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Bulk topological proximity effect in multilayer systems
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We investigate the bulk topological proximity effect in multilayer hexagonal lattice systems by which one can
introduce topological properties into a system composed of multiple trivial layers by tunnel coupling to a single
nontrivial layer described by the Haldane model. In a multilayer system arrangement of different layers can
significantly affect its properties. This mechanism is relevant for the bulk topological proximity effect leading
to complex behavior like the emergence of dark states. The response of a trivial system to the proximity of a
topological insulator appears to be highly nonlocal, in contrast to the proximity effect observed in context of
superconductivity. Furthermore, for a wide range of parameters our system is semimetallic with multiple Dirac
points emerging in the Brillouin zone.
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I. INTRODUCTION

The proximity effect of superconductivity is a well studied
phenomenon. By bringing a superconducting material with
a finite, local, U (1) order parameter into contact with a
nonsuperconducting one, the order parameter is inherited into
the bulk of the nonsuperconducting material. This effect has
an analog for topological materials [1], even though they do
not possess a local order parameter. Hsieh et al. [2] describe
the effect of a Chern insulator with Chern number C = 1
coupled to a topologically trivial material. Due to coupling
the trivial material becomes topologically nontrivial with an
opposite Chern number C = −1. It is important to emphasize
that this is bulk physics and must be differentiated from
topological edge states. The effect has been studied for bilayer
hexagonal lattice systems [3] in Refs. [4,5]. Reference [4]
introduces a topological invariant for open systems which
makes it possible to compute the Chern number of a subsys-
tem, e.g., for single layer. This technique gives evidence of the
emergence of the C = −1 Chern number in the trivial layer.
Another study investigates bilayers of two Haldane insulators
with opposite Chern numbers and found various topological
many-body phases, especially if two-body interactions in one
layer are applied [6]. A spinful bilayer system of stacked
Kane-Mele layers [7] has been investigated in Ref. [8], and
various types of bulk proximity effects involving topologically
nontrivial systems coupled to few topologically trivial layers
have been recently studied in real materials, both theoretically
[9,10] as well as experimentally [11].

The main difference between the superconducting and the
bulk topological proximity effects is that the latter does not
possess a local order parameter. Moreover, the proximity
of the nontrivial layer induces topological properties with
opposite chirality [2,5], as manifested by the sign of the
topological invariant [4]. The full system is then topologically

*Jaromir.Panas@fuw.edu.pl

trivial. Following this it is a priori not evident how, e.g., two
equal trivial layers would ‘compensate’ the Chern number
of a third, nontrivial one. By studying multilayer systems
we aim to get a better understanding of the bulk topological
proximity effect and how it differs from the proximity effect
of superconductivity.

II. THREE-LAYER SYSTEM

We begin our investigation with a detailed study of a
three-layer system, which is described by a tight-binding
model with spinless, noninteracting fermions on a honeycomb
lattice. In our investigation we allow for the following terms in
the Hamiltonian: (i) the nearest-neighbor (NN) hopping with
an amplitude t1, (ii) the next-nearest-neighbor (NNN) hopping
with an amplitude t2 and an associated change of phase �,
(iii) the staggered potential with an amplitude m, and (iv) the
interlayer hopping with an amplitude r. The general form of
the Hamiltonian in momentum space for such a system has the
form

H(k) =
⎛
⎝

�d1(k) · �σ rσ0 0
rσ0 �d2(k) · �σ rσ0

0 rσ0 �d3(k) · �σ

⎞
⎠. (1)

Here, k = (kx, ky) is a quasimomentum in the two-
dimensional Brillouin zone (BZ), σ0 and 0 are the 2 × 2 unit
and zero matrix, respectively, and �σ = (σ0, σx, σy, σz ) is a
four-component vector of unit and Pauli matrices. Each 2 × 2
diagonal block represents a single layer. The properties of a
given layer are captured by the four-dimensional vector �di(k),
which represents the Hamiltonian of the decoupled layer i in
the Bloch sphere representation and which is given by [5]

�di(k) =

⎛
⎜⎜⎜⎜⎝

−2t2;i cos(�i )
∑3

i=1 cos(k · bi )

