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Linearized spectral decimation in fractals
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In this article, we study the energy spectrum of fractals which has block-hierarchical structure. We develop
a method to study the spectral properties in terms of linearization of spectral decimation procedure and verify
it numerically by calculation of level-spacing distributions. Our approach provides qualitative explanation for
various spectral properties of self-similar graphs within the theory of dynamical systems, including the power-
law level-spacing distribution, smooth density of states, and effective chaotic regime.
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I. INTRODUCTION

Fractals were intensively studied in the 1980s. Recent
developments of experimental techniques [1–6] open pos-
sibilities to study condensed-matter systems with complex
geometries (for example, fractals) at the atomic level. Many
theoretical and numerical works on fractals appeared recently
including the studies on transport and optical properties
[7–11], electronic localization [12–15], topology of fractals
[16–20], appearance of flatbands [21–24], and others [25–28].

One of the unique features of a fractal is its hierarchical
block structure, which repeats itself from one scale to another.
It is known that, for a simple fractal (such as Sierpinski
gasket), the renormalization group induces a spectral deci-
mation procedure for the spectrum or the density of states,
which can be interpreted as a direct renormalization on the
spectrum [29]. However, it is unclear whether there is a
general approach for fractals with complex structure.

A lot of fractal-like structures admit a spectral decimation
procedure. In other words, there is a connection between
scale in the real space and scale in the energy spectrum, and
the spectrum itself is a limit set of some iterated functions.
Spectral properties, however, still depend strongly on the
system. In some cases, the spectrum is a union of Cantor
set with some degenerate eigenvalues [30]; in other cases,
the limit spectrum can be a smooth function [31–33]. Nu-
merical studies of quasiperiodic potentials show that their
level-spacing distribution follows a power law [34,35]. For
iterations of nonlinear functions, it was shown that sometimes
they also have power-law level-spacing distributions [35,36].

It is not clear yet how to determine the spectral behavior of
a fractal, in general. Even if a spectral decimation procedure
does exist, it is not sufficient to make a certain statement about
the spectrum. Of course, it seems almost impossible to build
a precise theory, but it is possible to build an effective theory
neglecting some details of graph geometry.
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In this article, we present a linearized version of spectral
decimation, which can be applied for graphs built iteratively
from a simple block. We show that with linearized spectral
decimation functions, one can qualitatively describe level-
spacing distribution for hierarchical graphs and deduce possi-
ble phase transitions. Observed transitions can be interpreted
as chaos-order transitions.

The paper is organized as follows. In Sec. II, we describe
the algebraic setup for our approach. In Sec. III, we describe
the linearized version of the spectral decimation procedure in
terms of dynamical systems. In Sec. IV, we apply this method
to some practical cases. In Sec. V, we discuss the connection
to other physical properties, such as the electronic conductiv-
ity. Finally, a brief summary of our study is given in Sec. VI.
The Appendix describes the geometrical interpretation of our
model.

II. TENSOR STRUCTURE OF SCALES

A. Representation of fractals

A fractal can be described by one-particle tight-binding
Hamiltonian,

H = −
∑
〈i j〉

ti jc
†
i c j, (1)

which describes electrons with hopping between the nearest-
neighbor sites 〈i j〉 of a fractal, c†

i and c j are creation and anni-
hilation fermionic operators. We can regard this Hamiltonian
as an adjacency matrix A of a graph. The adjacency matrix is
a square matrix A such that its element Ai j is one when there
is an edge from vertex i to vertex j, and zero when there is no
edge (if an electron can jump from one site to another there is
an edge connecting two sites).

