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Magnetization generated by microwave-induced Rashba interaction
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We show that a controllable dc magnetization is accumulated in a junction comprising a quantum dot coupled
to nonmagnetic reservoirs if the junction is subjected to a time-dependent spin-orbit interaction. The latter is
induced by an ac electric field generated by microwave irradiation of the gated junction. The magnetization
is caused by inelastic spin-flip scattering of electrons that tunnel through the junction, and depends on the
polarization of the electric field: a circularly polarized field leads to the maximal effect, while there is no
effect in a linearly polarized field. Furthermore, the magnetization increases as a step function (smoothened by
temperature) as the microwave photon energy becomes larger than the absolute value of the difference between
the single energy level on the quantum dot and the common chemical potential in the leads.
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I. INTRODUCTION

The possibility to create and manipulate magnetic order
confined to the nanometer length scale is currently attracting
interest because of possible implications for magnetic devices
and material developments [1]. Such a confined magnetization
is seldom achieved by applying an external magnetic field,
due to practical difficulties encountered when attempting to
spatially localize the field. It can, however, be realized by
modulating the exchange-interaction strength, for instance,
along a depth-profile variation of certain alloys’ constituents
[2]. In contrast to external magnetic fields, electrical currents
can be localized quite easily when injected from nanometer-
size electric weak links (e.g., quantum point contacts). In case
such currents are spin polarized, as happens for electrons
injected from magnetic materials, they lead to the creation
of magnetic torques that can be exploited to manipulate and
control the local magnetization of a ferromagnet [3]. Spin
injection of ac and dc currents from ferromagnetic materials
was indeed detected and imaged [4]. Yet another tool for
efficient manipulation of magnetic order in nanoscale devices
depends on the interplay between charge and spin brought
about by the spin-orbit interaction [5] which couples the spin
and the momentum of the electrons. This is the so-called
“spin-charge conversion” or the Edelstein-Rashba effect [6,7],
which occurs at interfaces where the Rashba spin-orbit inter-
action is active [8,9].

The phenomenon of spin-charge conversion at an interface
with broken inversion symmetry has also been achieved by
shining light on the sample [10,11]. In these configurations
the radiated field couples equally to both spin components,
and the spin selectivity needed for the spin-charge conversion
is procured by the presence of a (static) Rashba interaction at
the irradiated interface. We propose in this paper a different
scenario: the possibility to magnetize initially spin-inactive
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conducting nanostructures through a Rashba interaction in-
duced by an ac electric field generated by external microwave
radiation. Put differently, the generated electric field couples
the momenta of the electrons with their spins. Employing an
ac electric field to induce the Rashba interaction on nanos-
tructures modifies qualitatively and profoundly the electrons’
kinematics in them. The inelastic transitions of electrons that
tunnel through the junction acquire a spin dependence due
to a correlation between photon absorption and emission
processes and distinct spin-flip transitions. This paves a way to
magnetize a spin-inactive material in the absence of external
magnetic fields.

Once the Rashba interaction is established in the junction,
the tunneling amplitudes are augmented by the Aharonov-
Casher [12] phase factors which in turn render the tunneling
to be accompanied by spin flips [13]. Namely, the Aharonov-
Casher factors can be considered as unitary rotations of the
magnetic moment. This by itself is insufficient to produce
spin selectivity, as follows from considerations based on time-
reversal symmetry [14]. However, the ac electric field gener-
ates a Rashba interaction which depends on time, thus breaks
time-reversal symmetry and makes spin-selective tunneling
possible. We have recently observed that such time-dependent
tunneling can result in the appearance of a dc electromotive
force on the junction [15]. In this paper we show that spin-
selective transport between nonmagnetic conductors is created
when the Rashba interaction is induced by an oscillating
electric field, and leads to the accumulation of a dc magnetic
order, even when the junction is unbiased. The magnitude of
the induced magnetization depends on the polarization of the
electric field, and reaches its maximal value for a circularly
polarized field. Accordingly, a totally nonmagnetic conductor
can be magnetized when subjected to a rotating electric field.

