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All-electrical spectroscopy of topological phases in semiconductor-superconductor heterostructures
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Semiconductors in the proximity of superconductors have been proposed to support phases hosting Majorana
bound states. When the systems undergo a topological phase transition towards the Majorana phase, the spectral
gap closes, then reopens, and the quasiparticle band spin polarization is inverted. We focus on two paradigmatic
semiconductor-superconductor heterostructures and propose an all-electrical spectroscopic probe sensitive to
the spin inversion at the topological transition. Our proposal relies on the indirect coupling of a time-dependent
electric field to the electronic spin due to the strong Rashba spin-orbit coupling in the semiconductor. We analyze
within linear response theory the dynamical correlation functions and demonstrate that some components of the
susceptibility can be used to detect the nontrivial topological phases.
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I. INTRODUCTION

There has been a growing interest in the condensed matter
scientific community in exploring topological superconduct-
ing phases supporting Majorana bound states, partially mo-
tivated by the prospects of a quantum computer. Majorana
bound states are quasiparticles in condensed matter theory
which are their own antiparticle and possess non-Abelian
statistics. They may appear unpaired as zero-energy excita-
tions, energetically separated from the quasiparticle contin-
uum by a superconducting gap [1]. Within the restricted sub-
space formed by a collection of such Majorana bound states,
a quantum computer would perform calculations through
braiding operations [2].

So far, several physical platforms have been proposed
to realize Majorana bound states: topological insulator-
superconductor [3], semiconductor-superconductor (SM-SC)
heterostructures [4–6], or magnetic atom chains [7–10]. The
growing number of theoretical proposals and avenues in-
vestigated in experiments was surveyed in several recent
reviews [11–17].

The focus in our paper is on the, maybe, most promising
condensed matter candidate for the realization of Majorana
bound states: the SM-SC heterostructures [18–20]. The first
experimental signatures of Majorana bound states were ob-
tained by measuring a zero-bias peak in the tunneling con-
ductance [21]. Other proposed measurements are to detect
Majoranas using the fractional Josephson effect [1,22–25],
and in current correlations [26–29]. The detection of Majorana
states remains still open to debate as the signal sought from
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them may be due to low-energy Andreev bound states trapped
in the hetereostructure due to smooth confining potentials
[30–37].

Another fruitful alternative is to detect the topological
phases in SM-SC heterostructures by indirect means, using,
for example, bulk measurements. Signatures of the topolog-
ical transitions have been theoretically shown to arise in
the electromagnetic response of the system to weak time-
dependent magnetic fields [38,39], in the entanglement spec-
trum of p-wave superconductors [40], in dynamical probes of
one-dimensional ultracold atomic gases with Majorana modes
[41], in critical currents [42] and nonlocal conductance mea-
surements [43] of Josephson junctions, and so on. Recently
it was realized that at the topological phase transition the
spin polarization of electronic bands is inverted, a feature
that might be exploited as a reliable marker to discriminate
the topological phases [44]. Further studies have sought to
make use of this observation to devise detection methods
using the local measurement of spin in the electronic bands
at the transition [45], in the generation of supercurrents [46],
or using spin-selective measurements via quantum dots con-
nected to the heterostructure [47,48]. In this paper, we propose
an alternative detection method which relies on all-electrical
probes of the system’s bulk electronic structure, coupled with
optical detection.

Our analysis carries on two SM-SC heterostructures, where
the existence of Majorana phases has been proposed—a one-
dimensional model [4,5] and a two-dimensional one [6] (see
Fig. 1). Both setups aim to realize an effective spinless p-wave
superconductor with topological properties [1] in the low-
energy sector, near the Fermi energy. The basic ingredients are
a magnetic field, which removes the Kramers degeneracy of
the electronic states, while a strong spin-orbit coupling breaks
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FIG. 1. The present paper studies the (a) 1D and (b) the 2D
models proposed in Refs. [4,5], respectively, Ref. [6], as physical
platforms supporting Majorana bound states. Additional gates with
time-oscillating voltage are attached to the semiconductor (in red),
allowing to modulate the spin-orbit coupling. The response of the
systems to the alternating electrical field discriminates near the
topological transition the nontrivial phases.

the spin conservation to allow tunneling of Cooper pairs from
a neighboring s-wave superconductor into the semiconductor.
This induces a superconducting gap in the semiconductor,
creating an effective topological superconductor. The mag-
netic field modifies the spectrum, acting against the induced
superconducting gap, allowing to close the spectral gap for a
critical magnetic field, at zero wave vector in the proximitized
semiconductor. Above the critical field, the gap reopens, and
the system enters a topological nontrivial phase where Majo-
rana bound states are expected to form.

This basic physical picture readily allows one to under-
stand the band spin inversion at the topological transition [44].
At the zero wave vector, near the topological transition, the
spin-orbit term is dominated by the Zeeman field which sets
the band spin orientation either parallel or antiparallel to it.
Due to low-energy particle-hole symmetry, opposite-energy
quasiparticle bands have opposite spin polarization. Since
at the topological transition the gap closes and the bands
cross each other, while remaining spin polarized, the spin
polarization of these bands is inverted between the trivial and
nontrivial phase (see, e.g., Fig. 2). This picture is limited
to a region around k = 0 since spin-orbit coupling acts at
finite momenta to rotate the electronic spins. The challenge
of the present paper is to find signatures of the electronic spin
inversion at the transition.

We propose an all-electrical detection of spin polariza-
tion in the electronic bands in semiconductor-superconductor
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FIG. 2. Spin polarization 〈σx〉 of the electronic bands of the 1D
model, close to the topological transition, in the (a) trivial phase and
(b) in the nontrivial phase. The spectral gap has the same magnitude
in both cases, |Eg| = 0.04� and μ = 0.

heterostructures which is capable of discriminating the phases
near the topological transition. Our proposal is to use tech-
niques similar to the electronic spin resonance (ESR) spec-
troscopy, where spin relaxation is measured using microwave-
frequency magnetic fields [49]. However, in the SM-SC het-
erostructures, the proximity to a superconductor renders such
methods not ideal. The present all-electrical scheme relies on
the indirect coupling of the electric field to the electronic spin
due to the strong spin-orbit coupling present in semiconduc-
tors such as InSb or InAs, which are regularly used in building
the SM-SC heterostructures. The electric fields have been
shown to control the Landé g-factor in semiconductor devices
[50] and, moreover, time-varying electric field may be used
to dynamically modulate the g-factors as a means to control
quantum spins [51–58]. Moreover, a time-dependent spin-
orbit coupling has been predicted to generate spin currents
[59–62].