Let us consider a fractal with hierarchical block structure.
This graph structure induces a block structure in the adjacency
matrix. For example, if Ak is an adjacency matrix of kth
iterations of a fractal, then, the diagonal submatrices will
be equal to Ak−1, which is an adjacency matrix of previous
iteration. The nondiagonal submatrices represent connections
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between different blocks. If there is no connection between
blocks on the first iteration, there will be no connection
further, and corresponding nondiagonal submatrices will be
always zero. So, for Ak , we can write an expression using the
Kronecker product of matrices ⊗ (which has properties of a
tensor product),

Ak = Ak−1 ⊗ 1 +
∑

α

Ck−1,α ⊗ aα, (2)

where matrices Ck,α describe detailed connections between
blocks, aα are built from the adjacency matrix of the first
iteration of a fractal a = A0. Every matrix aα has one nonzero
component in the way that a = ∑

aα . So, matrices aα repre-
sent nonzero connections between different blocks of a fractal.

To build matrices Ck,α , we start with the second iteration,

A2 = a ⊗ 1 +
∑

α

cα ⊗ aα, (3)

where matrices cα define the detailed connections between
different blocks of a fractal. Since fractals have self-similar
structures, we can write that

Ck,α = cα ⊗ cα · · · ⊗ cα︸ ︷︷ ︸
k t imes

= c⊗k
α . (4)

Then, for the kth iteration, we have

Ak = Ak−1 ⊗ 1 +
∑

α

c⊗(k−1)
α ⊗ aα, (5)

which can be also expressed as

Ak = a ⊗ 1⊗(k−1) +
k−1∑
l=1

∑
α

c⊗l
α ⊗ aα ⊗ 1⊗(k−l−1). (6)

The above expression shows how adjacency matrices of frac-
tals are constructed from basic blocks representing a hierar-
chical structure without geometric details (via the first itera-
tion of a fractal) and detailed connections between blocks. It
is easy to check that fractals, such as the Sierpinski carpet and
the extended Sierpinski gasket can be constructed following
Eq. (6).

B. Spectral properties of tensor products

From the algebraic point of view, we can see that, in some
simple cases, different scales are decoupled. For example, in
the case of Cartesian products H�G of graphs H and G,
its adjacency matrix is AH�G = AH ⊗ 1 + 1 ⊗ AG, then, the
eigenvectors of this adjacency matrix are tensor products of
eigenvectors of AH and AG. Therefore, we obtain

AH�G(ψHi ⊗ ψG j ) = (λHi + λG j )ψHi ⊗ ψG j, (7)

where λH and λG are eigenvalues of matrices H and G. It
indicates that the spectrum of the Cartesian products of two
graphs is the sum of each individual spectrum.

A straightforward way to generalize the result of Eq. (7) is
to increase the number of summands and the number of tensor
products as the following:

Ah =
∑

α

�⊗
β hαβ, (8)

where hαβ is a set of matrices. If [hαβ, hα′β] = 0 for every
fixed β, i.e., all matrices of the same scale commute. Then,
eigenvectors of the matrix Ah are tensor products of eigen-
vectors of hαβ . The spectrum will be sums of products of the
corresponding eigenvalues.

Unfortunately, this approach cannot be applied directly
to fractals because of the noncommutativity of matrices cα

and aα in Eq. (6). But one can perform an estimation by a
kind of algebraic averaging, which can be interpreted as a
mean-field theory, to overcome the difficulty raised by the
noncommutative matrices.

In order to do this, let us first consider a matrix with the
form

Asum
k = a ⊗ 1⊗(k−1) +

k−1∑
l=1

c⊗l ⊗ a ⊗ 1⊗(k−l−1), (9)

where c = ∑
cα and a = ∑

aα . The matrix Asum
k has a similar

structure as Ak in Eq. (6) with aα and cα replaced by their
sums. One can also see that Asum

k can be written as a sum
of various graphs Ak including all possible permutations of
indices α. If we assume that different variants of organizing
connections between blocks are equal, i.e., we neglect detailed
geometry, then, we can write cα = εc, where ε−1 = nc is the
number of cα . Having performed that, we obtain a weighted
version of Eq. (9),

Âk = a ⊗ 1⊗(k−1) +
k−1∑
l=1

εl c⊗l ⊗ a ⊗ 1⊗(k−l−1). (10)

Now, the only condition remaining that needed to be satisfied
was the commutativity of a and c. However, in some cases,
such as an extended Sierpinski gasket, c is proportional or
even equal to a, then, we can calculate the spectrum analyt-
ically as the following.

