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Accurate modeling of electron-hole binding in CuCl. II. Biexciton wavefunction
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We present an approach to calculate the biexciton ground state including the electron-longitudinal-optical-
phonon coupling and an accurate variational function to describe the Coulomb correlations in the biexciton. We
apply this method to the long-standing problem of biexciton binding energy in CuCl and obtain a binding energy
of 32.6 meV. We also discuss the effect of electron-hole (e-h) exchange interaction on the biexciton binding
energy. Including correction due to e-h exchange, the theoretical binding energy is 28.8 meV, in good agreement
with the experimental value of 32 meV. Details of the biexciton wavefunction are presented in the form of
correlation functions with respect to two-particle separations, which show how the particles in the biexciton are
distributed.
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I. INTRODUCTION

In ionic semiconductors charged particles strongly interact
with longitudinal optical (LO) phonons. An electron moving
slowly in a polar crystal can be pictured as a polaron, a quasi-
particle consisting of an electron accompanied by a cloud
of phonons. Effects resulting from this coupling to phonons
emerge even in optical processes related to excitons and
biexcitons. In this paper we develop a method to calculate the
biexciton ground state including electron- and hole-phonon
couplings and Coulomb correlations using a variational ap-
proach.

Our approach is based on a method of decoupling elec-
tronic and phononic degrees of freedom developed by Haken
[1] for an exciton interacting with phonons. In this method
the exciton-phonon coupled state is described as a product
of a purely electronic wavefunction and a coherent state for
the phonon cloud dressing the electron-hole pair. The phonon
displacement describing the coherent state can be variation-
ally determined along with the electronic wavefunction. The
binding energies of the exciton in the Rydberg states [2,3] as
well as the lowest state [4,5] in various polar semiconductors
have been obtained by a variational method with ansatz for
the phonon displacement function proposed by Pollmann and
Büttner (PB) [6].

Several authors have attempted to model the biexciton
state coupled to phonons. Schmidt [7] discussed an effective
potential including the effect of the lattice vibration on the
biexciton. However, that calculation was based on crude as-
sumptions such as neglecting the momenta of excitons and
assuming equal electron and hole masses (me/mh = 1). Poll-
mann and Büttner [8] calculated the biexciton binding energy
using the the Heitler-London approximation for the elec-
tronic wavefunction, which makes their calculation limited
to me/mh ∼ 0. In the absence of electron-phonon coupling,
accurate variational calculations using a correlated Gaussian
basis have been performed [9] but the calculated binding

energy in CuCl, for example, is underestimated by 25%
compared to the experimental value. We showed in Ref. [10]
that, because of LO-phonon coupling, the exciton binding
energy cannot be interpreted as the Coulomb Rydberg and a
reanalysis of the biexciton problem using an approach that
accurately includes both the Coulomb interaction and LO-
phonon coupling is required.

Another weakness of previous studies on the biexciton was
an incomplete decoupling of the center-of-mass motion which
makes it difficult to use general variational forms for the
wavefunction. We completely eliminate the center-of-mass
motion using a unitary transformation which allows us to
generalize the PB method to the biexciton problem without
making an approximation on the electron-hole mass ratio. In
most semiconductors the effective hole mass is larger than the
effective electron mass, but it is not large enough to neglect
the motion of the hole. Hence the biexciton is more like the
positronium molecule, which is a system consisting of two
electrons and two positrons, rather than the helium molecule
in which the protons are much heavier than the electrons.
In analogy with the positronium molecule [11], we represent
the electronic wavefunction as a sum of correlated Gaussians
to flexibly express pair correlations between particles in a
general way.

The success of this approach is demonstrated by compari-
son with experiments. As a first application, here we consider
CuCl, which has a long history of experimental and theoretical
studies on excitons and biexcitons [12–19]. The valence-band
structure of CuCl is rather simple: The valence band related
to creation of the biexciton is a single hole band ( j = 1/2
spin-orbit split-off band), unlike most cubic semiconductors
that require a more elaborate treatment of the hole due to the
fourfold degeneracy of the heavy-hole and light-hole bands.

The rest of the paper is organized as follows. In Sec. II
we formulate the theoretical approach for describing the
biexciton-phonon system. Using a variational ground-state
wavefunction that includes the translational motion and the
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phonon coherent state we derive an effective Hamiltonian
for the biexciton. We then describe the use of the correlated
Gaussian basis set to variationally solve for the ground state
of this effective Hamiltonian. In Sec. III we present the results
for CuCl, which includes the biexciton energy as well as
the biexciton wavefunction, which is presented in the form
of two-particle correlation functions. In Sec. IV we estimate
the correction to the binding energy due to the electron-
hole exchange interaction. Finally we discuss our results and
present our conclusions in Sec. V.

