, 61, 130) Hz, where the pseudospin
is simulated by two orbitals [82]. Non-Hermitian terms such
as term HnH may be synthesized by several mechanisms of
considerable interest, namely, measurement backaction [83],
measurement postselection [36,84,85], and on-resonance
excitation [86–88], with Refs. [36] and [88] being two recent
experimental realizations. The atomic density ρ(x) can be
experimentally resolved at atomic resolution [89–91] where
measurement takes ∼2 μs for each position to be imaged,
and therefore experiments can indeed probe the interplay
between the CDW and the FS localization. Clearly then,
our proposal is already within reach of today’s experimental
techniques.
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M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši
et al., Reciprocal skin effect and its realization in a topolec-
trical circuit, Phys. Rev. Research 2, 023265 (2020).

[69] X. Z. Zhang and Z. Song, Momentum-independent reflection-
less transmission in the non-Hermitian time-reversal symmet-
ric system, Ann. Phys. 339, 109 (2013).

[70] A. R. Its, B.-Q. Jin, and V. E. Korepin, Entanglement in the
XY spin chain, J. Phys. A: Math. Gen. 38, 2975 (2005).

[71] A. R. Its and V. E. Korepin, The Fisher-Hartwig formula and
entanglement entropy, J. Stat. Phys. 137, 1014 (2009).

[72] C. H. Lee, P. Ye, and X.-L. Qi, Position-momentum duality
in the entanglement spectrum of free fermions, J. Stat. Mech.
(2014) P10023.

[73] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.102.081115 for details on analytic deriva-
tions for the spatial density distribution, entanglement entropy
computations, and PBC-OBC spectral interpolation, which
includes Refs. [16,53,72,74,94–100].

[74] P. Calabrese and J. Cardy, Entanglement entropy and con-
formal field theory, J. Phys. A: Math. Theor. 42, 504005
(2009).

[75] Loïc Herviou, N. Regnault, and J. H. Bardarson, Entanglement
spectrum and symmetries in non-Hermitian fermionic non-
interacting models, SciPost Phys. 7, 069 (2019).

[76] P.-Y. Chang, J.-S. You, X. Wen, and S. Ryu, Entanglement
spectrum and entropy in topological non-Hermitian systems
and non-unitary conformal field theories, Phys. Rev. Research
2, 033069 (2020).

[77] Note that for large β outside Region 1 in Fig. 2(a), the
oscillation of the EE is a consequence of the interplay between
the oscillatory nature of the ground state and the asymmetric
pumping [73].

[78] This definition is identical to that in Hermitian cases, but
alternative biorthogonal or SVD definitions exist [75].

[79] L. Li, C. H. Lee, and J. Gong, Topological Switch for Non-
Hermitian Skin Effect in Cold-Atom Systems with Loss, Phys.
Rev. Lett. 124, 250402 (2020).

081115-7

https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1038/s41467-018-07105-0
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.97.041203
https://doi.org/10.1038/s41467-018-08254-y
https://doi.org/10.1103/PhysRevLett.123.066405
https://doi.org/10.1038/s41598-019-53253-8
https://doi.org/10.1103/PhysRevB.100.144106
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevLett.123.016805
http://arxiv.org/abs/arXiv:1812.02011
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevResearch.1.023013
https://doi.org/10.1103/PhysRevB.101.045415
https://doi.org/10.1103/PhysRevLett.122.237601
http://arxiv.org/abs/arXiv:1912.06974
https://doi.org/10.1103/PhysRevB.100.054301
http://arxiv.org/abs/arXiv:2006.01182
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevLett.117.175302
http://arxiv.org/abs/arXiv:1907.11619
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1103/PhysRevResearch.2.023265
https://doi.org/10.1016/j.aop.2013.08.012
https://doi.org/10.1088/0305-4470/38/13/011
https://doi.org/10.1007/s10955-009-9835-9
https://doi.org/10.1088/1742-5468/2014/10/P10023
http://link.aps.org/supplemental/10.1103/PhysRevB.102.081115
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.21468/SciPostPhys.7.5.069
https://doi.org/10.1103/PhysRevResearch.2.033069
https://doi.org/10.1103/PhysRevLett.124.250402


MU, LEE, LI, AND GONG PHYSICAL REVIEW B 102, 081115(R) (2020)

[80] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and
M. Rigol, One dimensional bosons: From condensed matter
systems to ultracold gases, Rev. Mod. Phys. 83, 1405 (2011).

[81] X.-W. Guan, M. T. Batchelor, and C. Lee, Fermi gases in
one dimension: From Bethe ansatz to experiments, Rev. Mod.
Phys. 85, 1633 (2013).