−t1;i
∑3

i=1 cos(k · ai )

−t1;i
∑3

i=1 sin(k · ai )

mi − 2t2;i sin(�i)
∑3

i=1 sin(k · bi )

⎞
⎟⎟⎟⎟⎠. (2)
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FIG. 1. Band gap (blue) and Chern number (orange) of the full
three-layer system for (a) configuration HGG and (b) configuration
GHG, which are schematically represented in (c) and (d), respec-
tively. In (e) and (f) the topological indices I1 and I2 for the individual
GLs as well as I12 for subsystem consisting of both GLs are plotted
for smaller range of coupling strengths. For both configurations at
intermediate couplings 2.9 � r � 6.6 the gap is closed at three pairs
of Dirac points that lie on a closed contour in the BZ, which is
represented in (g). With increasing r the Dirac points move along
the contour as depicted by arrows. Used parameters are t1 = 4 in all
layers, m = 1 in GLs, and t2 = 1 with � = π/2 in the HL.

The vectors ai and bi (|ai| = 1) link the NNs and NNNs within
the honeycomb lattice, respectively.

In the following we will restrict our considerations to the
case where one of the layers is described by the Haldane
model [3] with � = π/2 and the remaining two layers are
graphene layers in the tight-binding model with staggered
potential. Therefore, the possible values of �di(k) are limited
to �di(k) ∈ { �dg(k), �dh(k)}, where t1;g = 4, t2;g = 0, mg = 1 and
t1;h = 4, t2;h = 1, �h = π/2, mh = 0 (we use t2;h as a unit
of energy). The values have been chosen based on Ref. [4]
for comparison but the conclusions are general as discussed
below.

We consider two arrangements of the three layers: Con-
figuration HGG, with the Haldane layer (HL) being on top
of the two graphene layers (GLs), as depicted in Fig. 1(c),
where �d1 = �dh and �d2 = �d3 = �dg, or configuration GHG, with
the HL sandwiched between two GLs as shown in Fig. 1(d),
where �d2 = �dh and �d1 = �d3 = �dg. We assume that the layers
are parallel to the xy plane, AA-stacked [12] in the z direction,
and that the system is half-filled.

To determine topological properties of the system we cal-
culate its Chern number C

C =
∑

n

∫
BZ

d2k
εμν

2π i

〈
∂kμ

ψn(k)
∣∣∂kν

ψn(k)
〉
. (3)

Here εμν is an antisymmetric tensor, ψn are the occupied
(momentum) eigenstates of the system, and μ, ν = x, y. We
use Fukui’s method [13] on the discretized BZ to numerically
obtain C. To determine topological properties of a subsys-
tem α we employ the topological invariant Iα developed in
Ref. [4]. In this method eigenstates ψn in (3) are replaced
by the eigenstates with the highest eigenvalues of the single-

particle density matrix of the given subsystem α. Here, we
consider the subsystem to either consist of a single GL or
of the two GLs together, excluding the HL. In Fig. 1(e) I1

and I2 are topological indices of the two GLs GL1 and GL2,
respectively, while I12 is the topological index of a subsystem
consisting of both GL1 and GL2 taken together. The results
of numerical calculations are presented in Figs. 1(a) and
1(e) for configuration HGG and in Figs. 1(b) and 1(f) for
configuration GHG. For vanishing interlayer tunneling r = 0
in both configurations, the gap is open due to the staggered
potential m and the NNN hopping t2, and the full system is
topologically nontrivial. Correspondingly, the Chern number
is C = 1, which is a sum of topological indices of each layer
C = IHL + I1 + I2, with IHL = 1, I1 = 0, and I2 = 0. As we
increase the coupling strength, in both configurations, the gap
decreases and eventually closes at the K = 2π

3 (1, 1√
3

) point
in the BZ at critical value r1, which marks a phase transition
of the system to a topologically trivial state with C = 0. Note
that the values of r1 are different for the two configurations.
We also note that the behavior for r > r1 is significantly
different in the two configurations.