II. THEORETICAL FORMALISM

A. Effective potential

We first introduce the approach to the exciton-phonon sys-
tem and then describe how it can be extended to the biexciton-
phonon system. The Hamiltonian describing an electron-hole
pair interacting via statically screened Coulomb interaction
and dynamically coupled to LO phonons by Fröhlich inter-
action is given by

Hx = P̂
2
x

2Mx
+ p̂2

2μ
− e2

ε∞r
+

∑
k

h̄ω0a†
kak

+
∑

k

[Vkakρk(r)eik·Rx + H.c.], (1)

with

Vk = − i

k

√
2πe2h̄ω0

V ε∗ ,
1

ε∗ = 1

ε∞
− 1

ε0
, (2)

ρk(r) = eishk·r − e−isek·r, (3)

where Rx and r are, respectively, the center-of-mass and
relative coordinates of the exciton; ε0 and ε∞ are, respectively,
the static and optical dielectric constants; Mx = me + mh is
the exciton mass; μ is the exciton reduced mass; se = me/Mx;
and sh = mh/Mx. Here me (mh) denotes the effective mass of
the electron (hole).

Motivated by the Lee-Low-Pines transformation for the
electron polaron [20], Haken assumed a product-state form
for the wavefunction of the exciton-phonon system [1] as

|�x〉 = TxUxψx(r)|0〉, (4)

where

Tx = exp

[
i

(
Qx −

∑
k

ka†
kak

)
· Rx

]
(5)

is the well-known translation operator that decouples the
center-of-mass motion with the total momentum, Qx, of the
coupled system. Here the subscript “x” indicates that the
symbols are relevant to the exciton-phonon system and dis-
tinct from those for the biexciton-phonon system appearing in
Eq. (10). The phonon state Ux|0〉 is assumed to be the coherent
state generated by the displacement operator

Ux(r) = exp

[∑
k

{F ∗
k (r)ak − Fk(r)a†

k}
]
, (6)

FIG. 1. Coordinates representing the 2e-2h system. ri = rei − rhi

is the relative coordinate for the ith exciton Xi (i = 1, 2), R12 is the
relative coordinate between the two excitons, and R is the center of
mass.

where |0〉 is the phonon vacuum state. As discussed in
Ref. [10] it is possible to calculate, quite generally, the exci-
ton wavefunction ψx(r) and phonon displacement amplitudes
Fk (r) that minimize total energy. However, such a treatment
is not easily extended to the biexciton system. We therefore
consider the Pollmann-Büttner ansatz [6] for Fk (r),

Fk(r) = v∗
k

(
f h
k e−isek·r − f e

k eishk·r), (7)

where vk = Vk/h̄ω0, and f e
k and f h

k are determined variation-
ally.

Now, we turn to the biexciton-phonon system. The two-
electron–two-hole (2e-2h) system can be conveniently de-
scribed in relative coordinates, r1, r2, and R12, and the center
of mass, R, as shown in Fig. 1. The conjugate momenta of r1,
r2, R12, and R are denoted by p̂1, p̂2, P̂12, and P̂, respectively.
The Hamiltonian describing the biexciton coupled to phonons
is given by

Hxx = P̂
2

2M
+ P̂

2
12

2μ12
+ p̂2

1

2μ
+ p̂2

2

2μ
+ VCoul +

∑
k

h̄ω0a†
kak

+
∑

k

[Vkak{ρk(r1)eik·R1 + ρk(r2)eik·R2}+H.c.], (8)

where VCoul is the Coulomb interaction between the particles,
R1 = R + 1

2 R12, R2 = R − 1
2 R12, M = 2Mx is the biexciton

mass, and μ12 = Mx
2 is the reduced mass of the exciton pair in

the biexciton.
In the past [7,8] this problem was addressed using the

wavefunction expressed as

|�〉 = ei(K1·R1+K2·R2 )Uxxφ(r1, r2, R12)|0〉 (9)

with

Uxx= exp

[∑
k

ak{F 1∗
k eik·R1 + F 2∗

k eik·R2} − H.c.

]
, (10)

where Uxx is a generalization of the excitonic displacement
operator Ux for a two-exciton system. The use of Eq. (8),
however, posed a problem in eliminating the center-of-mass
motion from the Hamiltonian. In addition, the biexcitonic
orbital function, φ(r1, r2, R12), was treated using simple func-
tional forms that do not have enough variational degrees of
freedom to accurately describe the Coulomb correlations of all
particle pairs in the biexciton. In the present work, we propose
a way to overcome these limitations.
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We write the biexciton wave function using the transla-
tional motion operator T and the displacement operator U by
analogy with the exciton:

|�〉 = TUφ(r1, r2, R12)|0〉. (11)

The translational-motion operator is given by

T = exp

[
i

(
Q −

∑
k

ka†
kak

)
· R

]
, (12)

where Q = P/h̄ + ∑
k ka†

kak, which is the total momentum
of the biexciton-phonon system. As the total momentum of
the system, Q, is a constant of motion, the Hamiltonian
transformed by the unitary operator depends on the total mo-
mentum Q only parametrically. In this work we are essentially
interested in calculating the binding energy for a state at rest
and hence we set Q = 0. After transforming by the operator
T , we have the Hamiltonian as

T −1HxxT
∣∣
Q=0

= P̂
2
12

2μ12
+ p̂2

1

2μ
+ p̂2

2

2μ
+ VCoul +

∑
k

{
h̄ω0 + h̄2k2

2M

}
a†

kak

+
∑

k

[Vkak{ρk(r1)e
i
2 k·R12 + ρk(r2)e− i

2 k·R12} +H.c.]. (13)

