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Arrangement of interacting particles on a sphere is historically a well-known problem, however, ordering
of particles with anisotropic interaction, such as the dipole-dipole interaction, has remained unexplored. We
calculate the equilibrium orientational ordering of point dipoles on a sphere with fixed positional order with
numerical minimization of interaction energy and analyze stable configurations depending on their symmetries
and degrees of ordering. We find that a macrovortex is a generic ground state for locally triangular spherical
lattices with various discrete rotational symmetries for different system sizes, whereas higher-energy metastable
states are similar but less ordered. We observe orientational phase transitions and hysteresis in response to
changing external field both for the fixed sphere orientation with respect to the field as well as for a freely
rotating sphere. For the case of a freely rotating sphere, we also observe changes in the symmetry axis with
increasing field strength.
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I. INTRODUCTION

The nature of minimal energy distributions of interacting
particles on a sphere is a well-known question both for its
historical significance and for its contemporary relevance.
Since Thomson proposed his model of an atom in 1897
and, in turn, sought configurations with minimal energy for
N same-charged particles on the surface of a sphere [1],
the problem has been generalized to different interparticle
interactions, most notably, different long-range power-law
[2] and logarithmic [3] interactions, Tammes problem of the
packing of hard circles [4], and arrangement of connected
charges [5]. Active research on different interaction potentials
and geometric aspects of solutions continues to this day
[6–10]. Investigation of sphere-bound particles under effect
of generalized interactions gives insights into the symmetry
and geometry of the resulting organizational order and yields
descriptive models for various types of self-organized matter,
such as arrangement of proteins in capsids [11,12], fullerene
patterns in carbon clusters [13], and distribution of solid
particles in Pickering emulsions [14].

In contrast with the body of research on isotropic parti-
cles, ordering of discrete particles with orientation-dependent
interactions on a sphere has remained relatively unexplored.
Anisotropy can be a consequence of noncircular hard par-
ticles [15], directed motion in dynamical systems [16–20],
short-range nearest-neighbor couplings, such as approximate
models of spin lattices, or, in general, induced by anisotropic
long-range interactions. A natural anisotropic extension of the
Thomson problem, which has not been considered before,
is to extend the multipolar expansion to the dipolar term so
that in addition to position, orientation of the polarization
vector can be varied for each particle. Assuming the repulsive
isotropic interactions between the particles are strong enough,
a restricted problem can be considered, fixing the particle po-
sitions, and solving for polarization orientations that minimize

the electrostatic energy of the system. This is often the case for
systems of hard particles and closely packed assemblies where
anisotropic long-range interaction is a small perturbation on
top of a sterically imposed positional lattice.

Spherical topology requires presence of defects that de-
pend on the symmetry of local order. In the continuous limit,
vectorial order on a sphere is topologically required by the
hairy ball theorem to have, at least, two vortices [21], which
are affected by the local Gaussian curvature [22]. Continuous
counterparts of a system of discrete dipoles on a sphere, such
as ferromagnetic spherical shells [23] and Heisenberg spin
systems [24], show different magnetization states, including
a state with polar vortices. On a discrete spherical lattice, both
the local geometry of the lattice and topology of the sphere
affect the ground-state structure. Although the topology pre-
vents us from fitting any regular lattice onto its surface [25],
planar solutions can shed light on local behavior of dipole
systems on a sphere and help with interpretations of the re-
sults. Two-dimensional (2D) dipolar systems appear in many
fields from magnetic beads sold as novelty toys to electrostatic
interactions of colloidal nanoparticles [26,27] and magnetic
nanostructures [28]. Theoretical analysis of energy ground
states of 2D dipolar lattices have been copiously studied
during the previous century, showing antiferromagnetic states,
periodic vortex states, and macrovortex states, depending on
the positional lattice [29–31]. It was found that, considering
the long-range nature of dipole-dipole interactions, instead of
using a nearest-neighbor approximation, has a determining
effect on orientational ordering and structural phase transi-
tions [32]. Planar and spherical geometry are a starting point
to general three-dimensional (3D) self-assembly that can be
guided by anisotropic interactions, such as patchy-particle or
dipolar interactions, and can contribute to creation of new
functional materials and metamaterials [33,34].

