
PHYSICAL REVIEW B 102, 075432 (2020)

Thermoelectric transport properties of ferromagnetic graphene with
CT -invariant quantum spin Hall effect

Miaomiao Wei,1,2 Min Zhou ,1,2 Bin Wang,3,* and Yanxia Xing 1,2,†

1Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement,
Ministry of Education, Beijing Institute of Technology, Beijing 100081, China

2Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
3Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering,

Shenzhen University, Shenzhen 518060, China

(Received 7 February 2020; revised 19 June 2020; accepted 27 July 2020; published 17 August 2020)

We investigate thermoelectric transport properties of ferromagnetic graphene with CT-invariant quantum
spin Hall (CT-QSH) effect. Considering a strong magnetic field, we calculate the charge Seebeck coefficient
Sc, spin Seebeck coefficient Ss, charge Nernst coefficient Nc, and spin Nernst coefficient Ns based on the
nonequilibrium Green’s function and Landauer-Büttiker formula. Due to the coexistence of the CT-QSH and
quantum Hall (QH) effects in ferromagnetic graphene, thermoelectric coefficients are divided into the QSH
and QH types appearing at the zeroth and nonzero Landau levels, respectively. We find both the charge
thermoelectric coefficients are determined by the filling factor νσ . The nth peak heights of the QH-type Nc

and Sc satisfy |Sc,n| = Nc,n = ln 2/(|n| + 1
2 ), exhibiting the half-integer QH effect. However, the mth peak height

of the QSH-type Nc satisfies Nc,m = ln 2/|m|, similar to the integer QH effect. The peak height of Ns remains
Ns = sgn(s)2 ln 2, and its sign depends on the spin of Landau level, either the QH or QSH type. In addition,
the peak height of the QH-type Ss remains 2 ln 2. In the clean system, the QSH-type Sc and Ss are zero, while
the QSH-type Nc and Ns appear at the zeroth Landau levels, which is different from the zero Nc and Ns in the
conventional QSH system. In the presence of disorders, the QH-type thermoelectric coefficients are more robust
than the QSH. For the QH-type thermoelectric coefficients, Sc and Ss are more robust than Nc and Ns. Notably,
the QSH-type Sc and Ss are no longer zero in dirty systems.
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I. INTRODUCTION

Thermoelectric transport, originating from the balance be-
tween the electric and thermal forces acting on the charge
carriers, describes the thermoelectric power induced by the
temperature gradient, as manifested in the Seebeck and Nernst
effects. With the combination of spin, the spin Seebeck
and spin Nernst effects have attracted considerable atten-
tion, which creates an emerging research field, namely, spin
caloritronics [1]. Generally, the Seebeck- and Nernst-type
coefficients are measured in two- and four-terminal devices,
respectively. During the past few decades, the development
of low-temperature measurement technology and microfab-
rication technology have made it possible to precisely mea-
sure thermoelectric transport signals in various systems, such
as bismuth [2], quantum dot [3,4], superconductors [5,6],
carbon-based structures [7], molecular junctions [8], and so
on. The spin Seebeck [9–11] and spin Nernst effects [12,13]
can also be precisely measured due to the development of
spin-detection techniques. Furthermore, spin thermoelectric
transport is also theoretically investigated in various systems,
such as ferromagnetic heterojunctions [14], quantum dot
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[15], two-dimensional electron gas [16], molecular junction
[17,18], and antiferromagnets [19,20].

Thermoelectric coefficients are more sensitive to the details
of the density of states than the conductance [21,22], which is
very crucial for the design of electronic devices. Thermoelec-
tric transport in the quantum Hall (QH) and quantum spin Hall
(QSH) systems provides a way to reduce the generation of
heat and improve the efficiency of thermoelectric conversion
[23–25], which have attracted great theoretical [26–28] and
experimental [29–31] interest. Graphene possesses a unitary
band structure, and the conductivity depends linearly on the
charge carriers in experiment [32]. Particularly, magnetic
graphene has a considerably large figure of merit for spin
thermoelectric power, making it a potential material for spin
caloritronics [33]. Through injecting a spin-polarized current
[34,35] or using an insulating ferromagnetic substrate [36],
ferromagnetic graphene is realized. Then if a strong perpen-
dicular magnetic field is further applied, the CT-QSH effect
will appear [37]. Unlike the conventional QSH effect derived
from the spin-orbit interaction (SOI) and protected by the
time-reversal (T) invariance [38], the CT-QSH effect appears
in the absence of SOI and is protected by the CT invariance,
where C is the charge conjugation operation. In addition, the
CT-QSH and QH effects coexist in ferromagnetic graphene
under a strong magnetic field. It is imperative to quantita-
tively explore the thermoelectric transport properties in such
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FIG. 1. Energy bands of ferromagnetic graphene nanoribbon
with exchange field (a) M = 0.04t and (b) 0.08t . The other param-
eters are magnetic field φ = 0.005, ribbon width N = 40. The cyan,
yellow, and white denote the CT-QSH, QSH + QH, and QH regions,
respectively. The right panels show the edge states of each region.

a unique system, which will help to improve the conversion
efficiency between the thermal and electrical energies.

In this paper we study the thermoelectric effect of ferro-
magnetic graphene under a strong magnetic field in which
the CT-QSH and half-integer QH effects coexist. Here the
CT-QSH effect is distinguished from the conventional QSH
effect originated from SOI. The former corresponds to a multi-
band-gap structure, while the latter is the result of a nontrivial
single band gap. This discrepancy in the details of band
structure is reflected in the thermoelectric transport processes.
Therefore we focus on the charge Seebeck coefficient Sc, spin
Seebeck coefficient Ss, charge Nernst coefficient Nc, and spin
Nernst coefficient Ns. Novel thermoelectric transport proper-
ties appear at Landau levels, and thermoelectric coefficients
are divided into the QSH and QH types when Fermi energy
crosses the zeroth and nonzero Landau levels, respectively.
The QSH-type Sc and Ss are zero in the clean system because
the two-terminal device cannot feel the change of chirality of
the edge state. However, the QSH-type Nc and Ns appear at the
zeroth Landau level, i.e., the boundary between the CT-QSH
(QSH + QH) and QH regions in Figs. 1(a) and 1(b). This is
different from the conventional QSH system, in which the
information about the bulk density of states is missing in the
nontrivial band gap, not only Sc and Ss, but also Nc and Ns are
all zero. In return, we can use thermoelectric transport signals
to distinguish the CT-QSH effect and half-integer QH effect.
The peak height of the QSH-type Nc varies with exchange
field M and satisfies Nc,m = ln 2/|m|, with m = 1, 2, ..., sim-
ilar to the integer QH effect. The nth peak heights of the
QH-type Sc and Nc satisfy Sc,n = −sgn(c) ln 2/(|n| + 1