[82] J. H. Kang, J. H. Han, and Y. il Shin, Topological Creutz ladder
in a resonantly shaken 1D optical lattice, New J. Phys. 22,
013023 (2020).

[83] Y. Ashida, S. Furukawa, and M. Ueda, Quantum critical
behavior influenced by measurement backaction in ultracold
gases, Phys. Rev. A 94, 053615 (2016).

[84] Y. Ashida and M. Ueda, Full-Counting Many-Particle Dynam-
ics: Nonlocal and Chiral Propagation of Correlations, Phys.
Rev. Lett. 120, 185301 (2018).

[85] Y. Ashida, Quantum Many-Body Physics in Open Systems:
Measurement and Strong Correlations (Springer Nature, Lon-
don, 2020).

[86] Y. Ashida, S. Furukawa, and M. Ueda, Parity-time-symmetric
quantum critical phenomena, Nat. Commun. 8, 15791 (2017).

[87] S. Lapp, J. Ang’ong’a, F. Alex An, and B. Gadway, Engineer-
ing tunable local loss in a synthetic lattice of momentum states,
New J. Phys. 21, 045006 (2019).

[88] J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar,
and L. Luo, Observation of parity-time symmetry breaking
transitions in a dissipative Floquet system of ultracold atoms,
Nat. Commun. 10, 855 (2019).

[89] P. Würtz, T. Langen, T. Gericke, A. Koglbauer, and H. Ott,
Experimental Demonstration of Single-Site Addressability in
a Two-Dimensional Optical Lattice, Phys. Rev. Lett. 103,
080404 (2009).

[90] C. Kollath, M. Köhl, and T. Giamarchi, Scanning tunneling
microscopy for ultracold atoms, Phys. Rev. A 76, 063602
(2007).

[91] T. Gericke, P. Würtz, D. Reitz, T. Langen, and H. Ott, High-
resolution scanning electron microscopy of an ultracold quan-
tum gas, Nat. Phys. 4, 949 (2008).

[92] P. Weinberg and M. Bukov, QuSpin: A Python package
for dynamics and exact diagonalisation of quantum many
body systems. Part I: Spin chains, SciPost Phys. 2, 003
(2017).

[93] P. Weinberg and M. Bukov, QuSpin: A Python Package for
dynamics and exact diagonalisation of quantum many body
systems. Part II: Bosons, fermions and higher spins, SciPost
Phys. 7, 20 (2019).

[94] L. He and D. Vanderbilt, Exponential Decay Properties of
Wannier Functions and Related Quantities, Phys. Rev. Lett.
86, 5341 (2001).

[95] I. Peschel and V. Eisler, Reduced density matrices and en-
tanglement entropy in free lattice models, J. Phys. A: Math.
Theor. 42, 504003 (2009).

[96] A. Alexandradinata, T. L. Hughes, and B. Andrei Bernevig,
Trace index and spectral flow in the entanglement spec-
trum of topological insulators, Phys. Rev. B 84, 195103
(2011).

[97] H. Matsueda, Holographic entanglement entropy in Suzuki-
Trotter decomposition of spin systems, Phys. Rev. E 85,
031101 (2012).

[98] C. H. Lee, Y. Yamada, T. Kumamoto, and H. Matsueda, Exact
mapping from singular-value spectrum of fractal images to
entanglement spectrum of one-dimensional quantum systems,
J. Phys. Soc. Jpn. 84, 013001 (2014).

[99] C. H. Lee and P. Ye, Free-fermion entanglement spectrum
through Wannier interpolation, Phys. Rev. B 91, 085119
(2015).

[100] C. H. Lee, D. P. Arovas, and R. Thomale, Band flatness opti-
mization through complex analysis, Phys. Rev. B 93, 155155
(2016).

081115-8

https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1088/1367-2630/ab61d7
https://doi.org/10.1103/PhysRevA.94.053615
https://doi.org/10.1103/PhysRevLett.120.185301
https://doi.org/10.1038/ncomms15791
https://doi.org/10.1088/1367-2630/ab1147
https://doi.org/10.1038/s41467-019-08596-1
https://doi.org/10.1103/PhysRevLett.103.080404
https://doi.org/10.1103/PhysRevA.76.063602
https://doi.org/10.1038/nphys1102
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.21468/SciPostPhys.7.2.020
https://doi.org/10.1103/PhysRevLett.86.5341
https://doi.org/10.1088/1751-8113/42/50/504003
https://doi.org/10.1103/PhysRevB.84.195103
https://doi.org/10.1103/PhysRevE.85.031101
https://doi.org/10.7566/JPSJ.84.013001
https://doi.org/10.1103/PhysRevB.91.085119
https://doi.org/10.1103/PhysRevB.93.155155