If c = a, the spectrum of Âk is given by the formula:

σ (Âk ) = {
λi1 + ελi1λi2 + ε2λi1λi2λi3

+ · · · + εk−1λi1λi2 · · · · · λik

}
, (11)

where λi are eigenvalues of the matrix a. Lower indices mean
that, to obtain one specific eigenvalue in σ (Âk ), one needs to
choose the k eigenvalues of a {λi1 , λi2 , . . . , λik } and substitute
them into the expression of Eq. (11). All possible choices give
the whole spectrum of the Âk .

One can note a similarity between Eq. (11) and the con-
ventional renormalization approach in quantum field theory
[37]. Because of the noncommutativity of block matrices cα ,
the correct spectral decimation functions are nonlinear. We
approximate a nonlinear function by a linear one as an analogy
to the one-loop approximation and, then, iterate this linear
function repeatedly in order to include all scales.

III. CORRESPONDING DYNAMICAL SYSTEM

In the last section, we obtained an expression for the
spectrum of fractal graphs neglecting geometry details. In
this section, we reformulate this expression in terms of the
spectral renormalization group, which is also called spectral
decimation (for some fractals, such as Sierpinski gasket, there
are exact nonlinear functions producing the spectrum). This
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approximation is a dynamical system obtained as a multi-
valued linear function with slopes equal to eigenvalues of
a simple block λi normalized to the number of connections
between blocks.

We use dynamical systems in order to represent the spec-
trum of Hamiltonian (1) in fractal geometries. Even the
simplified expression for spectrum (11) is quite difficult to
analyze by itself, therefore, we need to introduce dynamical
systems and study its action on an interval. We start with
the spectrum of an elementary block, and each iteration of
the corresponding dynamical system gives the spectrum of
the next iteration of a fractal. The limit set of the dynamical
system (i.e., the limit of an infinite number of iterations) is
equal to the spectrum of infinite iterations of a fractal.

Although it is not possible to represent Eq. (11) as a
dynamical system without additional normalization, never-
theless, our approach is simple and does not influence the
properties of the spectrum. Non-normalized eigenvalues xk+1

of the (k + 1)th iteration are obtained from eigenvalues of the
kth iteration by an action of functions Fi,

xk+1 = Fi(xk ) = 1 + ελixk . (12)

The resulting spectrum can be obtained via formula σ (Âk ) =
{λixk} with x0 = 1. Another way to express the spectrum
σ (Âk ) is to consider all k + 1 iterations of Eq. (12) in the
following:

σ (Âk ) =
{(

Fik+1 ◦ Fik ◦ · · · ◦ Fi1

)
(1) − 1

ε

}
. (13)

Equation (13) shows that the spectrum is obtained from the
limit set of translation and rescaling. Statistical properties of
the spectrum are independent of them, and in order to study
spectral properties, we can consider just the dynamical system
without the last step of translation and rescaling.

One can regard the spectrum as the splitting process of
eigenvalues on each iteration with a weight factor ε. The
splitting can be represented as a tree, starting from the eigen-
values of the matrix a of the building block, and, in each
iteration, every eigenvalue splits to points with a number equal
to the rank of the matrix a. Despite simplicity of the process,
this model already demonstrates a nontrivial structure of the
spectrum.

The level-spacing distribution can be calculated straight-
forwardly when there is no intersection between branches
in the tree. This condition depends also on properties of
eigenvalues. If all eigenvalues of the matrix a are positive, the
condition of the absence of intersection between branches is
as follows:

min |λi − λi+1| <
1

1 − ελmax
− 1

1 − ελmin
. (14)

If there is no intersection between branches, the level-spacing
distribution P(s) follows a power-law distribution and be-
comes ∞ when s = 0. Precisely, P(s) is a bunch of δ functions
with a power-law envelope [see Fig. 1(a) as an example].