2 ) and
Nc,n = ln 2/(|n| + 1

2 ) with n = 1, 2, ..., corresponding to the
half-integer QH effect, where sgn(c) represents the sign of

FIG. 2. The two-terminal device and the corresponding (a) Sc

and (b) Ss vs Fermi energy EF . The four-terminal device and
the corresponding (c) Nc and (d) Ns vs Fermi energy EF . The
other parameters are exchange field M = 0.04t , magnetic field φ =
0.005, scattering width N = 40, and length L = 40. Along the
black arrow, each line represents a different temperature kBT =
0.001t, 0.002t, 0.003t, 0.005t .

charge. However, the peak height of the QH-type |Ss| remains
2 ln 2. Different from the peak height of Nc that depends on
the filling factor νσ , the peak height of |Ns| is always 2 ln 2,
either the QH or QSH type, and Ns and Ss can be positive or
negative depending on the spin σ of filling factor νσ . Finally,
in the presence of disorders, the helical edge states are broken.
Instead of the zero values in the clean system, the QSH-type
Sc and Ss begin to appear.

The rest of the paper is organized as follows. In Sec. II
we introduce the effective tight-binding Hamiltonian of fer-
romagnetic graphene under a strong perpendicular magnetic
field and the formulas for calculating the thermoelectric co-
efficients. In Sec. III, we present the numerical results and
relevant discussions. Finally, a conclusion is given in Sec. IV.

II. HAMILTONIAN AND FORMALISM

We first construct the tight-binding Hamiltonian of ferro-
magnetic graphene in the presence of exchange field M and
external magnetic field B [37]:

H =
∑
i,σ

(εi − σzM )c†
iσ ciσ −

∑
〈i, j〉,σ

teiφi j c†
iσ c jσ , (1)

where c†
iσ and ciσ are the creation and annihilation operators at

the discrete site i. εi = E0 + wi stands for the on-site energy,
where E0 is the Dirac-point energy, and we set E0 = 0 in
the following calculations. wi is the on-site disorder energy,
which exists only in the central scattering region denoted by
the black rectangles in the top sketches of Fig. 2. The disorder
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wi distributes uniformly in the range of [−W/2,W/2], in
which W is the disorder strength. t is the nearest-neighbor
hopping energy. A phase factor φi j = ∫ j

i
�A · d�l/φ0 is consid-

ered in the hopping item when a perpendicular magnetic field
is applied on ferromagnetic graphene. Here �A = (−By, 0, 0) is
the magnetic vector potential, and φ0 = h̄/e is the magnetic-
flux quantum.

Without SOI, the spin is conserved, i.e., [ŝz, Ĥ ] = 0, and
then all the physical quantities related to spin up (down) can
be calculated in spin-up (down) subspace. The current in lead
α with spin σ is calculated by using the Landauer-Büttiker
formula

Jασ = 1

h

∑
β

∫
Tαβ,σ ( fα − fβ )dE , (2)

where Tαβ,σ = Tr[�ασ Gr
σ�βσ Ga

σ ] [39–41] is the transmis-
sion coefficient of spin σ from lead β to α. The linewidth
function �ασ = i[�r

ασ − �a
ασ ]. The Green function Gr

σ =
Ga,†

σ = [EI − HC,σ − ∑
α �r

ασ ]−1, where �r
ασ is the retarded

self-energy of lead α [42,43], HC,σ is the Hamiltonian of
central scattering region, and I is the unitary matrix. Then
the charge current Jαe = e(Jα↑ + Jα↓) and spin current Jαs =
h̄
2 (Jα↑ − Jα↓) in lead α are expressed as

Jαe = e

h

∑
β

∫
(Tαβ,↑ + Tαβ,↓)( fα − fβ )dE ,

Jαs = 1

4π

∑
β

∫
(Tαβ,↑ − Tαβ,↓)( fα − fβ )dE , (3)

where

fα (E , μα, Tα ) = 1

e(E−μα )/kBTα + 1

is the Fermi distribution function of lead α with temperature
Tα and spin-independent chemical potential μα = EF + eVα .
Here e is the electron charge and Vα is the external bias. In the
following, we consider the low-temperature limit T → 0 and
make a linear expansion of Fermi distribution function around
the Fermi energy EF and temperature T ,

fα = f0 + eVα

∂ fα
∂μα

∣∣∣∣
Vα=0,Tα=T

+ 
Tα

∂ fα
∂Tα

∣∣∣∣
Vα=0,Tα=T

= f0 + f0( f0 − 1)

[
eVα

kBT
+ (E − EF )


T
kBT 2

]
, (4)

where f0 = 1
e(E−EF )/kBT +1 is the Fermi distribution at zero bias

and zero thermal gradient.
As illustrated in the top sketches of Fig. 2, we use the two-

and four-terminal devices to measure Sc and Ss, Nc and Ns,
respectively. The Seebeck-type coefficients Sc and Ss depict
the bias and spin currents corresponding to the thermal gra-
dient in the two-terminal device, respectively. A temperature
gradient is added between leads 1 and 2 by setting T1 =
T + 
T /2 and T2 = T − 
T /2. The current induced by the
temperature gradient can be offset by the bias 
V . Then the
charge Seebeck coefficient is defined as Sc = 
V/
T , with

bias 
V = V1 − V2. Therefore we can get

Sc = − 1

eT

∫
dE (E − EF )T12 f0( f0 − 1)∫

dET12 f0( f0 − 1)
. (5)

In ferromagnetic graphene, Ss can be a spin indicator of
spin-polarized Landau levels. Considering spin bias cannot be
detected in experiment, we use a closed boundary condition
V1 = V2 = 0 and then the spin Seebeck coefficient is defined
as Ss = Js/
T , where Js = J1s = −J2s, owing to the current
conservation. Then we have

Ss = − 1

4π

(∫
T s

12

[
(E − EF )

kBT 2
f0( f0 − 1)

]
dE

)
. (6)

In Eqs. (5) and (6), we defined Tαβ = Tαβ,↑ + Tαβ,↓ and
T s

αβ = Tαβ,↑ − Tαβ,↓, which are also used in the following
expressions of the charge and spin Nernst coefficients.

