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Disorder information from conductance: A quantum inverse problem

S. Mukim®,' F. P. Amorim®,? A. R. Rocha,” R. B. Muniz,? C. Lewenkopf,? and M. S. Ferreira® -4
1School of Physics, Trinity College Dublin, Dublin 2, Ireland
2 Instituto de Fisica Tedrica, Sdo Paulo State University, 01140-070, Sdo Paulo, Brazil
3 Instituto de Fisica, Universidade Federal Fluminense, 24210-346 Niterdi, Brazil
4Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials
and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland

® (Received 4 April 2020; accepted 20 July 2020; published 5 August 2020)

It is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully
specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device
from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here
we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy
spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion
methodology that can identify the nature and respective concentration of randomly-distributed impurities by

analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in
point using both tight-binding and density functional theory simulations, indicating that this inversion technique
is general, robust, and can be employed to extract structural and compositional information of disordered
mesoscopic devices from standard conductance measurements.
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Structures whose dimensions are comparable to or smaller
than the electronic mean free path display transport features
not associated with the classical ohmic behavior [1]. These are
quantum features found by solving the Schrédinger equation
once the system Hamiltonian is known. Indeed, it is straight-
forward to describe how current flows in a quantum device
by calculating its conductance once all scattering centers
are specified. However, to do this in reverse, i.e., to find
information about scatterers in a quantum device by simply
looking at its conductance is rather challenging. This is a kind
of inverse problem (IP) which consists of obtaining from a
set of observations the causal factors that generated them in
the first place. IP are intrinsic parts of numerous visualization
tools [2-5] but are not as common in the quantum realm and
even less so in the presence of disorder.

Disorder makes the description of the impurity potential
by inverse scattering methods quite a daunting task. Multiple
scattering depends on the scatterers’ locations and therefore
likely to affect the electronic dynamics in seemingly unpre-
dictable ways. To make matters worse theory shows that quan-
tum interference in chaotic [6] and/or diffusive systems [7]
gives rise to fluctuations whose statistical properties are uni-
versal, i.e., system independent, indicating that standard IP
methods are neither practical nor useful in such situations.

Here we give a different twist to quantum IP approaches
and demonstrate that, instead of detrimental, disorder may be
actually beneficial to extracting information about scattering
centers in a quantum device. In particular, we focus on the
energy-dependent conductance of a quantum system, here-
after referred to as the conductance spectrum, which will serve
as the only input of the inversion procedure described here.
This is a quantity normally obtained by standard experimental
setups of a gated two-terminal device but may also be found

2469-9950/2020/102(7)/075409(6)

075409-1

by calculation once the underlying Hamiltonian is fully spec-
ified. Here we introduce our inversion methodology by using
the latter as a proxy for the former, i.e., calculated conduc-
tance spectra representing their experimental equivalent. The
advantage of using calculated input functions is that we can
refer back to the Hamiltonian that generated them in the first
place, making it possible to assess the success of the inversion
procedure.

Let us start by defining the system to be used through-
out the paper. It consists of two electrodes separated by a
scattering region of length L and width W, as illustrated
in Fig. 1(a), a rather typical setup of electronic transport.
The distinction between the leads and the central region is
that the latter contains impurities as scattering centers [8]. In
the linear response regime, the Landauer conductance reads
g= 262/hde(—8f/8E)F(E), where f(E) is the Fermi
distribution and I'(E) is the dimensionless conductance (or
transmission) given by [9,10]

I'(E) = u[G"(E)Ir(E)G*(E)TL(E)]. ey

Here G” (G* = [G"]") is the full retarded (advanced) Green
function and I';, (T'g) is the line width function accounting for
the injection and lifetime of states in the left (right) contact.
For simplicity, we consider the zero-temperature limit G =
2¢2/h T'(E). Thermal corrections will be shown to have little
effect on our procedure.

