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Giant nonlocality in nearly compensated two-dimensional semimetals
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In compensated two-component systems in confined, two-dimensional geometries, nonlocal response may
appear due to an external magnetic field. Within a phenomenological two-fluid framework, we demonstrate the
evolution of charge flow profiles and the emergence of a giant nonlocal pattern dominating charge transport
in a magnetic field. Applying our approach to the specific case of intrinsic graphene, we suggest a simple
physical explanation for the experimental observation of giant nonlocality. Our results provide an intuitive way to
predict the outcome of future experiments exploring the rich physics of many-body electron systems in confined
geometries as well as to design possible applications.
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The trend towards miniaturization of electronic devices re-
quires a deeper understanding of the electron flow in confined
geometries. In contrast to the electric current in household
wiring, charge flow in small chips with multiple leads may
exhibit complex spatial distribution patterns depending on the
external bias, electrostatic environment, chip geometry, and
magnetic field. Traditionally, such patterns were detected us-
ing nonlocal transport measurements [1–7], i.e., by measuring
voltage drops between various leads other than the source
and drain. Devised to study ballistic propagation of charge
carriers in mesoscopic systems, these techniques were re-
cently applied to investigate possible hydrodynamic behavior
in ultrapure conductors [8–12], where the unusual behavior of
the nonlocal resistance is often associated with viscosity of
the electronic system [13–17].

Nonlocal resistance measurements have also been used
to study edge states accompanying the quantum Hall ef-
fect [18–23]. While the exact nature of the edge states
has been a subject of intense debate, the nonlocal resis-
tance, RNL, appears to be an intuitively clear consequence
of the fact that the electric current flows along the sam-
ple edges and not through the bulk. Such a current would
not be subject to exponential decay [24] exhibited by the
bulk charge propagation leading to a much stronger nonlocal
resistance.

In recent years the focus of the experimental work on
electronic transport has been gradually shifting towards mea-
surements at nearly room temperatures [6,8–10,21]. A partic-
ularly detailed analysis of the nonlocal resistance in a wide
range of temperatures, carrier densities, and magnetic fields
was performed on graphene samples [21]. Remarkably, the
nonlocal resistance measured at charge neutrality remained
strong well beyond the quantum Hall regime, with the peak
value RNL ≈ 1.5 k� at B = 12 T and T = 300 K, three times
higher than that at T = 10 K.

In this Rapid Communication, we argue that the giant
nonlocality observed in neutral graphene at high temperatures
[21] can be directly attributed to the specific property of
the graphene band structure: at the neutrality point, the two
bands (the conductance and valence bands) touch creating
a two-component–two-fluid–electronic system. This should
be contrasted with the physics of doped graphene (where
only a single band contributes to transport) as exemplified
by the effect of magnetodrag [25,26], which is giant at the
Dirac point and negligible in doped graphene. Similarly, the
two-band physics leads to linear magnetoresistance [27,28]
that is specific to neutral graphene. The two regimes (one-
and two-fluid) are distinguished by temperature: the two-fluid
regime occurs at high temperatures (relative to the chemical
potential, μ � T ), while the single-fluid degenerate regime
can be observed at low temperatures (μ � T ).

The key physical feature of the two-fluid electronic system
in intrinsic graphene is the existence of a neutral macroscopic
current jI [11,26,27] that may flow laterally to the electric
current J once the external magnetic field is applied. Consider
a standard Hall bar geometry with the spatially close source
and drain leads (see Figs. 1–4). In the absence of the magnetic
field the flow pattern of the electric current is the same in the
two- and one-fluid systems: it is flowing mostly from source to
drain with a weak diffusive spread into the rest of the sample
(see Fig. 2 and Ref. [17]). The neutral current appearing in
the two-fluid system is decoupled from the electric current
and is practically undetectable. However, the effect of the
magnetic field is dramatically different in the two cases. While
the one-fluid system exhibits classical Hall effect (see Fig. 3),
a compensated two-fluid system does not. Here the magnetic
field couples the two macroscopic currents turning the neutral
current to be lateral to J. This way charge carriers may be
transported to distant parts of the sample, where a nonlocal
electric response is induced (again, by the magnetic field). The
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FIG. 1. Giant nonlocality in a compensated semimetal in a mag-
netic field (B = 2 T). The arrows indicate the current flow and the
color map shows the electrochemical potential (see the main text and
Fig. 3 for specific parameters). The white rectangles are the source
and drain leads. The nonlocal effect—the induced electrochemical
potential difference between the top and bottom sides of the sample
away from the source and drain and the associated edge current—
appears due to the presence of the neutral quasiparticle flow that is
coupled to the electric current by the magnetic field.

effect is strongly field dependent; in weak magnetic fields the
resulting flow pattern is similar to the diffusive one albeit with
the appreciable nonlocal resistance, while in strong fields a
giant nonlocal pattern is formed where the current is flowing
not only in the bulk, but also along the boundaries leading to
strong nonlocal resistance (see Figs. 1, 4, and 5). Such patterns
can be directly observed in experiments using the modern
imaging techniques [29–31].