In configuration HGG, the system remains in the topologi-
cally trivial state for a small range of coupling strengths r. At
critical value r2, the gap closes at the K′ = 2π

3 (1,− 1√
3

) point
in the BZ leading to another phase transition. We also note that
the two GLs change the values of their respective topological
indices Iα sequentially. For weak coupling, the indices have
values I1 = I2 = 0. Then at r1, the I1 index of the layer neigh-
boring the HL changes to I1 = −1 and after the second phase
transition at r2 the I2 index of the last GL changes to 1. The
topological index I12 of the two GLs follows I12 = I1 + I2. The
HL topological index IHL = 1 remains unchanged. Therefore,
we have C = IHL + I12 = IHL + I1 + I2.

In configuration GHG, the system remains in a topolog-
ically trivial state for all r > r1. The individual behavior of
the indices Iα is also different. The initial values I1 = I2 = 0
and IHL = 1 remain the same for all r where they are properly
defined. However, the index of two GLs together I12 does
change to I12 = −1 at r1. Therefore, we have C = IHL + I12 �=
IHL + I1 + I2.

The difference between the two configurations HGG and
GHG is explained by the emergence of a dark state in the
sandwiched configuration GHG. We choose this naming in
correspondence with dark states in open quantum systems
[14–16]; it is also used for a closely related effect [17]. Dark
states in our system can be engineered knowing the eigen-
states v±(k) of the graphene Hamiltonian �dg(k) · �σ . We notice
that the six-component state vector [v†

±(k), 0, 0,−v
†
±(k)]† is

an eigenvector of the Hamiltonian (1) in the configuration
GHG with the same energy as the one of the eigenstate v±(k)
of graphene. We therefore obtain a state that is completely
decoupled from the HL, due to the vanishing amplitude at
the central layer, and insensitive to the coupling strength r.
On the other hand, states [v†

±(k), 0, 0, v
†
±(k)]† [which are not

eigenstates of (1)] are coupled stronger to the HL, compared to
a single-layer state, with an effective coupling strength reff =√

2r. As a result, the configuration GHG can be mapped onto
a bilayer problem, which was investigated in Refs. [4,5], and
a decoupled, effective GL. The above arguments no longer
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hold for the configuration HGG where such an eigenstate
with vanishing amplitude at the HL does not exist. We note
that the dark states occur due to the layer stacking symmetry
and are not inherently related to topological phenomena.
Nevertheless, their presence significantly affects the global
topological properties of the system.

An important observation in here is that the wave functions
are delocalized with respect to the layer index. This poses
an issue for the interpretation of the topological index Iα
and leads to I1 + I2 �= I12 in the GHG configuration. Trivial
or nontrivial topology is a property of a band rather than
a layer. Therefore, unless bands are approximately localized
on specific layers, using the topological index Iα leads to
inconsistencies. While in Ref. [4] bands could be approxi-
mately associated with layers thanks to the weak coupling
and different energy scales in the HL and the GL, this is no
longer the case in our three-layer system. In the configuration
GHG, even in the weak coupling limit, the bands are always
delocalized between the two GLs, due to their degeneracy at
r = 0 and the symmetry of the layer arrangement. As a result,
bands can be associated either with a Haldane layer or with
the subsystem composed of two graphene layers, resulting in
values of C = IHL + I12, IHL = 1, and I12 = −1 but not with
any of the graphene layers separately, giving I1 = I2 = 0 and
I12 �= I1 + I2, c.f. Fig. 1. We note that at r = 0 the GLs are
degenerate with each other but not with the HL. It is subject of
future studies to determine a quantitative method for deciding
whether a band can be associated with a subsystem in a
manner sufficient for Iα to give meaningful results.

In both considered configurations at intermediate values of
r the gap closes at r< ≈ 2.9, remains closed for a certain range
of coupling strengths, and finally reopens at r> ≈ 6.6 and
remains open for r → ∞. In contrast to previous gap closing
instances, this one does not occur at the K or K′ points but
rather at points from a subset D of the BZ given by

D = {k : �dh(k) = �dg(k)}. (4)

This set forms a closed contour in the BZ depicted in Fig. 1(g).
At r< the gap closes at points k ∈ D that lie on the lines
connecting the K point and its three neighboring K′ points.
The system becomes semimetallic with three pairs of Dirac
points, one for each K′ neighbor of K. The semimetallic
properties emerge even though our system is exposed to both
staggered potential and gauge field. In graphene, either of
these open a gap. In each pair the Dirac points have opposite
vorticity. As r is increased the pair of Dirac points that were
initially created at the same k ∈ D move away from one
another along the D contour, as depicted in Fig. 1(g) with
arrows. Eventually, at r>, the Dirac points of opposite vorticity
annihilate in new pairs, and the gap opens again. A more
detailed explanation of this mechanism can be found in the
Supplemental Material [18] and also in Ref. [6].