The paper is divided into two parts. We first analyze in
Sec. II the simplest possible junction, which comprises a
quantum dot coupled to a single metal reservoir, as shown in
Fig. 1. We derive there the dc magnetization on the dot and the
rate by which a magnetic order is built up in the lead. The total
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FIG. 1. A quantum dot, represented by a single localized en-
ergy level, is attached to a nonmagnetic metal lead by a weak
link along the x axis. The four plates represent the application of
microwave-induced ac gate voltages, vy(t ) and vz(t ), which create
time-dependent electric fields along the ŷ and ẑ directions, respec-
tively. The resulting total electric field along the vector n̂(t ) can be
made to rotate in the y-z plane by introducing a phase shift between
the oscillating gate voltages. The electric field induces a Rashba
interaction in the weak link, that is represented by the effective
magnetic field BL (t ), which is perpendicular to both x̂ and n̂(t ).

magnetization in the junction is not expected to be conserved
when a time-dependent Rashba interaction is active. However,
when an electron moves via the spin-orbit-active link from the
dot to the reservoir, its magnetization rotates by the Aharonov-
Casher factor to a new direction. Therefore (as we show in
Sec. II), the sum of the time derivatives of the magnetization
in the dot along an arbitrary direction �̂, and that of the
magnetization in the lead along the direction �̂′′

L(t ), obtained
from �̂ after rotating it by the Aharonov-Casher factors, is
zero, namely, the two magnetization rates cancel one another.

In the second part of the paper, Sec. III, we consider a
configuration where the dot is coupled to two reservoirs (see
Fig. 4). These can be kept at different chemical potentials (or
temperatures), which provide another tool for controlling the
system. Not surprisingly (in view of the results in Sec. II),
the magnetization accumulated on the dot in this case de-
pends on electron tunneling from both leads. It hinges on the
chemical potential and temperature of each lead via the Fermi
distribution there. Note, though, that its existence does not
necessitate a chemical potential difference, or a temperature
difference, between the two leads. The dc rate of change of
the magnetization in each of the leads, however, is modified
qualitatively as compared to the one found in Sec. II for
a dot connected to a single lead: a voltage bias across the
junction, or a temperature difference between the two leads,
allows for an “extra” dc magnetization in one lead, at the
expense of the other lead. Similar to the findings in Sec. II,
the total magnetization in the system is not conserved, but the
magnetization rates along appropriate rotated directions can
add up to zero.

Technical details of the calculation are relegated to the
Appendix. There, calculations are carried out for the second
configuration, depicted in Fig. 4, since it is straightforward
to infer from those the relations needed for the first configura-
tion, depicted in Fig. 1. For this reason, our notations in Sec. II
assign the letter L to the physical characteristics of the single
lead.

II. SPIN IN A SINGLE-LEAD JUNCTION

We begin by considering a quantum dot coupled to just a
single, nonmagnetic, metal lead by a weak link, as depicted in
Fig. 1. This, the simplest configuration of interest here, serves
to demonstrate the building up of a magnetic moment in the
dot and in the lead under the effect of a rotating electric field.

By applying microwave-induced time-dependent gate volt-
ages as indicated in Fig. 1, an ac electric field is exerted on the
weak link. The field is oriented along the vector n̂(t ), which
rotates with the microwave frequency � in the y-z plane:

n̂(t ) = ẑ cos(�t ) − γ ŷ sin(�t ). (1)

Here, γ is the parameter that measures the deviation from
perfectly circular polarization: for γ = 1 (or γ = −1) the
electric field is circularly polarized, rotating in a clockwise (or
anticlockwise) direction with respect to the positive x direc-
tion. For γ = 0 the field is linearly polarized. The significance
of γ is elucidated below.

In a weak link with broken inversion symmetry [6], the
electric field creates a time-dependent Rashba interaction
[16], which manifests itself in the form of a phase factor
superimposed on the tunneling amplitude. This phase factor,
arising from the Aharonov-Casher effect [12], reads as

VL(t ) = exp[iksodL × n̂(t ) · σ ], (2)

where dL = −dLx̂ is the radius vector from the dot to the
lead (see Fig. 1). In Eq. (2), σ = [σx, σy, σz] is the vector
of the Pauli matrices, and kso represents the strength of the
Rashba spin-orbit interaction (in inverse-length units), which
is proportional to the ac electric field associated with the mi-
crowave radiation. The tunneling Hamiltonian that describes
transitions between electronic states in the lead (given by
the operator c†

kσ that creates an electron of energy εk , wave
vector k, and spin index σ ) and those on the dot (given by
the operator d†

σ ′ that creates an electron of energy ε with spin
index σ ′) is

HL
tun(t ) = JL

∑
σ,σ ′

[V ∗
L (t )]σσ ′

∑
k

d†
σ ′ckσ + H.c.

∼ JL

∑
σ,σ ′

([1 − |BL(t )|2/2]δσ,σ ′

− i[σ · BL(t )]σ ′σ )
∑

k

d†
σ ′ckσ + H.c., (3)

up to second order in the spin-orbit coupling αL = ksodL (JL is
the tunneling energy scale). The spin-orbit interaction appears
as a dimensionless effective magnetic field oscillating with
frequency �,

BL(t ) = ei�t B−
L + e−i�t B+

L ,

B±
L = (αL/2)[ŷ ± iγ ẑ], (4)

that is perpendicular to the direction of the weak link (see
Fig. 1).