In our proposal, the electric fields modulate the strength
of the Rashba spin-orbit coupling in the material. Then, under
the electric field, resonant transitions are induced between
the low-energy quasiparticle bands, leading to an increase
in the spin polarization in either trivial or nontrivial phases.
Nevertheless, since the spin polarization is opposite in the
two phases, longitudinal spin-relaxation processes near k =
0 are either favored or unfavored by the external magnetic
field. We show that in the topological nontrivial phase the
quasi-electrons have spins aligned with the magnetic field,
and therefore they relax by emitting photons, while in the
trivial phase, they relax by absorbing photons. This allows the
use of optical spectroscopic probes to detect the topological
phases. The associated response function χ (ω), defined below
in Eq. (8) and in particular its imaginary part χ ′′(ω), which
is related to spin relaxation processes, encodes these features
and distinguishes on which side of the topological transition is
the system. We call such measurement Rashba spectroscopy,
sharing ideas from a larger group of experimental methods
developed under the name of g-tensor modulated resonance
spectroscopy [52].

The paper is organized as follows. Section II intro-
duces the two Hamiltonian models for the semiconductor-
superconductor heterostructures, in one and two dimensions.
Section III discusses the detection of band spin polarization
using electrical modulation of the Rashba spin-orbit coupling.
The section defines a response function modeling the experi-
ment and is further determined within this paper. The section
closes with a discussion about the trivial effect of electric field
coupling to the electronic density in the topological supercon-
ductor. A more detailed treatment of this effect is relegated
to Appendix A. Section IV analyzes the system response at
vanishing chemical potential, where a complete analytical
solution is available. The results are extended in the next
Sec. V in a perturbation theory in small spin-orbit coupling
near the topological transition. The perturbation theory yields
also the spin polarization of the electronic bands. Section VI
generalizes the above results for any system parameters in
the low-frequency regime, while an arbitrary frequency for-
mula for the response function is relegated to Appendix B.
Section VII verifies the robustness of the Rashba susceptibility
signal in finite tight-binding models with potential disorder.
Finally, Sec. VIII sums up the conclusions of our study.
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II. MODELS

In this paper we investigate two paradigmatic models, orig-
inally proposed in Refs. [4–6], as condensed matter platforms
for the realization of Majorana bound states. Because of its
relative simplicity, the one-dimensional (1D) model has been
the subject of intense experimental scrutiny [21,63–69]. To
treat the models on equal footing, we assume in both cases
that the semiconductor is deposited on a superconductor in
xy plane (see Fig. 1). The proximity to the superconductor
induces superconducting correlations in the semiconductor,
characterized by the order parameter �. The semiconductors
are also characterized by a strong Rashba spin-orbit coupling
due to broken inversion symmetry along the z axis. Finally, the
time-reversal symmetry is broken by an (effective) magnetic
field which gives rise to a Zeeman spin-splitting between the
electronic bands in the semiconductor. In the 1D model, the
external magnetic field is applied along the semiconducting
wire. In the two-dimensional (2D) setup there is only an
effective Zeeman field perpendicular to the semiconducting
plane induced by a magnetic insulator placed under the
semiconductor.

The effective Hamiltonian for both semiconductors reads

H = 1

2

∫
dd k�†(k)H (k)�(k), (1)

with the Nambu field operator defined as �†(k) =
(ψ†

k↑, ψ
†
k↓, ψ−k↓,−ψ−k↑). We use the convention that

k = (kx, 0, 0), k = kx (1D),

k = (kx, ky, 0), k = (
k2

x + k2
y

)1/2
(2D).

The Bogoliubov–de Gennes Hamiltonian for the 1D model
reads [4,5]

H (kx ) =
(

h̄2k2
x

2m
− μ

)
τz − α kxτzσy + EZ σx + �τx, (2)

where, without the loss of generality, we choose a uniform
induced order parameter � > 0.

In the 2D model, the order parameter � has a vortex
structure, and goes to 0 in the middle of the annular structure
shown in Fig. 1(b). Our focus is on the bulk excitation
spectrum which is determined far away from the vortex, where
the order parameter is assumed to have an uniform amplitude
� > 0. The Hamiltonian for the system under the above
approximation reads [6,70]

H (k) =
(

h̄2k2

2m
− μ

)
τz + Hso + EZ σz + �τx,

Hso(k) = α τz(σxky − σykx ).

(3)

In both models, EZ denotes the Zeeman energy, α the Rashba
spin-orbit coupling strength, and μ the chemical potential.
The Pauli matrices σi act in spin space, while τi, with i =
x, y, z, in particle-hole space. We use the convention that
τiσ j ≡ τi ⊗ σ j , and the absence of a Pauli matrix in the
Hamiltonian implies the presence of the identity matrix in the
respective space.

Despite the somewhat different physical realization, the
models share many attributes, allowing throughout a parallel

treatment and leading to similar conclusions. Formally, the 2D
model reduces to the 1D model under a rotation in spin space
and confinement of electron motion along the x axis. Since the
Rashba spin-orbit vector is orthogonal to the effective mag-
netic field, the energy spectrum is determined analytically.
In both models there are two positive-energy quasiparticle
bands

E±(k) = [
ξ 2 + α2k2 + E2

Z + �2

±2
(
α2k2ξ 2 + E2

Zξ 2 + E2
Z�2

) 1
2
] 1

2 , (4)

with two negative-energy bands −E±(k), with ξ denoting
the kinetic energy ξ = h̄2k2/2m − μ. The band structures
undergo a topological transition when the spectral gap at
k = 0,

Eg = EZ −
√

�2 + μ2, (5)

closes and reopens under a variation of system parameters.
The topological nontrivial phases are realized for Eg > 0 with
zero energy Majorana bound states localized either at the 1D
wire edges or, in 2D model, in the superconductor vortex.

Near the topological phase transition at k = 0, the spin-
orbit coupling term is dominated by the Zeeman field which
polarizes the quasiparticle bands parallel or antiparallel to it.
Due to particle-hole symmetry, bands with opposite energies
display opposite spin polarization. A more detailed discussion
of the spin polarization near the transition is presented in
Sec. V.

To get a sense of the units involved, we take throughout
an InSb semiconductor with the material parameters [21]:
g-factor ∼50, effective mass ∼0.015 me, α = 20 nm · meV,
and induced superconducting gap � = 0.25 meV. We in-
vestigate systems that exhibit spectral gaps on the order of
Eg ∼ 0.05 meV, which puts the frequency in the range ω ∼
75 GHz. Therefore the systems could be probed in the mi-
crowave regime. For the sake of simplicity we take throughout
a similar set of parameters in the 2D model and present all
energies in units of �.

