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Electron transport properties of graphene nanoribbons with Gaussian deformation
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Gaussian deformation in graphene structures exhibits an interesting effect in which flower-shaped confinement
states are observed in the deformed region [Carrillo-Bastos et al., Phys. Rev. B 90, 041411 (2014)]. To exploit
such a deformation for various applications, tunable electronic features including a band-gap opening for
semimetallic structures are expected. Besides, the effects of disorders and external excitations also need to
be considered. In this work, we present a systematic study on quantum transport of graphene ribbons with
Gaussian deformation. Different levels of deformation are explored to find a universal behavior of the electron
transmission. Using a tight-binding model in combination with nonequilibrium Green’s-functions formalism,
we show that the first plateau of the transmission of semimetallic armchair ribbons is just weakly affected in the
case of small Gaussian deformations. However, significant large Gaussian bumps can induce a strong drop of
this plateau and a transport gap is formed. The transmission at zero energy is found to decrease exponentially
with increasing the size of the Gaussian bump. Moreover, the gap of semiconducting ribbons is enlarged with
large deformations. The opening or the widening of the transport gap in large deformed armchair structures
is interpreted by a formation of a spatially three-zone behavior of the hopping profile. On the other hand, a
transport gap is not observed in zigzag ribbons regardless of the size of Gaussian bumps. This behavior is due
to the strong localization of edge states at the energy point E = 0. Furthermore, it unveils the opposite effect of
vertical electric fields +Ez and −Ez, stemming from the breaking of the mirror symmetry. Additionally, it is also
pointed out that the electronic behavior of a Gaussian deformed ribbon including edge roughness is dominated
by the characteristics of the edge-roughness effect with strong Anderson-type localized states reflected by sharp
peaks in the transmission profile.
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I. INTRODUCTION

Graphene has been recognized as a material for the future
of electronics due to its exceptional electronic properties with
the extremely high electron mobility and the form of a thin
layer structure. All these intriguing features could lead to
compact and efficient electronic devices [1]. However, two-
dimensional (2D) graphene is a semimetallic material [2] and
exhibits an almost zero band gap that limits its possible appli-
cations in electronics. Interestingly, it has been demonstrated
that narrow ribbons of graphene possess a finite band gap [3,4]
and promise to be suitable for different applications such as
transistors [5,6] and thermoelectric generators [7–9].

To push graphene ribbons closer to real applications, fur-
ther studies of more realistic structures of ribbons containing
defects such as vacancies [9–12] and edge roughness [10,13–
16] have been taken up. It has been shown that such defects
strongly influence the natural electronic properties of ribbons.
Defects lead to a suppression of the electrical conductance de-
pending on the vacancy position [9] and the level of vacancies
[11]. Besides, edge roughness may lead to strong Anderson
localization in areas of edge roughness [14].

Another type of disorder has been also paid attention which
is deformation. In-plane deformation in ribbon structures was
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studied by Chang et al. in 2007 [17] and, subsequently, addi-
tional works [18–22] have been carried out by other groups to
provide a more comprehensive understanding of this effect. It
has been unveiled that under a uniaxial strain, the electronic
properties of zigzag graphene nanoribbons (ZGNRs) are al-
most unchanged while the band gaps of armchair graphene
nanoribbons (AGNRs) are observed to fluctuate with the
applied uniaxial strain [18]. Grain boundary can also be
considered as a local in-plane deformation [23,24] with a
significant impact on the electronic transport properties [24].

On the other hand, the presence of out-of-plane deforma-
tion has been evidenced in many structures [25]. This kind
of disorder has been examined recently on both 2D graphene
[25–29] and ribbons [30–34]. It has been shown that graphene
deposited on a low-quality substrate can contain out-of-plane
deformations, and Gaussian deformations are frequently ob-
served [25]. A Gaussian bump can also be generated during a
scanning tunneling microscope (STM) process when the STM
tip can interact with the graphene layer via van der Waals
interactions [35].

The presence of deformation leads to a change in the me-
chanical properties of ribbons and also in the electronic ones.
Recent studies have shown an interesting phenomenon in
which flower-shaped confinement states are observed in cen-
trosymmetric Gaussian deformed regions [31]. Additionally,
a local sublattice breaking symmetry is found, i.e., an unequal
distribution of charge density between the two nonequivalent
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FIG. 1. Sketch of a ribbon with Gaussian deformation. Two typical deformations are illustrated: (a) small and (b) large Gaussian bumps.
(c) Parameters defining the shape of a Gaussian bump.

sublattices A and B in the deformed region has been observed
even for small deformations [26,36]. Valley-electronic filter-
ing depending on geometrical deformation [37] and current-
flow paths in the deformed region [27] have also been dis-
cussed for 2D graphene with Gaussian deformation.

Although several works have been carried out to un-
veil the changes in the electronic properties of graphene
in the presence of Gaussian deformation, the number of
studies in this topic remains modest. In particular, previous
studies of quantum effects in Gaussian-deformed ribbon struc-
tures have been still limited to consideration of confinement
states [31,32] and charge distribution at sublattice sites [31].
Moreover, only Gaussian bumps with the size smaller than the
width of considered ribbons have been investigated. Thus, fur-
ther studies are needed to understand more comprehensively
the impact of the shape of Gaussian bumps on the electronic
properties according to the size of ribbons. Furthermore, the
impacts on electron transport in a Gaussian deformed ribbon
of an external electric field and edge roughness have not yet
been considered.