To this order in αL, one identifies two processes in Eq. (3).
The first conserves the electronic spin during tunneling, while
the second, the effective Zeeman term, involves spin flips
accompanied by the absorption or emission of an energy
quantum � from the electric field [17], as manifested in
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Eqs. (4), using h̄ = 1. At very low temperatures the absorption
transitions dominate (for both the d†

σ ′ckσ term and its Hermi-
tian conjugate) in which case Eq. (3) simplifies. In particular,

σ · BL(t ) ≈ e−i�tσ · B+
L = e−i�t (αL/2)(σy + iγ σz ).

Note that

σy + iγ σz = σ+(1 + γ )/2 + σ−(1 − γ )/2,

where σ± = σy ± iσz are operators that increase (+) and
lower (−) the spin projection in the x̂ direction. We may now
infer that in a circularly polarized electric field, rotating in
the clockwise direction (γ = +1), absorption transitions lead
to an accumulation on the dot of spins whose projections on
the x̂ axis are positive (spin up), while if the electric field
rotates in the anticlockwise direction (γ = −1) absorption
transitions lead to an accumulation of spins whose projections
on the x̂ axis are negative (spin down). In a linearly polarized
field (γ = 0) there is no preference for either spin projection
and no net spin is accumulated. Obviously, these qualitative
arguments will have to be verified by a detailed calculation,
which is carried out in the following.

Quite generally, the magnetization on the dot, given by the
(dimensionless) vector Md (t ) (in units of −gμB/2, where g is
the g factor of the electron and μB is the Bohr magneton), is a
priori time dependent,

Md (t ) =
∑
σ,σ ′

〈d†
σ (t )[σ ]σσ ′dσ ′ (t )〉, (5)

and the angular brackets denote quantum averaging with
respect to the Hamiltonian of the junction

H(t ) = H0 + HL
tun(t ). (6)

The time-independent Hamiltonian H0 pertains to the decou-
pled system

H0 =
∑

σ

εd†
σ dσ +

∑
k,σ

εkc†
kσ ckσ , (7)

with the first term describing the decoupled dot and the
second the decoupled electronic reservoir, assumed to consist
of nonpolarized free electrons; HL

tun(t ) is given in Eq. (3). The
quantum average in Eq. (5) is related to the lesser Keldysh
Green’s function on the dot at equal times, defined as

[G<
dd,L(t, t )]σ ′σ ≡ i〈d†

σ (t )dσ ′ (t )〉. (8)

This Green’s function is derived [18] in the Appendix,
exploiting the Keldysh technique. Inserting Eq. (A8) into the
definition (5), one finds

Md (t ) = 2	L

∫
dω

2π
fL(ω)Tr{WL(t, ω)σ }, (9)

where the trace is carried out in spin space. Here, 	L is the
width of the Breit-Wigner resonance formed on the dot due
to the coupling with the lead [18], and fL(ω) is the Fermi
distribution in the lead.

The matrix WL(t, ω) represents the correlation of the
Aharonov-Casher phase factors at different times,

WL(t, ω) =
∣∣∣∣
∫ t

dt1ei(ω−ε+i	L )(t−t1 )V †
L (t1)

∣∣∣∣
2

, (10)

FIG. 2. The dimensionless function FL (�) [Eq. (12)] for several
values of ε measured with respect to the chemical potential on the
lead, for 	LβL = 10, where βL is the inverse temperature of the metal
lead.

and is calculated in the Appendix. The dc spin accumulation
on the dot results from the corresponding dc part of WL which
involves the effective Zeeman interaction, i.e., from the last
term on the right-hand side of Eq. (A13),

Mdc
d = 2x̂γα2

LFL(�), (11)

where FL(�) is an odd function of �,

FL(�) = 	L

∫
dω

2π
fL(ω)[|D(ω + �)|2 − |D(ω − �)|2],

(12)

with [19] |D(ω)|2 = |ω − ε + i	L|−2. This function is de-
picted in Fig. 2; as seen, the integrand (for ε > 0) is dominated
by the resonance of D(ω + �) since the Fermi function (at
low temperatures) is nonzero only for the negative ω′s. In
Eq. (11) we have used Eqs. (4) to obtain 2iB−

L × B+
L =

−x̂α2
Lγ . The magnetization accumulated on the dot is indeed

along x̂, as implied by the heuristic argument above. The
probability to magnetize the dot is determined by the po-
larization of the time-dependent electric field. For a linearly
polarized electric field (γ = 0) the effective magnetic field
for the absorption process is parallel to that of the emission
B−

L ‖ B+
L , leading to a vanishing magnetic order. In contrast,

for circular or elliptic polarization (γ 
= 0) there appears a dc
magnetization on the dot, which is linear in γ .