III. RASHBA SPECTROSCOPY AND THE RESPONSE
FUNCTION

To probe the system, a time-dependent electric field is
generated perpendicular to the superconductor δE (t )ẑ, for
example, by laser pulses and microwaves exciting a voltage
gate connected to the proximitized semiconductor [52,55].
Alternatively, one can imagine modulating a perpendicular
electric field applied directly to the system. The electric field
generates an effective in-plane magnetic field which couples
with the spins in the semiconductor. This yields a time-
dependent modulation of the Rashba spin-orbit coupling of
the form

δHso(t ) = τz(σ × k) · ẑδα(t ) = Hso

α
δα(t ). (6)

In general, since the spin-orbit coupling strength depends
linearly on the external electric field in Rasbha nanowires
[71], its time modulation remains linear in the electric field,
δα(t ) 
 κδE (t ). This allows us to investigate the system using
perturbative approaches.
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Near the topological transition, i.e., Eg = 0, the effect of
spin-orbit coupling is small and the Zeeman field polarizes the
quasiparticle bands along its direction. The time-dependent
perturbation creates quasiparticle excitations, which change
their spin polarization. In linear response theory, the change
in the polarization

δ〈σ j (t )〉 =
∫ t

−∞
χ jR(t − t ′)δα(t ′)dt ′, (7)

is measured by the susceptibility χ jR(t ), with j ∈ {x, y, z}.
More exactly, the response function χ jR(t ) measures the in-
direct coupling of the external electric field to the electronic
spin σ j due to the strong Rashba coupling present in the
semiconductor. The expectation values are computed in a
basis of the Hamiltonian eigenstates H (k)|nk〉 = En(k)|nk〉,
with n a band index. The spin polarization of a k state is
therefore denoted 〈σ j〉 ≡ 〈nk|σ j |nk〉.

The energy provided by the electric field causes resonant
optical (momentum-conserved) transitions for electrons be-
tween the quasiparticle bands, and it should be in the mi-
crowave range, according to our estimates. These transitions
are detected in what we call Rashba spectroscopy, by some
of the components of χ jR(ω), in analogy to the ESR spec-
troscopy. The latter involves measuring spin-spin correlations
functions due to direct coupling of external ac-magnetic fields
to the electronic spin. In contrast, Rashba spectroscopy mea-
sures the response caused by the coupling between the modu-
lated Rashba spin-orbit term to the electronic spin. Therefore
the dynamical long-wavelength response function reads

χ jR(t − t ′) = −iθ (t − t ′)〈[σ j (t ), τz(σ(t ′) × k) · ẑ)]〉, (8)

with k defined accordingly either to the 1D or the 2D model,
and [·, ·] is a commutator. Similar ideas, in the context of
quantum dot spin control in semiconductor quantum wells,
have been experimentally put forward under the name of
g-tensor modulation resonance spectroscopy [52].

The response function is invariant under time translations,
and therefore a Fourier transform yields readily its frequency-
dependent expression

χ jR(ω) =
∑
mn

∫
dd k

(2π )d
[ fm(k) − fn(k)]

× 〈mk|σ j |nk〉〈nk|Hso/α|mk〉
h̄ω + Em(k) − En(k) + iδ

(9)

with δ/� → 0+. The summation is over the four quasiparticle
bands, and the momentum integration carries over the avail-
able momentum states. The Fermi-Dirac function is fn(k) =
[eβEn (k) + 1]−1, with β = 1/kBT , the inverse temperature.

Alternatively, the dynamical correlator χ jR(ω) is calculated
within the Matsubara Green’s function formalism

χ jR(iω) = 1

β

∑
ν

∫
dd k

(2π )d
Tr

[
σ jG(k, iν)

Hso

α
G(k, iω + iν)

]
,

(10)
with G(k, iν) = 1/(iν − H ), the superconducting Green’s
function at fermionic Matsubara frequencies ν.

While the response function is in general complex, χ =
χ ′ + iχ ′′, we focus on its imaginary part χ ′′(ω), which carries

information about the spin relaxation processes, and is sen-
sitive to the spin polarization of the quasiparticle bands. In
particular, we show that only the components of χ ′′

jR(ω) along
the Zeeman field discriminate between trivial and nontrivial
superconducting phases at the topological transition as the
susceptibility changes sign across the transition at Eg = 0.
According to the effective magnetic field orientation chosen
in Eqs. (2) and (3), the relevant susceptibilities are denoted

χ1(ω) ≡ χxR(ω) (1D), χ2(ω) ≡ χzR(ω) (2D). (11)

The other components are vanishingly small near the phase
transition, for frequencies on the scale of the spectral gap
h̄ω ∼ 2|Eg| since, in this limit, the bands are almost com-
pletely polarized by the Zeeman field.

Finally, there is an additional contribution to the change in
spin polarization which is due to the coupling between the
time-varying electric field and the electronic density in the
semiconductor. The effect of the electric field is described at
the linear response level by the susceptibility

χ jμ(t − t ′) = −iθ (t − t ′)〈[σ j (t ),−τz(t ′)]〉. (12)

This component to the response is trivial since its imaginary
part does not change sign across the topological transition.
We treat in detail this susceptibility in Appendix A. It is
noteworthy to briefly go over some of its properties.

The response χ jμ is nonzero only for spins in the direction
of the magnetic field, as in the case of Rashba susceptibility.
The excitation threshold is not modified and χ ′′

jμ becomes
nonzero only for frequencies h̄ω > 2|Eg|. This is expected
since in linear response the spectrum of the Hamiltonian is
not modified by the fluctuating chemical potential.

We can profit from the fact that the two components to
the susceptibility have qualitatively different behavior at the
topological transition and extract the Rashba response even
without accounting for their magnitude. While Rashba sus-
ceptibility χ ′′

jR is odd in Eg, the electronic density component,
χ ′′

jμ is even in Eg. Therefore, it is possible to discriminate the
two signals by measuring the total susceptibility for different
gaps, symmetrically around Eg = 0, and eliminate the trivial
response by doing symmetric and antisymmetric combina-
tions of the recorded signal. In the following, we focus on
the Rashba susceptibility since it is the one encoding the
nontrivial response of the system to the electric field.

IV. ANALYTICAL SOLUTION FOR μ = 0

To analyze the response function χd (ω), it is useful to
investigate the limit μ = 0 where closed-form solutions are
possible. Later, we demonstrate that the main features cap-
tured in this limit carry over to more general choices of
parameters.