We express the displacement operator as

U = U ′
x

(
r1,

1
2 R12

)
U ′

x

(
r2,− 1

2 R12
)
, (14)

with

U ′
x

(
r,

1

2
R12

)

= exp

[∑
k

{
F ∗

k (r) ak e
i
2 k·R12 −Fk(r) a†

k e− i
2 k·R12

}]
, (15)

where 1
2 R12 (− 1

2 R12) corresponds to the center of mass of
the exciton X1 (X2) in the biexciton in the rest frame of the
2e-2h system. We apply the PB ansatz given by Eq. (7) to
the phonon displacements Fk(r) in Eq. (15) and use the values
corresponding to the 1s exciton as f e

k and f h
k . This is justified

by decomposition of the calculated biexciton wavefunction
that shows the 1s-exciton product state makes a dominating
contribution, as discussed later.

Once operators T and U are written explicitly, an effective
Hamiltonian for the biexciton with phonon coupling is readily
obtained:

H = 〈0|U −1T −1HxxTU |0〉 = H0 + Veff, (16)

where

Veff = H1 + H2 (17)

H0 = − h̄2

2μ12
∇2

R12
− h̄2

2μ
∇2

r1
− h̄2

2μ
∇2

r2
+ VCoul, (18)

H1 = 4h̄ω0

∑
k

|vk|2
[

− (
f e
k + f h

k

)

+ 1

2

(
1 + R2

ek2
)

f e
k

2 + 1

2

(
1 + R2

hk2
)

f h
k

2
]

+ 2h̄ω0

∑
k

|vk|2
(

f e
k + f h

k − f e
k f h

k

)
× (cos k · r1 + cos k · r2), (19)

H2 = 2h̄ω0

∑
k

|vk|2

×[( − 2 f e
k + f e

k
2) cos{k · (shr1 − shr2 + R12)}

+( − 2 f h
k + f h

k
2)

cos{k · (ser1 − ser2 − R12)}
+(

f e
k + f h

k − f e
k f h

k

)
cos{k · (shr1 + ser2 + R12)}

+(
f e
k + f h

k − f e
k f h

k

)
cos{k · (ser1 + shr2 − R12)}]. (20)

The fist term of Eq. (16), H0, corresponds to the Hamil-
tonian describing the biexciton in the absence of coupling to
phonons and the second term, Veff, is an effective potential
arising from the energy of the phonon cloud and the electron-
and hole-phonon interactions.

It is instructive to compare the effective Hamiltonian of the
biexciton with that of the exciton. The effective Hamiltonian
for the 1s exciton coupled to phonons is given by

Hx = 〈0|U −1
x T −1

x HxTxUx|0〉 = Hx
0 + V x

eff, (21)

where

V x
eff = Hx

1 , (22)

Hx
0 = − h̄2

2μ
∇2

r − e2

ε∞r
, (23)

Hx
1 = 2h̄ω0

∑
k

|vk|2
[
−(

f e
k + f h

k

)

+1

2

(
1 + R2

ek2) f e
k

2 + 1

2

(
1 + R2

hk2) f h
k

2
]

+ 2h̄ω0

∑
k

|vk|2
(

f e
k + f h

k − f e
k f h

k

)
cos k · r. (24)

Since H1(r1, r2) = Hx
1 (r1) + Hx

1 (r2), H1 is due to the phonon
coupling of each exciton in the biexciton. The additional term,
H2, in Eq. (17) can be interpreted as an interaction between the
two excitons generated by phonon coupling.

B. Biexciton orbital wavefunction

Since the effective Hamiltonian H has been obtained as
a form depending only on coordinates of electrons and holes,
the biexciton orbital function φ(r1, r2, R12) can be determined
by the variational method. Expressing φ(r1, r2, R12) in terms
of basis functions ϕi,

φ(r1, r2, R12) =
K∑
i

ciϕi(r1, r2, R12), (25)

minimization of the expectation value of H with respect to
variations of the parameters ci leads to the following eigen-
value equation for the energy E , where K is the number of
basis functions:

K∑
j

Hi jc j = E
K∑
j

Ni jc j, (26)
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TABLE I. Ratios of biexciton binding energies to exciton binding
energies with coupling to LO phonons neglected.