Evidently [see Eq. (9)], the magnetic order built on the
dot has also an ac component which oscillates with the fre-
quencies � and 2� [see Eq. (A14)]. This component gives
the temporal variation of the spin polarization on the dot.
In the following, we add to this component the rate by which
the magnetic order is established on the lead, thus examining
the total time dependence of the spin population in the entire
system.

The magnetization rate in the metal lead ṀL(t ) is
defined as

ṀL(t ) = d

dt

∑
k

∑
σ,σ ′

〈c†
kσ (t )ckσ ′ (t )〉σσσ ′, (13)

where the time derivative and the quantum average are with
respect to the Hamiltonian (6). This rate can be expressed
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in terms of lesser Green’s functions G<
Ld and G<

dL, defined in
Eqs. (A2):

d

dt

∑
k

〈c†
kσ (t )ckσ ′ (t )〉

= JL[G<
Ld (t, t )V †

L (t ) − VL(t )G<
dL(t, t )]σ ′σ . (14)

By solving the corresponding Dyson equations [Eqs. (A4)],
one obtains this magnetization rate

ṀL(t ) = Tr{XL(t )V †
L (t )σVL(t )}. (15)

Here, we have introduced the matrix

XL(t ) = i
dG<

dd,L(t, t )

dt

= −2	L

∫
dω

2π
fL(ω)

∂WL(t, ω)

∂t
. (16)

[The derivation is contained in Eqs. (A19)–(A21).] Compar-
ing Eqs. (9) and (15), we find that while the (oscillating) rate
of change of the magnetic moment on the dot is

Ṁd (t ) = −Tr{XL(t )σ }, (17)

that in the lead, Eq. (15), in addition to a sign difference,
requires a rotation of σ by the Aharonov-Casher phase factors

σ → V †
L (t )σVL(t ). (18)

The total rate of the spin population in the junction is

ṀL(t ) + Ṁd (t ) = Tr{XL(t )[V †
L (t )σVL(t ) − σ ]}, (19)

and it vanishes only if there is no rotation, i.e., VL(t ) = 1.
Put differently, the total rate of the spin population along an
arbitrary direction �̂ is

�̂ · [ṀL(t ) + Ṁd (t )]

= 2	L

∫
dω

2π
fL(ω)Tr

{
∂WL(t, ω)

∂t
σ · [�̂ − �̂′

L(t )]

}
, (20)

where �̂′
L(t ) is the direction obtained upon rotating �̂ by the

Aharonov-Casher phase factors

σ · �̂′
L(t ) = V †

L (t )σ · �̂VL(t ). (21)

The deviation of �̂′
L(t ) away from �̂ determines the amount by

which the magnetization in the entire system is not conserved
for a fixed direction �̂.

Interestingly, the nonconservation has a dc component.
Up to second order in the spin-orbit coupling, it suffices
to consider the rotation to linear order in the spin-orbit
coupling [20]

�̂′
L(t ) ∼ �̂ + 2[B+

L e−i�t + B−
L ei�t ] × �̂. (22)

Introducing this expression into Eq. (15) [and making use
of Eqs. (21) and (A14)], one finds that the total rate in
the junction includes two contributions: an oscillating part,
which exists in both the lead and in the dot, and a dc part,
which exists only in the lead (since the non-oscillating dot

FIG. 3. The dimensionless function F̃L (�) [Eq. (24)] for several
values of ε measured with respect to the chemical potential on the
lead, for 	LβL = 10, where βL is the inverse temperature of the metal
lead.

magnetization is constant in time), along the x̂ axis,

ṀL(t )|dc = 2x̂γα2
L	LF̃L(�), (23)

where

F̃L(�) = 4	L�2
∫

dω

2π
fL(ω)|D(ω)|2

× [|D(ω + �)|2 − |D(ω − �)|2]. (24)

This function is plotted in Fig. 3. As seen, this dc component
of the rate is along the x̂ axis, just like the dc magnetization on
the dot [Eq. (11)], both quantities being odd in the microwave
frequency �.

The total magnetization in the system along a fixed (in
time) direction �̂ is not conserved. However, one may examine
possible cancellations of the magnetization rates. Adding the
magnetization rate in the dot along �̂, to that in the lead along
a time-dependent vector given by �̂′′

L(t ),

σ · �̂′′
L(t ) = VL(t )σ · �̂V †

L (t ), (25)

results in

Tr{XL(t )V †
L (t )σ · �̂′′

L(t )VL(t )} + Ṁd (t ) · �̂ = 0, (26)

which implies that the sum of the spin currents along these
specific directions vanishes. The sum of the dot magnetization
along �̂ and of the lead magnetization along �̂′′

L(t ) is con-
served. This is physically understood: an electron magnetiza-
tion along �̂ in the dot rotates by the Aharonov-Casher factor
to be along �̂′′

L(t ) in the lead.