Let us focus on the low-energy physics near the Fermi
energy at E = 0. The lower band E−(k), given in Eq. (4),
displays minima both at k = 0 and k 
 2mα/h̄2 (for strong
spin-orbit strength). The induced superconducting correla-
tions open a superconducting gap ∼� at finite momenta k.
In contrast, the spectrum at k = 0 is defined by the gap
Eq. (5). The closing and reopening of Eg marks a transi-
tion from the topological trivial phase (Eg < 0) to the non-
trivial phase supporting Majorana bound states (Eg > 0).
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Our analysis is concerned in the parameter regime around the
phase transition point, where |Eg| � �. Under this approxi-
mation only momenta near k = 0 are relevant and quadratic
terms in momentum are neglected. Moreover, we work at
vanishing chemical potential, μ = 0, and therefore ξ 
 0 and

Eg = EZ − �. (13)

At k = 0, the lowest-energy band and its particle-hole
partner are eigenstates of σx in the 1D model, and σz in
the 2D one. Due to particle-hole symmetry the two bands
have opposite polarization 〈σ j〉 (see Fig. 2). At the transition
point the two eigenstates cross and there is a change in the
polarization of the crossing bands. This change in polarization
is detected by the imaginary part of the response function
χd (ω), defined in Eq. (11).

In the zero-temperature limit, the sum over the Matsubara
frequencies ν in Eq. (10) may be replaced by an integral. The
susceptibility χd (ω) for both 1D and 2D models follows after
performing the trace over particle-hole and spin degrees of
freedom,

χd (iω) =
∫

dd kdν

(2π )d+1

4αk2Eg

[E−(k)2 + ν2][E−(k)2 + (ω + ν)2]

+ (� → −�), (14)

with E−(k) = (α2k2 + E2
g )1/2. The second term in χd (ω)

contributes to the imaginary part of the susceptibility only at
higher frequency, equal or larger than the separation between
the lowest and highest bands ∼2(EZ + �). Therefore it can
be neglected when probing the system at smaller frequencies
h̄ω ∼ 2|Eg|. The first term in Eq. (14) gives the low-frequency
contribution which is, as expected, proportional to Eg, and,
furthermore, is changing sign at the topological transition. We
note that, in contrast, the static susceptibility χ ′

d (ω = 0) ∝∫
dω′χ ′′

d (ω′)/ω′ is an unreliable marker of the topological
transition since it includes the information from the high-
frequency transitions.

In the 1D model, the low-frequency dynamical susceptibil-
ity for transitions between the low-energy bands follows after
performing the integral over the Matsubara frequency ν and
the analytical continuation iω → ω + iδ/h̄:

χ1(ω) =
∫

dkk2

πE−(k)

[
2αEg

4E−(k)2 − (h̄ω + iδ)2

]
, (15)

whose imaginary part is

χ ′′
1 (ω) = Eg

α2h̄ω

√
h̄2ω2

4
− E2

g �

(
h̄2ω2

4
− E2

g

)
, (16)

where � is the Heaviside step function.
In the 2D model, an additional trivial angular integration in

the 2D plane is required, which yields

χ2(ω) =
∫ ∞

0

dkk3

πE−(k)

[
2αEg

4E−(k)2 − (h̄ω + iδ)2

]
. (17)

Therefore the imaginary susceptibility reads

χ ′′
2 (ω) = Eg

2α3h̄ω

(
h̄2ω2

4
− E2

g

)
�

(
h̄2ω2

4
− E2

g

)
. (18)
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FIG. 3. Imaginary part of the susceptibility χ ′′
d (ω) as a function

of frequency for (a) the 1D model and (b) the 2D model. The spectral
gap has the same magnitude in all cases |Eg| = 0.04�, but, according
to the sign of Eg, the systems may be either in a topologically
trivial phase (T, blue), or a nontrivial one (NT, red). The response
shows different behavior depending on the phase. The solid lines are
obtained by numerical integration in Eq. (10), while the dashed lines
plot the analytical results in Eqs. (16) and (18). The panels share
the legend.

As expected, χ ′′
d (ω) is odd in frequency and, due to vanishing

density of states in the spectral gap, is zero below the gap. At
a threshold 2|Eg|, which is the energy gap between the lowest
bands ±E−(k), the 1D response develops a square-root depen-
dence on the frequency, the 2D susceptibility displays a linear
dependence. A comparison between the analytical predictions
and numerical integration of χd either using Eq. (9) or (10) is
presented in Fig. 3.

The response functions change sign at the topological
transition, an observation that can be validated experimentally.
Moreover, in experiments it is also possible to keep the
frequency fixed, but to vary the Zeeman field to bring the
system across the topological transition. Near the transition
at Eg = 0 the response is linear in Eg as indicated by Eqs. (16)
and (18). At larger Zeeman field, above the fixed electric-
field frequency ω, the transitions between the bands are
energetically unfavored, leading to a decay of the signal.
The dependence of χ ′′

d (ω) on Eg, when increasing EZ, is
displayed in Fig. 4, showing the expected sign change at the
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FIG. 4. Imaginary part of the susceptibility χ ′′
d (ω) as a function

of the spectral gap Eg = EZ −
√

�2 + μ2 for (a) the 1D model
and (b) the 2D model. The frequency is fixed at h̄ω = 0.16�. The
susceptibility is computed either from the analytical expressions (16)
and (18) (red line), or numerically from Eq. (10) (blue line). The
panels share the legend.
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transition. We also note that with increasing frequency, addi-
tional transitions to higher-energy bands are also possible, but
the low-frequency response close to the topological transition
is insensitive to them.

V. PERTURBATION THEORY IN THE SPIN-ORBIT
COUPLING

The results of the previous section are extended here to
finite chemical potential μ using a perturbation theory in the
spin-orbit coupling strength near the topological transition.
This allows an intuitive understanding of the processes mod-
eled in the Rashba spectroscopy response function.

The perturbation theory is justified close to the topological
transition at k = 0 where the spin-orbit coupling term, which
is linear in momentum, is dominated by the other terms in
the Hamiltonian. The kinetic term ∼k2/2m remains neglected
since it is quadratic in momentum.

To be more specific, in this section, we focus on the 1D
model, described by a simplified Hamiltonian

H = H0 + Hso,

H0 = −μτz + EZσx + �τx,
(19)

with the Rashba spin-orbit term Hso = −αkxτzσy as a pertur-
bation on H0.

Our goal is to determine χ1(ω) ≡ χxR(ω), proving that it
changes sign at the topological transition Eg = 0, with

Eg = EZ −
√

�2 + μ2. (20)

The response function (9) in the zero-temperature limit fol-
lows readily using the eigenstates of the Hamiltonian, deter-
mined within the perturbation theory.

Let us perform a π/2-rotation around x axis in particle-
hole space

τz �→ τy, τy �→ −τz, (21)

only for notational simplicity. The Hamiltonian changes ac-
cordingly, H �→ H̃ , with the tilde denoting the effect of the
unitary transformation.