In this work, we aim at investigating systematically the
impact of Gaussian deformation on electron transport in both
armchair and zigzag graphene ribbons. The correlation be-
tween the shape of a Gaussian bump and the size of a studied
ribbon will be explored. In particular, we pay attention to en-
ergy gap opening in semimetallic ribbons in order to optimize
graphene-based atomistic designs suitable for a broad range
of applications. In addition, the effects of an external electric
field and edge roughness are also considered.

The rest of the paper is organized as follows: In Sec. II we
first present the concept of Gaussian deformation in a ribbon
structure and the parameters used to define the Gaussian shape
and the size of a ribbon, then a tight-binding (TB) model
and nonequilibrium Green’s-functions (NEGF) formalism are
detailed for methodology. Section III is devoted to results and
discussions. In Sec. III A, a comprehensive study of the elec-
tron transport in graphene ribbons with Gaussian deformation
is discussed. In Sec. III B, the effect of an external elec-
tric field on the electronic properties of Gaussian deformed

ribbons is investigated. In Sec. III C, the individual and mutual
impacts of Gaussian deformation and edge roughness are
presented. Finally, Sec. V concludes this paper.

II. MODEL AND METHODOLOGY

A. Model

A graphene ribbon with Gaussian deformation is illustrated
in Fig. 1 for two typical sizes of Gaussian bumps: small
[Fig. 1(a)] and large [Fig. 1(b)], with respect to the size of the
ribbon. The bump position is illustrated with a color gradient.
These two distinct Gaussian bumps may impact differently
the physical properties of the ribbon including the electron
transport properties.

The height of atoms within a centrosymmetric Gaussian
deformed region is defined as follows [38]:

z(x, y) = hGe−[(x−x0 )2+(y−y0 )2]/2σ 2
, (1)

where x0, y0 are the x, y coordinates of the central point of
the bump. In all cases, we set the peak of the bump to be on
top of the center of the considered ribbon. The shape of the
Gaussian bump is generally characterized by two geometrical
parameters hG and σ which are the height and the standard
deviation of the Gaussian shape as illustrated in Fig. 1(c)
[38]. Sometimes, the parameter b = √

2σ is also used to
characterize the width of a Gaussian bump [31,36,37]. To
compare the width of the Gaussian bump with that of the
ribbon, it may be more relevant to determine the diameter of
the bottom circle of the Gaussian shape on the plane of the
ribbon. It is well known that the circle of radius R = 3b/

√
2 =

3σ contains 99.7% of the Gaussian bump [32]. The diameter
of this circle is thus WG = 2R = 6σ and can be used as the
bump width to be compared with the width of the ribbon.

Besides, the geometrical definition of the width of a ribbon
depends on the edge orientation of the ribbon. The width of an
AGNR is defined as WR = (M − 1) × √

3/2 × a0, while that
of a ZGNR is calculated as WR = (3M − 2) × a0/2, where
a0 = 1.42 Å is the distance between two neighboring atoms
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in perfect graphene structures and M is the number of dimer
(chain) lines along the ribbon width of an AGNR (ZGNR)
[39].

It should be noted that in the area of a Gaussian bump, the
mechanical strain is nonuniform and the strain intensity inside
the deformed region is defined as ε = h2

G/(2σ 2) [36]. On the
other hand, it has been shown in previous studies [40] that for
a strain intensity above 25%, graphene enters into the inelastic
regime where both the mechanical and electronic properties
are unpredictable. Therefore, in this work, we consider only
Gaussian bumps with strain intensity less than or equal to
15%.

It is also worth mentioning that Gaussian bumps generated
by rough substrates may be of a few nm in size, i.e., typically
4–10 nm wide and 0.3–2.0 nm tall [25]. The diameter of an
STM tip being in the range of a few nm to 50 nm [41–43],
Gaussian bumps generated by an STM process can have a
width ranging from less than 1 nm to a few tens of nm.
So, in this work we consider only Gaussian deformation of
such width, to be consistent with experiments. Additionally,
ribbons having the width of a few nm are now feasible by
means of the latest technology [44,45].

B. Methodology

To investigate the electronic properties of nonuniform
strain graphene structures, we employed the simple first-
nearest-neighbors (1NN) TB model that has been widely
used in previous works [27,31,32,36,38]. A term related to
a nonzero external electric field was also added. Thus, our
Hamiltonian yields

H = −
∑

i j∈1NN

ti j | i〉〈 j| +
∑

i

Ui| i〉〈 i| . (2)

The hopping energy between two lattice sites ith and jth is
defined as

ti j = t0e−β(di j
/

a0−1), (3)

where the coefficient β = 3.37 is defined by the strain
theory [46], t0 = 2.8 eV is the hopping energy between
the two nearest sites in the unstrained region, di j =√

(xi − x j )2 + (yi − y j )2 + (zi − z j )2 is the distance between
the ith and jth sites. Ui = −e.

−→
E ∗ (−→ri − −→rO ) is the electro-

static potential at the ith lattice site under an external field
−→
E

and −→rO is the origin of the potential.
The quantum transport properties of structures were ex-

amined by coupling the TB Hamiltonian with the NEGF
technique [47]. All structures were divided into three parts:
the left and right leads and the device region (central region).
The leads were considered as semi-infinite regions. The de-
vice (central) region contains the left lead extension, the active
region, and the right lead extension and these parts have
NL, NA, NR primary unit cells, respectively. The length of
the device is characterized by the total number of unit cells
N = NL + NA + NR. Disorders were introduced only in the
active region. It is worth noting that a primary unit cell of a
ribbon contains two slices with a total of 2M atoms.