The Nernst-type coefficients Nc and Ns depict the trans-
verse thermoelectric power and transverse spin current in-
duced by a longitudinal thermal gradient, respectively. In
the four-terminal device, we set T1 = T + 
T /2, T3 =
T −
T /2, T2 = T4 = T , and V1 = V3 = 0. As a result, a
temperature gradient is added between the longitudinal leads
1 and 3. By using the open boundary condition J2e = J4e =
0 and spatial inversion symmetry T21 = T43, T23 = T41, and
T24 = T42, we can obtain the transverse voltage 
Vt = V2 −
V4. Therefore the charge Nernst coefficient Nc = −
Vt/
T
is expressed as

Nc = 1

eT

∫
dE (E − EF )(T23 − T21) f0( f0 − 1)∫
dE (T21 + T23 + 2T24) f0( f0 − 1)

. (7)

By using the closed boundary condition V2 = V4 = 0, we can
obtain J2s and J4s. In addition, J2s = −J4s due to the spatial
inversion symmetry T s

21 = T s
43 and T s

23 = T s
41. Then the spin

Nernst coefficient Ns = J2s/
T is expressed as

Ns = − 1

4π

∫ (
T s

23 − T s
21

)[ (E − EF )

kBT 2
f0( f0 − 1)

]
dE . (8)

In the above definitions of thermoelectric coefficients, we
used different boundary conditions according to experimental
measuring practice. For example, in the charge thermoelectric
transport processes, we use the open boundary condition
Jα = 0. The measurement of voltage is more convenient in
experiment. Therefore, Sc and Nc are defined as Sc = 
V/
T
and Nc = −
Vt/
T , respectively. However, in the spin ther-
moelectric transport processes, the definition of spin bias is
ambiguous, while the spin current is clearly defined, which
can be detected in experiment. As a result, instead of Vαs, with
the closed boundary condition Vα = 0, the spin current Jαs is
used to define spin thermoelectric coefficients as Ss = Js/
T
and Ns = J2s/
T , respectively. In fact, if spin bias Vαs can be
defined through Jαs = 0, Ns would share a similar magnitude
with Nc.

III. NUMERICAL RESULTS AND DISCUSSION

To understand the thermoelectric transport properties of a
ferromagnetic graphene nanoribbon under a strong magnetic
field, we first analyze the energy bands with exchange fields
M = 0.04t and 0.08t in Figs. 1(a) and 1(b), respectively. Due
to the formation of Landau levels in the presence of a strong
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magnetic field, the zigzag and armchair ribbons have the same
nontrivial edge states. Here we only show the results of the
zigzag ribbon. For graphene ribbon under a strong magnetic
field, two sets of Landau levels are formed, and the filling
factor νσ = ±1,±3,±5, . . . , where σ =↑ and ↓ represent
spin up and spin down, respectively. νσ > 0 and νσ < 0
denote the electron and hole filling, respectively. Therefore
the chiralities of the edge states are opposite for νσ > 0 and
νσ < 0, i.e., the Chern number −Ce(EF ) = Ch(−EF ). At the
Dirac point, the chirality of the edge state changes from
clockwise to anticlockwise, and vice versa, i.e., Ce/h = ±1 →
Ce/h = ∓1. When the exchange field M is considered, the N th
Landau level with spin σ is EN,σ = sgn(N )

√
2|N |h̄vF l−1

B +
σM, where the Fermi velocity vF = 3at/2h̄, magnetic length
lB = √

h̄/eB. The spin-up and spin-down Dirac points shift
to ±M, respectively. Then the spin-up (the red solid lines)
and spin-down (the black dashed lines) bands are separated
from each other in the absence of SOI. This means the CT-
QSH effect (Ce,↓ = −Ch,↑) can be realized in ferromagnetic
graphene [the cyan regions in Figs. 1(a) and 1(b)]. Different
from the conventional QSH effect protected by the time-
reversal symmetry with C↓ = −C↑, the CT-QSH effect in
ferromagnetic graphene is protected by the CT invariance,
where C is the charge conjugation operation and T means
the time-reversal symmetry. The corresponding edge states
are presented in the right top panel of Fig. 1, in which a pair
of edge states with opposite spin and conjugated charge, i.e.,
spin-up holes (the red hollow circle with ↑) and spin-down
electrons (the black solid circle with ↓), propagate toward
opposite directions.

With the increase of M, the zeroth Landau level EN=0,σ =
±M exceeds nonzero Landau levels EN 
=0,σ̄ . Therefore the
QSH and QH effects coexist with Ce/h,↑ 
= −Ch/e,↓, namely,
the QSH + QH region [the yellow region in Fig. 1(b)]. We
present the corresponding edge states in the right middle
panel, in which one spin-up hole (the red hollow circles
with ↑) propagates anticlockwise with Ch,↑ = −1, and three
spin-down electrons (the black solid circles with ↓) propagate
clockwise with Ce,↓ = 3. Furthermore, the QH effect appears
at the high-energy region |EF | > M [the white region in
Figs. 1(a) and 1(b)]. In this region, the charge conjugation is
fixed for spin-up and spin-down carriers, and the edge states of
electrons or holes propagate with fixed chirality, clockwise or
anticlockwise with (Ce,↑ 
= Ce,↓) > 0 or (Ch,↑ 
= Ch,↓) < 0. In
the right bottom panel of Fig. 1, we show the edge states of the
QH region in which three spin-up holes (the red hollow circles
with ↑) and one spin-down hole (the black hollow circles with
↓) propagate anticlockwise, corresponding to Ch,↑ = −3 and
Ch,↓ = −1, respectively. In summary, according to the filling
factor νσ , the energy bands are divided into two regions (CT-
QSH and QH) and three regions (CT-QSH, QSH + QH, and
QH) under exchange fields M = 0.04t and 0.08t , respectively.
Novel thermoelectric transport properties appear at Landau
levels.