The H̃0 eigenstates are momentum independent and may
be indexed as |τσ 〉 with τ = ± and σ = ±. Since |τσ 〉 are
eigenstates of σx, it follows immediately that correlations
χzR = χyR = 0 and only the response along the magnetic field
may be relevant. The four energy bands of either H0 or H̃0 are

ετσ = σEZ + τ
√

�2 + μ2, (22)

with normalized eigenstates |τσ 〉:

|+±〉 = 1

2

(
1

eiθ

)
⊗

(
1

±1

)
, |−±〉 = 1

2

(
e−iθ

−1

)
⊗

(
1

±1

)
,

(23)
and

eiθ = � − iμ√
�2 + μ2

. (24)

At the topological transition Eg = 0, the bands |+−〉 and
|−+〉 cross each other. Note that in the trivial phase
Eg < 0, the “conduction” bands are |+±〉, while |−±〉 are
“valence” bands.

Let us analyze the matrix elements in the susceptibility
from Eq. (9) using the first-order perturbed eigenstates, linear
in α,

|τσ (1)〉 = |τσ 〉 −
∑

τ ′σ ′ �=τσ

〈τ ′σ ′|H̃so|τσ 〉
ετ ′σ ′ − ετσ

|τ ′σ ′〉. (25)

To first order, the only finite matrix elements of H̃so are those
between the valence and the conduction bands. The modulated
Rashba term H̃so/α, which couples to the time-varying electric
field, excites quasiparticles from the lower to the upper bands.
Its matrix elements, are to lowest order independent on α,

〈++(1) | − kτyσy|−−(1)〉 
 ke−iθ cos θ,

〈+−(1) | − kτyσy|−+(1)〉 
 −ke−iθ cos θ.
(26)

This leads in either topological phases to an increase in the
spin polarization for the upper band.

Relaxation processes are determined by the matrix ele-
ments of spins along the Zeeman field. To linear order in the
spin-orbit coupling, they are given by

〈−±(1) |σx|+±(1)〉 
 0,

〈−−(1) |σx|++(1)〉 
 − αkeiθ cos θ

EZ +
√

�2 + μ2
, (27)

〈−+(1) |σx|+−(1)〉 
 αkeiθ cos θ

Eg
.

The second matrix element in Eq. (27) describes transitions
between the highest and lowest energy bands (ε++ and ε−−).
The corresponding transition frequency is on order of 2(EZ +
�), which is much larger than the gap Eg, and it is therefore
irrelevant for our analysis. Here we focus on the last matrix
element in Eq. (27), which is relevant for transitions between
the two quasiparticle bands closest to the Fermi energy since
the associated transition frequency is on the order of h̄ω ∼
2|Eg|. Crucially, the matrix element behaves as 1/Eg, so it
changes sign at the topological transition. This central result
shows that the relaxation processes are dependent on whether
the quasiparticles in the lowest conduction band are aligned to
the magnetic field, as in the topological nontrivial phase (for
ε−+), or antialigned, as in the trivial phase (for ε+−). Note
also that the spin-spin correlation functions, which model the
conventional ESR experiments, would have in the present case
a dependence on the absolute value of the spectral gap ∼1/E2

g ,
and therefore cannot discriminate the topological phases.

The intraband terms in the susceptibility are neglected
since they are all real and do not contribute to the imaginary
susceptibility χ ′′

1 (ω). The transitions between highest and
lowest energy bands are also neglected since they occur for
higher frequencies than the ones comparable to the spectral
gap Eg. Therefore χ ′′

1 (ω) at low frequencies is determined
only by the energy difference between the two quasiparticle
bands closest to the Fermi energy. To lowest order in α, in a
second-order perturbation theory, the energy difference reads

ε
(2)
−+ − ε

(2)
+− 
 2Eg + (αk cos θ )2

Eg
+ (αk sin θ )2

EZ
. (28)

The last term in Eq. (28) may also be neglected since it
barely shifts the transition frequency due to the large value
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of the Zeeman energy EZ � |Eg| (and it vanishes at μ = 0 or
sin θ = 0). Then, the energy difference reads

ε
(2)
−+ − ε

(2)
+− 
 2sgn(Eg)

√
|Eg|2 + (αk cos θ )2. (29)

Using Eqs. (26) and (28) in Eq. (9) yields the susceptibility

χ ′′
1 (ω) =

∫
dkα(k cos θ )2

2Eg
δ

(
h̄ω − 2|Eg| − (αk cos θ )2

|Eg|
)

− (ω → −ω). (30)

Again, the overall dependence on the sign of Eg indicates
that the susceptibility is a reliable marker for the topological
transition. This result translates the fact that in the nontrivial
phase excited quasi-electrons relax by emitting photons at
frequencies comparable to the spectral gap since they are
aligned with the effective magnetic field, while in the trivial
region, they absorb photons since they are antialigned with
it. Integrating over the momentum in Eq. (30) and using the
definition for cos θ from Eq. (24) we obtain

χ ′′
1 (ω) = sgn(ωEg)

√|Eg|(�2 + μ2)

2α2|�|
√

h̄|ω| − 2|Eg|

×�
(
h̄2ω2 − 4E2

g

)
. (31)

The approximation of Eq. (29) yields an alternative result for
the susceptibility

χ ′′
1 (ω) 
 h̄ω

√
�2 + μ2

4α2|�|Eg

√
h̄2ω2

4
− E2

g

×�
(
h̄2ω2 − 4E2

g

)
, (32)

which reduces to the previous one at small α and h̄ω ∼ 2|Eg|.
The susceptibility is odd in frequency, and changes sign with
the spectral gap Eg. A quick check shows that Eq. (32)
recovers the μ = 0 case from Eq. (16), near the transition,
with a frequency h̄ω ∼ 2|Eg|. Both analytical and numerical
calculations show again that in the 1D model the susceptibility
has a square-root dependence on frequency χ ′′

1 (ω) ∼ √|ω|
near the topological transition [see Fig. 3(a)].

