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Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides:
Realization of triangular quantum dots

Mit H. Naik,* Sudipta Kundu, Indrajit Maity, and Manish Jain †

Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India

(Received 27 August 2019; revised 16 June 2020; accepted 20 July 2020; published 7 August 2020)

Using a multiscale computational approach, we probe the origin and evolution of ultraflat bands in moiré
superlattices of twisted bilayer MoS2, a prototypical transition metal dichalcogenide. Unlike twisted bilayer
graphene, we find no unique magic angles in twisted bilayer MoS2 for flat-band formation. Ultraflat bands form
at the valence band edge for twist angles (θ ) close to 0◦ and at both the valence and conduction band edges for
θ close to 60◦, and have distinct origins. For θ close to 0◦, inhomogeneous hybridization in the reconstructed
moiré superlattice is sufficient to explain the formation of flat bands. For θ close to 60◦, additionally, local strains
cause the formation of modulating triangular potential wells such that electrons and holes are spatially separated.
This leads to multiple energy-separated ultraflat bands at the band edges closely resembling eigenfunctions of a
quantum particle in an equilateral triangle well. Twisted bilayer transition metal dichalcogenides are thus suitable
candidates for the realization of ordered quantum dot array.
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I. INTRODUCTION

Correlated insulating behavior and unconventional su-
perconductivity was recently observed in twisted bilayer
graphene (TBG) at a “magic” angle of 1.1◦ [1–3]. While the
nature of superconductivity is still contested, formation of
ultraflat bands near the Fermi level at this angle is essential to
understanding these phenomena [4–11]. Since this discovery,
ultraflat bands have been predicted in other twisted two-
dimensional (2D) materials [12–18] including small angle
twisted bilayer MoS2 (TBM), a prototypical transition metal
dichalcogenide (TMD) [19,20]. For TBG, the bands flatten in
a narrow range of 0.1◦ about 1.1◦ [21,22], making their ex-
perimental realization challenging. The existence or absence
of similar unique magic angles in twisted TMDs has not been
explored. Ultraflat bands and localization also has significant
implications on optical properties of the material [23,24].

The structural properties of twisted TMDs are remarkably
different from TBG. Due to sublattice symmetry breaking
in the TMDs, distinct moiré patterns form for twist angles
close to 0◦ and 60◦ [19]. As the twist angle approaches 0◦
or 60◦, the moiré length scale increases. The sliding poten-
tial energy landscape in twisted TMDs is more corrugated
compared to TBG leading to larger deformation of the moiré
superlattice [25–27]. These deformations involve a change in
the distribution of stackings and interlayer spacings from the
rigidly twisted structure [19,27,28]. The relaxed moiré pattern
for twist angles (θ ) close to 0◦ is similar to twisted bilayer
graphene. The low-energy Bernal stacking occupies large
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equilateral triangle areas separated by shear-strain solitons,
while the higher-energy AA stacking region is reduced in size.
The relaxed moiré pattern for twist angle close to 60◦, on the
other hand, is strikingly different [27,29,30]. For θ > 56◦, the
AA′ stacking region occupies the largest area, transforming
from an equilateral triangle to a Reuleaux triangle [27,28].
This leads to a reduction of the rotational symmetry of the
moiré superlattice from sixfold to threefold.

The electronic structure of twisted TMDs is strongly in-
fluenced by the structural transformation of the moiré super-
lattice. Neglecting structural relaxations in the simulation of
these systems leads to spurious localization of flat bands [19].
For θ = 3.5◦, the flat-band states close to the valence band
maximum localize to the Bernal stacking sites, forming an
extended hexagonal network in the moiré. For θ = 56.5◦, on
the other hand, the valence band edge states have a smaller
bandwidth and localize at the AA′ stacking. However, the
presence or absence of unique magic angles for flat-band
formation and the influence of the Releaux triangle pattern
(for θ > 56.5◦) on the electronic structure have not been
explored and are important to complete our understanding of
twisted bilayer TMDs. First-principles study of the electronic
structure of the relaxed moiré pattern for θ > 56.5◦ and θ <

3.5◦ is computationally challenging due to the large number
of atoms (>1600) involved in the simulation.

