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Quantum Hall states in inverted HgTe quantum wells probed by transconductance fluctuations
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We investigated quantum Hall states in an inverted HgTe quantum well (QW) close to the critical thickness
using transconductance fluctuation (TF) measurements. In the conduction band, several integer quantum Hall
states were observed, corresponding to filling factors ν = 1, 2, 3, 4. For magnetic fields above 2 T, quantum
Hall states ν = 0 were observed in the normal gap. These observations agreed well with the previous studies of
quantum Hall states on GaAs QWs and graphene. Interestingly, TFs corresponding to anomalous positive filling
factor ν were clearly observed in the valence band. We attribute the emergence of those TFs to the localization
and charging of the heavy holes located in the side maxima of the valence band.
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I. INTRODUCTION

It is well known that HgTe quantum wells (QWs) can act
as either a band insulator (BI) or a nontrivial topological insu-
lator (TI) [1], depending on quantum well thickness [2], tem-
perature [3], and hydrostatic pressure [4]. For gapped HgTe
QWs, the spectrum of the conduction band (CB) is parabolic
at small momentum and becomes linear at large k. In contrast,
the spectrum of the valence band (VB) is nonmonotonic with
side maxima arising at k > 0. So far, only a few publications
have investigated the VB of these QWs [5–10]. Although they
provide a good qualitative description of the VB, they fail to
provide a quantitative examination with good agreement with
existing theories. For instance, the experimentally determined
hole effective masses and the position of the side maxima in
the VB do not correspond to the theoretical prediction [8],
and the importance of spin-orbit coupling in the VB was only
recently detected [10].

A crucial way of analyzing the band structure is to probe
the dispersion of the Landau levels (LLs) under a magnetic
field. By doing so, a remarkable quantum Hall (QH) plateau
has been observed when the Fermi energy is in the VB [11]. It
has not been clearly demonstrated, however, that the quantum
plateau is stabilized by some parts of the VB acting as a charge
reservoir. In fact, the charge transfer between interface states
and a two-dimensional electron gas (2DEG) is often consid-
ered a complementary process to the well-known localization
mechanism accounting for the finite width of the quantum
Hall plateaus [12]. Such reservoir-related effects have also
been observed in graphene on SiC [13–15].

In this work, we exhibit the interplay between the charge
transfer and localization in the quantum Hall regime for
inverted HgTe QWs. Recent studies have shown that transcon-
ductance measurements may reveal microscopic informa-
tion on 2DEGs, even when macroscopic devices are mea-
sured [16,17]. Moreover, the transconductance, i.e., the ratio
of the change in drain current to the change in gate voltage,
can capture the phenomena of charge localization in the QH
regime. Such charge localization was previously observed
in various 2DEGs, e.g., GaAs QWs, and monolayer and
bilayer graphene. Transconductance fluctuations appearing in
the (carrier density–magnetic field) plane can even reveal very
fragile fractional quantum Hall states that only locally form,
although these states do not appear in conventional magne-
totransport measurements. Therefore, transconductance mea-
surements in the QH regime on HgTe QWs can help us
to understand the nature of localization when the charge is
partitioned between different quasiparticles.

Interestingly, a single-electron picture is expected in HgTe
QWs because of the very high permittivity ε [18]. Moreover,
an external potential is almost perfectly screened due to this
high ε value. Therefore, HgTe QWs are excellent candidates
to explore the universal theories of the quantum Hall effect
(QHE), e.g., the semicircle model [19], or the theory of the
critical exponent [20] as these theories are based on noninter-
acting electrons moving into a weak long-range potential. On
the other hand, experimental studies have shown poor agree-
ment with these theories [21]. Hence, the transconductance
in these systems can reveal if the single-particle picture is
relevant or if charging effects prevail.
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II. MODEL OF DISORDER AND LOCALIZATION

Fluctuations in the QH regime were first observed in
the magnetoresistance of microscopic Si transistors [22] and
graphene devices [23,24]. Using single-electron transistors,
similar fluctuations were observed in the local compressibility
of 2DEGs, first in GaAs QWs [25] and later in graphene [26].
Recently, the same type of fluctuations was observed in the
transconductance of graphene [16] and bilayer graphene [17],
where fractional quantum states were identified. These exper-
iments showed that the fluctuations moved parallel to lines
corresponding to an integer or fractional filling factor ν in the
(density, magnetic field) plane and were attributed to charging
effects and localization. The underlying model is detailed
below.