Next we use the thermoelectric coefficients Sc, Ss, Nc,
and Ns to describe how Landau levels are filled up. Corre-
spondingly, thermoelectric coefficients are distinguished as
the QSH type and QH type at the zeroth and nonzero Landau
levels, respectively. The QSH- and QH-type thermoelectric
transport properties are solely determined by the helical and

FIG. 3. Same as Fig. 2, except the exchange field M = 0.08t .

chiral edge states, respectively. In Figs. 2 and 3, we plot Sc,
Ss, Nc, and Ns versus Fermi energy EF under the exchange
field M = 0.04t and 0.08t , respectively. For easy analysis,
we copy the same energy bands in Figs. 1(a) and 1(b) to
Figs. 2 and 3 as backgrounds, respectively. Correspondingly,
comparing with Fig. 2, the QSH + QH region appears in
Fig. 3. The Seebeck- and Nernst-type coefficients are mea-
sured in the two- and four-terminal devices, respectively.
We can find a series of peaks at Landau levels. Along the
black arrows, the temperatures for each curve are kBT =
0.001t, 0.002t, 0.003t, 0.005t . With the increase of kBT , the
peak half-width of Sc, Ss, Nc, and Ns become wider because
the Landau level expands at high temperature.

As shown in Figs. 2(a), 3(a), 2(b), and 3(b), we first focus
on the Seebeck-type coefficients Sc and Ss calculated in the
two-terminal device. The QSH-type Sc and Ss are zero when
EF crosses the zeroth Landau levels because the two-terminal
device cannot feel the change of chirality from Ce/h = ±1 to
Ce/h = ∓1. However, the Seebeck-type coefficients can fell
the change of filling factor at nonzero Landau levels EN 
=0,σ ,
where the filling factor ν = ν↑ + ν↓ changes by 2, but the
chirality of edge states remain unchanged, leading to the
nonzero values of the QH-type Sc and Ss. Therefore there is
only the QH-type Sc and Ss at nonzero Landau levels EN 
=0,σ

(the vertical gray lines). For ferromagnetic graphene with the
CT-QSH effect, Ce,σ (EF ) = −Ch,σ̄ (−EF ). Then the following
comparisons between Sc and Ss are clear: (i) The parity of Sc

is opposite to Ss, i.e., Sc is an odd function of EF while Ss is
an even function. This is because Sc cannot feel the opposite
chiralities of Ce,σ (EF ) and Ch,σ̄ (−EF ), but Ss can. (ii) Sc is
always negative (positive) at Landau level EN>0,σ (EN<0,σ ),
denoting the electron (hole) nature. The sign of Ss depends on
the spin σ of Landau level EN 
=0,σ , denoting the spin nature.
(iii) The peak height of Sc decreases as EF increases, while
the peak height of Ss remains unchanged due to the closed
boundary condition used in the calculations of Ss.

As shown in Figs. 2(c), 3(c), 2(d), and 3(d), we next con-
sider the Nernst-type coefficients Nc and Ns calculated in the
four-terminal device. Comparing with Sc and Ss, we can find
(i) in addition to the QH-type Nc and Ns at nonzero Landau
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levels EN 
=0,σ (the vertical gray lines), the QSH-type Nc and Ns

appear at the zeroth Landau levels EN=0,σ = ±M (the vertical
red lines), which is different from the conventional QSH sys-
tem, in which Nc and Ns are zero. (ii) Concerning the QH-type
thermoelectric coefficients, |Nc| = |Sc| and |Ns| = |Ss|. Their
signs can be obtained by the CT invariance as follows. The
signs of Sc for electrons and holes are opposite, and Sc is an
odd function of EF . However, we find Nc is electron-hole (e-h)
independent. This is because in addition to the e-h symmetry,
the four-terminal device can feel the opposite chiralities of
electrons and holes. Considering Ce = −Ch and Ee = −Eh,
Nc is an even function of EF . Similar to the Seebeck-type
coefficients, the parities of Nc and Ns versus EF are also
opposite due to the CT invariance Ce,σ (EF ) = −Ch,σ̄ (−EF ).
Besides, the parities of Ss and Ns are also opposite. As shown
in Figs. 2(c), 2(d), 3(c), and 3(d), Nc is always positive,
while Ns can be positive or negative depending on the spin
σ of Landau level EN,σ . Ns > 0 and Ns < 0 correspond to
the spin-up and spin-down Landau levels [the vertical solid
and dashed lines in Figs. 2(d) and 3(d)], revealing the spin
indicator feature of Ns.

Combining Figs. 2 and 3, the QSH + QH region appears
when the zeroth Landau level EN=0,σ = ±M exceeds nonzero
Landau levels EN 
=0,σ̄ . The special fact of the QSH + QH
region is the two types of boundaries: the QSH and QH types.
Accordingly, the QSH- and QH-type thermoelectric coeffi-
cients appear at two boundaries of the QSH + QH region,
as shown in Figs. 3(c) and 3(d). We note that although the
QSH + QH region varies with M, there are only two types
of thermoelectric coefficients (QSH and QH). Therefore we
should be more concerned about the boundaries of topological
regions in the calculations, from which we can judge which
type of edge states is responsible for the thermoelectric coeffi-
cients, rather than the topological regions. In the presence of a
strong magnetic field, the peak height of the QH-type thermo-
electric coefficient remains unchanged under exchange fields
M = 0.04t and 0.08t ; only the peak position has a change.
For the QSH-type thermoelectric coefficients, the peak height
of the QSH-type Nc varies with M; the QSH-type Ns remains
unchanged. Moreover, the peak positions of the QSH-type Nc

and Ns vary with M. In summary, from Figs. 2 and 3, we
have the QH-type Sc = −sgn(c)Nc and Ss = sgn(c)Ns, where
sgn(c) represents the sign of charge, which is +1 for the
electron and −1 for the hole. Nc is positive and depends on
the filling factor, while the sign of Ns depends on the spin of
the Landau level, and its magnitude is independent of filling
factor.