σ = me/mh 0.1 0.5 1

Correlated Gaussian 0.156 0.0743 0.0640
Akimoto and Hanamura [21] 0.10a 0.034a 0.0273

aValues extracted from Fig. 1 of Ref. [21].

with

Hi j =
∫

drϕ∗
i Hϕ j and Ni j =

∫
drϕ∗

i ϕ j, (27)

where dr ≡ dr1dr2dR12.
We write the basis function in terms of correlated Gaus-

sians [11]:

ϕi(r1, r2, R12) = P exp

{
−1

2

3∑
m,n=1

A(i)
mnrm · rn

}
, (28)

where (r1, r2, r3) ≡ (r1, r2, R12), A(i) is a 3 × 3 symmetric
positive-definite matrix, and P is the symmetrizing operator
with respect to exchange of the two excitons. Note that the
correlated Gaussian includes cross terms, A(i)

mnrm · rn, which
are essential to express correlations between the particles.
Inclusion of several hundred Gaussian basis functions allows
us to describe these correlations with high accuracy. Nonlinear
variational parameters, A(i)

nm, are determined by the stochas-
tic variational method [9]; we prepare a huge number of
K-dimensional basis sets {ϕ1, ϕ2, . . . , ϕK} as candidates, in
which each basis function ϕi is expressed in terms of A(i)

mn
generated randomly, calculate an eigenenergy with respect to
each basis set by diagonalizing Eq. (25), and select the basis
set yielding the lowest eigenenergy. The use of Gaussians as
bases enables us to calculate the matrix elements Hi j and Ni j

in a simple way and makes it relatively easy to use a large set
of basis functions.

In earlier studies [21,22] the biexciton wavefunction was
frequently represented by Hylleraas-type functions, which
were employed for early studies of the positronium molecule,
or its extensions. For example, Akimoto and Hanamura (AH)
calculated the biexciton binding energy using an extended
Hylleraas-type wavefunction for mass ratio σ = me/mh =0–
1 excluding phonon coupling [21]. Such wavefunctions are
grossly inadequate for capturing correlations of particle pairs
in biexcitons. To test the correlated Gaussian basis functions,
we calculated the biexciton binding energy using 200 basis

TABLE II. Material parameters and exciton energies for CuCl.
Experimental values are deduced from exciton energies in Ref. [23]
and the energy gap in Ref. [24]. Units of exciton energies are meV.

me mh ε0 ε∞ h̄ω0

0.35m0 1.95m0 6.1 3.7 25.6 meV
1s 2s 3s 4s

〈Hx〉 −318.5 −151.1 −131.1 −124.8
Binding energy 201.3 33.8 13.8 7.5 (calc)

196.8 32.5 14.4 7.9 (expt)

FIG. 2. Convergence of the eigenenergy of the biexciton with
increasing basis set dimension.

functions neglecting phonons, that is, with H = H0. Table I
lists the ratios of the biexciton binding energies to those of ex-
citon binding energies for σ =0.1, 0.5, and 1. The calculation
with correlated Gaussians yields considerably larger binding
energies than that of AH for σ = 0.1–1. It is clear that the use
of functional forms with a high degree of variational freedom
such as in the correlated Gaussian basis is essential to obtain
an accurate biexciton energy and wavefunction.

Based on our previous work [10], we use me + mh =
2.3m0, σ = 0.18, ε0 = 6.1, ε∞ = 3.7, and ω0 = 25.6 meV as
material parameters for CuCl, where m0 is the free electron
mass. These parameters were determined on the basis of
available experimental data. The exciton binding energy is
given by −〈Hx〉 − �, where � is the phonon self-energy
of the free-electron–hole pair. � = 117.3 meV is obtained
using the above parameters. Table II lists the used material
parameters and the binding energies of the excitons in the
ns states with n = 1–4. The calculated binding energies agree
well with experimental binding energies.

III. BINDING ENERGY AND WAVE
FUNCTION OF BIEXCITON

The biexciton total energy for CuCl is calculated to be
〈H〉 = −669.6 meV by the stochastic variational method with
500 correlated Gaussian basis functions [25]. Figure 2 shows
the convergence of the eigenenergy of the biexciton with
increasing basis set dimension. Table III lists the expectation
values of various terms in the biexciton Hamiltonian H. The
phonon coupling in the two excitons in the biexciton, 〈H1〉,

TABLE III. Energy expectation values of the effective biexciton
Hamiltonian in CuCl (in meV).

〈H〉 〈H0〉 〈Veff〉
−669.6 −625.2 −44.4

〈H1〉 〈H2〉
−59.2 14.8
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TABLE IV. Properties of the biexciton in CuCl. The length unit
is in Å.

〈reh〉 〈ree〉 〈rhh〉 〈rX X 〉
13.5 18.6 15.5 13.3

〈r2
eh〉 〈r2

ee〉 〈r2
hh〉 〈r2

X X 〉
244 420 284 214

reh ree rhh rX X

7.9 8.6 6.6 6.1

〈δ(reh )〉 〈δ(ree)〉 〈δ(rhh )〉 〈δ(rX X )〉
5.89 × 10−4 2.80 × 10−5 4.63 × 10−6 3.56 × 10−5

is attractive, while the interaction between the two excitons
generated by phonon coupling, 〈H2〉, is repulsive. The total
effective potential 〈Veff〉 is negative and accounts for 6.6%
of the total energy. The resulting biexciton binding energy,
2〈Hx〉1s − 〈H〉, is 32.6 meV, where 〈Hx〉1s (= −318.5 meV) is
the 1s exciton energy. Here we have not included the electron-
hole exchange interaction. In the next section we discuss the
correction to the binding energy due to the electron-hole (e-h)
exchange interaction.