Each QW structure has a specific disorder configuration
which gives rise to a disorder potential Vbare(r) in its plane.
This potential forms hills and valleys and is independent of
the magnetic field B and charge density n. In a noninteracting
picture, Vbare(r) is the effective potential Veff (r) acting on the
2DEG. In the quantum Hall regime, the fluctuations of the
conductance, transconductance, and the local compressibil-
ity are due to transmission through specific localized states,
which follow equipotential lines of the disorder potential
Vbare(r). The energy of these localized states is usually non-
monotonic with B and does not correspond to a straight
line in the (density, B) plane, contradicting the experimental
observations [16,17,22–26].

Let us now take into account nonlinear screening and
charge localization. We assume that the electron gas is
infinitely compressible. The charge density reorganizes to
screen the external potential. The relation between Vbare and
the charge density profile nscrn is given by the Poisson equa-
tion: ∇2Vbare(r, z) = enscrn(r)δ(z)/ε, where −e is the electron
charge. Now, in high magnetic fields, LLs appear, and the
local charge n(r) is partitioned between them:

n(r) = δn(r) + Nnmax, (1)

where nmax = eB/h is the LL degeneracy and δn(r) is the
extra charge appearing on the upper LL close to EF , which
is either partially populated (nmax > δn > 0) or depopulated
(−nmax < δn < 0). N is the Chern number of the 2DEG, a
positive (negative) integer, which corresponds to the number
of LLs of the CB (VB) below (above) the Fermi energy
EF . As the last term in Eq. (1) does not depend on r and
hence cannot screen the disorder, the density profile δn(r)
should equal nscrn(r) to minimize the electrostatic energy
and screen Vbare(r). However, as δn(r) has lower and upper
bounds due to the LL degeneracy, δn(r) may depart sig-
nificantly from nscrn(r). The screening is then incomplete,
and the potential tears the 2DEG into pieces. Some regions
become metallic with a flat screened potential. Others become
insulating where the LL is either empty or full. In the metallic
regions, Coulomb blockade comes into play and gives rise to
fluctuations in the conductance, transconductance, and local
compressibility.

To illustrate this situation, let us start with N filled LLs
while the (N + 1)th LL is completely empty. The average car-
rier density n is then n = Nnmax, and there is no mobile charge
or screening. Increasing n, additional electrons appear in the

FIG. 1. Band structure of our sample at T = 260 mK calculated
on the basis of the eight-band k · p Hamiltonian [4]. The VB and the
CB are shown in blue and red, respectively.

(N + 1)th LL and accumulate in the low-energy regions of the
potential, separated by an incompressible insulating region.
As screening is possible only in the populated low-energy
regions, Vbare(r) is imperfectly screened, and the effective
potential Veff (r) is composed of insulating hills [δn(r) = 0]
and metallic flat lakes [δn(r) > 0]. The shape of Veff (r) gov-
erns the conductance and depends only on the average carrier
density δn. Thus, we can assume that the observed fluctuations
correspond to curves of constant δn in the (n, B) plane. In
the presence of a metallic gate, we have n = (Cg/e)Vg, where
Vg is the gate voltage and Cg is the geometric capacitance
of the gate. From the relation Cg

e Vg = δn + Nnmax, it follows
that the curves of the fluctuations, i.e., the curves of con-
stant δn, correspond in the (Vg, B) plane to straight lines of
slope

dVg

dB
= N

e2

h

1

Cg
. (2)

We end up with the same result if we start with N com-
pletely filled LLs and progressively depopulate the upper
LL (δn < 0). Remarkably, the formation of the screened po-
tential Veff (r) is determined solely by the density deviation
from the completely full LLs, i.e., δn, and not by the total
density n.