For the cases when the number of intersections is small, if
we increase the weighting factor ε, these δ functions begin to
smear and drift closer to each other, and the slope of the level-
spacing distribution P(s) increases [an example of smeared δ

FIG. 1. Level-spacing distribution P(s) for a simple model of
the dynamical system with two eigenvalues {−1/2, 1/2} after 20
iterations, exact power-law, and after the transition point. ε = 0.7 in
(a) and ε = 1.2 in (b).

functions can be seen from the statistics of a real fractal in
Fig. 3(a)]. Then, at some critical point, when the smeared δ

functions are close enough to each other, there is a transition
to another profile without the obvious power-law envelope.
This profile qualitatively follows the level-spacing statistics of
disordered systems. For example, P(s) goes to zero for smaller
s and has fast decay for larger s [see Fig. 1(b)].

In order to show that kind of transition more clearly,
let us consider first the simple model with two eigenvalues
{−1/2, 1/2}. If ε < 1, one can obtain a power-law level-
spacing distribution [see Fig. 1(a)],

P(s) ∼
(

s

1 − ε

)ln 2/(ln ε−ln 2)

. (15)

At the critical point ε = 1, the limit set is continuous in
the interval [−1, 1]. At each iteration, all eigenvalues are
equidistant from the neighboring eigenvalues, and, therefore,
a power-law distribution becomes a δ function, which drifts to
zero with increasing the number of iterations.

If ε > 1, there is no singularity in P(s) at s = 0, because
of the mixing of tree branches [see an example shown in
Fig. 1(b)]. The exact power-law symmetry of consequent
splitting is broken.
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FIG. 2. Three iterations of the extended Sierpinski carpet and
two iterations of the extended square. The blue edges correspond to
the neighboring weight. All edges of the same scale have the same
weight.

Despite the simplicity of the above model, the features
of general nonlinear iterations of functions will be captured
correctly for the following reasons. If we consider the in-
variant interval of a dynamical system, then, there are two
possibilities, namely, the invariant interval either contains a
gap or not. If there is a gap, then, after one iteration, this
gap will be mapped into another one with smaller size and
so on. The limit set is a Kantor set, and, in many cases,
it has a power-law level-spacing distribution [36]. This case
corresponds to the nonintersection of branches in a linearized
version. If there is no gap, then, the distribution of points
after one iteration becomes effectively more chaotic, which
corresponds to intersection of different branches. Thus, we
can distinguish three types of dynamical systems: fractal
(without branches intersection), qualitatively chaotic (with
intersections), and the one corresponding to the transition
point between these two. One can speculate that a system with
a smooth profile of density of states corresponds exactly to
the transition point between intersection and nonintersection
regimes.

FIG. 3. Level-spacing distribution of six iterations of the hierar-
chical graph with the square blocks, δ = 0.1 and δ = 0.7. The top
demonstrates power-law behavior, and the bottom one does not have
obvious power-law dependence.

IV. EXAMPLES

As was mentioned before, our approximation, such as pre-
sented in Eq. (11), works better if there are less connections
between blocks. One of the best examples is to use cycles with
one connection edge for a neighbor and add scaling parameter
δ between blocks, such as our previous studies in Ref. [36]
using the extended Sierpinski gasket shown in Fig. 2, here, one
cycle consists of three vertices, therefore, ε = δ/3. Another
example of a fractal that we studied is the extended square
with one connection between two blocks, therefore, ε = δ/4.

For a fractal of the extended square, the building block is a
square with four sites described by Hamiltonian Eq. (1) with
t = 1. The eigenvalues of this building block are {−2, 0, 2},
therefore, the dynamical system is very similar to the simplest
case considered in the previous section. The transition point
is equal to ε = 0.25, which corresponds to δ = 1 with the
critical exponent 2 ln 2/ ln(2/9) (which is 	−0.92). This
is the case without additional weighting on the edges. The
critical point in the case of the extended Sierpinski gasket
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FIG. 4. Dependence of the exponent of the power-law distribu-
tion as a function of δ for the extended Sierpinski gasket (with seven
iterations) and the extended square (with five iterations). The blue
dots are obtained by exact diagonalization, and the red crosses are
obtained by our approaches with the dynamical system.

is ε = 1/3, which also corresponds to δ = 1. This can be
shown by an analysis of the invariant interval of the dynamical
system.