Properties of the biexciton in CuCl are obtained from the
wavefunction calculated by the above variational procedure.
Table IV lists properties relating to particle distribution, where

ri j ≡
√

〈r2
i j〉 − 〈ri j〉2 is the standard deviation of the dis-

tance between particles i and j and 〈δ(ri j )〉 is the probability
that i and j are located at a same position. The standard
deviation rhh = 6.6 Å is less than 80% of ree. This small
fluctuation of the hole-hole (h-h) distance is reasonable from
the fact that the hole is considerably heavier than the electron
for CuCl. rXX = 6.1 Å is comparable to rhh, where the
two-exciton distance, rXX , corresponds to the distance be-
tween the centers of masses of two excitons, that is, rXX =
R12. The comparable fluctuation of X -X distance is because
the center of mass of the exciton is close to the hole due to a
large mass of the hole.

Further details of the biexciton wavefunction can be ob-
tained by calculating two-particle correlation functions de-
fined by

Ci j (r) =
∫

dr1dr2dR12δ(r − ri j )|�(r1, r2, R12)|2, (29)

where ri j is the relative coordinate between particles i and j.
Ci j (r) corresponds to the probability density that the particle

FIG. 3. Two-particle correlations for e-h, h-h, e-e, and X -X . The left figures show Ci j (r) in an arbitrary unit. The peak positions of Ci j (r)
for h-h, e-e, and X -X are 7.8, 4.9, and 6.1 Å, respectively. The right figures show r2Ci j (r). The peak positions of r2Ci j (r) for e-h, h-h, e-e, and
X -X are 8.8, 12.9, 14.9, and 10.8 Å, respectively.
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FIG. 4. The electron density distribution for a fixed h-h distance r0
hh = 7.8 Å. The left and right figures are a two-dimensional contour map

and a three-dimensional plot of the electron density, respectively. The cusp positions are represented by green dots.

i is located at r from the particle j. Since the ground-state
biexciton wavefunction has spherical symmetry, Ci j (r) is also
spherical. Figure 3 shows the correlations with respect to the
e-h, electron-electron (e-e), h-h, and two-exciton distances.
The panels on the left in Fig. 3 show Ci j (r), whose value at
r = 0 corresponds to 〈δ(ri j )〉 in Table IV. The right panels
show r2Ci j (r), which is equivalent to the radial probability
density. The e-h correlation is shown in the top panels in
Fig. 3. Ceh(r) has a cusp at r = 0 as is common with the
hydrogen atom and an exciton. The radial probability density
r2Ceh(r) reaches a maximum at r = 8.8 Å and is more widely
distributed than that of the 1s exciton, r2ψ2

1s, which has a
maximum at aX = 6.9 Å. The h-h and e-e correlations are
shown in the middle panels in Fig. 3. Chh(r) is relatively
localized at rhh = 7.8 Å and is considerably suppressed at
rhh = 0 compared to Cee(r). The distribution of the h-h cor-
relation function provides understanding that the two holes in
the biexciton are narrowly distributed away from each other
at a distance of about 7.8 Å. The two-exciton correlation is
shown in the bottom panels in Fig. 3.

The electron density for a fixed h-h distance r0
hh is defined

by

Cr0
hh

e (r) =
∫

dr1dr2dR12 δ(r − re) δ
(
rhh − r0

hh

)
× |�(r1, r2, R12)|2. (30)

We calculated the electron density Cr0
hh

e (r) with r0
hh = 7.8 Åẑ,

which is cylindrically symmetric about the z axis. Figure 4

shows Cr0
hh

e (r) on the xz plane in two ways: the left figure is
a contour map and the right is an electron density plot. The
electron density has two cusps on the z axis (green dots) and
the distance between them corresponds to the h-h distance
r0

hh = 7.8 Å. This supports the presumption that the biexciton
is predominantly formed of two 1s excitons.

IV. ELECTRON-HOLE EXCHANGE IN EXCITON
AND BIEXCITON

In this section we discuss the contribution of the electron-
hole exchange interaction to the binding energies of the biex-
citon in CuCl. To do so, we must estimate the e-h exchange
energies of the exciton as well as the biexciton.

The e-h exchange interaction can be separated into a
short-range term and a long-range term. For the exciton, the
short-range exchange raises the energy of the spin-singlet
state, whereas the long-range exchange is responsible for the
longitudinal-transverse (LT) splitting of the singlet state, as
shown in Fig. 5. Thus, the short-range exchange energy is
expressed as

EX
s.r. = ET − Etri + 1

3ELT , (31)

where ELT ≡ EL − ET is the LT splitting energy, ET and EL

are the transverse and longitudinal exciton energies, respec-
tively, and Etri is the triplet exciton energy.

We note that the observed longitudinal exciton energy is
shifted from EL in practice. This shift results from polariton
coupling combining a longitudinal exciton with longitudinal
excitons from higher bands. The 1s Z3 longitudinal exciton
couples dominantly to the 1s Z12 longitudinal exciton and, in

FIG. 5. Schematic of e-h exchange of an exciton. ET and EL are
the transverse and longitudinal exciton energies, respectively, and Etri

is the spin-triplet exciton energy.
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TABLE V. Measured exciton excitation energies for CuCl (in eV).

