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Four-dimensional semimetals with tensor monopoles: From surface states to topological responses
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Quantum anomalies offer a useful guide for the exploration of transport phenomena in topological semimetals.
In this work, we introduce a model describing a semimetal in four spatial dimensions, whose nodal points act like
tensor monopoles in momentum space. This system is shown to exhibit monopole-to-monopole phase transitions,
as signaled by a change in the value of the topological Dixmier-Douady invariant as well as by the associated
surface states on its boundary. We use this model to reveal an intriguing “4D parity magnetic effect,” which stems
from a parity-type anomaly. In this effect, topological currents are induced upon time modulating the separation
between the fictitious monopoles in the presence of a magnetic perturbation. Besides its theoretical implications
in both condensed matter and quantum field theory, the peculiar four-dimensional (4D) magnetic effect revealed
by our model could be measured by simulating higher-dimensional semimetals in synthetic matter.

DOI: 10.1103/PhysRevB.102.081109

Introduction. Quantum anomalies play a central role in
our understanding and applications of quantum field the-
ories [1,2]. Given a classical action, a local symmetry is
“anomalous” if it represents an obstruction to quantize the
classical field theory (i.e., the corresponding path integral
cannot be made invariant with respect to both gauge symmetry
and the anomalous symmetry). In high-energy physics, this
obstruction prevents the existence of quantum field theories
with certain symmetries, which can be cured by introducing
anomaly-cancellation effects into the description [3]. Such
anomalous situations can, however, give rise to observable
phenomena, such as the chiral magnetic effect related to the
so-called chiral anomaly, as originally shown in Ref. [4] in
the context of the quark-gluon plasma.

Quantum anomalies are not restricted to Lorentz-invariant
systems. In particular, they also give rise to novel quantum ef-
fects in condensed matter physics [5–11]. For instance, it was
shown that the chiral anomaly emerges in Weyl semimetals set
out of equilibrium [12–17]. In this context, the corresponding
chiral magnetic effect gives rise to quantized electric cur-
rents upon applying an external magnetic field. Another well
studied anomaly is the parity anomaly [18–25], which gives
rise to topological effects in two-dimensional gapless (Dirac)
phases [26,27] related to the emergence of Chern-Simons
theories.

Recently, parity and chiral anomalies have been explored
in multiband models, in two and three dimensions, respec-
tively [28–30]. These systems support higher-spin quasiparti-
cles, where the Weyl-like cones become multifold degenerate
[31–40]. Interestingly, the parity anomaly can also exist in
four and six dimensions [41,42], which suggests relevant
implications in the context of higher-dimensional synthetic
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topological matter [43–45]. In addition, it has been shown
that a three-band model in four dimensions can give rise
to a gapless topological phase characterized by a tensor
monopole [46,47], whose topological nature is established by
the Dixmier-Douady (DD) invariant [48,49]. Their topolog-
ical response in the presence of an electromagnetic field has
remained unexplored.

The goal of this work is twofold. First, we introduce
a four-dimensional lattice model that supports both gapless
spin-1/2 and spin-3/2 birefringent fermions, depending on
symmetries. When both CP (combined charge conjugation
C and inversion P symmetries) and chiral symmetries are
preserved, the Dirac cones are associated with Z2 monopoles
in momentum space [50,51]. By breaking CP while preserving
sublattice (chiral) symmetry, the topological semimetal phase
is instead characterized by the DD invariant in the bulk, which
one can associate to fictitious tensor monopoles [46,47]. This
represents a monopole-to-monopole topological phase transi-
tion. We show the presence of topologically protected Fermi
arcs on the three-dimensional boundary, and describe their
modification across the transition. Secondly, we identify a
novel quantum effect, coined “parity magnetic effect,” which
arises in the presence of a magnetic field and can be attributed
to a parity anomaly. This is a peculiar topological effect
associated to the existence of quantized topological currents
in four-dimensional (4D) semimetals. This effect could be
measured in quantum-engineered settings using a synthetic
dimension [52–54].