III. SAMPLE PRESENTATION

The heterostructure presented in this work was used in
our recent reports on the existence of a temperature-driven
phase transition [3] and the observation of enhanced stability
of quantum Hall plateaus [11]. The structure was grown by
molecular beam epitaxy (MBE) on a [013]-oriented semi-
insulating GaAs substrate with a relaxed CdTe buffer. The
HgTe QW with a 6.6-nm width was embedded in 40-nm
Cd0.65Hg0.35Te barriers. A 40-nm CdTe cap layer was de-
posited on top of the structures. The barriers from both sides
of the QW were selectively doped with indium. After MBE
growth, 100-nm SiO2 and 200-nm Si3N4 dielectric layers
were deposited on top of the structure by a plasmochemical
method. The gated Hall bar has a total length of 650 μm and
a total width of 50 μm.

Figure 1 shows the expected band structure for the studied
QW, as given by an eight-band k · p model. The CB shows
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a quasilinear dispersion. There is a small topological gap
of 8 meV between the CB and VB. The VB also shows a
quasilinear dispersion in the center of the Brillouin zone. At
approximately |kx| = |ky| = 0.4 nm−1, four local side max-
ima can be distinguished in the E1 VB. They appear because
of the zinc-blende structure of the crystal. In the following, we
call “light holes” the carriers located in the central part of the
E1 VB and “heavy holes” the carriers located in the four local
maxima.

IV. MEASUREMENTS

A. Magnetoresistances

Figures 2(a) and 2(b) show the transverse and longitudinal
magnetoresistances as a function of the magnetic field for a
gate voltage Vg = −3 V at different temperatures. The sign of
the Hall resistance indicates that the Fermi energy is in the
VB. Figure 2(c) shows the experimental Hall carrier density
as a function of the gate voltage. The Fermi energy is within
the topological gap at around Vg � −1.6 V. At Vg > −1.6 V,
when the Fermi energy EF lies in the CB, the gate voltage
dependence of the Hall concentration nH follows a slope cor-
responding precisely to the expected geometric capacitance
Cg: dnH/dVg = Cg/e � 9.1 × 1010 cm−2/V . The situation is
completely different for Vg < −1.6 V, when the Fermi energy
is located in the VB. The Hall concentration, then, follows
a slope dnH/dVg � 1.0 × 1010 cm−2/V, almost ten times
smaller than the slope expected from the geometric capac-
itance. We attribute this anomalous slope, already observed
in Refs. [10,27], to the coexistence of light and heavy holes.
The heavy holes have low mobility and do not contribute to
the classical Hall effect in which only light holes participate.
However, the heavy holes have a large density of states and
pin the light-hole density at an almost constant Fermi energy
EF , so the nH density becomes almost independent of Vg.

The coexistence of different kinds of holes is confirmed
by the mobility analysis. As observed in Fig. 2(d), the Hall
mobility in the VB is three times higher than the mobility
of the electrons in the CB for the same carrier concentration
at T = 1.7 K. We attribute this effect to the presence of the
heavy holes, which have a high density and efficiently screen
the ionized impurities. The Hall mobility then corresponds to
the light-hole mobility [27,28]. The presence of two types
of carriers is sustained by the temperature dependence of
the hole mobility, which decreases roughly as 1/T 2 below
T � 30 K, as seen in the inset of Fig. 2(d). This suggests
that scattering between light and heavy holes is the limiting
factor for the light-hole mobility. Indeed, the coexistence of
light and heavy holes results in their mutual scattering via
the Baber mechanism [29,30], which is proportional to T 2.
By contrast, the Hall mobility in the CB depends weakly on
temperature below 40 K, confirming the presence of only one
type of carrier.

Let us now analyze the situation in a quantizing mag-
netic field. Figure 3(a) shows the longitudinal and transverse
magnetoresistances of the Hall bar at T = 1.7 K and Vg =
−1.2 V, when EF is in the CB. The plateau corresponding
to Chern number N = 1 is visible only after B = 1.5 T. The
minimum of the longitudinal resistance in the quantum regime
appears around B = 2 T, and the residual resistance is less

FIG. 2. (a) Transverse and (b) longitudinal magnetoresistances at
temperatures T = 1.7, 4.2, 10, 15, 20, 25, and 30 K for Vg = −3 V.
(c) Hall concentration nH as a function of the gate voltage at T =
1.7, 20, 30, and 40 K. The diamond at Vg = −3 V corresponds to
the concentration deduced from the Shubnikov-de Haas (SdH) period
at T = 1.7 K. (d) Mobility as a function of the gate voltage at the
same temperatures as in (c). The inset is a fit of the resistance R =
1/(nH eμ) (open symbols) at Vg = −3 V with a quadratic function,
R(B) − R(0) ∝ T 2 (solid line).