To better understand the observations for different con-
figurations of layers we investigate the system in the strong
coupling limit. We perform a perturbation expansion with
respect to terms m, t2 
 r, details of which can be found in the
Supplemental Material [18]. When the coupling is sufficiently
strong, the spectrum splits into pairs of bands separated by
an energy offset of order r. The dispersion of different bands

reads

E±(k, κz ) = −2r cos(κz ) + ε±(k, κz ), (5)

where κz ∈ {π
4 , 2π

4 , 3π
4 } and ε±(k, κz ) are the eigenenergies of

the Haldane models with renormalized parameters t eff
1 (κz ) =

t1, t eff
2 (κz ), meff (κz ), �eff (κz ) = � = π/2. Different pairs of

bands vary with respect to the z dependence of their wave
function. Because of this effective Haldane model description,
each band can have a finite Chern number. Since the sum of
the Chern numbers of bands from a given pair is zero, the
topological properties of the entire half-filled system will be
determined by the pair that lies closest to the Fermi energy EF .
If EF lies between the two bands of such a pair, the system as a
whole will acquire a finite Chern number C of the lower band.
At half-filling in strong coupling limit only the states with
κz = π/2 [with energies E±(k, κz ) = ε±(k, κz )] are relevant
for the Chern number of the full system.

We have numerically checked that the features described
above for the three-layer systems remain robust against small
modifications of parameters, even when we vary NN hopping
amplitude t1, NNN hopping amplitude t2, phase shift �,
staggered potential m, and interlayer coupling r for each
layer independently. We have also tested robustness of the
Dirac points at intermediate values of r against the next-
next-nearest-neighbor hopping. Contrary to the suggestion of
Ref. [6] we find that it only shifts the Dirac points from
the contour D, without opening the gap [18]. However, upon
larger changes, the observed physics will change. For exam-
ple, changing t1 affects the critical values r< and r>, and
a significant modification of this parameter might result in
the onset of semimetallic properties occurring before the first
topological phase transition. Another example is when we
change t2 with respect to m. In a regime, where meff/t eff

2 >

3
√

3, the system is topologically trivial even in the strong
coupling limit of the HGG configuration. Nevertheless, the
underlying mechanisms remain similar.

III. MULTILAYER SYSTEM

We generalize our study of a three-layer system to the
one with L layers, L − 1 of which are trivial. Increasing the
coupling from zero we expect a series of gap closings and
reopenings occurring interchangeably at the K and K′ special
points in the Brillouin zone. Each leads to a band inversion
and a change of the topological state of the half-filled system
between ones with C = 1 and C = 0. Due to the simple form
of the Hamiltonian the critical coupling strengths can be easily
calculated numerically. These gap closings are independent of
the ones responsible for the onset of semimetallic properties,
which occur on the contour D defined in (2). Due to the larger
number of layers, the range of coupling strengths where the
system is semimetallic and the number of emerging Dirac
points appearing on D will be larger. However, unlike the
three-layer system, a multilayer system can become metallic
for certain layer arrangements. This will occur when multiple
dark states emerge that are decoupled from the HL but coupled
to one another.