In the following, we quantitatively derive the rule of the
peak height of Sc, Ss, Nc, and Ns. We focus on the boundaries
of topological regions, from which we can judge the type
(QSH or QH) of thermoelectric coefficients. For ferromag-
netic graphene under a strong magnetic field, the transmission
coefficients are quantized due to the formation of edge states.
In the calculations, for simplicity we define


Tαβ,N,σ = Tαβ,σ (E+
N ) − Tαβ,σ (E−

N )

Tαβ,N =
∑

σ

1

2
[Tαβ,σ (E+

N ) + Tαβ,σ (E−
N )],


Tαβ,N =
∑

σ


Tαβ,N,σ

=
∑

σ

[Tαβ,σ (E+
N ) − Tαβ,σ (E−

N )],


T s
αβ,N =

∑
σ

σ
Tαβ,N,σ

=
∑

σ

σ [Tαβ,σ (E+
N ) − Tαβ,σ (E−

N )], (9)

where E±
N = EN,σ ± 0+, Tαβ,N is the mean transmission co-

efficient from lead β to α around Landau level EN,σ , and

Tαβ,N and 
T s

αβ,N are the changes of charge and spin trans-
mission coefficients, respectively. Then, using integrations∫ ±∞

0
dx

(ex+1)(e−x+1) = ± 1
2 and

∫ ±∞
0

xdx
(ex+1)(e−x+1) = ln 2, we can

get analytic expressions of thermoelectric coefficients by in-
tegrating Eqs. (5)–(8). The peak heights of the Seebeck- and
Nernst-type coefficients at Landau level EN,σ are expressed as

−Sc,N = ln 2

T12,N

T12,N

t

eT ,

Ss,N = ln 2
T s
12,N

t2

4πkBT 2
, (10)

and

Nc,N = ln 2

T23,N − 
T21,N

T23,N + T21,N

t

eT ,

Ns,N = ln 2(
T s
23,N − 
T s

21,N )
t2

4πkBT 2
. (11)

As discussed above, thermoelectric coefficients are divided
into the QSH and QH types at the zeroth and nonzero Landau
levels, respectively. First, we use EQH

n = EN 
=0,σ to define
the position of the nth peak of the QH-type thermoelectric
coefficient. Here n tells only which peak is referred to; it is
not usually equivalent to the N and not related to the σ of
Landau level EN 
=0,σ . In other words, the nth peak may come
from any nonzero Landau level EN 
=0,σ . On the other hand,
the QSH-type thermoelectric coefficients appear at the zeroth
Landau levels EN=0,σ = ±M, and the peak position varies
with M. We use EQSH

m = EN=0,σ to define the position of the
mth peak of the QSH-type thermoelectric coefficient under
different M, where m is the sequence number. In addition,
we define n > 0 and m > 0 for EF > 0, n < 0 and m < 0 for
EF < 0.

We first derive the QH-type thermoelectric coefficients that
appear at nonzero Landau levels with energy EQH

n = EN 
=0,σ .
The Seebeck-type thermoelectric coefficients are measured in
the two-terminal devices. Considering EF > 0, the QH-type
Sc and Ss appear at the nonzero Landau level EN>0,σ . From
Eq. (10), the nth peak heights of the QH-type Sc and Ss are
expressed as

−SQH
c,n = ln 2


T12,n

T12,n

t

eT ,

SQH
s,n = ln 2
T s

12,n

t2

4πkBT 2
, (12)

where T12,n is the mean transmission coefficient from lead 2
to lead 1 at EQH

n = EN>0,σ , and 
Tαβ,n and 
T s
αβ,n are the
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changes of charge and spin transmission coefficients, respec-
tively. For the two-terminal device, T12,σ = νσ = 1, 3, 5, ...

in the QH region. When EF crosses the spin-up (spin-down)
Landau level EN>0,↑(↓), the value of ν↑ (ν↓) changes by 2, and
ν↓ (ν↑) remains unchanged. Consequently, we have 
T12,n =

T12,n,↑(↓) = 2 regardless of spin. In addition, we find T12,n =
2n + 1 due to the zeroth Landau level, and 
T s

12,n = sgn(s)2
at Landau levels EN>0,σ , where sgn(s) denotes the sign of
spin, which is +1 for spin up ↑ and −1 for spin down ↓.
As a result, for EF > 0, SQH

c,n = − ln 2/(n + 1/2) and SQH
s,n =

sgn(s)2 ln 2 with n = (ν↑ + ν↓)/2 − 1. Then, according to the
CT invariance, the equations of the QH-type Sc and Ss at EF <

0 can be easily obtained. Therefore, the QH-type Seebeck
coefficients at Landau level EQH

n = EN 
=0,σ are expressed as

SQH
c,n = −sgn(c) ln 2/(|n| + 1/2)

t

eT ,

SQH
s,n = sgn(c)sgn(s)2 ln 2

t2

4πkBT 2
. (13)

The peak height of the QH-type Sc depends on filling factor,
while the magnitude of the QH-type Ss is independent of
filling factor.

The QH-type Nernst coefficients appear at nonzero Landau
levels EN 
=0,σ . Considering EF > 0, the QH-type Nc and Ns

appear at the nonzero Landau level EN>0,σ ; the edge states
contributed by electrons correspond to the quantized T23,N .
Besides, T21,↓ = 0; T21,↑ does not change at nonzero Landau
level EN>0,σ . This means, around EF = EN>0,σ , 
T21,N =
0, 
T s

21,N = 0, and only the mean transmission coefficient
T21,N 
= 0. As a result, the nth peak heights of the QH-type
Nc and Ns are expressed as

NQH
c,n = ln 2


T23,n

T23,n + T21,n

t

eT ,

NQH
s,n = ln 2
T s

23,n

t2

4πkBT 2
, (14)

where T23,n is the mean transmission coefficient from lead 3
to 2 at EQH

n = EN>0,σ , and 
T23,n and 
T s
23,n are the changes

of charge and spin transmission coefficients, respectively.
Due to the topological edge states, T (4)

21,σ + T (4)
23,σ in the four-

terminal device is the same as T (2)
12,σ in the two-terminal

device for all Landau levels; thus T23,n + T21,n = 2n + 1.
Moreover, 
T23,n = 
T23,n,↑(↓) = 2 and 
T s

23,n = sgn(s)2 at
nonzero Landau level EN>0,σ . As a result, for EF > 0,
NQH

c,n = |SQH
c,n | = ln 2/(n + 1/2) and NQH

s,n = sgn(s)2 ln 2 with
n = (ν↑ + ν↓)/2 − 1. Then, according to the CT invariance,
the equations of the QH-type Nc and Ns at EF < 0 can be
easily obtained. Therefore, the QH-type Nernst coefficients at
EQH

n = EN 
=0,σ are expressed as

NQH
c,n = ln 2/(|n| + 1/2)

t

eT ,

NQH
s,n = sgn(s)2 ln 2

t2

4πkBT 2
. (15)

The nth peak heights QH-type Nc and Sc are inverse to |n| +
1/2, denoting the half-integer QH effect. The signs of the QH-
type Ns and Ss depend on the spin σ of Landau level EN 
=0,σ ,
and their magnitudes are independent of filling factor.