In this paper, we investigate ground-state orientations of
point dipoles on a sphere, positionally fixed to a uniform
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spherical lattice, and study the effects of local positional
order on dipolar structures. The paper is organized as fol-
lows. We start by defining the energy functional, describe
the simulation methods used to find the ground states of
dipolar systems on a sphere, and introduce order parameters
for quantitative analysis of order. We present the results of
numerical simulations and show that for uniform spherical
lattices, the ground states have a macrovortex structure for all
numbers of dipoles if local positional order resembles that of
the triangular lattice. Oblique angles in the lattice can disrupt
the macrovortex state. We further study the effects of external
field on dipole configurations and the resulting orientational
phase transitions both for fixed field direction and for the case
of a freely rotating sphere. In the latter case, different system
configurations merge as the field magnitude increases, and for
certain states, we also observe the change in configuration
symmetry.

II. SIMULATION METHODS

We consider a system of N dipoles {pi} fixed at points in
space {ri} and in the presence of an external field H . Such
as in the standard Thomson problem, interactions between
all particle pairs are taken into account. The nondimensional
energy of our system, appropriate to model either electrostatic
or magnetic dipoles, is

U =
N∑

i, j = 1
i �= j

pi · p j − 3(pi · r̂i j )(p j · r̂i j )

r3
i j

− H ·
N∑

i=1

pi, (1)

where the first term represents dipole-dipole contribution and
the second term describes interaction of dipoles with the
external field. We denoted ri j = r j − ri and hat over a vector
represents a unit vector in the same direction. The positional
order is determined by one of the uniform point distributions
on a sphere; we consider solutions of the Thomson and
Tammes problems as well as the Fibonacci spherical distribu-
tion. Orientations of dipoles are parametrized by two angles,
azimuthal angle φi and polar angle θi in their respective local
coordinate frames. We solve the problem of energy minimiza-
tion numerically. We explore systems of size N < 200 and
chose Broyden-Fletcher-Goldfarb-Shanno minimization algo-
rithm as both an effective and time-efficient method to find
ground states and other stable configurations in zero external
field. The results of the minimization can depend on the initial
configuration—the minimization algorithm can get trapped
in a metastable configuration, resulting in a large number of
states with different degrees of ordering. We perform the min-
imization repeatedly from random initial conditions to ensure
finding the global minimum. As the number of metastable
states grows exponentially with the system size, values of N
much higher than the selected limit N = 200 are computa-
tionally not worth pursuing in this manner. Stohastic methods
should be used instead and have in the past proven useful in
analyzing different multipolar systems [35–37]. Nevertheless,
we argue in the following section that ground-state structures
in systems with high N are qualitatively the same as for the
smaller systems. With much larger N , a continuum limit is
approached, lattice defects become less and less important,

FIG. 1. (a) Three-dimensional (3D) visualization of the ground-
state configuration for N = 60. Macrovortex orientation is formed
where the orientation of dipole moments is characterized by the
direction of angular momentum �, here, represented by the blue
arrow. (b) The same configuration showed in azimuthal projection.
The direction of � defines the north pole of the sphere and lies in
the center of the diagram. The entire blue circle represents the south
pole. (c) The ground state of a dipolar system on the hexagonal lattice
is also a macrovortex (adapted from Ref. [31]).

and the surface of the sphere locally resembles a 2D Euclidean
lattice, which has been studied before [31].