than 0.1 �. Figure 3(b) shows the magnetoresistances at
Vg = −2.2 V, when EF is now in the VB. The Shubnikov–de
Haas oscillations are very visible and give a concentration
nSdH � nH . At B > 0.5 T, the QH effect emerges, and a large
plateau corresponding to Chern number N = −1 appears. Its
very large width is reminiscent of the large plateaus N = 2
appearing in graphene on SiC [15,31]. This suggests that
charge transfer takes place between the light holes and some

075302-3



S. MANTION et al. PHYSICAL REVIEW B 102, 075302 (2020)

FIG. 3. Longitudinal (blue lines) and transverse (red lines) mag-
netoresistances measured at 1.7 K for three gate voltages: (a) Vg =
−1.2 V, (b) Vg = −2.2 V, and Vg = −2.5 V. The Fermi level lies in
the CB in (a) and in the VB in (b) and (c). The cyan lines correspond
to a magnified view of the longitudinal resistances.

reservoir, presumably the heavy holes located in the side
maxima.

The residual conductivity of the heavy holes must be
extremely small in the QH regime. In Fig. 3(b), ρxx has a
minimum ρmin

xx � 5 � at B � 1.5 T on the N = −1 plateau.
Let us assume that all the residual resistivity ρmin

xx is due to
the presence of heavy holes. Then, the residual conductivity
σhh of heavy holes can be evaluated as σhh = ρmin

xx /R2
K , where

RK = h/e2.
The heavy-hole concentration nhh � 2 × 1010 cm−2 can

be deduced from the difference between the concentration
from the estimated gate capacitance [the black dashed line in
Fig. 2(c)] and the measured light-hole concentration nH . We
obtain a mobility μhh = σhh/nhhe � 2 cm2/V s, much smaller
than the mobility μhh � (2 − 3) × 103 cm2/V s calculated
in Ref. [10] for a similar structure. The same analysis can
be done at Vg = −2.5 V. At this gate voltage, as shown in
Fig. 3(c), the residual resistivity in the QH regime shifts to
higher magnetic fields B � 2.5 T, as expected if the carrier
concentration increases, but also drops by one order of mag-
nitude, ρmin

xx � 0.1 �. This gives an extremely small mobility
for the heavy holes, μhh � 0.02 cm2/V s. These very small
mobilities suggest that localization takes place for both light
holes and heavy holes in the QH regime.

FIG. 4. (a) Scheme of the transconductance setup. (b) Transcon-
ductance gm as a function of gate voltage Vg at T = 260 mK and from
B = 0 T up to B = 6 T. The stars and circles indicate the positions
of the ν = 0 and ν = 1 regions, respectively. The two black dashed
lines indicate the position of the two zero-mode LLs.

B. Transconductance

The transconductance measurements were performed in a
two-probe configuration at a base temperature of 260 mK. A
constant DC bias voltage Vsd = 2 mV was applied between
the source and drain. A small AC voltage δVg of 2 mV
(corresponding to a carrier density variation of two electrons
per micrometer square) and frequency of 71 Hz were superim-
posed on a chosen DC gate voltage Vg, and the corresponding
source-drain current δIsd was detected at fixed Vg with a lock-
in amplifier. Then the transconductance gm = δIsd/δVg was
measured while the gate voltage Vg was swept between −3
and 0 V and the magnetic field B was swept between 0 and
6 T. Three different pairs of probes were tested, and similar
results were obtained for all pairs. In what follows we present
the results obtained for one of these pairs.