Quantum dots resemble artificial atoms with sizes in the or-
der of nanometers [31,32]. Quantum dots using 2D materials
have several potential applications including quantum emis-
sion, design of solar cells, and photocatalysis [33–38]. The
current route to obtain quantum dots is through preparation
of a colloidal suspension of 2D material flakes [34–36,39].
This leads to poor control over the size and shape of quantum
dots [37]. Obtaining quantum dot array in a dry and systematic
manner has been a challenge [39]. While the possibility of ob-
taining quantum dots in moiré patterns of twisted bilayers has
been proposed [33,40,41], explicit predictive calculations on
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FIG. 1. (a), (b) Structure of 2.65◦ and 57.35◦ rigidly twisted bilayer MoS2. The moiré pattern is composed of various stackings. The
high-symmetry stackings are identified using circles. The moiré superlattice vectors are shown with black arrows. (c), (d) Schematic of the
unit-cell Brillouin zone (BZ) of the bottom (in magenta) and top (blue) layer for a twist angle close to 0◦ and 60◦, respectively. The moiré BZ
is shown in gray and the path connecting the �, M, and K points, along which the band structure is plotted, is marked.

the moiré pattern including crucial atomic relaxation effects
are lacking. The scope of TBG for quantum dot applications
is strongly limited by the band gap and formation of these
flat bands only at 1.1◦ twist angle [21,22]. Moiré patterns
constructed using transition metal dichalcogenides (TMDs),
on the other hand, hold more promise with recent photo-
luminescence measurements showing signatures of localized
excitons in the moiré superlattice [23,24,42–45].

In this paper, we use an efficient multiscale approach to
study the origin and evolution of ultraflat bands in TBM. We
establish, that unlike TBG, there are no unique magic angles
in TBM for the formation of ultraflat bands. Ultraflat bands
form at the valence band edge for twist angles (θ ) close to 0◦
and 60◦. The electronic structure for θ close to 60◦ is strik-
ingly different from 0◦. Multiple energy-separated ultraflat
bands form at both the valence and conduction band edges for
θ > 56◦. Our calculations reveal a modulating potential well
in the moiré superlattice which leads to spatially separated
electrons and holes. The ordering, real-space distribution and
the degeneracies of the ultraflat bands at the valence band
edge are in excellent agreement with states of a quantum
particle in an infinite equilateral triangle potential well. The
wave functions at the conduction band edge also resemble
triangular well states, with the degeneracies modified by val-
ley degeneracies. The ultraflat bands form due to two factors:
(1) inhomogeneity in the interlayer hybridization in the moiré
superlattice due to variation in the interlayer spacing, and (2)
local strains due to soliton formation. Furthermore, the local
strains in each layer modify the electronic structure of the
optically active K valleys of the unit-cell BZ. This could result
in confinement of excitons in the moiré pattern.

Twisted bilayer transition metal dichalcogenides are com-
posed of distinct high-symmetry stackings for twist angles
close to 0◦ and 60◦. For twist angles close to 0◦, the high-
symmetry stackings are AA, AB (also referred to as BMo/S

[19]), and BA (BS/Mo). For twist angles close to 60◦, the moiré
contains AA′ (also referred to as AB), A′B (BS/S), and AB′
(BMo/Mo) high-symmetry stackings [Figs. 1(a) and 1(b)]. The

formation of a moiré superlattice leads to shrinking of the
unit-cell Brillouin zone (UBZ), as shown in Figs. 1(c) and
1(d). The relative energy of the various stackings in the moiré
determines the relaxation pattern [19,26–28]. The AA and A′B
stackings are highest in energy [Fig. 2(a)] due to steric effects
associated with S atoms of the bottom layer facing S atoms in
the top layer. The AB and BA stackings are equal in energy,
while the AA′ stacking is lower in energy compared to AB′.
This difference leads to different structural relaxations for
twist angles close to 60◦ compared to those close to 0◦. The