To quantitatively measure the order and compare vari-
ous configurations, we need suitable order parameters. The
choice of parameters depends on expected ordering of dipoles.
Consider results of the energy minimization for 2D lattice
dipolar systems. For square and hexagonal lattices, the ground
state is infinitely degenerate and periodic [29]. For rhombic
lattices with angles of rhombicity between δ = 50◦ and δ =
75◦, which include the special case of the triangular lattice
at δ = 60◦, the ground state is found to be a macrovortex
[31,32,38]. Both the Thomson and Tammes lattices locally
resemble the triangular lattice; with the exception of lattice
defects, topologically required by the Euler characteristic of
the sphere, most vertices have six nearest neighbors. In con-
trast, the Fibonacci lattice shows a different local positional
order which also affects dipolar configurations. We discuss
this more thoroughly in the following section.

Our calculations confirm that the macrovortex structure is
also the ground state of the dipolar system on a sphere with
positional order fixed to the Thomson or Tammes positions.
Figure 1(a) shows the ground-state configuration for the N =
60 Thomson lattice. The macrovortex structure stands out
even more in the azimuthal projection in Fig. 1(b), shown in
comparison to the macrovortex on the 2D triangular lattice
[Fig. 1(c)]. The behavior of 2D lattice dipolar systems in an
external field also gives an indication of the expected field
response for dipolar systems on a sphere. For example, a
hexagonal lattice was shown to have a discontinuous orien-
tational phase transition in the external field [30], leading us
to expect similar behavior for spherical dipolar systems.

To determine the axis of rotation and quantify the
macrovortex nature of the ground states, we define the angular
momentum,

� = 1

N

N∑

i=1

r̂i × p̂i. (2)
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The magnitude � gives us information on the intensity of this
circulation and can be related to the coefficient of the curl
term �lm = r × ∇Y�m of vector spherical harmonics expan-
sion [39] at � = 1. For analysis of more complicated states
where higher-order variations and radial and gradient com-
ponents are also significant, a complete expansion of dipole
orientations over vector spherical harmonics would provide
additional insight.

To explore the response of the system to external magnetic-
field H , we further define magnetization,

M = 1

N

N∑

i=1

pi, (3)

and susceptibility,

χ = dM‖
dH

, (4)

where M‖ denotes the component of magnetization in the
direction of H . For calculations of response to the external
field where the system must stay in the same local minimum
during changes in the field and starting from the chosen stable
configuration, we use a simple relaxation method (gradient
descent). Our energy functional (1) is a quadratic form and
relaxation, therefore, reduces to iterative application of a
linear transformation and renormalization of dipole moments.
As we gradually increase the magnitude of the external field,
we calculate magnetization and susceptibility at each step.
This continuity of states is also important in measuring the
hysteresis response.

III. RESULTS

In this section, we present our simulation results, first
focusing on analyzing different stable states found on the
Thomson lattice and comment on the role of local positional
order on ground-state configurations. Further results on the
Tammes and Fibonacci lattices can be found in the Supple-
mental Material (SM) [40]. We also explore the effects of
an external magnetic field on stable states both for the fixed
direction of the field as well as for the case of a freely rotating
sphere.

A. Stable configurations

We performed 1000 minimization simulations at each N
for different spherical lattices to examine the dependence of
ground-state energy and the number of all states found on
the number of dipoles and positional order (Fig. 2). In all
obtained configurations, we observe that, in the absence of
an external field, dipoles orient tangentially to the surface of
the sphere. This is in line with expectations considering the
locally preferred configuration of neighboring dipoles is head
to tail and taking into account that in the true ground-state con-
figuration of a long-range interacting dipole system, dipoles
orient in a way that minimizes bulk magnetization M [31]. To
improve time efficiency of the simulation, one can, therefore,
constrain dipole orientations to their respective tangent planes,
which reduces the dimension of the minimization from 2N to
N and yields ≈4× improvement in calculation times. These
ground states can, then, be further minimized over full set