We can see a power-law distribution with smeared peaks
for the extended Sierpinski gasket in Fig. 3(a) on the contrary
to Fig. 3(b), there is no power-law dependence. If there are
no intersections in the splitting tree, the power-law spectrum
is exact even with a finite number of iterations. However, if
there are intersections, δ functions in P(s) are smeared (as in
the case of the exact spectrum), therefore, if s is close to 0, the
level-spacing distribution function P(s) will be determined by
tails of smeared δ functions. Thus, a power-law dependence
appears only in some range, even before δ approaches the
transition point.

The above explanation is verified by our numerical calcula-
tions. In Fig. 4, the exponents of the power-law level-spacing
distribution of fractals and their corresponding dynamical

systems are shown. We used seven iterations of the extended
Sierpinski gasket, five iterations of the extended square, and
the same number of iterations for the dynamical systems.
We calculated the exponent of the power law for different
δ’s using linear regression on the log-scale before the level-
spacing distribution reaches the maximum, i.e., we performed
a cutoff on small δ. The dots of the exact spectrum for small
δ demonstrate clear power-law behavior, and we see that
with increased values of δ there are large fluctuations in the
exponents.

If we compare the results obtained from the dynamical
system to the exact spectrum, they match well for small values
of δ, in some cases even for δ > 0.1. In Fig. 5, we show
more results for different iterations of extended Sierpinski
gasket and the corresponding dynamical systems. One can see
that, with increasing the number of iterations, the agreement
between the two approaches is also better. Therefore, we
conclude that, despite the fact that there should be an exact
power law for an infinite fractal, and if we consider only finite
iterations, this power law is not evident.

Large fluctuations in the exact spectrum when δ approaches
its critical value can be understood in the following way.
Around the critical point, the effective splitting converges
very slowly with the number of iterations, so the number of
iterations has to be very large. This issue is demonstrated in
Fig. 5 in which we compare numerical results for various
iterations of the dynamical system described by Eq. (15)
and their theoretical predictions. We see that the numerical
result with finite iterations always gives larger exponents than
the theoretical prediction in the vicinity of the critical point.
However, the accuracy of the numerical calculation increases
with a larger number of iterations.

V. DIMENSION PROPERTIES

In this section, we study dimension properties of a graph,
its spectrum, and their connections to level-spacing statistics.
We also partially explain the results obtained in Ref. [7] where
the authors found a connection between the dimension of
the conductivity spectrum and the geometry dimension of the
Sierpinski fractals.

In this section, we use the notion of Hausdorff dimension
dH . This dimension is a generalization of a topological di-
mension for nonregular geometric sets, such as fractals. The
full mathematical definition is rather complicated, however,
in many cases, the Hausdorff dimension admits a simple
description. Suppose that N (ε) is the number of boxes of
side length ε required to cover the set. Then, the Hausdorff
dimension can be calculated as

dH = lim
ε→0

ln N (ε)

ln(1/ε)
. (16)

Roughly speaking, the dimension is the exponent relating
the volume of a set with its characteristic linear size V ∼ LdH ,
which is what one would expect in the case of a smooth space.

A. Sample and spectrum

First, let us discuss briefly the Hausdorff dimension of
the spectrum. For a power-law spectrum, there are obviously
gaps on all possible scales, therefore, the Hausdorff dimension
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FIG. 5. (a)–(c) The comparison between the exact spectrum and
the results obtained for the dynamical system with different iterations
in the extended Sierpinski gasket. (d) The comparison between
numerical and theoretical results for the dynamical system.

cannot be equal to one. Actually, one can extend the idea
of gaps at all scales as a criterion of fractional dimension.
However, there is a subtlety in the limit procedure.