4D topological semimetals. We start by considering a four-
band Hamiltonian for spinless fermions on a four-dimensional
lattice. The corresponding momentum-space Hamiltonian is
given by

H (k) = dx�̃x + dy�̃y + dz�̃z + dw�̃w, (1)
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FIG. 1. Monopole-to-monopole transition: Schematic spectra
E (kw ) of H+ at kx,y,z = 0. When a = 0, the twofold degenerate
spectrum (red) hosts a Z2 monopole with winding number w = 1.
For a �= 0, ±1, the degeneracy is lifted and the nodal point hosts
a tensor monopole captured by a nonzero DD invariant: DD=2.
When a = ±1, the two middle bands become perfectly flat (black)
and the low-energy band (blue) contributes to DD=1.

with the four-component Bloch vector defined as

dx = 2J sin kx, dy = 2J sin ky, dz = 2J sin kz,

dw = 2J (M − cos kx − cos ky − cos kz − cos kw ). (2)

Here J is the hopping amplitude on the 4D lattice, M is a
tunable parameter, and the 4 × 4 matrices �̃i read

�̃x = σ0 ⊗ σ1 + aσ1 ⊗ σ0, �̃y = σ2 ⊗ σ3 + aσ3 ⊗ σ2,

�̃z = σ0 ⊗ σ2 + aσ2 ⊗ σ0, �̃w = σ1 ⊗ σ3 + aσ3 ⊗ σ1,

where σi are Pauli matrices and a is a constant parameter.
These matrices only satisfy the Clifford algebra for a = 0
(“Dirac regime”). When a �= 0, the Hamiltonian (1) sup-
ports spin-3/2 birefringent quasiparticles similarly to previous
models in lower dimensions [32,33,35,36,39]. In addition,
this Hamiltonian preserves a chiral (sublattice) symmetry,
{S, H} = 0 with S = σ3 ⊗ σ3. Its spectrum reads

E (k) = ±(1 ± a)
√

d2
x + d2

y + d2
z + d2

w. (3)

Notice that the two middle bands become perfectly flat when
a = ±1 (Fig. 1). For 2 < M < 4 and a �= 0, there exists a
single pair of Dirac-like cones in the first Brillouin zone
(BZ) separated along the kw axis and located at K± =
(0, 0, 0,± arccos km) with km = M − 3. For convenience and
without loss of generality, we focus on the low-energy effec-
tive Hamiltonians near the nodal points K± = (0, 0, 0,±π/2)
for M = 3,

H±(q) = vq±,x�̃x + vq±,y�̃y + vq±,z�̃z ± vq±,w�̃w, (4)

where v = 2J with J > 0 and the effective momenta q± =
k − K±. When a=0, the Dirac cones are protected by com-
bined CP symmetry, {CP, H} = 0, where CP = σ1 ⊗ σ2K̂ ,
K̂ is the complex conjugate, and (CP)2 = −1. Thus, they
behave like monopoles carrying a Z2 charge, as studied in
Ref. [50]. For a �= 0, the combined CP symmetry is broken
and the Hamiltonian (1) only preserves chiral symmetry. In
this regime, the system belongs to class AIII and the nodal
points behave like tensor monopoles, which are characterized
by a Z invariant [46,47]. Our model thus exhibits a monopole-
to-monopole phase transition upon tuning a (see Fig. 1). In
our 4 × 4 representation, there only exists a single mass term
(proportional to σ3 ⊗ σ3) that breaks CP and opens a bulk gap;

however, this term simultaneously breaks the chiral symmetry
S; hence, this perturbation would open a gap for both the Z2

and the Z cases. The situation would be different in an 8×8
representation, where there exists a mass term that breaks S
without breaking CP [55].