Although the complete perturbation theory of the 2D case
is not performed here, a simple scaling analysis shows that
χ ′′

2 (ω) has, in general, a linear dependence on frequency,
similar to the μ = 0 case displayed in Fig. 3(b). This behavior
is understood by noticing that the matrix elements of the
spin σz and spin-orbit term are linear in k. Moreover, the
susceptibility has poles at momenta k0 ∼ √|ω|, and therefore
from Eq. (9) it follows that χ ′′

d ∼ kd−1
0 k2

0/k0 = kd
0 , where the

dimensional effects (d = 1 or 2) enter only from the integral
measure. Then indeed, in the 2D model, χ ′′

2 ∼ k2
0 ∼ |ω|, as in

the μ = 0 case.
Finally, the perturbation theory also yields the spin po-

larization in the two low-energy bands near the topological
transition

〈−+(1) |σx|−+(1)〉 
 1 − (αk cos θ )2

4E2
g

− (αk sin θ )2

4E2
Z

, (33)

which generalizes at finite μ the results in Ref. [44]. Due to
particle-hole symmetry, the eigenstate with opposite energy
and momentum have also opposite polarization, and, since the

polarization is even in k,

〈+−(1) |σx|+−(1)〉 = −〈−+(1) |σx|−+(1)〉. (34)

The energy of the state | −+(1)〉 is below the Fermi energy
in trivial region Eg < 0 and above in the nontrivial region
Eg > 0. Therefore there is an inversion in band polarization
at the transition, as seen in Fig. 2.

The energy scale where the spin polarization first vanishes
in the band sets a natural scale for the frequencies that one
may use to probe the system. At larger momenta, the spin-
orbit starts to dominate and reverts the polarization, such that
at higher frequencies, the susceptibility may show no sign
change. In the approximation that EZ � Eg, we use Eqs. (29)
and (33) to estimate that a reasonable frequency window to
probe the system is h̄|ω| � 6|Eg|.

A few remarks are in order. As the spectral gap in the
system increases, nonlinear effects distort the band structure
and the band minimum is no longer guaranteed at k = 0. The
bending of the electronic bands lowers the energy of higher
momentum states (of opposite spin polarization compared to
the same-band k ∼ 0 states), thus diminishing or reversing
again the spin polarization of the band in a frequency window
characteristic for 2E−(k = 0). Therefore the detection method
proposed here is expected generally to work whenever the
minimum of the band is at the � point, with frequencies
tuned near the resonance condition, or, in particular, if the
system is close to transition (EZ,� � |Eg|), with frequencies
h̄|ω| � 6|Eg|.

VI. GENERAL RESPONSE FUNCTION

In this section we present an analysis of the dynami-
cal susceptibility valid for arbitrary driving frequency and
choice of material parameters. The particular limits, dis-
cussed before, are recovered from the more general expression
presented here.

The response functions follows from Eq. (10). The full
Matsubara Green’s function is a 4 × 4 matrix that can be
inverted analytically to give

G(k, iν) = (iν + H )2(iν − H )

[(iν)2 − E2+(k)][(iν)2 − E2−(k)]
, (35)

with the energies E±(k) from Eq. (4). The susceptibility
follows from Eq. (10) after performing the trace over spin
and particle-hole degrees of freedom and integrating over
the Matsubara frequency. The general result is quite lengthy,
and it is relegated to Appendix B. Nevertheless, it is further
simplified near the transition by keeping in mind that the
energy E+(k) is always much larger than the spectral gap [set
by E−(k)], namely E+(k) � E−(k). Considering dynamics on
the scale of twice the gap Eg, allows us to neglect terms from
high-frequency transitions, corresponding to h̄|ω| > 2E+ and
h̄|ω| > E+ + E−.

In the 2D model there is an additional angular integral
which, due to the rotation symmetry of the Hamiltonian, is
trivial and yields 2π . Therefore in both the 1D and 2D models,
the response function reduces to a simple form involving a
single integral over momenta. After analytical continuation
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FIG. 5. Susceptibility χ ′′
d , in units of �/α2, in the (a) 1D model

and, in units �2/α3, in the (b) 2D model as a function of chemical
potential μ and Zeeman energy EZ. The response changes sign
at the topological phase transition (green dashed line) Eg = 0 or
E 2

Z = �2 + μ2. The frequency is tuned at the resonance condition
h̄ω = 2|Eg|.

iω → ω + iδ/h̄, it reads

χ1(ω) =
∫

dk

2π
F (k), χ2(ω) =

∫ ∞

0

dkk

2π
F (k), (36)

F (k) =
αEZ�2k2

[
E2

Z −
√

α2k2ξ 2 + E2
Z(�2 + ξ 2)

]
E2−(k)[α2k2ξ 2 + E2

Z(�2 + ξ 2)]

×
[

1

2E−(k) − h̄ω − iδ
+ 1

2E−(k) + h̄ω + iδ

]
.

The remaining integral over momentum is performed numeri-
cally, usually with δ = 0.004�.

The susceptibility recovers Eqs. (15) and (17), which were
obtained in the approximation ξ → 0. Therefore it recovers
near the topological transition the square-root scaling with
frequency for χ ′′

1 (ω) and, the linear one, for χ ′′
2 (ω). A density

plot for the susceptibility is shown in Fig. 5 in the (μ, EZ)
parameter space, with the frequencies tuned at the resonance
condition. As expected the dynamical susceptibility maps
exactly the position of the topological phase transition Eg = 0
and changes sign across it. This confirms that the topological
nontrivial phases could be identified by measuring χ ′′

d (ω).

VII. FINITE DISORDERED SYSTEMS

The present section studies the behavior of the Rashba
susceptibility in finite-size tight-binding systems obtained in
a lattice discretization of the continuum Hamiltonians for the
1D model Eq. (2) and the 2D model Eq. (3). The goal is
to determine the robustness of our results when translation
invariance is broken by disorder potentials.

The Rashba susceptibility in the finite system is defined
from a Fourier transform of Eq. (9):

χ jR = 1

N

∑
mn

( fm − fn)
〈m|σ j |n〉〈n|Hso/α|m〉
h̄ω + Em − En + iδ

, (37)

where m and n run over the eigenstates of the BdG Hamil-
tonian, and N is the total number of sites in the system. The
Fermi Dirac functions are fn = (eβEn + 1)−1. It is implied that
the Pauli matrix σ j acts as identity in the site space.
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FIG. 6. Spin polarization in the lowest-energy bands of the 1D
model (2) for the modified system parameters used in the finite
system simulations, t = 1 meV, α = 0.1 nm · meV, � = 0.25 meV,
and μ = 0. The spectral gap is (a) Eg = −0.04�, in the trivial phase,
and (b) Eg = 0.04�, in the nontrivial phase.

We consider Anderson disorder, such that the onsite chem-
ical potential becomes a function of lattice sites μ → μi =
μ + �μi at an arbitrary site i. The potentials �μi are nor-
mally distributed random numbers with zero mean. The
strength of disorder is parametrized in simulations by the stan-
dard deviation σ of the normal distribution. We explore two
strong disorder strengths. First for σ = 0.04�, the standard
deviation is comparable to the spectral gaps Eg which are
typically considered in our setup. Second, the disorder is a
factor of magnitude larger, σ = 0.4�, such that fluctuations
in μ are comparable to the superconducting gap �. For
comparison, we also plot the susceptibility in the clean infinite
system, labeled by σ = 0.