FIG. 2. (a) Relative energy of the stackings as a function of
sliding the top layer with respect to the bottom layer along the
armchair direction in the unit cell. The starting configuration (δx =
0) is AA′ and AA stacking for the blue and orange curve, respectively.
(b), (d) Electronic band structure of the isolated (unit-cell) high-
symmetry stackings in Fig. 1. (c) Planar-averaged DFT potential of
the isolated high-symmetry stackings. The shaded area marks the
potential barrier between the layers. In (b)–(d) the spacing between
the layers for each stacking is taken from the corresponding region
in the relaxed 2◦ and 58◦ twisted bilayer MoS2 moiré superlattices.
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TABLE I. Twist angles, number of atoms, and sizes of the moiré superlattice vector in our calculations. The commensurate superlattices
and constructed using the TWISTER code [47].

Twist angle (θ ) Number of atoms Moiré superlattice size (Å)

1.54◦ 8322 117.1
2.0◦ 5514 95.3
2.65◦ 2814 68.1
2.88◦ 2382 62.6
57.12◦ 2382 62.6
57.35◦ 2814 68.1
58.0◦ 5514 95.3
58.46◦ 8322 117.1

interlayer spacing of the various stackings is also determined
by the relative positions of the S atoms in the two layers.
The AA and A′B stackings have a larger interlayer spacing,
leading to a reduction in hybridization between the layers.
The valence band splittings at the � point in the UBZ are
controlled by the hybridization between the layers [46]. The
different interlayer spacings for the different stackings lead to
the variation in the unit-cell band structure shown in Figs. 2(b)
and 2(d). The � point valence band maximum (VBM) has the
character of S-pz which make it more sensitive to interlayer
spacing than the K-point VBM or conduction band minimum
(CBM) (Mo-d character) [46]. The potential barrier between
the two layers, as shown in Fig. 2(c), can be used a measure
of the interlayer hybridization [46]. Larger interlayer spacing
between the layers leads to an increase in the height of the
barrier.

II. COMPUTATIONAL DETAILS

The commensurate superlattices for twisted bilayer MoS2

(TBM) are constructed using the TWISTER code [19,47].
The twist angle, number of atoms in the moiré superlattice,

and length of the superlattice vector in our simulations are
provided in Table I. The structural relaxations of TBM are
performed with the LAMMPS [48,49] package using intralayer
Stillinger-Weber (SW) [50,51] and interlayer Kolmogorov-
Crespi (KC) potential. The force minimizations are performed
using the conjugate gradient method with a tolerance of
10−6 eV/Å. The KC potential has been fit [26] to van der
Waals (vdW) corrected density functional theory (DFT) cal-
culations. The SW+KC force-field relaxed structure for TBM
has been shown [26] to yield electronic structure in good
agreement with the vdW corrected DFT relaxed structure. The
unit-cell lattice constant of MoS2 used in our calculations is
3.14 Å.

The electronic structure calculations are performed on the
relaxed moiré superlattice using density functional theory
[52] calculations with the SIESTA[53] package. The DFT
wave functions are expanded in a double-ζ plus polarization
basis. Norm-conserving pseudopotentials [54] and the local
density approximation to the exchange-correlation functional
are employed. Van der Waals corrections only influence the
interlayer spacing between the layers in a bilayer sytem and
do not influence the electronic band structure [46]. Since

FIG. 3. (a)–(c) [(d)–(f)] Order-parameter distribution in 2.65◦, 2.0◦, and 1.54◦ (57.35◦, 58.0◦, and 58.46◦) twisted bilayer MoS2,
respectively.
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FIG. 4. (a)–(c) [(d)–(f)] Interlayer spacing distribution in 2.65◦, 2.0◦, and 1.54◦ (57.35◦, 58.0◦, and 58.46◦) twisted bilayer MoS2,
respectively.