The Green’s function of the device region was calculated
as follows:

G = [
E+.I − HD − �s

L − �s
R

]−1
, (4)

where E+ = E + iη with η is an infinitesimal positive num-
ber, HD is the Hamiltonian of the device, and

s∑

L

= HDLG0
LHLD,

s∑

R

= HDRG0
RHRD (5)

define the surface self-energies contributed from the left and
right leads. G

0

L(R) represents the surface Green’s function of
the isolated left (right) lead and was computed by Sancho’s
technique [48]. The size of the device Green’s function in
Eq. (4) was reduced using the recursive technique [49]. Then
electron transmission was computed as [47,50]

Te = Trace
{
�

s

L

[
i(G11 − G

†

11) − G11�
s
LG

†

11

]}
, (6)

where �s
L(R) = i(�s

L(R) − �s
L(R)

†) denotes the surface injection
rate at the left (right) lead. The local density of states (LDOSs)
at the ith lattice site were calculated by [49]

D(−→ri , E ) = − Im[Gii(E )]

π
. (7)

III. RESULTS AND DISCUSSION

In this section, first the impact of Gaussian deformation on
the electron transport properties of different groups of ribbons
is analyzed in detail. Then the variation of the electronic
properties of deformed ribbons under an external electric field
and the presence of edge roughness is discussed.

A. Impact of Gaussian deformation on the electronic
properties of ribbons

It is well known that based on the electronic features,
perfect AGNRs are classified into three groups M = 3p + 2,
3p + 1, and 3p where p is an integer number [4]. Thus, to
understand precisely the impact of Gaussian deformation on
the electronic properties of different types of ribbons, it is
necessary to examine the effect of deformation for each of
these groups.

First, we investigate AGNRs of the semimetallic group
M = 3p + 2. In Fig. 2, the electron transmission of a device
made of a semimetallic AGNR of width M = 41 (WR ≈
49.19 Å) and length N = 150 unit cells (L ≈ 637.58 Å) is
shown for the perfect (undeformed) structure (black curve)
and for deformed ones with several configurations of Gaus-
sian bumps: very small (WG/WR ≈ 0.67, red curve), small
(WG/WR ≈ 0.95, violet curve), medium (WG/WR ≈ 1.50, blue
curve), and large (WG/WR ≈ 5.63, green curve) bumps. In
all cases, strain intensity is fixed at 15%. As can be ob-
served, the electron transmission is altered even for small
Gaussian bumps (red and violet curves) where WG < WR. The
degradation is more pronounced in the high-energy regions
than in the low-energy region. Notably, the first step of the
transmission remains almost unchanged. The effect is stronger
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FIG. 2. Electron transmission in an AGNR without and with
Gaussian deformation (GD): M = 41 (WR ≈ 49.19 Å), N = 150
(L ≈ 637.58 Å). Different levels of deformation are considered and
strain intensity is fixed at 15%.

with larger bumps. This result is in agreement with what
was observed in a previous study [31]. Interestingly, when
Gaussian deformation is large enough (blue, green lines) with
WG > WR, the transmission at high energy is found to weakly
change. However, the first plateau drops strongly around
E = 0 and a transport gap is formed when the Gaussian bump
is sufficiently large (green line). At the energy point E = 0, the
transmission of the strongly deformed ribbon remains at only
1.6% (Te = 0.016) compared to the value of 1.0 in the perfect
and weakly deformed structures.

The change of the transmission at low and high ener-
gies could be, phenomenologically, understood in terms of
scattering wavelength. Gaussian bumps can be considered as
local defects that lead to scattering of electronic states with
typical wavelengths of the size of the local defect. There-
fore, small deformations corresponding to short wavelengths
affect mainly high-energy electronic states, which explains
the strong robustness of the first plateau of the transmis-
sion against small Gaussian deformations. Similarly, larger

deformations can scatter lower energy states of longer wave-
lengths. To understand better the variation of the electron
properties due to the Gaussian deformation, the LDOS is
plotted in Fig. 3 as a function of energy and the trans-
port direction (ox) in real space. Figures 3(a) and 3(b)
respectively present the results of the medium (Config.
3) and large (Config. 4) deformed structures are shown
in Fig. 2. In Fig. 3(b), i.e., in the case of large de-
formation, we observe that the LDOS near the peak of
the Gaussian bump (central position) around the energy
E = 0 is strongly reduced (dark blue area) with respect to the
case of small deformation presented in Fig. 3(a) (blue area).

The low LDOS in the central region can be understood
as a consequence of a larger area of the deformed region.
It induces more effective scattering than in the case of
weakly-deformed structures and therefore smaller electrical
conduction in the deformed region. This is consistent with
the transmission drop around the zero energy shown in
Fig. 2.

To clarify this point, we studied the bonding lengths in
each considered structure. The bonding maps for the cen-
trosymmetric Gaussian deformations Configs. 3 and 4 are
respectively shown in Figs. 4(a) and 4(b). The color gradient
presents the changes in the nearest bonds (1NN) with atom
distance ranging from 1.42 to 1.5 Å. From these panels, it
manifests that the strongest deformation occurs at the middle
height of the Gaussian bumps, while the areas at the top and
the leg of the bumps are weakly tensile. It is worth noting that
the profile of bonds in Fig. 4(a) leads to a sixfold region with
low LDOSs which is similar to the flower shape observed in
the previous study [31].