Figure 4 shows the transconductance as a function of the
gate voltage Vg at T = 260 mK and for different magnetic
fields from B = 0 T up to B = 6 T. The curves are completely
different from what is observed in the usual QH regime in a
four-probe configuration, as in Fig. 3. The curves in Fig. 4
reveal a rich pattern of fluctuations, which are not noise and
are fully reproducible. Some regions indicated by stars and
circles appear flat and have been identified as the quantum
plateaus N = 0 and N = 1. In other regions, large bumps and

075302-4



QUANTUM HALL STATES IN INVERTED HgTe QUANTUM … PHYSICAL REVIEW B 102, 075302 (2020)

FIG. 5. (a) Color map of the transconductance gm in the (Vg, B) plane. The solid white lines correspond to integer filling factors. The dotted
black line encloses the N = −1 plateau as determined from the Hall conductivity. (b) Correlation function C(ν ) for seven analysis windows in
the (Vg, B) plane, located in the CB and indicated by solid colored rectangles in (a). (c) Correlation function C(ν ) for five analysis windows in
the (Vg, B) plane, located in the VB and shown as dashed colored rectangles in (a).

dips appear with a width of 200 mV. These features result
from the large variation in conductance when the Fermi level
crosses an LL. The two dashed black lines correspond to two
of these features, which are identified as the two zero-mode
LLs. Finally, in other regions, rapid fluctuations appear with a
smaller width δVg � 50 mV.

Transconductance measurements such as the one shown in
Fig. 4 have been repeated between B = 0 T and B = 6 T with
a step size as small as 10 mT. Figure 5 displays a color map
of the transconductance gm(Vg, B). The background of the
transconductance has been subtracted to enhance the visibility
of the rapid fluctuations, exposing a rich set of lines.

1. Conduction band

First, we analyze the map corresponding to the CB H1

for Vg > −1.6 V. The transconductance fluctuations (TFs) are
clearly visible as lines in the (Vg, B) plane, whose slopes
correspond roughly to integer filling factors. The quantization
of the TF slope is apparent along the line of integer filling
factors ν = 0, ν = 1, and ν = 2, indicated by white solid lines
in Fig. 5.

To confirm the quantization of the TF slopes, we used
a more quantitative analysis. We calculated the correlation
function C(ν) = ∑

Di jDklδν , where Di j corresponds to a data
point at gate voltage Vi and magnetic field Bj located within
a chosen analysis window. A pair of data points (Di j, Dkl )
contributes to the correlation C(ν) only if the delta function
δν = 1, i.e., if the line connecting the two points has a slope,
which corresponds to ν. A plot of C(ν) then highlights those
filling factors, which correspond to the preferential slopes of
the TFs in the analysis window. A similar procedure was
previously applied for data recorded on monolayer and bilayer
graphene [16,17].

Figure 5(b) plots the correlation functions C(ν) for seven
different analysis windows chosen exclusively in the region
corresponding to the CB. These analysis windows are indi-
cated in Fig. 5(a) by solid open rectangles in the same color
as their corresponding correlation function. The C(ν) peaks in

Fig. 5(b) clearly reveal the integer quantum states ν = 0, 1, 2,
3, and 4. There is a small deviation (10%) of the correlation
peaks with respect to their expected position because of the
error when determining the geometric capacitance. Therefore,
the analysis of the TFs observed in the CB validates the model
presented above based on localization, charging, and partial
screening of the disorder.

2. Valence band

Let us now analyze the TFs visible in the VB. In Fig. 5(a)
the thick black dotted polygon encloses the region corre-
sponding to the N = −1 plateau, as determined by the exper-
imental Hall conductivity. In this region, different regimes are
clearly distinguishable. The analysis of the TFs reveals the
presence of integer QH states ν = −1 close to the edges of
this region.

These states can be seen in the analysis windows indicated
by the dashed black and blue rectangles. The correspond-
ing correlation functions of these windows are reported in
Fig. 5(c), where the peak of C(ν) at ν = −1 is easily iden-
tified.

Beyond these expected TFs, deep inside the N = −1
plateau, remarkable TFs can be determined. For 1.2 T < B <

3.0 T, bunches of TFs of identical positive slopes are immedi-
ately noticed by eye. A complete correlation analysis has been
performed, and some representative correlation functions are
reported in Fig. 5(c) for three analysis windows indicated
by dashed red, magenta, and yellow rectangles in Fig. 5(a).
Several correlation peaks are found at positive ν’s. Corre-
lation peaks appear mainly around ν = 0 (all three dashed
regions), ν = 1 (magenta and yellow dashed regions), and
ν = 3–6 (all three regions again). Even if correlation peaks
and line bunches are easily identified, the superimposition of
the correlation peaks in Fig. 5(c) suggests that the slopes of
the TFs are not fully quantized, in sharp contrast to what is
observed in Fig. 5(b). An intriguing trend is that the slope of
the TFs visible in the range B = 1.2–3 T increases when Vg

increases. Indeed, C has its maximum at ν � 3, 4, 5 for the
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analysis regions corresponding to the yellow, magenta, and
red dashed regions, respectively, which are centered around
increasing Vg � −2.9,−2.6,−2.1 V.