III. A DOT COUPLED TO TWO METAL RESERVOIRS

The main reason for extending our scheme to a dot coupled
to more than a single lead (see Fig. 4) is to explore the
possibility that the induced spin-orbit interaction in, say, the
left weak link, will generate a magnetic moment in the right
lead. In other words, we wish to find out how the existence
of one lead affects the accumulated spin magnetization in the
other.

Consider the magnetization rate in the left lead ṀL(t ),
as defined in Eqs. (13) and (14), when applied to the
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FIG. 4. Illustration of a junction comprising a quantum dot,
attached by two weak links lying along the x̂ axis to two reser-
voirs, denoted L and R. As in Fig. 1, the four plates mark the
application of microwave-induced ac gate voltages vy(t ) and vz(t ).
These give rise to time-dependent spin-orbit interactions in the weak
links.

two-terminal junction depicted in Fig. 4. It is again convenient
to express this quantity in terms of the (matrix) function XL(t )
[cf. Eq. (15)]. However, in contrast to the configuration dealt
with in Sec. II, in the case where the dot is coupled to two
leads, XL(t ) takes the form

XL(t ) = 2
∫

dω

2π

(
− 	L fL(ω)

∂WL(t, ω)

∂t

+ 2	L	R[ fR(ω)WR(t, ω) − fL(ω)WL(t, ω)]

)
. (27)

[This expression results upon inserting Eq. (A8) for Gdd,L, and
the corresponding one for Gdd,R, into Eq. (A21).] The analo-
gous function XR(t ) is obtained from Eq. (27) by replacing L
with R.

The detailed calculation of the rate ṀL(t ) is carried out
in the Appendix [see Eq. (A22) there]. The dc component is
presented here,

Ṁdc
L = x̂

(
γα2

L[2	F̃L(�) − 4	RFL(�)]

+ γα2
R4	LFR(�) − γαLFLR(�)

)
, (28)

where FL(�) is defined in Eq. (12), FR(�) is derived from
the same equation by replacing L with R, F̃L(�) is defined in
Eq. (24), and

FLR(�) = 8	L	R

∫
dω

2π
[αR fR(ω)

+ αL fL(ω)]2 Re[D3(ω)], (29)

with

2 Re[D3(ω)] = 4|D(ω − �)D(ω + �)|2

× �(ω − ε)[1 − �2|D(ω)|2] . (30)

Adding the rate of change of the magnetization in the left
lead [using Eqs. (15) and the analogous one for the right
lead] to the analogous one for the rate of change of the
magnetization in the right lead ṀR yields

[ṀL(t ) + ṀR(t )] · �̂
= Tr{XL(t )�̂′

L(t ) · σ } + XR(t )�̂′
R(t ) · σ }, (31)

where �̂ is again an arbitrary direction, and �̂′
L(t ), defined

in Eq. (21), is the direction reached upon rotating �̂ by the
(time-dependent) Aharonov-Casher factors of the left link.
Similarly, �̂′

R(t ) is the direction reached by the rotation with
the Aharonov-Casher factors of the right link. The rate of
change of the magnetization in the dot Ṁd (t ) comprises
contributions from the coupling with the left reservoir and the
right one (see Appendix). The first is given in Eq. (9), and the
second is obtained from it by replacing L with R. Thus, its rate
of change is

Ṁd (t ) · �̂ = 2
∫

dω

2π
Tr

{(
	L fL(ω)

dWL(t, ω)

dt

+ 	R fR(ω)
dWR(t, ω)

dt

)
σ · �̂

}
. (32)

Adding together Eqs. (31) and (32) [using Eq. (27) and the
analogous one for XR(t )] gives the total rate of change of the
magnetization in the two-terminal junction along an arbitrary
direction �̂:

[Ṁd (t ) + ṀL(t ) + ṀR(t )] · �̂ = 2 Tr

{∫
dω

2π

(
	L fL(ω)

dWL(t, ω)

dt
σ · [�̂ − �̂′

L(t )] + 	R fR(ω)
dWR(t, ω)

dt
σ · [�̂ − �̂′

R(t )]

)}

+ 4	L	RTr

{∫
dω

2π
[ fL(ω)WL(t, ω) − fR(ω)WR(t, ω)][�̂′

R(t ) − �̂′
L(t )] · σ

}
. (33)

As found in Sec. II, the total magnetization would have been
conserved had the rotations of the spin on their way between
the dot and the leads been ignored. The amount by which
the total magnetization is not conserved when measured
along a fixed (time-independent) direction �̂ is determined
by the rotations of this direction from the dot to the left
lead and to the right one. Thus, the time-dependent spin-
orbit coupling generates a time-independent magnetization,
and the amount by which it is not conserved has also a dc
part.