FIG. 2. Results of 1000 randomly initialized minimizations for
all N between 10 and 61. (a) Energies of all found dipole configura-
tions on the Thomson lattice (ground-state energies are represented
by red marks whereas excited-state energies are shown in black)
along with ground-state energies on the Fibonacci lattice (green
marks). We also fit a power law to Thomson ground-state energies
and determine scaling as E0 ∼ N2.495. (b) Number of different config-
urations found for each N shows exponential growth trend (note the
logarithmic scale on the y axis). Arrows indicate N that correspond
to symmetric lattices, which have a much smaller number of local
minima.

of orientational degrees of freedom without the tangential
constraint without much additional computational effort. We
used general 3D minimization for N � 100 where we were
also interested in the number of stable configurations and 2D
minimization with subsequent 3D relaxation for N > 100.

We find that the ground-state energy decreases
monotonously for all three lattices and can be fitted by
power-law curves E0 ∝ N2.495, E0 ∝ N2.508, and E0 ∝ N2.504

for the Thomson, Tammes, and Fibonacci lattice, respectively.
These exponent values are close to the estimate 5/2 we get by
taking into account scaling of the distance between dipoles
as r ∝ N−1/2 and energy as E ∝ N/r3. Figure 2(a) shows
that dipolar ground-state energies for the Fibonacci lattice
are consistently lower that those on the equivalently sized
Thomson lattice as well as the Tammes lattice due to shortest
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distances between neighbors being larger in the more uniform
Thomson and Tammes lattices. The latter are not shown in
the plot as they are very close to the Thomson ground-state
energies.

The dependence of the number of different configurations
(local minima) on N is more complicated and strongly con-
nected to the symmetry of positional order as is shown in
Fig. 2(b) for the Thomson lattice. We note the trend of ex-
ponential increase of found local minima with N , which is ex-
pected as higher number of dipoles on the sphere allows for a
larger number of stable yet frustrated local configurations that
prevent global ordering. Systems with low numbers of found
states can be linked to highly symmetric lattices. The cases
that stand out the most are N = 12, N = 22, and N = 32 with
only one configuration and N = 44 with six configurations,
with icosahedral, tetrahedral, icosahedral, and octahedral po-
sitional order symmetries, respectively. The number of found
states on the Tammes and Fibonacci lattices further confirms
the dependence on the discrete rotational lattice symmetries.
Numbers of states on the Fibonacci lattice, which lacks any
symmetries, only show exponential growth whereas Tammes
lattices show expected dips at more symmetric configurations
(see the SM [40]).

We now examine individual cases of stable structures,
focusing primarily on the solutions for the Thomson lattice
as they enable us to study the role of lattice symmetry on
dipolar configuration. Later, we also comment on solutions
with Tammes and Fibonacci positional order. First, we look
at the ground state for N = 12 [Fig. 3(a)]. A macrovortex
configuration is formed which reduces the symmetry of the
solution from icosahedral symmetry of the positional order
to the point group C3. The direction of angular momentum �

corresponds to the threefold rotation axis of the configuration.
All of the dipoles lie on four planes perpendicular to �

with their dipole moments also parallel to these planes. The
magnitude of angular momentum is � = 0.795 which is close
to the analytical estimate of π/4 ≈ 0.785 for continuous dis-
tribution of dipoles arranged in a macrovortex (the deviation,
here, is the consequence of discretization). Also possible are
configurations with a fourfold symmetry axis, for instance, the
ground state for N = 24 shown in Fig. 3(b). The magnitude
of � is again close to the analytical estimate, a characteristic
that also holds for macrovortex states at other N’s and can,
therefore, be used as an indicator for the degree of order-
ing with less ordered configurations described by a lower
value of �.