Finally, at B > 3.0 T, the situation clarifies, and all the TF
slopes roughly align along ν = 0 (constant Vg). Similar results
were reproduced for all three pairs of contacts analyzed on this
device.

V. INTERPRETATION

A. Estimation of the disorder potential

The quantization of the TF slope in the CB allows us to use
the model of screened disorder and localization as described
above. The screening is, however, neither perfect nor linear.
Even in the center of the LLs, TF lines of different slopes
overlap, indicating that the network of percolating puddles
is still present. This overlap is clearly visible in Fig. 5(a) in
the blue (cyan) solid analysis window, where TFs of slopes
ν = 0, 1 (ν = 1, 2) coexist. The correlation function in this
window also has two pronounced peaks at ν = 0 and ν = 1
(ν = 1 and ν = 2). Additional measurements have shown that
the TFs still overlap in the center of the two first LLs up
to at least Bmax = 6 T. Following Refs. [16,25], we get the
lower bound of the carrier density �nd needed to completely
screen the bare disorder potential: �nd � Bmaxe/h � 1.4 ×
1011 cm−2. This value is comparable to that observed for
graphene on SiO2 [16] and ten times larger than the value
observed in GaAs QWs [25].

B. Fermi level pinning in the valence band

Before discussing the TF fluctuations, let us first focus on
the remarkable width of the N = −1 plateau, as enclosed by
the black dashed line in Fig. 5(a). Because the VB has a
nonmonotonic dispersion with side maxima hosting a high
density of states, the Fermi level EF must be pinned close
to the energy of these side maxima on a large range of
gate voltages. This naturally explains the anomalously large
quantum plateau N = −1, which starts at a lower magnetic
field and continues until it reaches a magnetic field higher than
expected from a simple estimate of the positions of the filling
factors ν = −1/2 and ν = −3/2 in the (Vg, B) plane.

To get numerical estimates, we have calculated the disper-
sion of the LLs by using an eight-band k · p method [4]. The
disorder is taken into account by introducing a constant Gaus-
sian broadening 	 ∼ 5 meV for each LL. The broadening
was estimated from the damping of the Shubnikov–de Haas
oscillations in the VB. The result is shown in Fig. 6. The LLs
in the CB have a monotonic electronlike dispersion, roughly
in the power of B0.5. The two zero-mode LLs cross at B � 2 T
and also have a monotonic, almost linear, dispersion. By
contrast, the LLs in the VB have a nonmonotonic dispersion
(for clarity, one of these LLs is shown in purple in Fig. 6). At
low magnetic fields, when their eigenstates are localized in the
center of the Brillouin zone, the LLs of the VB have a holelike
dispersion.

At higher magnetic field (around B � 3 T for the LL
highlighted in purple), when the LL eigenstates leave the
center of the Brillouin zone and slip toward the side maxima,
the LL dispersion changes direction and becomes electronlike.

FIG. 6. Landau level in our sample at T = 260 mK on the basis
of the eight-band k · p Hamiltonian [4]. The LLs in the CB and
VB are shown as red and blue lines, respectively. One LL of the
VB is shown in violet to evidence its nonmonotonic dispersion. The
two zero-mode LLs are shown as green solid lines. The chemical
potential is indicated with white dashed lines for different values of
the gate voltage, from 0 (upper curve) down to −3 V (lowest curve)
with a step of −0.3 V. A Gaussian broadening 	 = 5 meV was added
to the calculation. A color map of the total carrier concentration n is
shown in the background.

Finally, at even larger B, when the eigenstates leave the side
maxima, still increasing their momenta, the LLs retrieve a
holelike dispersion.