IV. DISCUSSION

We propose that inelastic tunneling of electrons through
a weak link, accompanied by spin flips generated by a spin-
orbit coupling caused by a rotating electric field, is capable
of producing a net spin population in a nonmagnetic device;
the field can be induced by microwave radiation as indicated
in Fig. 1. The origin of this effect is the correlation between
emission and absorption of photons by tunneling electrons and
specific spin flips (from spin down to spin up or from spin up
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to spin down). Our conjecture was verified in Sec. II for a
single-level quantum dot coupled to a nonmagnetic reservoir
of electrons, in the particular case when the dot energy level
ε is situated above the Fermi energy εF of the reservoir and
hence is unoccupied at zero temperature. However, one can
easily convince oneself that the effect is the same if the dot
level is situated below the the Fermi energy ε < εF , so that
the dot level is doubly occupied at zero temperature.

We would like to remind the reader that our calculation
is carried out in the weak electron tunneling limit. This
means that the probability for double occupancy of an ini-
tially empty dot (the case discussed above) due to inelastic
tunneling is negligibly small. Therefore, the intradot Coulomb
repulsion energy U in a doubly occupied dot does not enter
the calculation. By the same argument, if the dot is initially
doubly occupied only one electron can be removed due to
inelastic tunneling in the weak tunneling limit. In this case,
the Coulomb energy U does play a role since the energy
cost of removing one electron from the dot is εF − (ε + U )
(compared to the energy ε − εF required to add one electron
to an empty dot). Except for this difference, the role of the
interaction energy is trivial.

As discussed in Sec. II, photon absorption processes dom-
inate at low temperatures. For a circularly polarized electric
field rotating in, say, the clockwise direction (in the sense
defined in Sec. II) the requirement that spin angular momen-
tum is conserved then only allows spins to flip from “down”
to “up”. For an unoccupied dot ε > εF , this means that only
transitions from an occupied electron state with spin down in
the reservoir to the spin-up state in the dot are allowed. If,
on the other hand ε < εF , only transitions from an occupied
spin-down state in the dot to an unoccupied electron spin-up
state in the reservoir are allowed, leaving an uncompensated
spin-up electron on the dot. Consequently, inelastic transitions
between electron states in the lead and both occupied (ε < εF )
and unoccupied (ε > εF ) dot states result in the same spin
state on the dot. This allows one to expect that if the dot
contains several energy levels that can be involved in photon-
assisted spin-flip transitions, the amount of spin accumulation
on the dot can be augmented compared to when the dot has
only one level.

Driving the electron spin dynamics by a rotating electric
field as suggested in this paper represents only one of several
options for achieving a time-dependent spin-orbit coupling
in nanodevices. Another possibility is to use a mechanical
drive by temporally modulating the geometry of the device
[21]. A related recent theoretical idea [22] proposes to exploit
externally excited chiral phonon modes in graphene (which
cause the carbon atoms to rotate and hence the spin-orbit
interaction to be time dependent) to accumulate spin and
generate magnetization.

The Keldysh Green’s function for the dot, defined in
Eq. (8), can be viewed as the spin density matrix of a spin
q-bit. Its quantum coherent dynamics is fully determined by
the time dependence of the spin-orbit interaction, which is
induced by the ac gate voltages [see Eq. (A20)]. Hence,
driving the device by microwaves as envisaged here offers the
possibility to create and manipulate a spin q-bit by applying
appropriate microwave pulses as is well known from the field
of quantum computing.

The results presented in this paper open the possibility
to use microwave radiation to activate a magnetic pattern at
the surface of a conductor. An array of quantum dots could
be deposited on the surface, each dot individually coupled
to the conductor by spin-orbit-active tunnel junctions. The
magnetization of each dot could in principle be controlled
locally by electrostatic gates or by mechanical deformations
of the tunneling weak links. In this way, one might be able
to create a multiple q-bit structure in which communication
between the dots would be governed by spin currents flowing
between the dots and the common reservoir. A study of
such possibilities is well beyond the scope of this paper, but
might serve as a motivation for further investigations of the
possibility to create static magnetization by irradiation with
microwaves.
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APPENDIX: TECHNICAL DETAILS

1. Green’s functions in the time domain. For a dot coupled
to two leads (Fig. 4), the Hamiltonian (7) is augmented
by a term describing the right lead

∑
p,σ εpc†

pσ cpσ . In addi-
tion, the tunneling Hamiltonian in Eq. (6) includes a term
yielding the tunneling between the dot and the right lead
which takes the same form as in Eq. (3), with k replaced
by p and L by R. [Note that dR = x̂dR and consequently
BR(t )/αR = −BL(t )/αL.]