Let us consider the same toy model with two eigenvalues
{−1/2, 1/2} as the one we have studied. We have seen that
there are two regimes with different properties depending
on the value of ε: ε < 1 and ε > 1. The spectrum for ε <

1 is the Cantor set, and its Hausdorff dimension is ds =
− ln 2/(ln ε − ln 2). One may note that the Hausdorff di-
mension of the spectrum corresponds to the exponent in the
power law of the level-spacing distribution shown in Eq. (15),
i.e., P(s) ∼ s−ds . One can assume that the same result should
hold for the multiscale Cantor set (the Cantor set, which is
obtained by deleting intervals of various fractions), which also
corresponds to the approximation for a general spectral dec-
imation function [36]. We want to remind that the Hausdorff
dimension discussed here is not the spectral dimension of the
density of states.

The Hausdorff dimension of the spectrum of the above
simple model can be obtained from the relation ds =
ln(2)/ ln[(1 − 
1/
)/2], where 
 = 1/(1 − ε/2) is the en-
ergy range of the spectrum (or invariant set of the dynamical
system), and 
1 = (1 − ε)/(1 − ε/2) is the largest gap in
the limit set of the dynamical system. This formula can be
understood in the following way. Since our dynamical system
is linear, after the second iteration, the biggest gap 
1 repeats
itself on the lower scale with some constant scaling factor.
These new gaps repeat again with the same scaling factor and
so on. Thus, we can deduce the Hausdorff dimension from the
first gap alone.

If ε = 1 as was discussed before, in the limit set, when
the number of iterations approaches infinity, the values spread
completely over [−1, 1], and, therefore, the Hausdorff dimen-
sion is 1. If ε > 1, gaps become smaller and smaller after each
iteration (one can see this from Fig. 1), the limit set does not
contain any gaps, and its Hausdorff dimension is also 1.

The estimation of the Hausdorff dimension of a hierarchi-
cal graph is more difficult since the correct value is related
to the embedding of a graph into a plane. However, it is
possible for fractals with building blocks, which can tessellate
an n-dimensional space, i.e., for a two-dimensional (2D)
plane they are the triangle, square, and honeycomb lattices.
Furthermore, there could be another problem occurring, if one
takes a number of connections between blocks into account.
Nevertheless, we can estimate the Hausdorff dimension by
the following procedure. Basically, the concept behind the
dimension is how many new copies appear when we increase
the length of a sample Nnew ∼ ldG , where dG is the dimension
of the sample. Therefore, one key issue is an estimation of a
proper choice of the length change. If there is an embedding
into a space with integer dimension, it can be obvious. In
general, we need to work only with the number of vertices nv

and the number of connections nc. The number of connections
is related to the effective length, and the number of vertices
determines the number of new copies Nnew. Hence, we can
estimate the dimension of a graph � as d� ∼ ln nv/ ln 2nc.
For the Sierpinski gasket, we have nv = 3 and nc = 1, and we
obtain d� ∼ ln 3/ ln 2, which is the correct result.

For hierarchically weighted graphs, one can consider an
additional weighting δ as in the previous section and obtain
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an effective dimension d� ∼ ln nv/ ln(2nc/δ). Furthermore,
one can relate the dimension of the spectrum in the previous
section and the estimated dimension of a weighted fractal
square. For this system, we have nv = 4 and nc = 1, and
we obtain ds = ln 2/(ln 2 − ln δ) and d� ∼ 2 ln 2/(ln 2 −
ln δ). ds and d� are not the same, but they differ only with
a multiplier constant. However, we see that there is a deep
relation between the dimension of the spectrum and the di-
mension of a fractal. For example, we can note that, if δ → 0,
then, both dimensions d� and ds go to zero. Therefore, we
can conclude that a system with a small Hausdorff dimension
should have a power-law level-spacing distribution.