We further look at four different configurations of N = 72
dipoles where positional order again has icosahedral symme-
try [Fig. 3(c)]. The number of different states found in 1000
minimization simulations is 41, low for a system of this size,
which is expected. We use azimuthal projection for better
visualization. The ground state (top left panel) and first ex-
cited state (top right panel) show the formation of two distinct
macrovortex structures with the first being less symmetric
(twofold symmetry) than the second (threefold symmetry).
As an illustration of possible partially ordered and disordered
states that emerge for higher numbers of dipoles, we also show
configurations for the fifth (bottom left panel) and thirty-third
(bottom right panel) excited states. The magnitude of angular
momentum decreases as the macrovortex ordering disappears.

FIG. 3. Visualization of some configurations at selected N . An-
gular momentum magnitude characterizes the degree of order in the
system with values close to π/4 ≈ 0.785 indicating a macrovortex
structure and lower values related to less ordered configurations.
(a) Ground-state configuration for N = 12 shows C3 symmetry. All
dipoles are also aligned on planes perpendicular to the direction
of �. (b) Ground-state configuration for N = 24 belongs to the C4

point group. (c) Azimuthal projections for the ground state and
three excited states of the N = 72 case. The first two states show
different macrovortex configurations—the ground-state configura-
tion has a twofold symmetry axis whereas the first excited state
has a threefold axis. We also show one of the partially ordered
states where only approximately half of all dipoles are oriented
in a vortex whereas the rest are disordered and one of disordered
states. (d) One of the possible excited states for N = 200. Two
competing vortices of the same orientation are formed which leads
to antiparallel orientation of dipoles between the vortex sources
and a single elongated vortex on the south pole of the sphere
(left panel).
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In the first case, approximately one half of dipoles is al-
ready forming a macrovortex, however, the other dipoles are
locked in a different configuration (local energy minimum).
Similarly, the last case shows the formation of dipole strings
(head-to-tail configurations of neighbor dipoles) that are also
metastable.

If we increase the number of dipoles N even further,
another possible excited-state configuration emerges. Instead
of a single macrovortex, two competing vortices lying side by
side and oriented in the same direction are formed [Fig. 3(d)].
This results in an antiparallel configuration of dipoles between
the two vortex sources but preserves macrovortexlike orienta-
tional order at greater distances from both vortices so that,
at the south pole, we only find one elongated vortex. Also
possible are excited states with different arrangements and
higher numbers of vortex domains.

In general, we find macrovortex ground states on the
Thomson lattice for all values of N . This can also be con-
firmed by the values of � that are close to the analytical
estimate of π/4 whereas lower values indicate less ordered
configurations. An important question that arises is the effect
of lattice defects for higher values of N in the form of
topological scars on macrovortex dipolar ordering. We first
note that centers of macrovortices are not directly correlated
with the locations of lattice defects and are rather located at
the edges or faces of the lattice triangulation. In many cases,
these macrovortex centers correspond to lattice symmetry
axes as seen in Figs. 3(a)–3(c), however, this does not hold,
in general. Naturally, this cannot manifest in systems with no
positional order symmetry but is also not true for some cases
of highly symmetric lattices, e.g., N = 32. Consequently, po-
sitional order symmetry alone does not guarantee symmetrical
configurations of dipolar ground states.

We further examine the role of local positional order on
dipolar ordering in the SM [40] by looking at the ground-state
structures on the Tammes and Fibonacci lattices. Similar to
the Thomson lattice, the Tammes lattice is locally triangular,
and we obtain virtually indistinguishable behavior of dipolar
ordering. Macrovortex is the ground state for all N , indepen-
dent of the lattice symmetry and defect structure. This shows
that the macrovortex dipole structure emerges on all lattices
that locally approximate an equilateral triangular lattice. It is
stable to local imperfections of positional order in the form of
scars and dislocations but can change significantly once the
lattice deviates systematically from local triangular order. In
the studied case of the Fibonacci lattice where points form
a spiral from one pole to another, around the equator, the
lattice locally resembles the square lattice (for high enough
N) which leads to the formation of mutually parallel and
antiparallel dipole strings (see the SM [40]). At the poles,
which are privileged points on this lattice, the dipole strings
follow the nearest neighbors. This behavior is consistent with
the dependence of the ground state on the rhombic angle on
planar lattices [31].