As in the previous sections, we denote and measure the
nonvanishing Rasbha susceptibility χ1 ≡ χxR in one dimen-
sion and χ2 ≡ χzR, in two dimensions, for each disorder
realization. The results presented in the following are for the
disorder-averaged susceptibility

〈χ1,2(ω)〉 =
M∑

j=1

χ
( j)
1,2(ω), (38)

where χ ( j) stands for the susceptibility obtained for a specific
disorder realization j. In simulations we usually average over
M = 100 disorder realizations at each different frequency.

We perform exact diagonalization to obtain eigenenergies
and eigenvectors in an energy window containing the spectral
gap Eg. Exact diagonalization imposes a certain limitation in
exploring large systems. The mean level spacing varies as
t/N , and when it become comparable to Eg, the simulations
are no longer accurately describing the system at hand. Since
increasing system size N to the desired value is not always
possible in simulations, the bandwidth is artificially reduced
to t = 1 meV and the Rashba spin-orbit coupling strength, to
α = 0.1 meV · nm. This choice does not modify qualitatively
the physics of the problem near the topological transition, and,
in particular, the gap at k = 0 remains the same. An example
of spin-polarization reversal at the topological transition is
shown in Fig. 6.
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FIG. 7. Imaginary part of the disorder-averaged Rashba suscep-
tibility in the discretized 1D nanowire Eq. (2) on 1200 sites, and for
100 disorder realizations at each frequency. The lines corresponding
to σ = 0 are obtained in the infinite clean system. (a) Rashba sus-
ceptibility as a function of frequency in the topologically nontrivial
phase Eg = 0.04� (red lines) and trivial phase Eg = −0.04� (blue
lines). The dashed vertical line at 2|Eg| marks the excitation threshold
in the clean system. (b) Rashba susceptibility near the transition, as
a function of the gap Eg at fixed frequency h̄ω = 0.08�.

A. 1D model

In 1D we consider tight-binding systems with sizes N ∼
1000 sites and compute the disorder-averaged Rashba suscep-
tibility either as a function of frequency, for a fixed absolute
value of the gap Eg in Fig. 7(a) (in both trivial and nontrivial
phases), or at fixed frequency, but varying the spectral gap
over the topological transition in Fig. 7(b). [In the latter case,
for each disorder realization, we obtain a susceptibility curve
as a function of Eg (or Zeeman energy)]. We see that the
results are quite robust even when the fluctuations in the
chemical potential have a standard deviation comparable to
the gap Eg, and the results results for σ = 0.04� follow
closely the results in the infinite clean system. In Fig. 7(a) the
susceptibility has different signs in the trivial and nontrivial
phase and near the excitation threshold of 2|Eg| has the
predicted squared-root behavior as a function of frequency.
A noticeable difference with previous results in Fig. 3 is the
signal changing sign at h̄ω 
 0.2� in the nontrivial phase.
This phenomenon is due to the spin polarization change
in the nontrivial phase present already for an infinite clean
system, occurring for the modified system parameters used
in simulations at h̄ω 
 0.1� [see Fig. 6(b)]. When disorder
is comparable to the superconducting gap, more states enter
in the energy window defined by the clean system gap Eg,
which leads to noticeable differences from the clean system.
In particular, Fig. 7(b) shows a Rashba susceptibility curve
for disorder strength σ = 0.4� that is slightly shifted and
not changing its sign exactly at the topological transition.
Therefore, in the 1D case, we conclude that the theoretical
predictions from the clean model can be trusted when poten-
tial disorder strength is comparable to the spectral gap Eg.

B. 2D model

In 2D we consider a tight-binding Hamiltonian obtained
from a discretization of Eq. (3) on a square lattice of size
120 × 120 sites and record the mean Rashba susceptibility,
averaged over 100 disorder realizations at each frequency.
When the clean system enters a topologically nontrivial phase,
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FIG. 8. Imaginary part of the disordered-averaged Rashba sus-
ceptibility for a tight-binding model which discretizes Eq. (3) on a
120 × 120 site periodic patch for two disorder strengths, with 100
disorder realizations at each frequency, and in an infinite system
(σ = 0). (a) Susceptibility as a function of frequency in the topo-
logically nontrivial phase (Eg = 0.04�, red curves) and trivial phase
(Eg = −0.04�, blue curves). The vertical line marks the excitation
threshold 2|Eg|. (b) Susceptibility as a function of the spectral gap at
fixed driving frequency h̄ω = 0.04�.

Majorana edge states form at the perimeter of the patch and
populate the low-energy space. To gain better resolution for
the bulk response of the system, we eliminate the edges
by imposing periodic boundary conditions to the disordered
system. The tight-binding modeling of the finite 2D system is
done using the KWANT package [72]. For the rest, we perform
the same numerical experiments as in the 1D case.

Numerical results in the 2D model are displayed in Fig. 8,
and show that the predictions from the clean system are even
more robust to disorder compared to the 1D case. When
disorder strength is either comparable to the spectral gaps,
or with the superconducting gap �, the susceptibility curve
follows the clean system results and shows the expected
linear scaling with frequency near the excitation threshold
[see Fig. 8(a)]. Large oscillations in the curves developing at
higher frequency are due to finite-size effects which we could
not eliminate completely for the chosen system sizes even by
increasing the broadening to δ = 0.012�. The larger δ is also
responsible for an overall slight shift in susceptibility curves
as a function of the spectral gap in Fig. 8(b) and a nonzero
susceptibility below 2|Eg| in Fig. 8(a).

Therefore the expected change in the system response
recorded in the Rashba susceptibility remains quite robust
to Anderson disorder both in one and two dimensions for
disorder strength comparable to the spectral gap Eg.

VIII. CONCLUSION

In this paper, we studied theoretically two model systems
of semiconductor-superconductor heterostructures which sup-
port Majorana bound states. We proposed an all-electric spec-
troscopic method to discriminate the topological phases in
such materials by exploiting the bulk spin inversion at the
topological transition. Our proposal uses time-varying electric
fields, which dynamically modulate the Rashba spin-orbit
coupling strength of the semiconductor, and cause resonant
transitions between the electronic bands. Relaxation processes
are then measured by optical spectroscopy at microwave
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frequencies using, for example, techniques developed in elec-
tron spin resonance spectroscopy. The above protocol is mod-
eled within linear response theory by a modified susceptibil-
ity. We showed that its imaginary part χ ′′(ω) can be used
to discriminate the topological phases since spin relaxation
processes depend on the sign of the spectral gap close to the
transition. The response is robust to potential disorder in the
system and could be distinguished from the trivial response
due to the electric field coupling to the electronic density. Such
measurements may therefore be used to detect the topological
nontrivial phases without the need to access information about
the localized Majorana modes hosted in them.
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APPENDIX A: RESPONSE DUE TO TIME-VARYING
CHEMICAL POTENTIAL

The alternating electric field applied to the system couples
to the electronic density in the system, leading to fluctuations
in the chemical potential. This section studies how the chem-
ical potential variation affects the spin polarization.