B. Conductance

The conductance of a fractal can be calculated via the
Landauer formula [38],

G(E )ll ′ = e2

h
Tr

(
�lG

r
S�l ′G

a
S

)
, (17)

where l and l ′ are indices of leads, Gr
S and Ga

S are retarded,
and advanced Green’s functions, �l and �l ′ take into account
corrections to the self-energy regarding the interaction with
leads. The Green’s functions have poles at points in the
spectrum.

Dimension of the graph of G(E ) is related to the dimension
of the spectrum of a sample. If there is no correlation between
eigenstates, the dimension of G(E ) equals to the dimension
of discontinuity points in dG/dE (which is equal to the di-
mension of the spectrum) plus one. The correlations between
eigenstates will smooth the discontinuity.

Therefore, we arrive at

dH (G) � 1 + ds. (18)

In our approach based on the introduction of the auxiliary
dynamical system, all eigenvectors are just tensor products
of eigenvectors of a building block. Thus, all scalar prod-
ucts of eigenfunctions and matrices of leads (�l , �

′
l ) can be

calculated, and the conductivity will have nonregular fractal
structure on all scales. At every pole of the Green’s functions,
there is a discontinuity, and Eq. (18) becomes an equality
within the considered approximation. As we discussed in the
previous section, if a sample has a power-law distribution
of P(s), its geometry dimension can be expressed as the
dimension of spectrum with some multiplier (see the case
of the weighted fractal square). This multiplier depends on
the structure of the building block (its’ eigenvalues), and,
therefore, there is no universal formula between dH (G) and
d� .

A subtle case appears at the transition point when ds is
close to 1. In this case, the inequality expressed in Eq. (18)
is trivial, and the dimension of the spectrum provides no
information about the conductance. Effectively, the spectrum
is dense, and the Green’s functions have singularities on a
continuous interval. The studied Sierpinski carpet in Ref. [7]
seems to be this case.

VI. SUMMARY AND DISCUSSION

In this paper, we consider the linearized version of spectral
decimation within an approach based on the dynamical system

for hierarchical graphs with block structures. We demonstrate
that the power-law level-spacing statistics appearing in some
fractals is closely related to their geometry. Our approach
to calculate the level-spacing distribution shows different
behaviors depending on the fractal structure. It was shown that
the level-spacing distribution can have strictly a power-law
behavior or resemble behavior of a quantum chaotic system.

The power-law spectrum is closely connected to the rami-
fication number of a fractal, however, the actual distinction is
quite subtle. There could be infinitely ramified fractals with
power-law spectra as well as finitely ramified with spectra
closer to disordered systems. We suppose that a variation of
the Sierpinski carpet with two vertices between connected ele-
mentary blocks instead of three has a power-law level-spacing
distribution. An opposite example of a finitely ramified fractal
with disordered spectrum statistics can be realized if the
number of vertices in an elementary block is large enough,
and its eigenvalues are close to each other so that there will
be no gaps in the limit set of the dynamical system generating
the spectrum. The correct analysis of possible statistical prop-
erties should require an individual consideration in each case
since it depends on the eigenvalues of the building block of a
hierarchical structure.

Our approach based on the theory of dynamical systems
can also explain the results concerning recently discovered
topological effects in fractals. It is also well known that there
is a quantum Hall effect in 2D but not in one dimension
(1D). In Refs. [16,39,40], it was shown that Chern numbers
as well as Hall conductivity become partially quantized in
noninteger dimensions. In view of the present paper, the actual
transition from quantized topological properties in 2D to their
destruction in 1D could be followed from the change in
hierarchical block structure of a graph and the corresponding
dynamical system on its spectrum. Since our model can be
treated analytically, one can calculate Chern numbers and
topological states, for example, using expression for the Chern
number via projectors. One can expect different behaviors
of projectors depending on the regime of linearized spectral
decimation. Our future research will be devoted to these
questions.