we are working with the relaxed structure of TBM, we do
not use any vdW correction while computing the electronic
structure. We only sample the � point in the moiré Brillouin
zone (MBZ) to obtain the converged charge density for the
moiré superlattice calculations. For the unit-cell simulations
we use a 12 × 12 × 1 sampling of the unit-cell BZ (UBZ).
A plane-wave energy cutoff of 250 Ry is used to generate
the three-dimensional (3D) grid for the simulation. Spin-orbit
coupling leads to a gap opening of 150 meV at the valence
band edge at the K point in all unit-cell stackings. Due to the
large difference in the energy between the �-point VBM and
the K-point VBM in the UBZ, spin-orbit coupling effect does
not influence the flat bands close to the valence band edge in
TBM [19]. Hence, we do not include spin-orbit coupling in
our electronic structure calculations.

FIG. 5. (a), (b) [(c), (d)] Distribution of strains in the bottom
and top layers of 2.65◦ (57.35◦) TBM. A line is drawn connecting
each Mo to its six nearest neighbors. The color of the line shows
the strain in that direction. The dots correspond to the location of
high-symmetry stackings in the twisted bilayer.

III. STRUCTURAL RELAXATIONS

Starting with the rigidly twisted structure, upon relaxation,
the atoms in each layer locally shear in opposite directions to
attain a lower-energy stacking [19,55]. This shear leads to an
in-plane strain in each layer of the moiré superlattice. The final

FIG. 6. Electronic structure of 2.65◦ TBM. (a) Band structure
(black) of 2.65◦ TBM. Green dashed lines show band structure of
purely AA′ stacked bilayer MoS2 in the same superlattice. The insets
show plots of the valence and conduction band edges. (f) Charge
density |ψ�|2 of the states labeled in the inset of (a). The charge
density is averaged in the out-of-plane direction. (c) �V (xMo, yMo)
(in eV), for 2.65◦ TBM. (d) Distribution of the local potential barrier
(in eV) between the layers, Vbarr (xMo, yMo), in the moiré. The extent
of hybridization between the layers is inversely proportional to the
barrier.
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FIG. 7. (a)–(c) Band structure of 2.65◦, 2.0◦, and 1.5◦ TBM. The insets show enlarged plot of the bands close to the valence band edge.

relaxed pattern is hence a balance between the cost of in-plane
strain and stacking energy gain. To describe the redistribution
of stackings upon relaxation, we will use order parameters
[25] (OP), �u and �v [19], to describe the local stackings for
twist angles close to 0◦ and 60◦, respectively. �u for a local
stacking is defined as the displacement vector that transforms
the stacking to the highest-energy AA stacking. �v similarly
transforms any local stacking in the moiré to the A′B stacking.
By definition, smaller the value of |�u| or |�v| the less favorable
the stacking. Figure 3 shows the evolution of the |�u| and |�v|
as a function of twist angle. The AB and BA regions remain
triangles of equal area as twist angle approaches 0◦. For twist
angles approaching 60◦, on the other hand, the AA′ stacking
region grows appreciably compared to other stackings. The
AA′ stacking is lower in energy than AB′. Hence, the area of
AA′ stacking in the moiré is larger and leads to a reduced
threefold symmetry around A′B. The domain wall network
has the shape of Reuleaux triangles [27,28] in twist angles
close to 60◦, as opposed to equilateral triangles in twist angles
close to 0◦. This contrast in the relaxation pattern leads to
different electronic structure for twist angles close to 0◦ and
60◦. Furthermore, atomic displacements in the out-of-plane
direction lead to an undulating interlayer spacing in the moiré
[19,27]. The local interlayer spacing in the moiré (Fig. 4)
is characteristic of the local stacking. The A′B stacking has
the largest interlayer spacing due to Pauli repulsion owing to
sulfur atoms in the bottom layer facing sulfur atoms in the
top layer. The lattice reconstruction leads to the formation of
an inhomogeneous strain distribution in the moiré (Fig. 5).
The strain is localized along the soliton regions. Within each
soliton region a network of tensile and compressive strain
lines is formed. The magnitude and direction of these strains
is switched between the top and bottom layers (Fig. 5).