From the calculated bonding length, the nearest hopping
energy of each bond was deduced by using Eq. (3). In
Figs. 4(c) and 4(d) the profile of the hopping energies of all
bonds at their bonding positions along the transport direction
is shown for the two considered structures. The coordinates
of a bond between the ith and jth atoms were simply defined
as −→r ti j = (−→r i + −→r j )/2. Interestingly, the shape of these two
hopping profiles is remarkably different and can be used to
interpret the physics involved in the behavior of the corre-
sponding transmissions shown in Fig. 2. Figure 4(c) indicates

FIG. 3. LDOS (in arbitrary units) as a function of energy and transport direction (ox) for two deformations: hG = 6.67 Å, σ = 12.33 Å
(Config. 3) and hG = 25.27 Å, σ = 46.15 Å (Config. 4). M = 41 (WR ≈ 49.19 Å), N = 150 (L ≈ 637.58 Å).

075425-4



ELECTRON TRANSPORT PROPERTIES OF GRAPHENE … PHYSICAL REVIEW B 102, 075425 (2020)

FIG. 4. Bonding length map and hopping profile in the ribbon with two different centrosymmetric Gaussian deformed configurations:
(a),(c) hG = 6.67 Å, σ = 12.33 Å (Config. 3) and (b),(d) hG = 25.27 Å, σ = 46.15 Å (Config. 4). Here M = 41 (WR ≈ 49.19 Å), N = 150
(L ≈ 637.58 Å).

that in the weakly deformed structure, a single nonuniformed
region is formed around the top of the Gaussian bump where
the hopping energies are reduced. Similar hopping profiles are
obtained for Configs. 1 and 2. Differently, in the case of strong
deformation, three nonuniformed regions are formed inside
the Gaussian bump as the standard hopping energy region near
the peak is sandwiched in between two low hopping energy
regions. The electron transport between regions of different
hopping energies is limited and even blocked in the case of
strong deformation. Indeed, in such a three-region system
which is similar to a double-barrier potential profile, the pres-
ence of scatterings at each region interface and also quantum
trapping in the “pseudowell” limit the electron transport. That
explains the low transmission in the low-energy region for
the Config. 4 observed in Fig. 2. Moreover, the difference
between the hopping profiles of Configs. 3 and 4 stems from
the correlation between the shape of the Gaussian bump and
the size of the ribbon. In Config. 3, the hopping profile along
transport direction [Fig. 4(c)] shows that hopping energies
in the region around the peak of the Gaussian bumps are
similar to the those of the regions on the two sides of the peak
and there is a significant increase of some bonding lengths
along the y direction in this region [Fig. 4(a)]. In contrast,
if the Gaussian bump along the y direction covers the full
width of the ribbon [Fig. 4(b)], the region around the peak
of the large deformed structure contains only weakly stressed
bonds and thus hopping energies are remarkably different

from those in the two regions on the sides on the peak
[Fig. 4(d)].

In summary, when the deformation is distributed over the
entire width of the ribbon, the low-energy electrons cannot
cross the slightly deformed regions near the edges as in
Config. 3 [see Fig. 4(a)]. Thus a transport gap is observed
when the Gaussian bump is large enough so that the hopping
profile of the deformed region clearly shows a three-zone
characteristic.

To further analyze the dependence of the transmission
on the level of deformation, and particularly to find out the
crucial condition to observe a transport gap around the zero-
energy point, we investigated the variation of the transmission
at E = 0 for different configurations of Gaussian deformation.
As the shape of a Gaussian bump depends not only on the
height hG but also the width σ or WG, it is relevant to consider
these two parameters. Additionally, the transport properties
also depend on the ribbon width WR, so it can be more
relevant to consider the correlation between the shape of the
Gaussian bump and that of the ribbon. We found that the
ratio hGWG/WR is the most relevant parameter to be used to
establish a correlation between the sizes of the ribbon and the
bump. In Fig. 5, Te(E = 0) is plotted as a function of the ratio
hGWG/WR for different ribbon sizes and also different levels
of strain induced by Gaussian deformation.

As can be observed in the left inset of Fig. 5, all the
transmission curves drop almost exponentially. Interestingly,
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FIG. 5. Correlation between Te at E = 0 and the ratio hGWG/WR. Left inset is the result that Te is in the logarithmic scale and the horizontal
dashed line in this inset indicates that 97% transmission is suppressed. Right inset shows the cutoff ratio hGWG/WR at Te = 0.03 of each curve
shown in the main panel.

these curves tend to converge at a large value of the ra-
tio hGWG/WR. It is shown in the left inset that below the
horizontal dashed line, the transmission is reduced by 97%
confirming that an effective transport gap is formed when
the shape of the Gaussian bump is large enough. For each
configuration, the ratio hGWG/WR leading to this transmission
reduction of 97% (i.e., at Te = 0.03∗Te

0) was determined by
performing a spline fitting. The results are shown in the right
inset of Fig. 5. It can be observed that the ratio to reach the
transmission threshold of 0.03∗Te

0 depends on both the ribbon
width and the level of strain while the latter is associated
directly with the shape of the Gaussian bump. Besides, when
ribbons are large enough and the strain is significant (equal to
or larger than 15%), the required ratio seems to converge to a
value of about 80 Å.