To highlight the difference between the one- and two-
component systems, we briefly recall the macroscopic de-
scription of electronic transport in the standard (former) case.
Allowing for nonuniform charge density, the linear relation
between the electric current J and the external fields E, B
could be formulated as [17,32,33]

rJ = E + rH eB×J + (1/eν)∇n, (1a)

where e > 0 is the unit charge, ν = ∂n/∂μ is the thermody-
namic density of states (TDoS), n is the carrier density, eB

is the unit vector in the direction of the magnetic field, and
r and rH are the longitudinal and Hall resistivities. Within
the Drude-like description, rH = ωcτ r (ωc is the cyclotron
frequency and τ is the mean free path). The relation Eq. (1)
is applicable to a wide range of electronic systems from sim-
ple metals [34,35] to doped graphene [11,36]. The transport
coefficients r and rH could be treated as phenomenologi-
cal or could be derived from the underlying kinetic theory
[11,32,37].

FIG. 2. Ohmic flow in two-component electronic systems at
B = 0. In the absence of the magnetic field the neutral quasiparticle
current jI is completely decoupled from the electric current j. As a
result, the latter exhibits the standard Ohmic flow profile similar to
that of the one-component systems (see, e.g., Ref. [17]).

FIG. 3. Classical Hall effect in a one-component electronic sys-
tem. The current density (shown by the arrows) and the electrochem-
ical potential (shown by the color map) were obtained from Eqs. (1)
for a sample of the width W = 1 μm and length L = 4 μm with the
carrier density n = 1012 cm−2 at the temperature T = 240 K and in
magnetic field B = 0.2 T.

In addition to Eq. (1), the electric current satisfies the
continuity equation, which for stationary currents reads

∇ ·J = 0. (1b)

Charge density inhomogeneity induces electric field, so that
Eq. (1) should be combined with the corresponding electro-
static problem. Most recent experiments were performed in
gated structures, where the relation between the electric field
and charge density simplifies [27,38]. In two-dimensional
(2D) samples

E = E0 − (e/C)∇n, (1c)

where C = ε/(4πd ) is the gate-to-sample capacitance per unit
area, d is the distance to the gate, ε is the dielectric constant,
and E0 is the external field.

In a two-terminal geometry, solving Eqs. (1) is a textbook
problem. At B = 0, the resulting electrochemical potential
is governed by the relation of the mean free path to the
system size, exhibiting either a flat (in short, ballistic sam-
ples) or linear (in long, diffusive samples) spatial profile.
Most recently, these solutions were used as benchmarks in
the imaging experiment [29] and the numerical solution of
the hydrodynamic equations in doped graphene [17]. In an
external magnetic field, the system exhibits the classical Hall
effect, which in short samples is accompanied by nontrivial
current flow patterns [39].

In a Hall bar geometry, the electric current still fills the
whole sample, but decays exponentially [24] away from the
direct path between source and drain. The resulting flow
pattern was calculated (in the context of doped graphene) in
Refs. [14,15,17]. In a magnetic field, the pattern gets skewed
due to the classical Hall effect, but exhibits no qualitatively
new features (see Fig. 3).

Let us now extend the transport equations (1) to a two-
component system. Keeping in mind applications to graphene,
we rewrite Eq. (1a) for the quasiparticles in the conduction
band (“electrons”) in the form

− je = eDνeE + ωcτ je×eB + D∇ne, (2a)

where je is the electron flow density (carrying the electric
current Je = −e je) and νe is TDoS. The “holes” (i.e., the
quasiparticles in the valence band) are described by

− jh = −eDνhE − ωcτ jh×eB + D∇nh. (2b)
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FIG. 4. Giant nonlocality in the Hall bar geometry. The white rectangles indicate external leads. The two leads on the left are the source
and drain, while the two leads on the right are used to measure the nonlocal response, i.e., the induced electrochemical potential difference.
The sample has a width W = 1 μm and length 8 μm, with the distance between contacts L = 5 μm. The driving current is I = 0.1 μA. The
flow pattern was computed for B = 0.8 T (cf. Fig. 1).