To summarize, from the perspective of considered esti-
mation, we can treat random graphs as deformations of the
graphs with a block hierarchical structure. The additions of
various building blocks and variations of connections between
them lead to mixing of splitting branches, and, therefore,
the power-law statistics disappears, and the system becomes
closer to a disordered system. Our paper can lead to a clearer
distinction between quantum chaotic systems, systems with
fractal geometries and quasiperiodic systems. As was men-
tioned earlier, our paper can also be useful for investigations
of topological properties, such as topological states and Chern
numbers.
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APPENDIX: GEOMETRIC INTERPRETATION
OF THE MODEL

The density of states of the Hamiltonian can be calculated
via traces of the Hamiltonian in some power, which can
be expressed by the number of connected paths in a graph
corresponding to the Hamiltonian. In the case of the Cartesian
product of graphs, one can estimate the trace of a matrix power
as

tr(H�G)m = pm(H�G) ∼
m∑

l=0

Cl
m pm−l (G)pl (H ), (A1)

where pn is the number of loops and index n is the number of
sites in this loop (length of the loop). This expression is exact,
if each point in graphs A or H is indistinguishable. The full
expression of pm is as follows:

pm(H�G) =
∑

x∈A,H

m∑
l=0

Cl
m pm−l (Gx )pl (Hx ). (A2)

The block structure of a fractal graph can be represented
by tensor product, which is closely related to the Cartesian
product. The expressions (9) and (10) have tensor structures.
From the geometric point of view, these formulas can be
derived in the following. A point p0 in H�G can be projected
into H or G, so p0 has two coordinates. If we want to create a
path between p0 and another point p1, we can project this path
onto coordinates in H or in G. By the structure of a Cartesian
product, we can always choose coordinates in H or in G, and
can combine closed paths and obtain Eq. (A2).

Let us consider the case when the number of connections
between two neighboring copies of graph H is less than the
number of vertices (i.e., the number of connections in the
Cartesian product). Let us denote this matrix as H ∗ G. In this
case, a point p0 also has two coordinates, however, we cannot
change make a new step in each of the projections at arbitrary
points. But we can make an estimation, saying that the number
of closed paths in G coordinate will be proportional to the
number of paths in Eq. (A2). With this approximation, we

neglect details of the geometry and use only the number of
connections between blocks. The coefficient of proportional-
ity ε will be equal to fraction nc/nv , where nc is the number
of connections and nv is the number of vertices in a graph H ,

tr(H ∗ G)m = pm(H ∗ G) ∼ pm(H )p0(G)

+
m−1∑
l=0

εm−lCl
m pm−l (G)pl (H ). (A3)

If a graph G can be embedded into a graph E , it is an
obvious relation that pn(G) � pn(E ). Because of the block
structure, a fractal can be embedded (at least, locally) into
the Cartesian product, and we can apply this inequality. For
fractals, roughly, connections between blocks on different
scales are described by matrix A0 = a. If we directly apply
expression (A3), it will correspond to c ∼ 1 in Eq. (10).
Although this is also an estimation, but it does not include
mixing of different scales on the density of states [mixing of
scales appears when one tries to estimate traces from Eq. (6)
due to noncommutativity]. The model with c ∼ 1 describes
splitting of eigenvalues with the same order every time.

In order to add an influence of each scale to another, we
can say that, when we construct a path, every step on a larger
scale is also a step in smaller scales but with some weight ε.
Then, the trace of Am

2 ,

tr
(
Am

2

) ∼ pm(a)nm
v +

m−1∑
l=0

εm−lCl
m pm−l (a)pm(a). (A4)

The formulas for greater iterations of the fractal are cum-
bersome, but from the main text, it is already clear this case
corresponds to Eqs. (10) and (11) with c ∼ a.

We can formulate the model of this article as follows. We
build an effective model for the density of states of a fractal
assuming that we only know the number of connections from
one block to other.

Of course, there can be other effective models with various
weights on different scales. However, the model considered in
this article clearly exploits the scale symmetry of a system. If
the detailed geometry does not have strict scale symmetry (for
example, connections between blocks are in different places
in every scale), then, appropriate weighting of paths could be
different, or the nonlinearity could play a stronger role.
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