It is worth noting that the large centrosymmetric Gaussian
deformed structure (bump) shown in Fig. 4(b) is similar to
a ribbon with a Gaussian fold where the height of an atom
in the deformed region is defined as z(x, y) = hGe−(x−x0 )2/2σ 2

.
This type of Gaussian deformation generates a fold along the
y direction. Such a deformation has been discussed recently
about valley filtering properties [37] and Kondo effect under
a magnetic impurity in 2D graphene structures [29]. To un-
derstand if the formation of a transport gap is also observed
in graphene ribbons with this kind of Gaussian deformation,
we examined the electronic properties of several Gaussian
fold deformed ribbons. The obtained results are displayed in
Fig. 6. Figure 6(a) presents the transmission of a ribbon of
width M = 41 (WR ≈ 49.19 Å) and length N = 150 (L ≈
637.58 Å) for four different Gaussian fold configurations as
displayed in this panel. As can be observed in Fig. 6(a), with

the same Gaussian shape parameters, the transmission of a
Gaussian fold deformed structure is degraded more strongly
compare to that of its Gaussian bump counterpart (shown in
Fig. 2). This can be understood as the Gaussian fold with the
same Gaussian parameters has a larger deformed surface com-
pared to the similar Gaussian bump [see insets of Figs. 6(c)
and 4(a)]. Transmission at E = 0 is also found to drop
exponentially as in the case of the Gaussian bumps as shown
in Fig. 6(b). However, to achieve a transmission reduction of
97% in the case of Gaussian folds, weaker deformation than
that in the case of bumps is required. Indeed, for instance in
the case of 10% of strain and a ribbon of width M = 41, the
crucial ratios hGWG/WR are equal to 67 Å for the fold and
93 Å for the bump. An analysis of the hopping profiles in these
structures with Gaussian fold seen in Figs. 6(c) and 6(d) gives
behavior similar to those related to the Gaussian bumps, i.e.,
a transport gap is observed when the hopping profile exhibits
clearly a three-zone characteristic. It should be noted that the
hopping profile of a Gaussian fold ribbon is different from that
of a Gaussian bump ribbon because at a given x coordinate,
the deformation along the y direction is uniform in this type
of deformed structures as can be seen in the inset of Fig. 6(c).
Such difference also leads to the three-zone behavior in the
hopping profile of the small folds [Fig. 6(c)], although, it is
still less visible.

Thus, qualitatively the impact of Gaussian bumps and folds
on the electron transport properties of graphene ribbons is
similar. Therefore, only deformations with Gaussian bumps
are discussed further hereafter.

To understand the effect of Gaussian deformation on the
electronic properties of semiconducting AGNRs (groups 3p +

075425-6



ELECTRON TRANSPORT PROPERTIES OF GRAPHENE … PHYSICAL REVIEW B 102, 075425 (2020)

FIG. 6. Gaussian folds (GF): (a) Te as a function of energy for several GF configurations in the ribbon of width M = 41 (WR ≈ 49.19 Å),
and length N = 150 (L ≈ 637.58 Å). (b) Correlation between Te (at E = 0) and the ratio hGWG/WR. (c),(d) Hopping profiles in the ribbon with
the GF Configs. 3 and 4 presented in panel (a). Inset in panel (b) presents the cutoff ratio hGWG/WR at Te = 0.03 as a function of strain for
different ribbon widths. Inset in panel (c) is the bonding map of the GF Config. 3, the color bar is from 1.42 Å to 1.5 Å as in Fig. 4.

1 and 3p), we examined a ribbon of width M = 39 (WR ≈
46.73 Å) which belongs to the 3p group. The results are
shown in Fig. 7 for different shapes of Gaussian deformation
(Gaussian bumps). Similar results were obtained for the 3p +
1 group (not shown).

As can be seen in Fig. 7, around the first step of the
“perfect” transmission (black line), in the presence of Gaus-
sian deformation, transmission decreases and the reduction
is stronger with larger Gaussian bumps. Interestingly, with
the largest Gaussian deformation considered here, the band
gap seems to be enlarged (green line). For transmission at
higher transmission steps, we also observe a strong reduction

FIG. 7. Semiconducting armchair with several configurations of
centrosymmetric Gaussian deformation (GD): Te vs E. Here M =
39 (WR ≈ 46.73 Å), N = 150 (L ≈ 637.58 Å).

for all studied cases. Additionally, the behavior is similar
to that of semimetallic ribbons in which the high-energy
transmission of the deformed structures is less dependent
on the level of deformation. Our analyses showed that the
variation of transmission at the low-energy region around
E = 0 is similar to that of the semimetallic group
(M = 3p + 2) as discussed above, i.e., the transport gap is
only widened when the hopping profile presents three nonuni-
formed zones along the transport direction in the deformed
region.

To complete the examination of the different types of
ribbons, we now consider Gaussian deformation in ZGNRs.
In Fig. 8, the results of the electron transmission of a zigzag
structure of width M = 20 chain lines (WR ≈ 41.18 Å) are
shown. Similar results were obtained for other ZGNRs. As can
be seen in Fig. 8(a), the transmission without and with Gaus-
sian deformation displays a reduction of the electron transport
near the first step of the transmission. However, the first
plateau remains unchanged even with a strong deformation
(dot blue line). Thus there is no band-gap opening in ZGNRs
under Gaussian deformation. This phenomenon can be under-
stood by looking at the total density of states (TDOSs) in the
device. The TDOSs without and with deformations are shown
in Fig. 8(b). It can be seen that the middle peak of the TDOSs
localizes at the energy E = 0 and it is unchanged with the
deformation. This peak actually corresponds to the strongly
localized edge states in the zigzag ribbon [3]. Due to the pres-
ence of edge states in the low-energy region, even for strong
deformations a transport gap cannot be opened. It is also worth
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FIG. 8. (a) Transmission and (b) TDOS of a device made of a ZGNR of width M = 20 (WR ≈ 41.18 Å), N = 150 (L ≈ 367.69 Å).

mentioning that a transport gap around E = 0 can be opened
in the zigzag-edge graphene systems with multiple terminals
due to the quantum interference in the central region [51].