To get a better intuition for the multilayer case it is
insightful to study the model in the strong coupling limit
r/L � t1, t2, m. Similarly as in the three-layer case we obtain
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FIG. 2. Chern number C as a function of number of layers L and
the layer index of the HL h in the strong coupling limit. All cases
with even L and h are topologically trivial as explained in the text. For
L > Lc ≈ 11.4 the system is also topologically trivial due to effective
ratio meff/t eff

2 > 3
√

3.

an effective Hamiltonian with L pairs of decoupled bands.
For detailed derivations see the Supplemental Material [18].
The dispersion relation is given in Eq. (5) but with κz ∈
{ π

L+1 , . . . , Lπ
L+1 } and with ε±(k, κz ) being bands of an effective

Haldane model with t eff
1 (κz ) = t1, t eff

2 (κz ) = |N |2 sin2(κzh)t2,
�eff (κz ) = � = π/2, and meff = (1 − |N |2 sin2(πh/2))m. h
is the index of the HL and N is the normalization factor,
which for κz = π/2 and odd L reads |N |2 = 2/(L + 1). The
Chern number of the system, shown in Fig. 2 for r = 50, is
determined by the bands below the Fermi energy. We can
make three observations. (i) In the half-filled case with EF = 0
systems with an even number of layers L will be topologically
trivial, due to an even number of occupied bands. (ii) For an
odd number of layers L there exist two bands with κz = π/2,
which determine the topological properties of the half-filled
system. In particular, the system will be topologically nontriv-
ial if the effective parameters satisfy meff (π/2)/t eff

2 (π/2) <

3
√

3 [3], which translates to a critical value Lc = 6
√

3 + 1 ≈
11.4. (iii) All bands with κzh = nπ where n ∈ Z correspond
to the dark states due to the vanishing of t eff

2 (π/2)—the
HL has no influence on their dispersion. We note that the
Hilbert space can be split into a subspace of dark states and

a subspace of states coupled to the HL, resulting in effectively
two decoupled subsystems with different properties.

IV. CONCLUSION

In conclusion, on an example of AA-stacked honeycomb
lattice multilayer systems with a single topological layer we
have presented important insights into the bulk topological
proximity effect. As previously discussed for the bilayer
systems [2,4,5], a single topological layer can induce topo-
logical response in the neighboring topologically trivial lay-
ers. However, the bulk topological proximity effect stays in
stark contrast to the superconducting proximity effect. Most
importantly it is highly nonlocal, as topological properties are
features of bands rather than layers. This leads to issues when
trying to identify layer- or subsystem-specific topological in-
dices. Moreover the behavior of the system depends strongly
on the layer arrangement owing to the emergence of dark
states. Finally, we observe that for a finite range of parameters
the system becomes semimetallic. We expect that our results
can be easily generalized to other models, e.g., generalized
Hofstadter and Kane-Mele models. Studying interactions in
these systems will be of interest in the near future and is
promising from the perspective of state engineering [19].
We also expect that the systems used in our paper could be
realized experimentally using a combination of shaken optical
lattices [20,21], synthetic dimensions [5] and spin-dependent
optical potentials [22].
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[17] M. Łącki, J. Zakrzewski, and N. Goldman, arXiv:2002.05089.
[18] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.102.075403 for details on the strong cou-
pling limit, dark states, the semimetallic phase, and edge states
including Refs. [3,5,23–26].

[19] T. H. Hsieh, Y.-M. Lu, and A. W. W. Ludwig, Sci. Adv. 3,
e1700729 (2017).

[20] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J.
Simonet, A. Eckardt, M. Lewenstein, K. Sengstock,
and P. Windpassinger, Phys. Rev. Lett. 108, 225304
(2012).

[21] K. Sacha, K. Targońska, and J. Zakrzewski, Phys. Rev. A 85,
053613 (2012).

[22] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and
I. Bloch, Phys. Rev. Lett. 91, 010407 (2003).

[23] L. D. Landau and E. M. Lifschitz, Quantum Mechanics: Non-
relativistic Theory (Pergamon Press, Oxford, 1977).

[24] L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
[25] W. Yao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 102, 096801

(2009).
[26] J.-H. Zheng, B. Irsigler, L. Jiang, C. Weitenberg, and W.

Hofstetter, Phys. Rev. A 101, 013631 (2020).

075403-5

http://arxiv.org/abs/arXiv:2002.05089
http://link.aps.org/supplemental/10.1103/PhysRevB.102.075403
https://doi.org/10.1126/sciadv.1700729
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1103/PhysRevA.85.053613
https://doi.org/10.1103/PhysRevLett.91.010407
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevLett.102.096801
https://doi.org/10.1103/PhysRevA.101.013631