The Dyson equation for the Green’s function on the dot
Gdd (t, t ′) (in matrix notations in spin space) reads as

Gdd (t, t ′) = gd (t, t ′) +
∫

dt1gd (t, t1)[JLV †
L (t1)GLd (t1, t ′)

+ JRV †
R (t1)GRd (t1, t ′)]. (A1)

The first term in the square brackets results from the tunnel
coupling with the left lead [see Eq. (3)], and the second comes
from the tunnel coupling with the right lead. The two other
Green’s functions introduced in Eq. (A1) are

GdL(t, t ′) =
∑

k

Gdk(t, t ′),

GLd (t, t ′) =
∑

k

Gkd (t, t ′) (A2)

(with analogous definitions for GdR and GRd ). The Dyson’s
equation (A1), as all other encountered below, refer to all
three Keldysh Green’s functions, the lesser (superscript <),
the retarded (superscript r), and the advanced (superscript a)
[23,24]. In Eq. (A1), gd (t, t ′) is the Green’s function of the
isolated dot; its retarded and advanced forms are

gr(a)
d (t, t ′) = ∓i�(±t ∓ t ′) exp[−iε(t − t ′)], (A3)
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while the lesser function is zero since the isolated dot is
assumed to be empty.

The Dyson’s equations for the Green’s functions (A2) read
(in matrix notations in spin space)

GLd (t, t ′) = JL

∫
dt1gL(t, t1)VL(t1)Gdd (t1, t ′),

GdL(t, t ′) = JL

∫
dt1Gdd (t, t1)V †

L (t1)gL(t1, t ′), (A4)

where gL(t, t ′) is Green’s function of the decoupled left lead.
Within the wide-band approximation [25], the retarded, ad-
vanced, and lesser functions of the latter are

gr(a)
L (t, t ′) = ∓iπNLδ(t − t ′) (A5)

and

g<
L (t, t ′) = i

∑
k

e−iεk (t−t ′ ) fL(εk )

= 2π iNL

∫
dω

2π
e−iω(t−t ′ ) fL(ω). (A6)

The density of states of the left lead at the Fermi energy is
denoted NL, and fL(εk ) is the Fermi function there.

The physical quantities studied in the main text involve
the lesser Green’s functions at equal times. Straightforward
manipulations of Eqs. (A1) and (A4) yield that G<

dd (t, t )
comprises contributions from the coupling of the dot to the
left and right leads:

G<
dd (t, t ) = G<

dd,L(t, t ) + G<
dd,R(t, t ), (A7)

where

G<
dd,L(t, t ) = 2i	L

∫
dω

2π
fL(ω)WL(t, ω). (A8)

(For more details, see Refs. [26,27].) Here, 	L = 2πJ2
LNL is

the partial width of the resonance on the dot, created by the
tunnel coupling with the left lead. An analogous expression
pertains for G<

dd,R(t, t ). The total resonance width on the dot
is 	 = 	L + 	R.

The key player in our scheme is the 2 × 2 matrix in spin
space WL(t, ω), defined in Eq. (10). Exploiting the expression
for V †

L (t ) valid for a weak spin-orbit coupling [see Eq. (3)],
we find∫ t

dt1ei(ω−ε+i	)(t−t1 )[1 − |BL(t1)|2/2 − iσ · BL(t1)]

= D(ω)
[
1 − (1 + γ 2)α2

L/4
] − [(1 − γ 2)α2

L/4]F2(t, ω)

− iσ · [B−
L ei�t D(ω − �) + B+

L e−i�t D(ω + �)], (A9)

where D(ω) is [19]

D(ω) = i/[ω − ε + i	] (A10)

and

F2(t, ω) = 1

2
[ei2�t D(ω − 2�) + e−i2�t D(ω + 2�)]. (A11)

Using the result (A9) in Eq. (10), one finds that

WL(t, ω) = W dc
L (ω) + W ac

L (t, ω), (A12)

where W dc
L (ω) does not depend on time,

W dc
L (ω) = |D̃(ω)|2 + iD1(ω)σ · B−

L × B+
L , (A13)

and W ac
L (t, ω) oscillates with frequencies � and 2�,

W ac
L (t, ω) = B−

L · B−
L e2i�t D2(ω) + c.c.