The expression for I' in Eq. (1) is model independent, i.e.,
once the Hamiltonian is known one can find the corresponding
Green function and obtain the energy dependent conductance
of the system [9]. We focus on systems with relatively simple
electronic structures, namely graphene nanoribbons (GNR).
Although not an essential requirement, it helps to illus-
trate the methodology since GNR are well described by the
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FIG. 1. (a) Schematic diagram of the system under considera-
tion. Two semi-infinite leads of width W are separated by a region
of length L containing a concentration n of impurities represented
by red dots. (b) Calculated conductance for a system made of a
graphene nanoribbon of length L = 100 unit cells as a function of the
chemical potential (in units of 7). The dashed line corresponds to the
conductance of the pristine system, i.e., in the absence of impurities.
The solid line shows the conductance for a disordered configura-
tion containing N = 42 substitutional impurities (¢ = 0.5¢), which
accounts for a concentration of n = 3%.

tight-binding model [11,12]. In this case the nearest-neighbor
hopping ¢ and the onsite energies fully define the electronic
structure of the nanoribbon. Fig. 1(b) shows the energy-
dependent conductance for an armchair-edged GNR of width
W = 3a, a = 2.7 A being the graphene lattice parameter. The
dashed line is the conductance spectrum I'y for the pristine
GNR. Results are shown for positive energies knowing that
[o(E) = To(—E).

We now introduce N substitutional impurities. It is conve-
nient to express the impurity number also as the percentage
concentration n defined as n = 100 x (N/Ny), where Ny is
the total number of sites in the central region. Both N and
n will be used interchangeably. The scattering strength of
the impurities is characterized by the contrast between their
onsite potential € relative to that of the host, chosen to be
zero. The solid line of Fig. 1(b) shows the conductance for
the GNR with N = 42 impurities, € = 0.5¢, and L = 100 unit
cells (n = 3%). Impurity locations were randomly selected
but kept fixed in the underlying Hamiltonian that generated
the conductance I'(E) of Fig. 1(b).

Being the conductance sensitive to the locations of scatter-
ing centres, it is difficult to devise an inversion tool capable of
spatially mapping all impurities from the conductance spec-
trum information alone. The brute-force method of comparing
the input conductance I'(E) with those of every possible
disorder configuration is not viable because the number of
combinations is too large for any practical situation. Machine-
learning strategies are currently being attempted to overcome
this combinatorial hurdle [13-20] but spatial mapping of
quantum devices through inversion remains challenging.

Nevertheless, given the conductance spectrum I'(E) of
a device, one might ask whether it is possible to find the
exact number of scattering centers in it. This may not reveal
the position of every impurity but it is a valuable piece of
information and a lot more feasible to obtain. While the brute-
force approach remains impractical, we must account for as
many disorder realizations as possible. We define the con-
figurationally averaged (CA) conductance (I") by summing
over M realizations with the same number N of impurities (or
concentration n), i.e.,

1 M
(PE,m) = 22> THE) )
j=1

where j labels the different configurations. See SM [21] for a
discussion on the suitable choices for M.

The deviation between an arbitrary conductance result and
its CA counterpart is given by

AT(E,n) =T(E) — (I'(E, n)). 3)

We reiterate that I'(E) acts as the input conductance spectrum
of a single realization and represents the immutable conduc-
tance of the device under investigation. The CA conductance
spectrum, on the other hand, reflects the contribution of very
many configurations and depends, in addition, on the impurity
concentration. By treating n as a variable parameter, we can
look for minimization trends in AT'(E, n) that might indicate
the real concentration in the device. Unfortunately, when
plotted as a function of n in Fig. 2(a), the deviation AT" for
a fixed energy E is featureless with wide error bars that result
from repeating the calculation 1000 times.

However, much cleaner trends are seen when AT is used
in the form of a functional that measures how good a match
['(E) and (I'(E, n)) are. This quantity is the misfit function
x (n) defined as

&

x(n) = f dE [T (E) — (T(E, n))*, “
where £_ and &£, establish the energy window over which
the integration takes place. Figure 2(b) shows x as a function
of n and displays a more distinctive trend with smaller error
bars. The plot indicates that there is a sweet spot in impurity
concentration for which the integrated deviation is minimal.
Remarkably, this agrees with the actual number of impurities
used in the calculation of I'(E), shown as a vertical (red)
dashed line in the lower part of Fig. 2(b). Such a coincidence
suggests that it might be possible to use yx (n) as an inversion
tool to find the number of impurities in a quantum device
from simple conductance measurements. Note that no prior
knowledge of the actual number of impurities was necessary
to identify the misfit-function minimum.