We next derive the QSH-type thermoelectric coefficients
that appear at the zeroth Landau levels EN=0,σ . At the bound-
ary between the CT-QSH (QSH + QH) and QH regions for
M = 0.04t (0.08t), the filling factor changes from νσ = ±1
to νσ = ∓1 due to the helical edge states. Because the two-
terminal device cannot feel the change of chirality of the edge
state, the QSH-type Seebeck coefficients at EQSH

m = EN=0,σ

are expressed as

SQSH
c,m = 0, SQSH

s,m = 0. (16)

In the conventional QSH system, the Sc and Ss are also zero,
but the physics are different. The thermoelectric signal is
sensitive to the details of the density of states. However,
because of the single-band-gap structure in the conventional
QSH system, the information about the bulk density of states
is missing, and the transmission Tαβ and T s

αβ remain constant
for all the EF in the energy gap. As a result, not only Sc and Ss,
but also Nc and Ns are zero in the conventional QSH system.

From Eq. (11), we derive the expressions of peak heights
of the QSH-type Nc and Ns, which appear at EN=0,σ = ±M.
Considering EF > 0, the QSH-type Nc and Ns appear at the
zeroth Landau level EN=0,↑ = M. The chirality of spin-up
edge state changes from clockwise to anticlockwise (Ce,↑ = 1
to Ch,↑ = −1). The change of chirality is revealable in the
four-terminal devices through T21,↑ and T23,↑. Around EF =
M, only the spin-up transmission coefficients have a change.
As a result, the mth peak heights of the QSH-type Nc and Ns

are expressed as

NQSH
c,m = ln 2


T23,m,↑ − 
T21,m,↑
T23,m + T21,m

t

eT ,

NQSH
s,m = ln 2(
T23,m,↑ − 
T21,m,↑)

t2

4πkBT 2
. (17)

where 
T23,m,↑ and T23,m are the changes of spin up and the
mean transmission coefficients from lead 3 to 2 at EQSH

m =
EN=0,↑, respectively, and so are the 
T21,m,↑ and T21,m from
lead 1 to 2. Apparently, at around EF = M, T21,↑ = 1 changes
to T23,↑ = 1 owing to the change of chirality of the spin-
up edge state. 
T23,m,↑ − 
T21,m,↑ = 1 − (−1) = 2 is always
satisfied, and T21,m + T23,m = 2m. Subsequently, with the in-
crease of M, NQSH

c,m = ln 2/m and NQSH
s,m = 2 ln 2 at EN=0,↑,

where m = (ν↑ + ν↓)/2 is the total filling factor at EF =
E+

N=0,↑ [the vertical red solid lines in Figs. 2(c), 3(c), 2(d), and
3(d)]. Then, based on the CT invariance, the equations of the
QSH-type Nc and Ns at EF < 0 can be easily obtained. There-
fore, the QSH-type Nernst coefficients at EQSH

m = EN=0,σ are
expressed as

NQSH
c,m = ln 2

|m|
t

eT ,

NQSH
s,n = sgn(s)2 ln 2

t2

4πkBT 2
. (18)

The mth peak heights of the QSH-type Nc are inverse to |m|,
denoting the integer QH effect, which is different from the
QH-type Nc. The peak height of the QSH-type Ns is always
2 ln 2, and its sign depends on the spin of EN=0,σ , which is the
same as the QH-type Ns.

To compare the thermoelectric transport properties of
different topological regimes, we summarize the QH-type,
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TABLE I. The magnitude of thermoelectric coefficients for different topological regimes. sgn(c) represents the sign of charge, which is
+1 for the electron and −1 for the hole. In addition, sgn(s) denotes the sign of spin, which is +1 for spin up ↑ and −1 for spin down ↓.

QH type QSH type Conventional QSH type

Charge SQH
c,n = −sgn(c) ln 2/(|n| + 1

2 ) SQSH
c,m = 0 Sc = 0

NQH
c,n = ln 2/(|n| + 1

2 ) NQSH
c,m = ln 2/|m| Nc = 0

Spin SQH
s,n = sgn(s)sgn(c)2 ln 2 SQSH

s,m = 0 Ss = 0
NQH

s,n = sgn(s)2 ln 2 NQSH
s,m = sgn(s)2 ln 2 Ns = 0

QSH-type, and conventional QSH-type thermoelectric coef-
ficients in Table I, from which one can clearly see the dif-
ferences between ferromagnetic graphene with the CT-QSH
effect and conventional QSH system. In the conventional QSH
system, both the Seebeck and Nernst coefficients are zero
because the information about the bulk density of states is
missing within the nontrivial single band gap. By contrast,
benefiting from the multi-band-gap structure of ferromagnetic
graphene with the CT-QSH effect, the Nernst-type coefficients
accurately record the details of the band structure. As shown
in Table I, the QH-type Nc is obviously distinguished from the
QSH-type Nc, although both of them are dependent on filling
factor. Therefore we can distinguish the category of Landau
levels (the QSH- and QH-type) by the magnitude of Nc. As
for Ns, because the offset voltage in the detecting terminals
is zero, the spin thermoelectric coefficient keeps a maximum
value of 2 ln 2. In addition, the sign of Ns is dependent on the
spin of the Landau level, revealing the spin indicator feature
of the spin thermoelectric coefficients. It can be seen that Ns >

0 at EN=0,↑ = M and Ns < 0 at EN=0,↓ = −M are always
true regardless of exchange field M. The boundary between
the CT-QSH (QSH + QH) and QH regions is EN=0,σ = |M|.
Therefore the sign of Ns at the zeroth Landau level is the point
where one could make predictions for experiments.