+ iσ · [B+
L e−i�t D3(ω) − c.c.]. (A14)

The function |D̃(ω)|2 in Eq. (A13),

|D̃(ω)|2 = |D(ω)|2 − (1 + γ 2)
(
α2

L/2
)

× (|D(ω)|2 − [|D(ω − �)|2 + |D(ω + �)|2]/2),
(A15)

is the correction (due to the spin-orbit coupling) of the
Breit-Wigner resonance on the dot. The other functions in
Eqs. (A13) and (A14) are

D1(ω) = |D(ω − �)|2 − |D(ω + �)|2,
D2(ω) = [(ω − ε)2 − (� − i	)2]−1

− [1 + 4i	�|D(ω)|2][(ω − ε)2 − (2� − i	)2]−1,

D3(ω) = |D(ω)|2[2�(ω − ε)][(ω − ε)2 − (� + i	)2]−1,

(A16)

and they all vanish when � = 0.
2. Magnetization rates in the leads. By solving the Dyson’s

equations (A4), the magnetization rate in the left lead, given
in Eqs. (13) and (14), can be expressed in terms of the Green’s
functions on the dot [27]:

d

dt

∑
k

〈c†
kσ (t )ckσ ′ (t )〉

= −2i	L

(
[VL(t )G<

dd (t, t )V †
L (t )]σ ′σ −

∫
dω

2π
fL(ω)

×
∫

dt1[e−iω(t−t1 )VL(t1)Ga
dd (t1, t )V †

L (t ) − H.c.]σ ′σ

)
.

(A17)

This expression is conveniently written in the form

d

dt

∑
k

〈c†
kσ (t )ckσ ′ (t )〉 = [VL(t )XL(t )V †

L (t )]σ ′σ , (A18)

where

XL(t ) = −2i	LG<
dd (t, t ) + 2i	L

∫
dω

2π
fL(ω)

×
∫

dt1[e−iω(t−t1 )V †
L (t )VL(t1)Ga

dd (t1, t ) − H.c.].

(A19)
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The advantage of this representation is revealed when
Eqs. (A8) and (10) are used to find

d

dt
G<

dd,L(t, t ) = −2	G<
dd,L (t, t ) + 2	L

∫
dω

2π
fL(ω)

×
∫

dt1[V †
L (t )e−iω(t−t1 )VL(t1)Ga

dd (t1, t )

− H.c.]. (A20)

It then follows that

XL(t ) = idG<
dd,L(t, t )/dt + 2i[	RG<

dd,L(t, t )

− 	LG<
dd,R(t, t )]. (A21)

For the single-lead junction, considered in Sec. II, 	R = 0,
and therefore only the first term on the right-hand side of
Eq. (A21) survives. The corresponding expression for the
two-terminal junction is obtained upon inserting Eqs. (A7)
and (A8) in Eq. (A21); this yields Eq. (27) in the main text.

The explicit expression for the magnetization rate in the
left lead is obtained by using Eq. (27) in Eq. (15). Denoting for
brevity �̂′

L(t ) = V †
L (t )�̂VL(t ), and using Eqs. (A13) and (A14),

we find

ṀL(t ) · �̂ = −4i	L

∫
dω

2π
fL(ω)�̂′

L(t ) · d

dt
[B+

L e−i�t D3(ω) − c.c.]

+ 8i	L	R

∫
dω

2π
D1(ω)[B−

R × B+
R fR(ω) − B−

L × B+
L fL(ω)] · �̂′

L(t )

− 8i	L	R

∫
dω

2π

(
fR(ω)[B+

R e−i�t D3(ω) − c.c.] − fL(ω)[B+
L e−i�t D3(ω) − c.c.]

)
· �̂′

L(t ), (A22)

where the functions D1(ω) and D3(ω) are defined in Eqs. (A16). The dc magnetization rate (to second order in the spin-orbit
coupling) is

Ṁdc
L · �̂ = −8i	L�B+

L × B−
L · �̂

∫
dω

2π
fL(ω)2 Im[D3(ω)]

+ 8i	L	R

∫
dω

2π
D1(ω)[B−

R × B+
R fR(ω) − B−

L × B+
L fL(ω)] · �̂

+ 16i	L	R

(
B+

R × B−
L · �̂

∫
dω

2π
fR(ω)D3(ω) + B+

L × B−
R · �̂

∫
dω

2π
fR(ω)D∗

3(ω)

)

− 16i	L	RB+
L × B−

L · �̂

∫
dω

2π
fL(ω)2 Re[D3(ω)]. (A23)

As B±
L /αL = −B±

R /αR, and by Eqs. (A16)

2 Re[D3(ω)] = 4|D(ω − �)D(ω + �)|2�(ω − ε)[1 − �2|D(ω)|2],

2 Im[D3(ω)] = 2	�|D(ω)|2[|D(ω − �)|2 − |D(ω + �)|2], (A24)

the rate Ṁdc
L takes the form given in Eq. (28).
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