The upper LLs of the VB are energetically very close: the
first upper 50 LLs lie in a 2-meV energy range at B = 3 T.
As this range is smaller than 	, all these LLs are partly
populated simultaneously when EF is in the N = −1 plateau.
This quasicontinuum of LLs acts as a charge reservoir. To
check this, we evaluated the position of the Fermi energy
EF as a function of Vg and B. The result is shown in Fig. 6
for various values of Vg. In the CB, the Fermi energy EF

oscillates between the LLs before collapsing down to the
upper zero-mode LL. The magnetic field range of the N = 1
plateau is relatively limited for all gate voltages. By contrast,
in VB, EF is pinned in the N = −1 plateau over an extended
magnetic field range. At Vg = −2.5 V, EF enters the N = −1
plateau at B � 0.5 T and is still in the gap at B = 3 T. These
findings are in agreement with the observed width of the QH
plateau in Fig. 3.

C. Model for the transconductance fluctuations

The localization model presented before based on the
screening of the disorder is valid when only one LL is partly
populated, whereas all the other LLs are either empty or filled.
This model predicts a unique slope dVg/dB = −e2/hCg on the
N = −1 plateau. In the situation corresponding to Fig. 6, the
screening is simultaneously induced by several partly popu-
lated LLs. The numerical calculation of the screened disorder
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in such a situation is outside the scope of this work [32]. The
overall picture is, nevertheless, well established. When EF

is in the N = −1 plateau, just above the VB, the 2DEG is
an incompressible sea where ν = −1, in which compressible
antidots where ν < −1 appear. These antidots are themselves
formed of a concentric succession of incompressible and
compressible regions, which correspond to the progressive
filling of the underlying LLs of the VB.

As the upper LL of the VB delimits the boundary between
the incompressible sea and antidots, we assume that this
peculiar LL is responsible for the most visible TFs. We extend
the previous model assuming that the TFs are formed by the
filling δnu of only the upper LL of the VB, while the lower
LLs act only as a reservoir.

To sustain this hypothesis, we need to calculate the lines
of constant δn for each LL in the (Vg, B) plane and check if
these lines are deflected with respect to the initial model. In
the following, we call isocharges these lines of constant δn
in the (Vg, B) plane. First, one point is chosen in the (Vg, B)
plane, and the LL dispersion, density of states, electrochem-
ical potential, and carrier density for each LL are calculated
with the numerical model used to calculate Fig. 6 with a
macroscopic Gaussian broadening of the LLs. This operation
is repeated for each point in the (Vg, B) plane to separately
retrieve the isocharges for each LL. The result is shown in
Fig. 7. Figures 7(b) and 7(d) show the isocharges for the
second and first LLs of the CB. These LLs are enlightened in
Figs. 7(a) and 7(c), respectively. The isocharges are separated
into two groups whose slope corresponds to ν = 2 and 3 for
the second LL [Fig. 7(b)] and ν = 1 and 2 for the first LL
[Fig. 7(d)]. The change in the slope takes place when the LL
is half filled. In the (Vg, B) plane, this corresponds to lines
corresponding to half-integer filling factors ν = 3/2 and ν =
5/2. This is in remarkable agreement with both experimental
data and the charge localization model when only one LL
screens the disorder.

Similar results are reproduced for the two zero-mode LLs,
as shown in Figs. 7(e)–7(h). The isocharges again follow
quantized slopes corresponding to ν = 1, 0 [upper zero-mode
LL, Figs. 7(e) and 7(f)] and ν = 0,−1 [lower zero-mode
LL, Figs. 7(g) and 7(h)]. A slope deviation is predicted only
in the vicinity of the crossing of the two zero-mode LLs
around B � 2 T.

The situation becomes more complex in the VB. Here, the
isocharges for the upper LL of the VB are shown in Figs. 7(i)
and 7(j). These isocharges do not follow any quantized value
and have a strong nonmonotonic character. Below B = 1 T,
the model predicts isocharges with negative slopes, as ob-
served experimentally. However, this is the limit of validity for
the model because not enough LLs are taken into account (we
calculate only the first 320 LLs of the VB). More interestingly,
between B = 1 and B = 2 T, the slope of the isocharges
changes sign and becomes positive (dVg/dB > 0). Finally,
at higher B, the slope becomes almost vertical, dVg/dB � 0.
This nonmonotonic behavior qualitatively coincides with the
experimental observations.