The change in polarization due to changes in the chemical
potential is given in linear response theory by

〈δσ j (t )〉 =
∫ t

−∞
dt ′χ jμ(t − t ′)δμ(t ′), (A1)

with susceptibility

χ jμ(t − t ′) = −iθ (t − t ′)〈[σ j (t ),−τz(t ′)]〉. (A2)

Assuming time-translation and spatial-translation invariance,
we compute the susceptibility χ jμ using Matsubara Green’s
functions G of the system in absence of the perturbation, in
the zero-temperature limit

χ jμ(iω) = −
∫

dνdd k
(2π )d+1

Tr[σ jG(k, iν)τzG(k, iω + iν)].

(A3)
We determine in the 1D model χ1μ ≡ χxμ and in the 2D
one, χ2μ ≡ χzμ, after performing the integration over Mat-
subara frequencies ν and analytical continuation iω → ω +
iδ/h̄. In the low-frequency approximation, where only transi-
tions between the lowest quasiparticle bands are allowed, the

FIG. 9. Imaginary susceptibility χ ′′
1μ in one dimension, in units

1/α, and χ ′′
2μ in two dimensions, in units �/α2. (a, c) Susceptibility

χ ′′
1μ, respectively χ ′′

2μ, at the resonance condition h̄ω = 2|Eg|, when
the chemical potential μ varies and EZ = 1.04�. At finite |μ|, a
dip in the response marks the topological transition. (b) A zoom
for the 1D case at a topological transition for a fixed μ = 0.4�.
The system crosses the topological transition when varying the gap
Eg, by changing the Zeeman field strength. (d) Susceptibility χ ′′

2

as a function of frequency behaves similarly in the topologically
nontrivial phase (blue line, NT, at Eg = 0.04�) and in the trivial
phase (red line, T, at Eg = −0.04�) at μ = 0. Similar results are
presented in the inset for χ ′′

1 . In contrast to the Rashba susceptibility
there is no sign change in response at the topological transition.

susceptibility reads

χ1μ(ω) =
∫ ∞

−∞

dk

2π
Fμ, χ2μ(ω) =

∫ ∞

0

dk

2π
Fμ,

Fμ(k, ω) = − EZα2k2�2ξ

E2−(k)
[
α2k2ξ 2 + E2

Z(�2 + ξ 2)
]

×
[

1

2E−(k) − h̄ω − iδ
+ 1

2E−(k) + h̄ω + iδ

]
.

(A4)

The imaginary part of the susceptibility, is further obtained by
numerical integration over momenta k = kx in one dimension
and k = (k2

x + k2
y )1/2 in two dimensions. Several properties

can be immediately identified.
Near the topological transition at k = 0 the contribution to

the imaginary susceptibility of terms O(k2) in the dispersion ξ

is small. This leads to χ jμ ∝ μ. This shows that it is expected
to have an imaginary response which changes sign at μ = 0
and it is linear in μ. This is qualitatively correct, as shown in
numerical results in Figs. 9(a) and 9(c). When the frequency
is tuned at the resonance condition, and the system is at the
topological transition, χ jμ falls to zero due to the momentum
dependence in Fμ Figs. 9(a) to 9(c). The response χ ′′

jμ close
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to the transition is even in the spectral gap Eg [see Fig. 9(b)],
in contrast to the Rashba susceptibility, which is odd in Eg.
Therefore in an experiment for different values of Eg, it would
be possible to discriminate between the linear response due to
chemical potential modulation from the Rashba susceptibility
by taking linear combinations of the signal, for opposite
values of the gap Eg.

The trivial behavior of the response due to modulation
of the chemical potential is seen also as a function of fre-
quency in Fig. 9(d), where the response in either of the
topological phases is almost identical, for the same magni-
tude of the gap |Eg|. Moreover, the threshold for excitations
2|Eg| is not changed compared to the Rasbha susceptibility.
This also indicates that the time-varying chemical potential

does not modify the spectral gap in the system at the linear
response level.

APPENDIX B: HIGH-FREQUENCY RESPONSE FUNCTION

Equation (36) contains the general low-frequency Rashba
response function for both 1D and 2D models, for arbitrary
choice of material parameters. Here we present the suscepti-
bility containing the information about transitions between all
quasiparticle bands, at arbitrary frequency. After tracing out
the particle-hole and spin degrees of freedom and performing
the integral over the Matsubara frequencies in Eq. (10), it
reads

χ1(iω) =
∫

dk

2π

N (k)

D(k)
, χ2(iω) =

∫ ∞

0

dkk

2π

N (k)

D(k)
,

N (k) = 8αEZk2
{
E3

−E+(4E2
+ + h̄2ω2) + E2

−
{
4
[
E4

Z + α4k4 − 2�2α2k2 − 3�4 − 2(α2k2 + �2)ξ 2 + ξ 4

+ 2E2
+
(
E2

Z + α2k2 − �2 − 3ξ 2
) + 2E2

Z(α2k2 + �2 − ξ 2)
] − [

E2
+ + 4

(
�2 + ξ 2 − α2k2 − E2

Z

)]
h̄2ω2

}
+ E−E+

{
12

[
E4

Z + α4k4 − 3�4 − 2�2ξ 2 + ξ 4 + 2E2
Z(α2k2 + �2 − ξ 2) − 2α2k2(�2 + ξ 2)

]
+ [

E2
+ + 6

(
E2

Z + α2k2 − �2 + ξ 2
)]

h̄2ω2 + h̄4ω4
}

+ (4E2
+ + h̄2ω2)

{
E4

Z + α4k4 + E2
Z(2α2k2 + 2�2 − 2ξ 2 + h̄2ω2) − (�2 + ξ 2)(3�2 − ξ 2 + h̄2ω2)

+α2k2[h̄2ω2 − 2(�2 + ξ 2)]
}}

D(k) = E−E+(E− + E+)(4E2
− + h̄2ω2)(4E2

+ + h̄2ω2)[(E− + E+)2 + h̄2ω2], (B1)

with k changing accordingly in the 1D and 2D system.

After analytical continuation of ω, we checked that
the above expression gives the same results as those of
Eq. (9), where the Brillouin zone is discretized, Hamiltonian

eigenstates are obtained at each momentum, and all integrals
are carried out numerically.
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