To demonstrate that the agreement between the minimizing
concentration of x and the actual impurity concentration is
not a fortuitous coincidence, we proceed to write the CA
conductance [10] to linear order in n

(T(E, n)) =To(E) — B(E)n, &)

where B(E) is the derivative of (I'(E, n)) with respect to n
evaluated at n = 0. The misfit function y (n) will naturally
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FIG. 2. (a) Absolute value of the conductance deviation
|AT'(E, n)| as a function of the impurity concentration n (in per-
centage) for a fixed energy (E = 0.42¢). (b) Misfit function x (in
arbitrary units) as a function of n. The vertical (red) dashed line on
the lower part of the panel indicates the real number of impurities
used to generate the sample conductance, which coincides with the
minimum of y (n). The (black) dotted line in the upper part of the
panel is the approximate concentration n*. Integration limits were
E_=0.5t and &, = 1.5¢ and the solid (blue) line is simply a guide
to the eyes.

develop a minimum at n* = —B/A, where

£, &,
A:/ dEﬂz(E) and B:/ dEB(E)T'(E) — To(E)].

(6

The vertical (black) dotted line shown on the upper part
of Fig. 2(b) indicates the value of n*. Note that both the
dotted and dashed lines are aligned, i.e., n* coincides not only
with the actual concentration n but also with the impurity
concentration that minimizes x (n). In fact, n* is an excellent
approximation up to 3% impurity concentration and provides
a simple yet accurate way of identifying the misfit function
minimum [22].

Besides the impurity concentration, other degrees of free-
dom can be added to the IP in question. Let us now consider
an arbitrary sample conductance but this time assume that
nothing is known about the impurity, i.e., neither its con-
centration n nor its onsite potential €. In this case, the input
I'(E) is simply treated as the conductance of a system with an
unknown number of unspecified impurities. To calculate the
misfit function we must compute the CA conductance which
will now depend on € as well as n. A 2D contour plot of x
as a function of these two quantities is shown in Fig. 3(a).
A distinctive minimum is seen which, once again, coincides
with the exact values used to generate the input conductance,
shown as dashed lines. Consequently, both the type and
concentration of scattering centres inside a quantum device

FIG. 3. 2D contour plots of the logarithm of the misfit function.
Dashed lines in the plots indicate the values of the respective quan-
tities used in the underlying Hamiltonians. (a): x as a function of n
and €. (b): x as a function of n, and n,,.

can be identified through its energy-dependent conductance
fingerprints. Furthermore, still using two degrees of freedom,
the IP can also be implemented in the case of two types of
impurities with unknown concentrations. In other words, two
impurities described by known onsite potentials €4 and €g
are randomly dispersed with respective concentrations n4 and
np, which are unknown. Writing the CA conductance as a
function of both concentrations leads to the misfit function
being plotted now as a function of the same quantities in
Fig. 3(b). The dashed lines stand for the actual values ny
and np. They accurately match the concentration values that
minimize the misfit function. This indicates that it is possible
to increase the number of degrees of freedom in the inversion
procedure, offering variety and versatility in how we wish to
interrogate the system. While such an increase may lead to the
appearance of more minima in the misfit function, it remains
a straightforward numerical task to identify them all.

To show that this method is indeed model independent we
have also tested it in the case of a system fully described
by density functional theory (DFT). In particular, DFT-based
conductance calculations were performed for armchair GNR
of sizes L = 100 unit cells and W = 3a containing a specific
spatial distribution of N = 10 nitrogen atoms as substitutional
impurities, which corresponds to n = 0.7%. See SM [21] for
details of the DFT calculations. The solid line in Fig. 4(a)
shows the conductance spectrum I'(E) of the system obtained
within DFT, which will now serve as the input conductance for
the inversion procedure. Regarding the CA conductance, there
are two options on how (I'(E, n)) can be obtained. The first
option is to repeat the steps taken to generate I'(E') of Fig. 4(a)
over several different disorder configurations. Bearing in mind
that the impurity concentration n must be kept as a variable
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FIG. 4. (a) The (red) solid line is the conductance spectrum I'(E)
obtained from a specific disorder realization of N = 10 nitrogen
impurities, i.e., n = 0.7%. The (blue) dashed line represents the
CA conductance (M = 2000) calculated for the concentration that
minimizes the misfit function y, shown in (b) as a function of n.
The misfit function was generated with an energy window defined by
E_ =0and &; = 2eV.Dashed line indicates the exact concentration
used to generate the input conductance.

parameter, the averaging procedure defined in Eq. (2) requires
M different configurations for every single value of n, which
indicates how computationally demanding this task might
become if carried out entirely within DFT. The alternative
option is to use the tight-binding (TB) model to carry out
the CA calculation. In this case the TB model provides a
fast averaging strategy without necessarily compromising in
accuracy.