Furthermore, we calculated the isocharges for the first ten
upper LLs of the VB, and for all, we found the same trend, i.e.,
all the isocharges have unusual positive slopes in the N = −1
plateau.

FIG. 7. (b), (d), (g), (h), and (j) Color map in the (Vg, B) plane
rendering the isocharge lines δn for the LLs indicated as thick
magenta lines in (a), (c), (e), (g), and (i), respectively. The solid
and dashed lines are contour lines for positive and negative δn,
respectively.

A hand-waving explanation for the unusual behavior of
these isocharges is as follows. At low Vg values, EF is pinned
on top of the VB and slightly varies with B, as seen in Fig. 6.
Thus, the filling factor of the upper LL of the VB νu does
not depend on B and is a monotonically increasing function of
Vg: νu = f (Vg) � f (0) + f ′(0)Vg. Using δnu = (νu − 1)eB/h,
it follows that Vg = cte + f ′(0)−1δnu(h/eB), which gives a
positive slope ∂Vg/∂B as δnu < 0 and f ′(0) > 0. This hyper-
bolic behavior induces the nonmonotonic dispersion of the δnu

isocharges.

D. Discussion

The different isocharges of the five LLs presented in Fig. 7
are superimposed in Fig. 8 to present a more complete view
of the predicted fluctuations. This model reproduces the quan-
tization of the slope of the isocharges in the CB. Since the
energy separation between the LLs in the CB is larger than
LL broadening, only one LL is partly (de)populated.

Remarkably, the model reproduces many of the experi-
mental features observed on the N = −1 plateau. In partic-
ular, TFs with positive and negative slopes are reproduced.
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FIG. 8. Color map in the (Vg, B) plane, indicating the area cor-
responding to Chern numbers N = −3, . . . , 4 (N = −σxyh/e2). The
isocharge lines δn for the five LLs detailed in Fig. 7 are also
superimposed on this color map.

Isocharges with a slope corresponding to ν = −1, associated
with the lower zero-mode LL, are predicted around B � 2.5 T,
Vg � −2 V, as shown by the solid black lines in Fig. 8. The
isocharges of the lower zero-mode LL and the upper LL of
the VB follow very distinct trajectories. The isocharges of
the upper LL of the VB are shown as black dashed lines in
the σxy = −e2/h region. The slopes of these isocharges are
positive at low B and become more vertical in the (Vg, B)
plane when B increases, where they can even become slightly
negative.

This roughly corresponds to what is observed experimen-
tally where at an intermediate magnetic field 1.2 T < B < 3 T,
the TF slopes are positive and increase when Vg increases,
whereas at higher magnetic fields, the TF slopes are almost
vertical in the (Vg, B) plane.

Nevertheless, interesting discrepancies exist. On the N =
−1 plateau, the TFs appear experimentally as sets of parallel
lines with a constant slope, and we do not observe TFs with
varying slopes, as predicted by the model. Experimentally,
there is also the superposition of TFs with various slopes. This
is very visible, for instance, around (Vg = −2.5 V, B = 2 T),

where three sets of TFs with slopes ν � 5, 1.5, and 0 are
superimposed. This suggests that microscopically, the 2DEG
has been torn apart and regions of different local filling factors
coexist in different places. These observations underline that
the proposed model does not reproduce the microscopic fea-
tures as all the complexity of charge localization, screening,
and Coulomb blockade is hidden in the unique macroscopic
parameter δn.

VI. CONCLUSION

To conclude, we conducted transconductance measure-
ments on a macroscopic Hall bar made from an inverted HgTe
quantum well. We observed pronounced and reproducible
transconductance fluctuations in the (B,Vg) plane due to the
screening and charge localization. We conclude that transcon-
ductance measurements can reveal microscopic states, even
when measuring macroscopic devices. In the CB, the slopes
of these TFs follow lines of positive-integer filling factors,
as already observed in other 2DEGs. However, in the VB,
we observe an unexpected behavior, i.e., transconductance
fluctuations with positive slopes. We attribute the appearance
of these unexpected fluctuations to the charge localization
in the quantum states ν = −1 of the upper LL localized
in the side maxima of the VB. The unusual slope of these
fluctuations is attributed to the underlying large density of
states in these side maxima, which acts as a charge reservoir
and deflects the expected trajectories of the fluctuations.
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