B. Asymmetrical effect of a vertical electric field
on Gaussian deformed ribbons

It has been demonstrated that external electric fields can
be used to modulate the electronic properties of materials
and devices [2,52,53]. It has been shown in previous studies
[52,54,55] that a transverse (positive or negative) electric field
modulates symmetrically the conduction and valence bands.
This phenomenon stems from the mirror symmetry of ribbons
about an axis located in the middle of ribbons. A similar effect
has also been observed in bilayer structures with a vertical
electric field [2,56].

In the presence of a Gaussian deformation, the mirror
symmetry in the transverse plane (xy plane) is not affected
but this symmetry in the vertical planes is broken. Thus some
asymmetrical effects could be observed if a vertical electric
field was applied.

To verify this prediction, we first examined the effect of
a transverse electric field

−→
E = Ey

−→ey in a Gaussian deformed
AGNR of width M = 41 (group 3p + 2) and length N = 150.
It is worth mentioning that a transverse electric field can be
generated by two side gates at the edges of the system. The

fabrication of such gates could be done by using electron-
beam lithography and thermal evaporation [57]. For different
external fields, the transmission is plotted as a function of
the energy in Fig. 9(a). The results without any external field
for the perfect and deformed structures are also displayed
for comparison. As can be seen, the transverse electric field
remarkably impacts the electron transport, particularly in the
low-energy region around E = 0. This electric field acts sym-
metrically on the conduction and valence bands. Additionally,
as observed in standard ribbons [58], the sign of the field is
not relevant, only the norm of the field matters.

It is worth noting that within a more sophisticated TB
model up to third-nearest neighbors and with overlap fac-
tors, the conduction and valence bands are not perfectly
symmetrical [39]. However, in TB models an external field
modifies only the on-site energy of atoms and it induces
an effect on both conduction and valence bands, thus the
change attributed to the external fields does not depend on
the chosen TB model. Also, as the studied device sizes are
significantly large (from a few thousand to more than ten
thousands of atoms), to avoid a computationally demanding
self-consistent process, fields lower than 20 mV/Å were
considered and charge redistribution in such large ribbons was
neglected.

To check the effect of a vertical electric field
−→
E = Ez

−→ez ,
the transmissions computed for both +Ez and −Ez are shown

FIG. 9. An AGNR of width M = 41 (WR ≈ 49.19 Å) and length N = 150 (L ≈ 637.58 Å) with a large Gaussian deformation (GD)

hG = 25.27 Å, σ = 46.15 Å under the effect of (a) a transverse electric field
−→
E = Ey

−→ey and (b) a vertical electric field
−→
E = Ez

−→ez .
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FIG. 10. LDOS vs E-ox for opposite fields (a) Ez = −0.02 V/Å and (b) Ez = 0.02 V/Å. Red lines are electrostatic potential profiles
induced by the electric fields. Here M = 41 (WR ≈ 49.19 Å), N = 150 (L ≈ 637.58 Å), and the Gaussian bump hG = 21.36 Å, σ = 39.01 Å.
In both panels, LDOS is in arbitrary units.

in Fig. 9(b). Interestingly, as predicted, an asymmetrical ef-
fect on the conduction and valence bands is observed with
both +Ez (orange curve) and −Ez (violet curve). Under a
+Ez field, the electron transport in the conduction range is
significantly enhanced (compared to the case without electric
fields). In contrast, the transmission in the valence band is
reduced. It is also worth noting that the transport gap is shifted
to the position below the energy point E = 0. Furthermore,
the effect of the −Ez field is reversed, i.e., an enhancement
of the transmission in the valence band and a reduction in the
conduction band, as seen in Fig. 9(b).

This asymmetrical effect of the vertical electric field on the
electron transmission may be interesting for several applica-
tions such as energy filters, rectification devices, or sensors.

To better understand the effect of opposite vertical electric
fields, we plotted in Fig. 10 the LDOS as a function of energy
and the transport direction. The red lines in Fig. 10 display the
electrostatic potential at each lattice site along the transport
direction. As can be seen in Fig. 10(a), under the effect of the
−Ez field, a barrier potential (red line) is established and it
causes additional scattering in the region of positive energies.
As a consequence, the transmission in the positive energy
region drops, as indicated by the violet curve in Fig. 9(b).
Besides, this potential profile shifts up states below the barrier,
leading to an enhancement of the LDOS in the negative energy
region, in particular at high energies in this region [Fig. 10(a)].
This explains the enhancement of the electron transport in
the negative energy region, as indicated by the violet arrow
in Fig. 9(b). It is worth noting that also due to the presence
of the potential barrier, there are some strong confinement
states within the barrier as seen in Fig. 10(a) and it leads to
additional sharp peaks in the transmission near the original
two central peaks around E = 0 as seen on the violet curve in
Fig. 9(b). When the field has the opposite direction (+Ez),
a quantum well is formed, as shown by the red curve in
Fig. 10(b), and the phenomenon is reversed compared to the
case of the field −Ez. Similar results were also observed for
other groups of armchair ribbons M = 3p + 1, 3p.