Here, we have selected the latter option and made use
of DFT conductance spectra to identify suitable TB param-
eters that describe the nitrogen impurities in the GNR. See
SM [21] for details, including a brief discussion on the
choices available to extract TB parameters from DFT calcula-
tions [23-26] and their implementation in large scale transport
calculations [27-29]. The CA conductance (I'(E, n)) is then
generated within the TB model employing M = 2000 real-
izations, leading subsequently to the misfit function x(n) of
Fig. 4(b). Once again, x(n) displays a minimum at exactly
the same nitrogen concentration used to generated the input
conductance I'(E). Another indication of success can be seen
by plotting the CA conductance evaluated at the minimizing
concentration of x(n). Shown as a dashed line in Fig. 4(a),

it has all the key features of I'(E) even though both curves
were calculated independently. Despite the computational
complexity of obtaining the misfit function entirely within
DFT, this has also been tested and, reassuringly, we find
exactly the same answer (see SM [21] for details).

All input spectra in this paper were calculated from known
Hamiltonians because it is then straightforward to test the
success of the inversion method. Ultimately, inversions must
be performed based on experimental conductance data of
systems for which we do not have the full Hamiltonian. This
calls for an inversion tool that is reliable, general, and robust.
The fact that our inversion strategy works for systems whose
electronic structures are described by a simple TB model as
well as by DFT calculations is indicative of the generality and
robustness of this approach.

That disorder is beneficial to this inversion procedure is
made evident by the distinction between the two panels of
Fig. 2. Viewed at a fixed energy, the deviation between the
input and the CA conductance spectra reveals very little about
the system. In contrast, the misfit function entails a lot of in-
formation. The efficiency of the procedure relies on an ergodic
hypothesis: conductance fluctuations of a single sample versus
energy are related to sample to sample fluctuations at a fixed
energy. More precisely, the ergodic hypothesis assumes that
a running average over a continuous parameter upon which
the conductance depends is equivalent to sampling different
impurity configurations. Here the continuous parameter is the
energy, but the concept can be extended to a range of other
quantities, e.g., magnetic field, gate voltage, etc. A thorough
mathematical discussion of this issue is beyond the scope of
this paper, but it is worth mentioning that the ergodic hypoth-
esis can be proven exactly for certain models of disordered
systems [30-32]. That explains why the energy integration
induces a distinctive minimum in x (r) since it is analogous
to considering a wider universe of disorder configurations in
the CA procedure. The success of the inversion procedure
will therefore depend on how wide the integration range is.
See SM [21] for details on the suitable choices for integration
limits.

Another feature of the conductance fluctuations of
quantum devices [7,33] is that the correlation function
C(6X) = (I'(X + 8X/2)I'(X — 8X/2)) — (I'(X))? is also uni-
versal [31]. The latter is characterized by a correlation
length §X.,, that is system dependent. Therefore, the method
works best when the integration interval AX is such that
AX/5Xeor > 1. In our case, where we consider variations of
the system chemical potential, § E.o, scales with the mean level
density times the transmission [34], which makes §E., much
larger than typical experimental temperatures, justifying our
earlier claim that temperature has little effect on our inversion
procedure. This also explains why the energy window used in
the misfit-function definition does not have to be very large.

In summary, the inversion procedure presented here
provides a mechanism capable of identifying the composition
of scattering centres in a quantum device by simply looking
at the energy dependence of the two-terminal device
conductance. Assuming that the impurity type within the
device is known, the procedure establishes the exact impurity
concentration in it. Alternatively, if no information is known
a priori about the scatterers, the inversion identifies their
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scattering strength and respective concentration. Finally, with
a mixture of two different types of impurities we are able to
establish the fractional concentration of each component of
the device. Despite being presented with GNR, the technique
is not material specific and performs remarkably well in the
ballistic, diffusive, and at the onset of localized transport
regimes. The method is based on the notion that conductance
fluctuations carry little system-specific information, the aver-
age conductance depends smoothly on the variables of interest
and on a standard ergodic hypothesis [30], requiring only an
effective (single-particle) description of the system [35]. This
small set of conditions renders a very robust and versatile
methodology that can extract structural and compositional

information of quantum devices from standard transport
measurements.
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