B. Fixed direction of the external field

The simulations for determining the response of stable
dipole configurations on a sphere in the external field were
performed using the relaxation approach that also models

the correct system transitions under slow changes of external
field. We show the results for the Thomson positional order
that are relevant for all locally triangular lattices. The choice
of the field direction has an important impact on the results.
First, we restrict the field to point in the direction of angular
momentum � of the ground state before application of the
field, which represents the characteristic direction of dipolar
order for each configuration (Fig. 4). Although this makes
the comparison of behavior between different configurations
difficult, it enables us to roughly grasp the properties of the
system in an external field.

We start by examining the response for the simplest case
of N = 12 [Fig. 4(a)]. Magnetization increases continuously
until saturation and similarly, angular momentum magnitude
drops to zero. This signals that the system undergoes a second-
order orientational phase transition from the macrovortex
to the total alignment with the field. The change in dipole
directions can be seen in simulation frames taken at different
external field magnitudes.

Continuous orientational phase transition is not a general
result and emerges for N = 12 because of the positional
order and configuration symmetry. We observe similar be-
havior for other configurations with Cn symmetry whereas
ground states and excited states that are not symmetric exhibit
different characteristics. Figure 4(b) shows the dependence
of magnetization, susceptibility, and magnitude of angular
momentum on the magnitude of the external field for three
metastable configurations for N = 13. The ground state is
a macrovortex whereas the excited states show nonregular
ordering. All magnetization curves have, at least, one discon-
tinuous jump that reflects in the divergence in susceptibility,
signaling orientational phase transitions. To better understand
the nature of these transitions, we look at the graphs of angular
momentum magnitude where a general decrease in � shows
that the dipoles are aligning with the field. More interesting
is the discontinuous jump in � at the first phase transition
where the system relaxes to a more ordered quasimacrovortex
structure. To better imagine how the order of the system
changes with the increasing magnetic field, we use azimuthal
projection to show dipole orientations at different field mag-
nitudes. The results for the first excited state of N = 13
are presented in Fig. 4(c). After the first orientational phase
transition (frame 2), angular momentum shifts away from the
direction of the field to form a new macrovortex configuration.
After the second phase transition (frame 3), the dipoles order
to form a dipole string, and, after the third transition, dipoles
align with the external magnetic field. In the last frame, the
direction of � is not shown anymore as its magnitude is too
small for its direction to be relevant.

As an example of higher N , we show the magnetization
and angular momentum magnitude graphs for the ground
state and next three excited states of N = 56. The results
are similar to ones for N = 13 with the second and fourth
excited states undergoing more orientational phase transitions
than the ground state. The configuration of the third excited
state is also a macrovortex, and the number of discontinuous
transitions is, therefore, lower.

At the end of this section, we look at the magnetization
hysteresis loops obtained by decreasing the field magnitude
after the system reaches saturation. The results for N = 12,
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FIG. 4. (a) The magnetization curve (blue, ascending) and magnitude of angular momentum (orange, descending) in dependence on the
magnitude of the external field. As shown in complementary 3D visualizations at different values of the external field magnitude (H =
1.0, H = 2.5, and H = 5.0), the dipoles gradually reorient from the initial macrovortex configurations and at high magnitudes fully align
with the field. The vertical red arrow shows the direction of the external field. Orientational phase transition in this case is continuous.
(b) Magnetization, susceptibility, and magnitude of angular momentum for all three stable configurations of N = 13 dipoles. In contrast to
the N = 12 case, we note multiple discontinuous phase transitions that result in divergences in susceptibility. The jump in � at the first phase
transition for two excited states shows that, in the external field, some configurations can become more ordered. (c) Azimuthal projection,
modified to show normalized projections of dipole orientations to their respective tangent planes, of configurations for the first excited state of
N = 13 case at different field magnitudes. The blue dot shows the direction of angular momentum � for the depicted configuration, and the
red dot shows the direction of the external field (aligned with initial � of the configuration, always in the center of the diagram). In the first
frame, blue and red dots coincide. In the last frame, the direction of � is not shown as the magnitude is too small for the quantity to be relevant.
(d) Magnetization and � magnitude for different configurations of N = 56. Discontinuous phase transitions are especially noticeable for the
excited states.