Through the above analysis, it is clear that the spin thermo-
electric coefficients have the constant magnitude, i.e., |Ss| =
|Ns| = 2 ln 2, while the magnitude of Sc or Nc depends on the
total filling factor ν = ν↑ + ν↓. Next, to manifest the rules of
peak heights of Sc and Nc, we plot Sc and Nc versus EF under
different strong magnetic fields φ = 0.005, 0.008, and 0.010
with M = 0.04t and different exchange fields M = 0.02t ,
0.04t , 0.07t , and 0.10t with φ = 0.005 in Fig. 4. In Figs. 4(a)
and 4(c), the backgrounds are the energy bands of φ = 0.005
and 0.010, respectively. The Landau levels are consistent with
the positions of peaks (the vertical black and blue lines). So
are the backgrounds in Figs. 4(b) and 4(d) for M = 0.02t and
0.10t , respectively. As shown in Figs. 4(a) and 4(c), the first
peaks of the QH-type Sc and Nc shift outwards because the
nonzero Landau level EN 
=0,σ increases with the increase of φ.
However, as shown in Figs. 4(b) and 4(d), with the increase
of M, the first peaks of the QH-type Sc and Nc shift inwards
because the nonzero Landau levels EN>0,↓ and EN<0,↑ shift M
towards EF = 0 in the presence of M. The nth peak heights of
the QH-type |Sc| and Nc satisfy Sc,n = −sgn(c) ln 2/(|n| + 1

2 )
and Nc,n = ln 2/(|n| + 1

2 ) for |n| = 1, 2, 3, . . . . Here, n is not
usually equivalent to the N and not related to the spin σ

of Landau level EN 
=0,σ . As an example, for φ = 0.005 in
Fig. 4(a) and M = 0.02t in Fig. 4(b) (the black lines), the
third and second peaks of Sc appear at the first Landau level
EN=−1,↑ [the vertical red lines in Figs. 4(a) and 4(b)]; however,

it does not interfere its height rule of −sgn(c) ln 2/(|n| +
1/2). In addition to the QH-type Sc and Nc, there is also
the QSH-type Nc located at EN=0,↑ = M. In Fig. 4(c), fixing
M, all the peaks of the QSH-type Nc locate at EF = 0.04t
regardless of φ, and the peak heights remain unchanged [see
the horizontal red line in Fig. 4(c)]. In Fig. 4(d), the QSH-type
Nc for M = 0.02t and 0.04t share the same peak height.
However, with the further increase of M, the zeroth Landau
level EN=0,↑ exceeds EN>0,↓. For M = 0.02t (0.04t), 0.07t ,
and 0.10t , the QSH-type Nc appears at EN=0,↑ with different
peak heights, corresponding to the first, second, and third
peaks [see the three horizontal red lines in Fig. 4(d)]. The
peak height of the QSH-type Nc varies with exchange field
and satisfies Nc,m = ln 2/|m| for |m| = 1, 2, 3, . . . .

To intuitively distinguish the topological category, we plot
the inverse of peak height of Nc and Sc (N−1

c and S−1
c ) versus

the sequence number of peak (n or m) in Figs. 5(a) and 5(b),
respectively. Also, the S−1

c for the integer QH effect is plotted
for the convenience of comparing and analyzing. Several
characters are summarized: (i) Considering the CT invariance
and e-h symmetry, Nc is an even function of EF , while Sc is
an odd function. (ii) Thermoelectric transport contributed by
the nonzero Landau level can be characterized by both the
QH-type Nc and Sc. (iii) Thermoelectric transport contributed
by the zeroth Landau level can be characterized only by the
QSH-type Nc. (iv) The inverse of the nth peak heights of the

FIG. 4. (a) Sc and (c) Nc vs EF under different strong magnetic
fields φ for M = 0.04t . (b) Sc and (d) Nc vs EF under different M
for φ = 0.005. The other parameters are temperature kBT = 0.001t ,
scattering width N = 40, and length L = 40.
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FIG. 5. N−1
c and S−1

c vs the sequence number of peak (n or m).

QH-type thermoelectric coefficients satisfy N−1
c,n = |S−1

c,n| =
(|n| + 1/2)/ ln 2 [pentacles in Figs. 5(a) and 5(b)], which
indicates the half-integer QH effect. (v) The inverse of the
mth peak height of the QSH-type N−1

c,m = |m|/ ln 2 [circles
in Fig. 5(a)], similar to the integer QH effect [circles in
Fig. 5(b)].

To compare with the results of a strong magnetic field,
we plot Sc, Ss, Nc, and Ns versus EF under weak magnetic
fields φ = 0.0001, 0.0003, 0.0005, and 0.0007 in Fig. 6.
The background is the energy bands of zigzag ribbon with
φ = 0.0003. As thermoelectric transport reflects the details

FIG. 6. (a–d) Sc, Ss, Nc, and Ns vs EF under different weak mag-
netic fields φ. The other parameters are exchange field M = 0.04t ,
temperature kBT = 0.003t , scattering width N = 40, and length L =
40.

of the density of states, the peaks of Sc and Ss appear at the
positions of every subband, as shown in Figs. 6(a) and 6(b).
Here, we only show the results of the zigzag ribbon. It can
be expected that the positions of Sc and Ss of the armchair
ribbon are also consistent with its subbands. In the case of a
weak magnetic field, Landau levels have not yet formed and
all subbands are overlapped with each other. Consequently,
the peak half-width of Sc and Ss expand seriously, and the peak
heights distribute randomly with n. Because the conductance
increases as EF increases, Sc is always positive (negative)
when EF < 0 (EF > 0). On the other hand, the sign of Ss is
determined by the spin σ of the subband. The pure spin-up
subband [the vertical red lines in Fig. 6(b)] contributes the
negative (negative) Ss when EF < 0 (EF > 0). For the mixed
spin subband [the vertical blue lines in Fig. 6(b)], the sign
of Ss changes when EF crosses the bottom of subbands. In
the presence of a weak magnetic field, the Lorentz force is
weak. The larger the Fermi energy EF , the weaker the Lorentz
force. Therefore the transverse deflection in the four-terminal
devices is small in the weak magnetic field, and it becomes
smaller with the increase of EF . Comparing with the values of
Sc and Ss, Nc and Ns in Figs. 6(c) and 6(d) are much smaller,
especially for the large EF . It is substantially different from
the case of a strong magnetic field. Moreover, Nc and Ns are
detected in the four-terminal device where both zigzag and
armchair ribbons are involved. As a result, the peaks of Nc

and Ns cannot coincide with the subband of the zigzag ribbon,
especially at high Fermi energy, because Landau levels start to
form at the Dirac point. Figures 6(c) and 6(d) clearly indicate
the discrepancy of band structures of the zigzag and armchair
ribbons.