Z3(1s) triplet Etri 3.1997 [27]
transverse ET 3.2022 [26,28]

longitudinal E ′
L 3.2079 [26,28]

Z12(1s) transverse Et 3.267 [26]
longitudinal E ′

l 3.2896 [26]

consequence the 1s Z3 and Z12 longitudinal exciton energies
shift downward and upward, respectively, from their uncou-
pled (calculated) values. Thus, the observed LT separation
is smaller than that resulting from the long-range exchange,
ELT . The calculated Z3 longitudinal exciton energy, EL, re-
lates to the observed Z3 and Z12 longitudinal exciton energies,
denoted by E ′

L and E ′
l , respectively, as [26]

EL =
√

E ′2
L +

(
E ′2

l − E2
t

)(
E ′2

L − E2
T

)
E2

t − E2
T

. (32)

Here ET and Et correspond to the Z3 and Z12 transverse exci-
ton energies, respectively. Using Eqs. (31) and (32), and the
measured excitation energies in Table V, we obtain ELT =
7.7 meV and EX

s.r. = 5.1 meV, which are listed in Table VI.
For the biexciton, the short-range exchange contribution to

the Hamiltonian is given by [29]

HXX
s.r. = 3

4

EX
s.r.

|ψ1s(0)|2 {δ(re1 − rh1) + δ(re1 − rh2)

+ δ(re2 − rh1) + δ(re2 − rh2)}, (33)

where ψ1s(r) is the orbital function of the 1s exciton. By
calculating the expectation value of HXX

s.r. in the biexciton
ground state, we obtain the exchange energy of the biexciton
as EXX

s.r. = 1.74EX
s.r..

On the other hand, the long-range exchange term for
the biexciton can be argued to be absent as follows. The
long-range exchange term describes the long-range Coulomb
dipole-dipole coupling between excitonic excitations at dif-
ferent sites in the crystal. In case of the biexciton, as the
e-h pairs can create and annihilate only within a size of the
biexciton, there is no contribution from long-range Coulomb
coupling. More rigorously, the long-range dipole-dipole inter-
action energy for a spherically symmetric biexciton state can
be calculated exactly and shown to vanish. A proof is given in
the Appendix.

As a result, including the electron-hole exchange, excita-
tion energies of the Z3 transverse exciton and the biexciton

TABLE VI. Energy corrections due to exchange interaction for
CuCl (in meV).

Exciton EX
s.r. 5.1 meV

ELT 7.7 meV

Biexciton EX X
s.r. 8.9 meV

long-range ∼0
Biexciton binding X X −3.8 meV
energy correction

TABLE VII. Comparison of the biexciton binding energy EBX

calculated by various authors and the present work. The values
referred to as previous works are extracted from figures in original
papers for σ = 0.18.

EBX (meV)

Previous work
extended Hylleraas-typea 14
extended Hylleraas-typeb 15
correlated Gaussianc 24

Present work
with phonon effect 32.6
with phonon + e-h exchange 28.8

Experiment 32

aAkimoto and Hanamura [21].
bBrinkman, Rice and Bell [22].
cUsukura, Suzuki, and Varga [9].

are given by

Ex = 〈Hx〉1s + EX
s.r. + 1

3ELT + Eg (34)

and

Exx = 〈H〉 + 1.74EX
s.r. + 2Eg, (35)

respectively, where Eg is the gap energy. Therefore, the biex-
citon binding energy, EXX

b = 2Ex − Exx, is obtained from

EXX
b = (2〈Hx〉1s − 〈H〉) + XX , (36)

with

XX = 0.26EX
s.r. − 2

3ELT . (37)

The first term of Eq. (36) corresponds to the biexciton binding
energy excluding the e-h exchange interaction calculated vari-
ationally as 32.6 meV in the previous section. The second term
XX is the contribution of the electron-hole exchange interac-
tions to the binding energy of the biexciton and is estimated
to be −3.8 meV. Therefore, the biexciton binding energy
including the exchange energy is obtained as 28.8 meV. This
compares well with the experimental binding energy [13] of
32 meV. We stress that the correction due to e-h exchange is
more than 10% of the biexciton binding energy and is not a
negligible contribution.

V. CONCLUSIONS

A method for describing the biexciton with both Coulomb
coupling between the electron-hole pairs and their coupling
to phonons was developed and applied to calculate the energy
and correlation functions of the biexciton in CuCl. We derived
an effective Hamiltonian for the biexciton using a form of
the orbital wave function that is translationally invariant and
a coherent state for the phonon cloud dressing the electron-
hole pairs. This allowed the use of sophisticated variational
functions for constructing the orbital wave function of the
biexciton.

Table VII compares the biexciton binding energy calcu-
lated in the present work with that calculated without the
phonon effect in previous works. Since the ratio of the biex-
citon binding energy to that of the exciton as a function of σ
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was reported in original articles of previous works, we used
the values for σ = 0.18 and multiplied them by the experi-
mental exciton binding energy Ex = 197 meV for the data
in the table. Calculation using correlated Gaussians yields
EBX 60% larger than those using the extended Hylleraas-
type wavefunctions. However, even with the use of correlated
Gaussians EBX is underestimated by 25% compared to the
experimental value when we neglect the phonon effect. This
is largely due to the wrong interpretation of exciton binding
energy as the exciton Rydberg (measure of the Coulomb
interaction in the exciton) as discussed by us previously in
Ref. [10]. Furthermore, for an accurate description of the
biexciton, it is necessary to include the coupling to phonons.