We also considered the effect of a vertical electric field on
the electronic properties of deformed zigzag ribbons. Simi-
lar to the case of armchair ribbons, an enhancement of the
electron transmission was also observed in the conduction

region when applying a +Ez field (red line) compared to the
case without the field (blue line) as indicated by arrows in
Figs. 11(a) and 11(b). And we also observed an inverse effect
for the field −Ez.

Interestingly, a transport gap in the zigzag structure appears
with an even number of chain lines M as shown from the red
line in Fig. 11(b). But such a result is not obtained for the
odd M zigzag ribbon in Fig. 11(a). In fact, this even-odd effect
originates from the well-known parity effect of wave functions
in ZGNRs in which the electron transmission is blocked if
the right- (left-)going states +−→

k (−−→
k ) of different channels

at the same energy level have a different parity [59,60]. The
potential induced by the external field leads to a shift of the
energy bands in the active region, which results in opposite
parities of wave functions and causes a drop of transmission
in even M zigzag ribbons [59,60].

C. Edge roughness in Gaussian deformed ribbons

In fabricated ribbons, the edges are commonly not perfect
in particular in ribbons made by top-down techniques [6].
It has been also demonstrated that edge roughness strongly
impacts on the electronic properties of ribbons [10,15]. In this
section, we examine the variation of the electron transport of
deformed ribbons in the presence of edge roughness.

To generate edge roughness in a ribbon, Nvac atoms were
randomly removed from edges, i.e., Nvac interactions were
processed and for each one of them a random atom at a
random edge was chosen to be removed. It should be noted
that the random process can remove atoms in the second line
or even in other internal lines from the edges if some border
atoms were removed in previous random steps. The level of
edge roughness can be defined by the probability to remove
atoms at the two edges PER = Nvac/(4NA). The coefficient 4 is
because each unit cell of the perfect structure has four atoms
at the two edges.

The electron transmission in different structures is shown
in Fig. 12: one with a Gaussian bump, one with edge rough-
ness and a structure with both Gaussian deformation and
edge roughness. Two cases of Gaussian deformation where
a small [Fig. 12(a)] and a large [Fig. 12(b)] Gaussian bumps
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FIG. 11. Transmission of ZGNRs without and with a vertical field. (a) Results for odd M = 21 (WR ≈ 43.31 Å), N = 150 (L ≈ 367.69 Å).
(b) Results for even M = 20 (WR ≈ 41.18 Å), N = 150 (L ≈ 367.69 Å). Both ZGNRs have Gaussian deformation (GD) with the same size
hG = 25.28 Å, σ = 46.15 Å.

were considered. In both cases, 5% of edge roughness was
considered.

It is worth mentioning that the detailed profile of the
transmission of rough ribbons depends on the specific edge-
roughness configuration that is stochastic. Thus the trans-
mission should be averaged over many edge configurations.
However, as the overall behavior is the same, the results of
only one configuration are shown here.

In both Figs. 12(a) and 12(b), it can be observed that the
edge disorder (blue lines) suppresses the electronic trans-
mission more strongly than the Gaussian deformation (red
lines). When these two effects are combined, the obtained
transmission is dominated by the edge-roughness effect (see
green lines). Interestingly, the mutual effect leads to a stronger
reduction of the transmission at high-energy regions. In con-
trast, the transport of electrons in the low-energy region near

FIG. 12. Transmission of a AGNR M = 20 (WR ≈ 23.37 Å), N = 60 (L ≈ 254.18 Å). Individual and mutual effects of Gaussian
deformation (GD) and edge roughness (ER) are considered. The structure with (a) small Gaussian bump hG = 6.76 Å, σ = 12.33 Å, (b) large
Gaussian bump hG = 16.55 Å, σ = 30.21 Å. In both panels, 5% of ER was considered. (c) The LDOS (in arbitrary units) at E = −0.25 eV
corresponding to the peak (indicated by a green arrow) in the green line in Fig. 12(b).
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FIG. 13. Electron transmission with different positions of Gaussian bumps: results for an AGNR of width M = 41 with the bump is shifted
(a) towards an edge, (b) along the ribbon axis, and (c) off-centered for both x and y coordinates. (d) Results of a ZGNRs of width M = 20. In
all the panels, solid and dotted lines present results of the small and large deformations, respectively.

E = 0 is better than in the case where edge roughness is
included, with additional transmission peaks appearing near
the zero-energy point (see green lines). Such a phenomenon is
due to the formation of some strong Anderson-type localized
states at the locations of edge defects [14]. In Fig. 12(c) is
shown the LDOS in real space of the state at E = −0.25 eV
corresponding to the peak near E = 0 in the green line in
Fig. 12(b), indicated by a green arrow. The result clearly
shows that the positions with the highest LDOS (the brightest
color) are localized at the areas of edge defects.

It should be mentioned that similar results were observed
for other groups 3p, 3p + 1 of armchair and also zigzag
ribbons (not shown).

D. Off-centered and imperfect Gaussian bumps

In practice, Gaussian bumps may not be at the center of the
considered ribbon and also not perfectly in a Gaussian shape
due to some possible distortion on the surface of the ribbon.
Therefore, it could be relevant to consider these factors in this
investigation of the effect of Gaussian deformations on the
electron transport in graphene ribbons.

1. Off-centered Gaussian bumps

We first considered the impact of the off-centered Gaussian
bumps. Three possible scenarios were explored where the
bump is shifted from the ribbon center: (i) towards an edge;
(ii) along the ribbon axis; (iii) to a general point. The off-
centered position of the bump from the center of the ribbon
can be defined by a vector Voff = (	xG,	yG, 0).