IV. ELECTRONIC STRUCTURE

A. Twist angles close to 0◦

The electronic band structure plotted in the moiré Bril-
louine zone (MBZ) is a result of folding of bands from
the UBZ of the individual layers [Figs. 1(c) and 1(d)]. It is
hence essential to distinguish pure band-folding effects from
that of flattening of the bands due to the moiré. We thus
separately compute the band structure of pure AA′ stacking
in the same superlattice. Figure 6(a) shows bands of pure AA′

stacking folded into the MBZ and also the band structure of
the 2.65◦ TBM. The bands of TBM are clearly flatter than
those of pure AA′ stacking of same supercell size. The bands
flatten due to the localization of the corresponding electronic
states in real space. The valence band edge states, v1 and
v2 in inset of Fig. 6(a), are degenerate at the K point of
the MBZ corresponding to the symmetry of the underlying
lattice. This degeneracy at the K point is present in all twist
angles close to 0◦ in our study (Fig. 7). The dispersion of
the v1 and v2 valence bands is similar to graphene due to
the localization of these states in a hexagonal pattern, avoid-
ing the AA stacking region, as shown in Fig. 6. Similar to
graphene, the degeneracy at the K point is broken by the
application of an external uniaxial strain to the moiré.

The localization of the bands at the valence band edge
occurs due to inhomogeneous hybridization between the two
layers in the moiré. As discussed previously [19], this can be
qualitatively understood in terms of ordering of the VBM with
respect to the vacuum level amongst different high-symmetry
stackings (see Fig. 2). The ordering of the VBM among the

FIG. 8. Spurious localization in rigidly twisted structures. (a),
(b) Band structure of 2.65◦ and 57.35◦ rigidly (unrelaxed) twisted
bilayer MoS2, respectively. The interlayer spacing is fixed at 6.3
Å. The inset shows an enlarged plot of the valence band edge. (c),
(d) Distribution of valence band maximum and conduction band
minimum wave functions, |ψ |2, of band structures shown in (a) and
(b), respectively.
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FIG. 9. Electronic structure of 58◦ TBM. (a) Band structure of 58◦ TBM showing the multiple energy-separated ultraflat bands. The inset
shows and labels the flat bands close to the valence and conduction band edges. (b) Distribution |ψ� (r)2| of the states labeled in (a), averaged
in the out-of-plane (z) direction. The corresponding equilateral triangle quantum well wave functions of the ground state (ψA1

1,0) and first five
excited states are shown alongside. (c) |ψ� (r)2| of the conduction states labeled in (a), c1–c5, averaged along the z direction. The degeneracies
of the wave functions in (b) and (e) are shown in brackets.

stackings is determined by splittings at the � point in the UBZ
(Fig. 2). Since the AA and A′B stackings have lower VBM
(with respect to vacuum) compared to the other stackings,
they cannot contribute to the VBM of the moiré superlattice.
The conduction band edge lines up among the stackings and
provides no hint at a preferred localization site. We can use
the DFT potential barrier between the layers of a stacking
as a measure of the interlayer hybridization for that stacking
(Fig. 2). The extent of hybridization between the layers is in-
versely proportional to the DFT potential barrier between the
layers. To create a map of the local potential barrier between
the layers of the moiré, we construct a Voronoi diagram using
the Mo atoms of the bottom layer. The self-consistent DFT
potential V (x, y, z) of the moiré is then planar averaged in

each Voronoi cell individually to obtain V (xMo, yMo, z). (xMo,
yMo) are the coordinates of the Mo atoms in the bottom layer.
The barrier potential is then obtained for each Voronoi cell
giving Vbarr (xMo, yMo). The distribution of Vbarr (xMo, yMo) in
Fig. 6(d) shows the inhomogeneous hybridization between
the layers. As expected, the barrier is lowest for AB and BA,
and highest for the AA stacking region. Neglecting structural
relaxations leads to a spurious energy-separated flat band at
the valence band edge (Fig. 8). This flat band is localized at
the high-energy stacking regions AA or A′B for twist angle
close to 0◦ or 60◦, respectively (Fig. 8). The origin of this lo-
calization is also inhomogeneous hybridization in the rigidly
twisted moiré pattern. Due to the absence of varying interlayer
spacing in the moiré, the ordering of the VBM among the