Here the electric current carried by the holes is Jh = e jh
and TDoS may differ from that of electrons, νh �= νe. For
simplicity, we assume that the cyclotron frequency, mean free
time, and diffusion constant for the two bands coincide (a gen-
eralization is straightforward, but does not lead to qualitatively
new physics).
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FIG. 5. Nonlocal resistance measured in the Hall bar geometry
(see Fig. 4) as a function of carrier density. Top: Coulomb scatterers.
Bottom: short-ranged impurities. The impurity model parameters
are chosen to represent the mobility at n = 1011 cm−2 reported in
Ref. [21]. The range of magnetic fields and carrier densities as well
as the distance to the gate (d = 50 nm) is taken from Ref. [21] (see
Fig. 2).

The electric current in a two-component system is given
by J = −e j, with j = je − jh. Introducing also the total
quasiparticle flow jI = je + jh, we find (cf. Ref. [37])

j + eD(νe + νh)E + ωcτ jI ×eB + D∇n = 0, (3a)

jI + eD(νe − νh)E + ωcτ j×eB + D∇ρ = 0, (3b)

where n = ne − nh is the carrier density per unit charge
(the charge density being −en) and ρ = ne + nh is the to-
tal quasiparticle density. The transport equations have to be
supplemented by continuity equations reflecting the particle
number conservation. The electric current satisfies Eq. (1b),
but the total number of quasiparticles [40] can be affected
by electron-hole recombination processes leading to a weak
decay term in the continuity equation

∇ · jI = −δρ/τR, (3c)

where δρ is the deviation of the quasiparticle density from its
equilibrium value and τR is the recombination time.

Under the assumption of electron-hole symmetry (e.g., at
the charge neutrality point in graphene), νe = νh, we recover
the phenomenological model of Ref. [27]. In the two-terminal
geometry this model yields unsaturating linear magnetoresis-
tance in classically strong fields [28].

Now we analyze the behavior of the phenomenological
model (3) in the four-terminal Hall bar geometry. In the
absence of the magnetic field, the system exhibits a typical
Ohmic flow [14,15,17] (see the top panel in Fig. 2). Applying
the field we find a qualitative change in the flow pattern—the
emergence of a boundary flow and the associated electro-
chemical potential at the sample edges. Increasing the field
leads to the nonlocal pattern growing until it fills the whole
sample (see Figs. 1 and 4). Stronger fields essentially expel the
current from the bulk with the charge flow being concentrated
along the sample boundaries, which leads to strong nonlocal
resistance.

The nonlocal flow pattern emerging in the magnetic field,
Figs. 1 and 4, has to be contrasted with the vortices appearing
in the viscous hydrodynamic flow (e.g., in doped graphene
[14,15,17,41]). In the latter case, vorticity appears due to the
constrained geometry of the flow and the particular boundary
conditions [15,17,42]: neglecting Ohmic effects, the solution
of the hydrodynamic equations can be obtained by introduc-
ing the stream function, which obeys a biharmonic equation
independent of viscosity, which however affects the distri-
bution of the electrochemical potential. In contrast, within
the model (3) the “Ohmic” scattering represents the only
source of dissipation and hence cannot be omitted. One can
still introduce the stream function, but now it is determined
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not only by the sample geometry, but also by the Ohmic
scattering and magnetic field. As a result, the flow pattern does
not exhibit vortices, unlike those suggested recently for the
hydrodynamic flow in intrinsic graphene [41] (in the absence
of a magnetic field).

Having discussed the qualitative features of the charge flow
in two-component systems, we now turn to a quantitative
calculation of nonlocal resistance in graphene. Although the
model (3) is applicable to any semimetal, graphene is a by
far better studied material with readily available experimental
values for model parameters. Here we use the data mea-
sured in Refs. [8,9,21,26,43] and theoretical calculations of
Refs. [11,12,26,37,41].