the first excited state for N = 13, and the fifth excited state
for N = 72 are shown in Fig. 5. The saturated configuration
for N = 12 remains metastable for a while when the field
is decreasing, which is not the case for N = 13 and N = 72
states. However, saturation curves for both N = 56 and N =
72 differ from hysteresis curves, at least, for small magnitudes
of the external field which signals that, at saturation, the
system loses information on the exact initial dipole orienta-
tions. In general, hysteresis is observed for all configurations
with no symmetry whereas many symmetric states show no
differences between increasing and decreasing fields, e.g.,
the ground states for N = 24 and N = 72. Note that dipolar
systems on the Fibonacci lattice have a more prominent
hysteresis loop with higher remanent magnetization compared
to Thomson and Tammes configurations, see the SM [40].

C. Freely rotating sphere

As discussed, the system’s response to the external field de-
pends on the field direction. We chose the direction of angular
momentum as the characteristic direction of order for each
configuration, however, we saw already for the N = 13 case
that the direction of � also changes during the simulations for
configurations with no symmetry. This presents the question

of optimal direction of the external field at each magnitude—
we seek the direction that minimizes system energy [Eq. (1)]
at every step. This is equivalent to the case of a freely rotating
sphere which is more relevant for potential experimental
realization. We solve this by also minimizing the energy over
the field direction. If we write the interaction energy (1) in
the form Uh = −NH · M, the optimal external field direction
will be parallel to magnetization. With fixed direction of the
field, the alignment between field and magnetization was not
guaranteed and occurred only at high-field magnitudes.

Figure 6(a) shows susceptibilities and angular momentum
magnitudes for the three states of N = 13. The excited states
undergo an orientational phase transition to join the configura-
tion with that of the ground state. After the initial differences
at low fields, the system collapses to the same structure, up to
rotations permitted by the symmetry of the positional order.
In the saturated configuration, the field is aligned with the
symmetry axis of the positional order with the dipole con-
figuration also exhibiting C2v symmetry. Different zero-field
configurations can also stay separated until we reach higher
external field magnitudes as shown for the case of N = 56 in
Fig. 6(b). Note that the magnetization and angular momentum
magnitude curves for both N = 13 and N = 56 are different
from any of the cases with fixed field direction [Figs. 6(b) and
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FIG. 5. Hysteresis loops for (a) the ground state for N = 12,
(b) the first excited state for N = 13, and (c) the fifth excited state
for N = 72. High-symmetry states as well as high-N configurations
show weak hysteresis curves while non-symmetric low-N configura-
tions exhibit greater differences between increasing and decreasing
field magnetization curves. After saturation, it is possible that the
system does not return to the ground state but a state with nonzero
remanent magnetization.

6(d)] which means allowing for sphere rotation fundamentally
changes dipole states in external field for lattices with no
positional symmetry.