FIG. 10. Electronic structure modification of individual layers. (a) Band structure of the bottom layer of relaxed 57.35◦ moiré superlattice.
The inset shows the bands close to the valence and conduction band edges. The band-edge states are folded in from the K point of the unit-cell
BZ. (b) Distribution of valence band edge (v1 and v2) and conduction band edge (c1 and c2) wave functions corresponding to the states shown
in (a).
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FIG. 11. (a), (b) Confining potential �V (xMo, yMo) for 57.35◦

and 58◦ TBM, respectively. (c), (d) Local potential barrier distri-
bution (in eV) between the layers Vbarr (xMo, yMo) in 57.35◦ and 58◦

TBM.

unit-cell stackings is reversed [19]. This leads to localization
at the AA stacking.

B. Twist angles close to 60◦

In 58◦ relaxed TBM, several ultraflat bands form at the
valence and conduction band edges [Fig. 9(a)] and are well
separated in energy. The states close to the valence band edge
localize at the AA′ stacking and conduction band edge states at
AB′ [Figs. 9(b) and 9(c)]. The spatial distribution of the wave
functions can be understood in terms of an infinite equilateral

triangle well potential. A quantum particle in such a well
(of side a) can be described using two quantum numbers p
and q. The energies are given by Ep,q = (p2 + q2 + pq)E0

[56], q takes the values 0, 1/3, 2/3, 1, . . . and p = q + 1, q +
2, q + 3, . . . . The ground state E1,0 = E0 = 2h2/3ma2. The
eigenfunctions can be further labeled by A1, A2, and E . The
A1 and A2 states are singly degenerate, while the E states are
doubly degenerate [56,57]. In 58◦ TBM, the wave functions
and degeneracies of the first six states (v1–v6) close to the
valence band edge are in excellent agreement with those of
the ground state and first five excited states of the infinite
triangle potential well [Fig. 9(b)]. Similarly, the conduction
band edge states also agree well, however, the degeneracies
do not follow those of the infinite triangle well. c1 and c2 both
are doubly degenerate and correspond to ψ

A1
1,0 of the triangular

well. These states have a valley degeneracy associated with
them. The four states that make up c1 and c2 are folded
in from the K and K ′ points of the UBZ of the top and
bottom layers. The K-point wave function in the monolayer
is strongly localized in the out-of-plane direction [46]. Weak
interlayer hybridization leads to a small gap opening between
the c1 and c2 states. c3 is fourfold degenerate, and has
an envelope function with a node at the center of the well
[Fig. 9(c)] resembling ψE

4
3 , 1

3
. The six degenerate states are a

result of the folding of the � point (between � and K) valley
in the UBZ. The states close to the valence band edge fold
only from the � point of the UBZ. The degeneracies are hence
unaffected and follow those of the infinite triangular well. It
should be noted that in contrast to the ideal infinite triangle
potential well, the potential in moiré is periodic and of finite
depth. We thus expect only a few states close to the valence
and conduction band edges to be confined in a triangular
region.

FIG. 12. Effect of constrained relaxation in 57.35◦ TBM. (a), (b) Distribution of order-parameter and interlayer spacing in 57.35◦ TBM
with constrained relaxation (only out-of-plane relaxations are allowed), respectively. (c), (d) Band structure of 57.35◦ TBM with full relaxation
and constrained relaxation, respectively. (e) |ψ |2 distribution of VBM and CBM wave functions, averaged along the out-of-plane direction, for
the band structure in (d).
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FIG. 13. (a), (b) Distribution of Vbarr (xMo, yMo) and
�V (xMo, yMo) in constrain relaxed (only out-of-plane relaxations are
allowed) 57.35◦ TBM, respectively.