TDoS of the quasiparticles in graphene has been evaluated
in, e.g., Refs. [11,12,36,37], and has the form

νe + νh = 2T /
(
πv2

g

)
, νe − νh = 2μ/

(
πv2

g

)
, (4)

where μ is the chemical potential, vg is the quasipar-
ticle velocity in graphene, and T = 2T ln[2 cosh(μ/2T )].
The generalized cyclotron frequency is ωc = eBv2

g/(cT )
and the diffusion coefficient has the usual form D = v2

gτ/2.
At charge neutrality, μ = 0 and T = 2T ln 2, while in the
degenerate regime T (μ � T ) = μ. The latter confirms that
all coefficients in Eqs. (3a) and (3b) become identical with
doping. Similarly, the continuity equations (1b) and (3c)
should coincide in the degenerate regime. In graphene this
happens by means of the fast decay of the recombination rate
[26]. Close to neutrality we assume

τ−1
R = g2T/ cosh(μ/T ), (5)

where g is determined by the corresponding matrix element.
The above expression [26] reflects the exponential decay of
the two-band physics away from charge neutrality, which
is responsible for the fast decay of RNL as a function of
carrier density [21] (see Fig. 5). Finally, the mean-free time,
τ , in graphene is a nontrivial function of temperature and
carrier density [11,12,36,43,44], which strongly depends on
the model of the impurity potential [45–50]. However, these
dependencies are typically not exponential and hence do not
affect the exponential decay of the nonlocal resistance.

In Fig. 5 we demonstrate the decay of RNL for two
impurity models—the Coulomb scatterers and short-ranged
impurities—showing nearly identical behavior. Such robust-
ness of the model (3) with respect to the functional depen-
dence of the mean-free time justifies the inaccuracy of our
description of electronic transport in graphene, where close
to charge neutrality the resistivity is strongly affected by
electron-electron interaction. The data shown in Fig. 5 were
obtained by solving Eqs. (3) in the Hall bar geometry of Fig. 4
using the estimate [41] for the recombination length scale,
�R = vgτR ≈ 10 μm (a previous calculation of Ref. [26] put
it at a smaller value 1.2 μm), which leads to similar results
for the nonlocal resistance, but with a smaller peak value at
charge neutrality.

To summarize, we have considered a two-fluid model of
a nearly compensated semimetal in an idealized Hall bar
geometry. We have shown that this system exhibits a strong
nonlocal response when subjected to an external magnetic
field (see Fig. 5). The effect is specific to the neutrality

point and shows a rapid decay with doping [as a function
of either the charge density (see Fig. 5), or the chemical
potential]. The physical origin of the effect is the existence
of the neutral quasiparticle flow that is coupled to the electric
current by the magnetic field [26,27] and may carry the charge
along the Hall bar (see Fig. 4), leading to the nonlocal effect—
the electrochemical potential difference (voltage) between the
pair of contacts that are spatially distant from the source and
drain.

Our results provide a qualitative explanation for the giant
nonlocality reported in Ref. [21] in graphene near charge
neutrality, where the touching conductance and valence bands
form a two-fluid electronic system. Having considered the
idealized geometry (and importantly, boundary conditions),
we have captured the main features of the effect: strong
nonlocal response appears at charge neutrality only when the
system is subjected to the magnetic field and its rapid decay
away from the Dirac point. Our theory does not involve spin-
related phenomena including the effect of Zeeman splitting
invoked in Ref. [21]. The latter should be independent of
the field direction; however, the effect was not observed in
the nearly parallel field studied in Ref. [51]. Assuming the
g factor to be equal to 2, we estimate the Zeeman split-
ting as Ez ≈ 0.35 meV≈ 4 K at B = 10 T. The correspond-
ing residual quasiparticle density (at T = 0) is given by
ρQ = E2

z /(4πv2
g ) ≈ 2.2 × 106 cm−2. As a result, at temper-

atures and carrier densities typical to nonlocal measurements
discussed here we expect the effects of Zeeman splitting to
be much smaller not only than our results, but also the data
of Ref. [21].

Our calculations in the idealized rectangular sample yield
RNL that is orders of magnitude stronger than the theoretical
explanation of Ref. [21]. At the same time, our RNL exceeds
the experimental data of Ref. [21] as well. In realistic systems,
we expect RNL to be suppressed from the values obtained
in our idealized geometry with ideal boundary conditions
for the following reasons. Firstly, by ignoring the effects of
electron-electron interaction, we strongly underestimate the
usual resistivity of intrinsic graphene. Secondly, we ignore
viscous effects. Thirdly, carrier population in real graphene
does not vanish “at neutrality” due to electrostatic potential
fluctuations [51] with the minimal concentration often as high
as 1010 cm−2, essentially cutting off the lower density range
around the peak in Fig. 5. Finally, Eq. (5) is a rather crude es-
timate that needs to be improved. Such effects are expected to
reduce RNL down to the values of the same order of magnitude
as the experimental data of Ref. [21]. For graphene, a more
precise calculation involving solution of the full system of
hydrodynamic equations near charge neutrality is required to
reach perfect agreement with the data. The present approach
shows that the effect is more general and does not rely on the
additional assumptions of electronic hydrodynamics.
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