The present work using correlated Gaussians and with the
inclusion of phonon coupling leads to EBX of 32.6 meV in
CuCl. The contribution of the electron-hole exchange interac-
tion to the exciton and biexciton energies were also estimated.
EBX is reduced by 3.8 meV due to exchange interaction. As
a result, EBX in CuCl is 28.8 meV, which compares well
with the experimental value of 32 meV.

To account for the remaining difference between theory
and experiment, we point to approximations inherent in the
present work. We have simplified the phonon part of the biex-
citon wave function using the displacement amplitude of two
1s excitons. If the displacement amplitude for the biexciton
is treated as a variational function, EBX would somewhat
increase. Moreover, use of a continuum effective-mass-based
model implies that we do not include any so-called central
cell corrections due to the atomistic nature of the crystal
structure that would modify the Coulomb interaction when the
interacting particles are in the same unit cell. Since the sizes of
the 1s exciton and biexciton are comparable to that of the unit
cell in CuCl, the central cell corrections may not be negligible.
However, EBX is estimated from the difference between
the total energy of the biexciton and twice the exciton total
energy and both of these could be considered to have similar
central cell corrections. Therefore, the central cell correction
in EBX may be not as important as for the 1s exciton due to
its cancellation in the first-order approximation.

The behavior of the wavefunction of the biexciton can be
explored using the correlation functions between particles. We
showed that holes are relatively localized in the biexciton al-
though the correlation between the holes cannot be neglected.
It is also found that the electron distribution spreads widely
surrounding the two holes.

The details of biexciton wave function can also contribute
to the understanding of its creation and decay processes.
The biexciton creation by two-photon absorption is often
explained using the giant oscillator strength (GOS) model
[30], which predicts an enhanced transition rate from exciton
to biexciton because of the large spatial extension of the
latter. Using a simple form for the wavefunction expressed
in terms of the product of two exciton wavefunctions, the
transition rate derived from the GOS model is proportional
to (aB/aX )3, where aB is the average distance between the
two excitons in the biexciton state. A large enhancement of
the transition rate was concluded from aB ∼ 3aX estimated
using the average h-h distance calculated in Ref. [21]. On
the other hand, our calculation yields the average two-exciton
distance 〈rXX 〉 as 1.9aX = 13.3 Å and the peak X -X distances

of CXX and r2CXX as 0.9aX = 6.1 Å and 1.6aX = 10.8 Å,
respectively. These would indicate that the enhancement of
the transition rate due to the GOS model may be much smaller
than anticipated in the earlier study. In addition, the interpar-
ticle correlations captured in our superposition of correlated
Gaussians is much more complex than assumed in previous
models and the transition rate cannot be expressed in terms of
a single parameter describing the extension of the biexciton.
Furthermore, the validity of the GOS model itself has been
questioned as the biexciton state lies in the continuum of
two excitonic polaritons and a bipolariton model has been
proposed [31,32]. The availability of an accurate biexciton
wavefunction presented here can enable a thorough quanti-
tative analysis of the biexciton creation and decay processes.
This will be addressed in a future publication.
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APPENDIX: LONG-RANGE EXCHANGE OF
THE BIEXCITON

The biexciton state is constructed out of products of a two-
electron state of spin zero and a two-hole state of total angular
momentum zero (singlet-singlet product):

1
2�re1 rh1 re2 rh2

{∣∣ ↑ 1
2

〉∣∣ ↓ − 1
2

〉 − ∣∣ ↑ − 1
2

〉∣∣ ↓ 1
2

〉
−∣∣ ↓ 1

2

〉∣∣ ↑ − 1
2

〉 + ∣∣ ↓ − 1
2

〉∣∣ ↑ 1
2

〉}
. (A1)

Here we explicitly derive the expectation value of long-
range exchange interaction only between e2 and h2 as those
for other e-h pair combinations can be obtained similarly. The
expectation value of the long-range exchange between e2 and
h2 with respect to the singlet-singlet biexciton is given by

〈VLR〉 = 1
4

[〈
VLR

↑1/2
↑1/2

〉 + 〈
VLR

↑−1/2
↑−1/2

〉 + 〈
VLR

↓1/2
↓1/2

〉
+ 〈

VLR
↓−1/2
↓−1/2

〉]
, (A2)

with

〈
VLR

μν

μ′ν ′
〉 =

∑
re1rh1

′∑
re2r

′
e2

�∗
re1 rh1 re2 re2

dμν I − 3nn∣∣re2 − r′
e2

∣∣3 dν ′μ′
�re1 rh1 r′

e2
r′
e2
,

(A3)

where μ(ν) denotes the spin (total angular momentum) index
of the conduction (valence) band occupied by e2 (h2) and