Figures 13(a)–13(c) show the results of the transmission
for two typical centrosymmetrical bumps of either small (solid
lines) or large (dotted lines) size for an armchair ribbon
structure of width M = 41 with three off-centered bump
configurations Voff = (0.2x0, 0, 0), Voff = (0, 0.2y0, 0), and
Voff = (0.2x0, 0.2y0, 0), respectively. As can be observed in
Fig. 13(a), the transmissions of the off-centered bumps shifted
along the ribbon axis, for both small and large deformation,
are almost the same as the ones of the ribbon with the
central Gaussian bump, as shown in Fig. 2. When the bump is
positioned near an edge of the ribbon, the small deformation
has the same impact as the one at the center as can be seen
from the solid blue line in Fig. 13(b). Even if the small
deformation covers the edge that it is nearby, a transport gap
is not observed. This result reinforces the argument that a
transport is opened only when the deformation is large enough
to cover the full width of the ribbon.

For the large deformation considered in Fig. 13(b) the
transmission is overall similar to that in the case of the central
or off-centered bump along the ribbon axis, however, with
some more pronounced peaks around E = 0. These peaks
correspond to some confined states in the deformed region as
shown in Fig. 13(b). When the peak of the Gaussian bump
is shifted along both x and y coordinates, the transmission is
similar to that of the cases of bump shifted towards an edge
[Fig. 13(b)], as seen in Fig. 13(c). Similar results are obtained
for other AGNRs. It is also worth mentioning that further
investigations (not shown here) indicated that the hopping
profiles of small and large deformed structures are similar to
that shown in Figs. 4 and 6.
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FIG. 14. (a) Illustration of an imperfect Gaussian deformation made by a mixing of two close Gaussian bumps; one is at the ribbon center
and the other is off-centered at Voff = (x0/15, y0/15, 0). The color gradient presents the height of atoms. (b) Electron transmission of two
configurations of deformation—small (Config. 1): hG1 = 5.48 Å, σ1 = 10 Å, hG2 = 5.59 Å, σ2 = 11 Å; and large (Config. 2): hG1 = 27.39 Å,
σ1 = 50 Å, hG2 = 27.66 Å, σ2 = 51 Å.

In Fig. 13(d), the results for the even-M (M = 20) ZGNR
are displayed. As can be seen, the off-centered bumps also
do not induce a transport gap as in the case of the central
bump. The same behavior is observed for odd-M ZGNRs. This
implies that edge states at E = 0 strongly localized at the edges
of ZGNRs regardless of the position of deformation.

2. Imperfect Gaussian bumps

To investigate the impact of imperfect Gaussian bumps, we
generated deformations with two close Gaussian bumps. The
combination of the different bumps breaks the centrosymme-
try of a perfect Gaussian and induces some distortion on the
surface. Bumps with a slight difference in the size were used
to ensure a smoothness on the surface. Such deformation is il-
lustrated in Fig. 14(a) with the color gradient corresponding to
the height of atoms. The results for weak and strong imperfect
Gaussian deformation are shown in Fig. 14(b) and the overall
characteristics of the transmission profiles are similar to that
of the perfect Gaussian bumps shown in Fig. 2.

In summary, off-centered and imperfect-Gaussian factors
only cause minor effects: the electron transmission of struc-
tures containing off-centered and imperfect Gaussian bumps
is essentially similar to that of structures with central and
perfect Gaussian bumps. This result suggests that the shape
of an out-of-plane deformation might not matter but its size
correlated to the ribbon width is more essential. Hence, a
study based on perfect Gaussian functions could be applied
for other types of out-of-plane deformations.

IV. CONCLUSION

We have studied the electron transport properties in
graphene nanoribbons with Gaussian deformation. Both

small and large Gaussian bumps with respect to the size of
studied ribbons have been considered. It has been shown
that Gaussian deformation strongly modifies the electronic
properties of all types of ribbon structures. It leads to a strong
reduction of electron transmission in high-energy regions. In
the low-energy region and at the first plateau of transmission
in semimetallic armchair ribbons, the transmission is just
weakly affected by small Gaussian deformations, however, it
drops significantly in the presence of large Gaussian bumps.
Besides, the electron transmission can be reduced by 97%
in structures exhibiting a sufficiently high ratio hGWG/WR

considering the shape of the Gaussian bump over the size
of the ribbon. Regarding semiconducting ribbons, the gap
is enlarged when large deformations are applied. The origin
of the opening or the widening of the transport gap in large
deformed armchair structures has been correlated with the
hopping energy profile, i.e., a formation of a three-zone
behavior in the hopping profile along the transport direction.
Similar electronic characteristics have been observed in
the Gaussian folded ribbons. No transport gap is found in
deformed zigzag ribbons due to the strong localization of edge
states at the energy point E = 0. Furthermore, when applying
a vertical electric field +Ez, the presence of a Gaussian bump
breaks the mirror symmetry in vertical planes leading to an en-
hancement of the electron transport in the conduction region
and a degradation in the valence zone. The effect is reversed
when employing an opposite field −Ez. The study also unveils
that the electronic behavior of the deformed ribbon including
edge roughness is dominated by the characteristics of edge
roughness in which strong sharp peaks in the transmission
profile show strong Anderson localization. All these features
are preserved when Gaussian bumps are not positioned at the
ribbon center or have an imperfect Gaussian shape.
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