Finally, we study the role of disorders on the thermoelectric
transport of ferromagnetic graphene under a strong magnetic
field. Under different exchange fields, the energy bands of
ferromagnetic graphene can be divided into two regions (CT-
QSH and QH) or three regions (CT-QSH, QSH + QH, and
QH). Although the QSH + QH region varies with M, the
QSH- and QH-type thermoelectric transport properties are
determined by the helical and chiral edge states, as in the pure
CT-QSH and QH regimes. Therefore, in the case of disorders,
we only study the case of M = 0.04t (QH and CT-QSH).
Figure 7 shows the Sc, Ss, Nc, and Ns versus Fermi energy
EF with disorder strength W = 0.0t , 0.5t , 1.0t , and 2.0t . The
disorder is considered only in the central scattering region.
All the curves are averaged over 500 random configurations,
which is enough to obtain reasonable results. We also plot the
energy bands as backgrounds for the convenience of analysis.
As in a clean system, thermoelectric coefficients appear only
when EF crosses the Landau level EN,σ . The magnitudes of the
QH-type Nc and Sc depend on the sequence number of peaks,
and so does the QSH-type Nc. The signs of the QH-type Ns

and Ss are determined by the spin of the Landau level, and so
is the QSH-type Ns.

We first study the influence of disorders on the QH-type
thermoelectric coefficients. When disorder is not very strong,
such as W < 1.0t , the sequentially arranged peaks are almost
unchanged. When W > 1.0t , Landau levels are destroyed, and
the peaks of thermoelectric coefficient are broken. The peak
heights of Sc remain fairly stable, while the peak heights of
Nc reduce significantly [Figs. 7(a) and 7(c)]. This means the
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FIG. 7. (a–d) Sc, Ss, Nc, and Ns vs EF under different disor-
der strengths W . The other parameters are M = 0.04t , φ = 0.005,
kBT = 0.001t , N = 40, and L = 40. All the curves are averaged over
500 random configurations.

QH-type Sc are more robust than the QH-type Nc because the
four-terminal device is more sensitive to the backscattering
induced by the disorders. With regard to the QH-type Ss and
Ns, as long as the spins of Landau levels are uniform, Ss

and Ns might be as robust as Sc and Nc [the negative Ss

and Ns in Figs. 7(b) and 7(d)]. When the Landau level with
different spin is involved, the robustness of Ss and Ns would
be substantially weakened because of the spin offset from the
broken edge states [positive Ss in Figs. 7(b)].

As for the QSH-type thermoelectric coefficients, both Nc

and Ns appear at the zeroth Landau level EF = EN=0,↑ [the
vertical red lines in Figs. 7(c) and 7(d)] and decrease with the
increase of W . As analyzed above, thermoelectric transport
properties are solely determined by Landau level and the cor-
responding edge states. The helical edge states are robust only
in the presence of spin-conserved disorders, while the chiral
edge states can resist all kinds of disorders. Therefore, com-
paring with the QH-type thermoelectric coefficients, the QSH-
type Nc and Ns decrease more rapidly than the QH-type Nc

and Ns, indicating the QSH-type thermoelectric coefficients
are more fragile. In addition, the QSH-type Sc and Ss are zero
in clean systems because the longitudinal signal cannot feel
the change of chirality of pure helical edge states around the
zeroth Landau level. However, in the presence of disorders,
the helical edge states are destroyed at EF = EN=0,↑, and the

transmission coefficients are not quantized anymore, which
can be successfully captured by the longitudinal Se and Ss

as shown in Figs. 7(a) and 7(b). The sine like curves around
EF = EN=0,↑ indicate the helical nature of the QSH effect.

IV. CONCLUSION

In conclusion, based on the nonequilibrium Green’s func-
tion and Landauer-Büttiker formula, we systematically inves-
tigated thermoelectric transport properties of ferromagnetic
graphene under a strong magnetic field. The energy bands
of ferromagnetic graphene were divided into the CT-QSH,
QSH + QH, and QH regions according to the filling factor
νσ . We used Seebeck coefficients (Sc and Ss) and Nernst
coefficients (Nc and Ns) to describe the longitudinal and trans-
verse (charge and spin) thermoelectric transport, respectively.
The QSH-type thermoelectric coefficient appears at the zeroth
Landau level, where the Chern number changes from C↑(↓) =
±1 to C↑(↓) = ∓1. Because the two-terminal device cannot
feel the change of chirality of the edge state, the QSH-type
Sc and Ss are zero and only the QSH-type Nc and Ns were
considered. By contrast, thermoelectric coefficients are all
zero in the conventional QSH system. The QH-type thermo-
electric coefficient appears at nonzero Landau level, across
which the number of chiral edge states was changed. For
the charge thermoelectric coefficients, the nth peak heights of
the QH-type Sc and Nc satisfy Sc,n = −sgn(c) ln 2/(|n| + 1

2 )
and Nc,n = ln 2/(|n| + 1

2 ), corresponding to the half-integer
QH effect, while the mth peak height of the QSH-type Nc

satisfies Nc,m = ln 2/|m|, similar to the integer QH effect.
Therefore we can distinguish the category of Landau levels
(QH and QSH types) by the magnitude of Nc. On the other
hand, for the spin thermoelectric transport, the magnitudes of
Ss and Ns remain a constant 2 ln 2, but their signs indicate the
spin-polarization of Landau level. In the presence of disorders,
the helical edge states were broken, which was confirmed
by nonzero values of the QSH-type Sc and Ss. As a whole,
the QH-type thermoelectric coefficients are more robust than
those of the QSH type, because the chiral edge states are
more robust. The QH-type Sc and Ss are more robust than the
QH-type Nc and Ns because the four-terminal device is more
sensitive to the backscattering.
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