∑′

stands for the summation over re2 and r′
e2

excluding the point
re2 = r′

e2
. In Eq. (A3) I is the unit dyadic, n is a unit vector

defined by n = (re2 − r′
e2

)/|re2 − r′
e2
|, and d is the interband

dipole moment

dμν = e
∫

d3r w∗
cμ(r)rwvν (r), (A4)

where wcμ (wvν) denotes the Wannier orbital for conduction
(valence) band μ (ν). Equation (A3) is the dipole term in the
multipole expansion of the long-range exchange, where the
monopole term vanishes and higher-order terms are neglected.
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Converting Eq. (A3) into continuum representation,〈
VLR

μν

μ′ν ′
〉

= −4π

3
dμν ·dνμ

∫
d3re1 d3rh1 d3r

∣∣φ∗(re1 , rh1 , r, r
)∣∣2

+
∫

d3re1 d3rh1 d3rdμν · (∇rφ
∗(re1 , rh1 , r, r

))
× dν ′μ′ · ∇r

∫
d3r′ 1

|r − r′|φ
(
re1 , rh1 , r′, r′), (A5)

where φ(re1 , rh1 , r′
e2
, r′

h2
) = �re1 rh1 r′

e2
r′
h2
/�2 and � is the volume

of the unit cell. Here we have used the relation [33]∫
σ

d3r′ grad div
Q(r′)

|r − r′|

= grad div
∫

σ

d3r′ Q(r′)
|r − r′| − 4π

3
Q(r), (A6)

where Q is any vector field and σ denotes the surface of a
small excluded volume around r = r′.

Transforming to relative and center-of-mass coordinates,
the wavefunction of the biexciton may be expressed as

φ(re1, rh1, re2, rh2) = 1√
�

ϕ(r1, r2, R12)eiK·R, (A7)

where the coordinates, r1, r2, R12(=R1−R2) and R,
are defined as in Fig. 1. The integral over coordinates
(re1 , rh1 , r, r′) in Eq. (A5) may be rewritten as an integral
over (r1, R12, R′

12, R). The coordinates r and r′ in Eq. (A5)
correspond to R2 and R′

2, respectively. Since R12 and R are
expressed in terms of R1 and R2 as

R12 = R1 − R2 and R = 1
2 R1 + 1

2 R2, (A8)

and ∇r = −∇R12 + 1
2∇R, Eq. (A5) becomes

〈
VLR

μν

μ′ν ′
〉 = −4π

3
dμν· dν ′μ′

∫
d3r1 d3R12 |ϕ(r1, 0, R12)|2

+
∫

d3r1 d3R12 dμν · (∇Rϕ∗(r1, 0, R12))

× dν ′μ′ · ∇R12

∫
d3R′

12
1

|R12 − R′
12|

ϕ(r1, 0, R′
12),

(A9)

where we used R2 − R′
2 = R12 − R′

12.

We introduce a Fourier representation of ϕ(r1, 0, R12) for
its R12 dependence,

ϕ(r1, 0, R12) = 1√
8π3

∫
d3kϕk(r1, 0) exp(ik · R12). (A10)

with ϕk(r1, 0) normalized as
∫

d3k|ϕk(r1, 0)|2 = 1. Substitut-
ing Eq. (A10) in Eq. (A9), we obtain〈

VLR
μν

μ′ν ′
〉

= −4π

3

∑
i

dμν
i dν ′μ′

i

∫
d3r1 d3R12 d3k |ϕk(r1, 0)|2

+ 4π

∫
d3r1 d3R12

∑
i j

dμν
i dν ′μ′

j

×
∫

d3k
kik j

k2
|ϕk(r1, 0)|2. (A11)

Since ϕ(r1, 0, R12) is a spherically symmetric state,
|ϕk(r1, 0)|2 is also spherically symmetric with respect to k.
Replacing the momentum index of ϕk(r1, 0) with scalar k,〈

VLR
μν

μ′ν ′
〉

= −4π

3

∑
i

dμν
i dν ′μ′

i

∫
d3r1 d3R12 d3k |ϕk (r1, 0)|2

+ 4π

∫
d3r1 d3R12

∫
d3k

∑
i j

dμν
i dν ′μ′

j

kik j

k2
|ϕk (r1, 0)|2.

(A12)

In the angular averages of kik j/k2 terms with i = j vanish

and the k2
i /k2 terms average to 1/3 since

∫
d3k k2

x
k2 |φk|2 =∫

d3k
k2

y

k2 |φk|2 = ∫
d3k k2

z

k2 |φk|2 so that

〈
VLR

μν

μ′ν ′
〉=−4π

3

∑
i

dμν
i dν ′μ′

i

∫
d3r1 d3R12 d3k |ϕk (r1, 0)|2

+ 4π

3

∫
d3r1 d3R12

∑
i

dμν
i dν ′μ′

i

∫
d3k

× k2
x + k2

y + k2
z

k2
|ϕk (r1, 0)|2. (A13)

The second term cancels the first term and 〈VLR
μν

μ′ν ′ 〉 = 0.
Therefore, the long-range exchange energy of the biexciton
vanishes. Note that this is valid for any spin-zero state that is
rotationally invariant (isotropic).
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