We now further characterize these two types of monopoles,
by focusing on H+ in Eq. (4). Since the Hamiltonian preserves
chiral (sublattice) symmetry in both regimes, one can calcu-
late the winding number associated with the mapping q\{0} ∈
S3 → d/|d| ∈ S3, where the three-dimensional unit sphere S3

encloses the monopole in q space. The corresponding winding
number is given by [56–58]

w = 1

12π2

∫
S3

dqμ ∧ dqν ∧ dqρεi jkl 1

|d|4 di∂μd j∂νdk∂ρdl ,

(5)

with di = vqi. Importantly, we obtain w = 1 for both types
of monopoles, which indicates that this winding number is
not able to distinguish between the different topological-
semimetal phases of our model. In order to solve this issue, we
employ the DD invariant, which is zero in the CP-symmetric
“Dirac” regime (a=0), while it is nonzero in class AIII
[46,47]. This invariant can be expressed as

DD = 1

2π2

∫
S3

dqμ ∧ dqν ∧ dqρ
∑

n=1,2

Hn
μνρ, (6)

where

Hn
μνρ = ∂μBn

νρ + ∂νBn
ρμ + ∂ρBn

μν (7)

denotes the three-form Berry curvature associated with the
nth eigenstate |un(q)〉; here, only the two lowest bands (n=
1, 2) contribute to the DD invariant, as required by the half-
filling condition. The two-form tensor Berry connection Bn

μν

in Eq. (7) is defined as [47]

Bn
μν = φnFn

μν, φn = − i

2
log

4∏
ℵ=1

uℵ
n , (8)

where Fn
μν = ∂μAn

ν − ∂νAn
μ is the Berry curvature, An

μ =
〈un|i∂μ|un〉 is the Berry connection (∂μ ≡ ∂qμ

), and uℵ
n denotes

the components of |un〉. We find DD=2 for a �= 0,±1, noting
that each of the two lowest bands contributes a charge +1.
The monopole-to-monopole transition, which is signaled by
a change in the value of the DD invariant, is illustrated in
Fig. 1. In addition, for the critical flatband case (a=±1),
a single nondegenerate low-energy band contributes, thus
yielding DD=1 [46]. One also verifies that the monopoles
described by H− carry the opposite tensor charge.

Surface states. To further investigate the topological prop-
erties of the semimetal Hamiltonian (1), we now study the sur-
face energy spectra for M =3, upon applying open boundary
conditions along the z direction. As sketched in Fig. 2(a), the
zero-energy surface states depict a degenerate Fermi arc (col-
ored in red) connecting two monopoles of opposite charges.
The origin of this Fermi arc can be understood from two
perspectives, as we now explain.

A first viewpoint is obtained by fixing kw and by study-
ing the surface modes of the resulting three-dimensional
(3D) gapped subsystem. Upon taking such a slice, the 3D
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FIG. 2. Surface spectra of the model (1) upon applying open
boundary conditions along z. (a) Sketch of the zero-energy Fermi
arc within the 3D BZ. Numerical surface spectra at kx = kw = 0
are shown for (b) a = 0, (c) a = 0.5, and (d) a = 1. The diagrams
labeled by A (respectively, B) depict the surface spectra of the 3D
topological insulator H |kw=0 (respectively, the surface spectra of the
3D gapless semimetal H |kx=0). In (c) the red (respectively, blue)
spectra correspond to the boundary at z = 1 (respectively, z = Lz).
Here we set Lz =40.

Hamiltonian H |kw=k0
w

can either describe a Z2 topological
insulator (a = 0) or a chiral topological insulator (a �= 0)
[56,58–61]. We find different regimes as a function of k0

w: the
3D subsystem is nontrivial [with Z2 index w=1 for a=0,
and Z-valued DD=2 (DD = 1) for a �=0,±1 (a = ±1)],
within the range k0

w ∈ (−π/2, π/2), and trivial otherwise.
Here, the topological invariants are calculated using Eq. (5)
for a=0 and Eq. (6) for a �=0, upon replacing S3 by the 3D BZ
T 3. These 3D topological insulators host 2D Dirac boundary
states, whose dispersion is defined over the A plane shown
in Fig. 2(a); their zero-energy nodal point forms a degenerate
line along the kw axis, i.e., a Fermi arc connecting the two
monopoles.