We also study the effect of the structural reconstruction
on the electronic structure of the individual layers. Figure 10
shows the electronic structure of the puckered bottom layer
of relaxed 57.35◦ moiré. The strains (Fig. 5) in the layer
leads to localization of the band edge states (Fig. 10). As
opposed to the bilayer, the valence and conduction bands
in the monolayer fold in from the optically active K point
in the UBZ. The localization of the K-point wave functions
strongly suggests the modification of excitonic properties of
these systems. This could explain the recent discovery of
moiré excitons in twisted bilayer TMDs [23,24,42–45].

C. Origin of triangular quantum dots

To understand the origin of the triangular quantum well po-
tential, we plot the distribution of Vbarr (xMo, yMo) [Figs. 11(c)
and 11(d)], which shows the inhomogeneous hybridization
between the layers. As expected, the barrier is lowest for
AA′, AB′ regions and highest for the A′B stacking region
(Fig. 2). This suggests localization of the valence band edge
states at the AA′ and AB′ regions in the moiré. However, the
valence band edge states localize at the AA′ stacking alone
and conduction band edge states at AB′ [Figs. 9(b) and 9(c)].
We find that in addition to the inhomogeneous hybridization,

FIG. 14. Effect of constrained relaxation in 2.65◦ TBM. (a) Band
structure of 2.65◦ TBM with constrained relaxation of the superlat-
tice (only out-of-plane relaxations). (b) |ψ |2 distribution of VBM and
CBM wave functions, averaged along the out-of-plane direction, for
the band structure in (a).

FIG. 15. Evolution of electronic structure with twist angle.
(a) Evolution of ultraflat bands close to the valence and conduction
band edges for twist angles 57.35◦, 58.0◦, and 58.5◦. The band gap
is not to scale and is shown using a green arrow. (b) Evolution
of the splittings between the first two states at the valence band
edge, �Ev1−v2, first (�Ec1−c2) and second two states (�Ec2−c3) at the
conduction band edge. (c) [(d)] The wave-function distribution of the
v1 (c1) state in the moiré, averaged along the out-of-plane direction,
for the three twist angles.

FIG. 16. (a), (b) Band structure of 5.1◦ and 54.9◦ TBM, close to
the valence band edge, respectively. The bandwidth is measured for
the first two bands in (a) and the first band in (b). (c), (d) Bandwidth
[defined as shown in (a) and (b)] as a function of twist angle between
MoS2 layers.
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FIG. 17. (a)–(c) Distribution of the valence band wave functions of TBM, averaged in the out-of-plane direction, for twist angles 2.65◦,
2.0◦, and 1.5◦, respectively. The |ψ |2 distribution of the first four valence states are plotted at the � point.

a modulating potential is introduced in the moiré for twist
angles close to 60◦ which explains the localization pattern. To
calculate the modulating potential, we first average the DFT
potential in a slab of length 17 \textrmÅ in the out-of-plane
direction containing the bilayer, to obtain VM(x, y). We then
macroscopic average VM(x, y), as discussed above, to obtain
VM(xMo, yMo). The confining potential with respect to AA′
stacking is given by �V (xMo, yMo) = VM(xMo, yMo) − V̄AA′ ,
where V̄AA′ is unit-cell averaged potential of AA′ stacking.
�V (xMo, yMo) has a minimum at the AB′ site, which confines
the electrons [Fig. 9(c)], and a maximum at A′B and AA′. The
inhomogeneous hybridization rules out localization at A′B,
hence inducing the holes to localize at the AA′ stacking. The
confining potential has the shape of an equilateral triangle
[Figs. 11(a) and 11(b)]. No modulation in �V (xMo, yMo) is
found for twist angles close to 0◦. These structures corre-
spondingly have no localization at the conduction band edge.
Hence, the electronic structure for twist angles close to 0◦ is
very different from that close to 60◦.