For symmetric states where angular momentum is aligned
with the rotational symmetry axis, one could expect that the
external field remains parallel to this axis. This is, indeed,

FIG. 6. Magnetization and � magnitude of a freely rotating
sphere in external field for different states of (a) N = 13 and (b) N =
56. Compared to the results in Fig. 4, the behavior of N = 13 states
is simplified (the number of phase transitions decreases) whereas
the phase transitions for N = 56 become more pronounced. In both
cases, the configurations at high-field magnitudes are the same for
all initial zero-field states. (c) Azimuthal plot for the ground state
of N = 72 at different external field magnitudes for the case of the
freely rotating sphere. The plot is centered to the optimal direction
of the external field (red dot), and we can see that the system
symmetry changes from C2 to C3 and ultimately to C5. In the last
frame, two dipoles on the symmetry axis are not shown as they are
oriented perpendicular to the surface and, therefore, have no tangent
projection.

the case for some states, e.g., N = 12 where the behavior is
exactly the same as for the case with fixed field direction,
however, optimal field direction can change for some sym-
metric states which alongside also changes the configuration
symmetry. A notable example is the ground state of N = 72.
Figure 6(c) shows an azimuthal plot of state configuration at
different external field magnitudes. The twofold symmetry of
the configuration becomes unstable, and the system transitions
to a threefold symmetric state of the first excited state. Finally,
at high external field magnitudes, there is another change
in optimal field direction where the field aligns with one of
the fivefold axes of the positional order. A similar change in
symmetry is also observed for the ground state of N = 24 that
transitions from C4 symmetry to C3 at high-field magnitudes.
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IV. CONCLUSIONS

We explored orientational ordering of point dipoles on
a sphere with positional order fixed in the solutions of the
Thomson problem by minimizing the system energy. Some
parallels to the 2D Euclidean lattice can be drawn, most
notably the universality of the macrovortex ground state that
also emerges for the triangular planar lattice. We expect the
macrovortex to be the ground state for other spherical lattices
that locally resemble a uniform triangular lattice, such as the
solutions of the Tammes problem, and the Thomson problem
with generalized power laws [3], but for other lattices, such as
generalized rhombic lattices (an example being the Fibonacci
lattice) or lattices with voids (e.g., the honeycomb lattice),
different structures are expected. The macrovortex state is also
comparable to the vortex states of the continuous ferromag-
netic and spin systems [23,24].

Configuration symmetries as well as the number of dif-
ferent stable states found, depend strongly on the symmetry
of the underlying positional order at each N . The symmetry
of the dipolar system cannot be higher than the symmetry
of the underyling lattice, and in the macrovortex state, can
only have a single rotational symmetry axis. We find states
belonging to C2, C3, and C4 point groups, however, many
macrovortex ground states show no symmetries. In the ex-
ternal field, we discover multiple discontinuous orientational
phase transitions, especially for less symmetric states. The
direction of angular momentum that characterizes ordering
of dipoles can also change as we increase external field
magnitude. For the case of a freely rotating sphere where
the external field assumes the direction that minimizes system
energy, we find that the configurations of different stable states
merge with an increasing field. In the saturation configuration,
the field is aligned with one of the symmetry axes of positional
order.

Studying dipolar interactions of discrete particles on a
sphere is a step towards understanding and harnessing the
role of anisotropic interactions in stability and structure of
spherical assemblies. Many biological structures, such as pro-
tomers of viral capsids and RNA nanocages, involve electro-
static interactions in addition to chemical bonds and hard-core
repulsion. These interactions are more complex, and are often
screened by ions in surrounding medium. Generalizations to
more complex anisotropic interactions—screened, quadrupo-
lar, or interactions based on empirical models—are, therefore,
important open problems for future investigation. The role of
thermal fluctuations can further be explored through Monte
Carlo simulations. Another potential research direction is
the generalization of the problem to allow for movement
of dipoles along the surface of the sphere, which requires
addition of a repulsive close-range interaction that prevents
aggregation and collapse. This corresponds to possible ex-
perimental realizations with interacting colloidal particles.
Deviations from a spherical shape and using the anisotropic
interactions to drive reshaping of the structures can also be
considered. Based on expected stable structures, predicted
from simplified models, bottom-up design nanocontainers can
be envisioned with self-assembly aided by the anisotropic
interactions, and allowing actuation of orientational transi-
tions and changes in symmetry with external fields, giving the
potential for controlled rearrangement or dissolution.
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