Another viewpoint consists in taking a slice at fixed kx =0
(or ky =0). The resulting subsystem H |kx=0 forms a gapless
metallic phase, which is similar to the (real) Dirac semimetal
[51] for a=0. Its dispersion, defined over the B surface in
Fig. 2(a), consists of two inclined planes, whose zero-energy
crossing line forms a Fermi arc connecting the two monopoles
in the bulk.

We show illustrative surface spectra in Figs. 2(b) and 2(c).
For a=0 [Fig. 2(b)], one obtains a Dirac cone over the A
plane and two inclined planes over the B plane. Note that these
spectra are twofold degenerate, as they describe the surface
states on both boundaries (at z=1 and z=Lz). This degener-
acy is then lifted upon increasing a, as shown in Fig. 2(c).
When reaching a=1 [Fig. 2(d)], the surface mode at z=Lz

vanishes into the zero-energy flat bulk band, while a single
(nondegenerate) surface mode survives at z=1. These surface

spectra are well described by the boundary Hamiltonian [55]

HBS
± = ±(1 ± a)(kxσ1 − kyσ2), for kw ∈

(
−π

2
,
π

2

)
, (9)

which was derived from the bulk model H (k) for M =3; here
± refers to the boundaries at z=1 and z=Lz, respectively. We
note that the transformations of the boundary modes reflect
the monopole-to-monopole transition in the bulk (Fig. 1).

Parity magnetic effect and topological currents. We now
show how to derive a universal magnetic effect for our
model, by calculating quantum anomalies through quantum-
field-theoretical methods. In this framework, we consider the
continuum limit of our 4D topological semimetal, taking into
account the single pair of monopoles at K±. The resulting
8 × 8 effective Hamiltonian, defined in 4D momentum space,
reads

Heff = kiG̃
i − bμG̃μ

b , (10)

where i = x, y, z,w and μ = t, x, y, z,w. Here, we introduced
the dipolar momentum bμ, which denotes the separation of the
two monopoles in momentum space, with vector b = (K+ −
K−)/2, and in energy with offset 2bt ; the 8 × 8 matrices G̃i

and G̃μ

b are defined as

G̃ j = σ0 ⊗ �̃ j, G̃w = σ3 ⊗ �̃w, G̃t
b = σ3 ⊗ I4,

G̃ j
b = σ3 ⊗ �̃ j, G̃w

b = σ0 ⊗ �̃w, (11)

where j = x, y, z, and I4 is the 4 × 4 identity matrix. By
implementing a Legendre transformation on Eq. (10), the
action can be written in terms of a first-order Lagrangian,

S[ψ̄, ψ, b] =
∫

d5x ψ̄
(
iγ̃ μ∂μ − γ̃

μ

b bμ

)
ψ, (12)

where ψ̄ = ψ†γ̃ t , γ̃ i = γ̃ t G̃i, γ̃ μ

b = γ̃ t G̃μ

b , with γ̃ t = σ 0 ⊗ S.
In order to show the topological response of the 4D semimetal
to an external electromagnetic field Aμ, we integrate out the
fermion field and obtain the following effective action:

Seff = −i log det
(
iγ̃ μDμ − γ̃

μ

b bμ

)
, (13)

where Dμ = ∂μ − iAμ is the gauge covariant derivative. This
effective action Seff with zero mass needs to be regularized due
to ultraviolet divergences [18]. However, the regularization
explicitly breaks certain symmetries of the original action,
hence giving rise to anomalies as we now show.