To understand the origin of the confining triangular po-
tential in twist angles close to 60◦ we probe the role of
local strains in the moiré. The strain is localized at the
shear soliton regions in each layer (Fig. 5). We can construct
a strain-free moiré by allowing atomic relaxations only in
the out-of-plane direction (from the rigidly twisted moiré
superlattice). The interlayer spacing is allowed to vary in
this procedure [Fig. 12(b)], hence the ordering of the VBM
among the stackings is preserved. We find that in this struc-
ture the multiple energy-separated ultraflat bands in 57.35◦
vanish [Figs. 12(c) and 12(d)]. The conduction bands are
delocalized due to the absence of a modulating potential
well and the valence bands are localized at the AA′ and AB′
sites [Fig. 12(e)], as expected from the hybridization argu-
ments. Vbarr (xMo, yMo) and �V (xMo, yMo) for this structure are
shown in Fig. 13. This clearly establishes in-plane relaxations,
leading to strains, as the driving mechanism for formation
of the modulating potential well, which in turn determines
localization of the wave functions. The localization in 2.65◦
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TBM, on the other hand, is not affected by constrained
relaxation (Fig. 14).

D. Evolution of electronic structure with twist angle

Figure 15 shows evolution of the flat bands for twist angles
57.35◦, 58.0◦, and 58.5◦. As the twist angle approaches 60◦,
the AA′ stacking area grows larger than the other stackings
(Fig. 3). As the area of confinement of holes increases, the
spacing between the flat bands close to valence band edge
decreases as shown in Fig. 15(b). While the area of AB′ region
does not grow appreciably as the twist angle approaches 60◦
(Fig. 3), the confining potential depth increases (Fig. 11). The
spacings between levels at the conduction band edge are thus
relatively unaffected [Fig. 15(b)]. Furthermore, the band gap
of the moiré superlattice reduces as the twist angle approaches
60◦. While the band gap shown in Fig. 15(a) is the band gap
of the entire moiré, the band gap also varies locally in the
moiré pattern. The valence and conduction band edge energies
for each local stacking are different due to the presence of
the confining potential well. The valence band edge energy
is highest at the AB stacking region and the conduction band
edge is lowest at the AB′ stacking. This spatial variation in the
local density of states has been captured by scanning tunneling
spectroscopy measurements of moiré superlattices [58,59].

The wave-function localization of the band edge states for
57.35◦, 58.0◦, and 58.5◦ twist angles is shown in Figs. 15(c)
and 15(d). The evolution of these states from 7.3◦ to 1.5◦ and
52.7◦ to 58.5◦ have been compiled into a movie available [60]
in the Supplemental Material. The states at the band edges
can be regarded as triangular quantum dot states for twist
angles greater than 56◦. The real-space confinement of the
wave functions leads to reduction in the bandwidth of these
states. The bandwidth of the first flat band at the valence band
edge reduces monotonically as the twist angle approaches 0◦

or 60◦ as shown in Fig. 16. The flat bands for twist angles
greater than 56◦ are nearly dispersionless with bandwidth less
than 1 meV. This evolution clearly indicates the absence of
unique “magic” angles for flat-band formation in TBM.

We also study the evolution of the first four flat bands at
the valence band edge for twist angles close to 0◦ (Fig. 17).
The wave functions for twist angles close to 0◦ always avoid
the AA stacking region, as expected from the inhomogeneous
hybridization in the moiré. The localization patterns could be
considered as solutions to a more complex periodic potential
well with minima at the AB and BA sites. The flat bands close
to the valence and conduction band edges for twist angle close
to 60◦, on the other hand, behave like triangular quantum dots
as discussed above.

V. CONCLUSION

We have demonstrated the formation of an array of trian-
gular quantum dots in moiré patterns of TBM for twist angles
close to 60◦. The holes and electrons are spatially separated
which could lead to long-lifetime confined excitons in this
system. By probing the origin and evolution of the ultraflat
bands we conclude that no special magic angles exist in TBM
like they do in twisted bilayer graphene. This makes it easier
to experimentally probe ultraflat bands in these systems. The
contrasting electronic structure of twist angles close to 0◦ and
60◦ is due to an additional modulating confining potential in
twist angles close to 60◦. In-plane structural reconstruction of
the moiré is responsible for the formation of this confining
potential. External strains can thus be used to engineer the
confining potential and flat bands in these systems.
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