We use the standard Pauli-Villars method [24] to obtain the
topological action in the low-energy regime, which consists in
introducing a mass term m̃ψ̄ψ with m̃ = m − αk2. To reveal
the “parity” anomaly [62], we first consider the Dirac case
(a = 0); we determine the effective Chern-Simons action, by
calculating a one-loop triangle diagram [55,63], and we obtain

Stop = C2

4π2

∫
d5x εμνλρσ bμ∂νAλ∂ρAσ , (14)

where C2 = −[sgn(m) + sgn(α)]/2 is nothing but the second
Chern number of the gapped system described by H+ with
the regularized mass m̃ [27,64,65]. The presence of a second
Chern number in the description of a 4D semimetal is analog
to the appearance of the first Chern number in 2D topological
semimetals [26,27].
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FIG. 3. The parity magnetic effect: A topological current Jz

can be induced by a pair of 4D monopoles upon modulating the
monopole separation bw (t ) in the presence of a weak magnetic field
Bz [see Eq. (16)].

We find that a similar calculation [55] can be performed for
the spin-3/2 case (a �=0,±1), yielding the same topological
action in Eq. (14). In that case, the anomaly takes the form
of a “4D sublattice anomaly,” which shares features of the 4D
parity anomaly [66]. In the flatband limit (a=±1), the system
remains gapless in the presence of the mass m̃; in this case, C2

diverges, and the topological action is ill-defined.
Based on these results, we find that the topological re-

sponse current is universal for both spin-1/2 and spin-3/2
birefringent quasiparticles, and it is given by

Jμ = δStop

δAμ

= C2

2π2
εμνλρσ ∂νbλ∂ρAσ . (15)

This result describes the “parity magnetic effect” exhibited
by our 4D-semimetal model, as we now further illustrate. For
concreteness, let us consider the response of our system to a
static and uniform magnetic field (i.e., Ay =xBz and Ax,z,w,t =
0), and to a simultaneous time-dependent modulation of the
cones separation, bw =arccos[M(t ) − 3] (see Fig. 3). In this
case, a single component of the Faraday tensor (Fxy = Bz)
contributes to Eq. (15), which yields the topological response

Jz = C2

2π2
(∂t bw )Bz. (16)

In this effect, the separation vector bw plays the role of an ef-
fective axial gauge field [67], whose time dependence induces

an effective electric field Ew =∂t bw. The “parity magnetic
effect” in Eq. (16) constitutes a central result of this work;
it represents a unique topological response of 4D gapless
topological phases, in direct analogy with the chiral magnetic
effect exhibited by 3D Weyl semimetals [12–17].

We note that the parity magnetic effect in Eq. (16) could
be experimentally studied in 3D quantum-engineered setups
extended by a synthetic dimension [53], as could be realized
for cold atoms in optical lattices [68], for photons in arrays
of ring resonators [54], or in electric circuits [69]. The time-
varying component bw(t ) could be induced through a periodic
driving of an on-site coupling, as proposed in Ref. [26] for a
2D-semimetal setting.

Finally, one may wonder whether the DD invariant, which
characterizes the topology of the nodal points, also plays a
role in 4D magnetic effects. In 3D Weyl semimetals, the
chiral magnetic effect was shown to be directly related to the
existence of Fermi arcs [70]. Similarly, we expect the Fermi
arcs analyzed in Fig. 2 to play a similar role in 4D magnetic
effects. In this framework, the DD invariant could constitute
a key element.

Conclusions. We have introduced and analyzed a 4D
semimetal model, whose nodal points can be associated to
tensor monopoles characterized by the DD invariant. The
system has topological Fermi arcs on its boundary, which
are protected by the sublattice (chiral) symmetry. This model
reveals a novel type of topological response, the parity mag-
netic effect, according to which a topological current can be
induced by combining a magnetic perturbation with a time
modulation of the band structure. Our results expand our
knowledge of quantum anomalies and their corresponding
physical effects in higher-dimensional topological phases of
matter, and they suggest interesting explorations in synthetic
matter.
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