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Accurate modeling of electron-hole binding in CuCl. I. Exciton states
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We present an accurate variational approach for calculating the ground and excited exciton states in CuCl,
and provide detailed comparison with measured polariton energies of excited exciton states. Computed exciton
energies and oscillator strengths allow us to reproduce the polariton dispersion of up to four exciton states with
unprecedented accuracy. A reinterpretation of the observed 1s-exciton binding energy shows that the actual
Coulomb energy in the exciton ground state is more than 50% larger than the observed binding energy, with
important consequences for calculation of exciton complexes such as the biexciton.
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I. INTRODUCTION

Starting with the seminal work of Haken [1], it is well
known that the strong longitudinal-optical (LO)-phonon cou-
pling with charge carriers affects the electron and hole states
and their complexes in polar semiconductors. In particular,
in CuCl, the free-electron–hole pair has a polaron binding
energy of more than 100 meV which is comparable to the
exciton binding energy of about 200 meV [2]. Furthermore,
CuCl is one of the few materials (along with Cu2O) in which
the Rydberg series of excitons with n up to 4 have been
observed [2–5]. It is a common practice [6] to describe these
states using an effective dielectric constant between ε0 and
ε∞ and interpret the observed exciton binding energy as an
effective Rydberg, where ε0 and ε∞ are the static and optical
dielectric constants, respectively. We show that this is a naive
interpretation and leads to an erroneous description of the
exciton state and its complexes. In particular, interpreting
the exciton binding energy as the Rydberg leads to a large
underestimation of the Coulomb energy in the exciton. This is
traced to be the main reason why even the best variational cal-
culation of binding energy of a biexciton in CuCl [7] gives a
result that is only 70% of the experimental value, as discussed
in the following paper [8]. Furthermore, the observed energies
and oscillator strength of the exciton strongly deviate [2,6]
respectively from the 1/n2 and 1/n3 dependence [9] on the
principal quantum number (n) expected for hydrogenic states.
Owing to the small size of the exciton in CuCl, such dis-
crepancies have been often attributed to unknown “central-cell
corrections,” viz., deviations from the continuum picture used
in the classic description of a Wannier exciton. We show
that almost all of the deviation from the hydrogenic series
energies and oscillator strengths can be accounted for by
proper consideration of polaronic effects.

This is our central argument: While the free electron and
hole in CuCl are strongly dressed by phonons, the Coulomb
binding brings the electron-hole pair close together, form-
ing an exciton state that is smaller than the individual po-
larons. Thus the electron-hole pair undresses during exciton

formation, and almost all of the energy in the exciton is
Coulombic which greatly exceeds the observed binding en-
ergy by the polaron energies of the free particles. This is
illustrated schematically in Fig. 1. In the higher excited states
of the exciton, as the extension of the electron-hole pair
increases, this undressing is only partial, and finally tends
towards fully dressed free electron–hole pairs as the principal
quantum number (n) or the angular momentum (L) increases.

Inclusion of polaron coupling into the electron-hole Hamil-
tonian has been discussed by many authors [1,10–14] and
a Fröhlich polaron [15] picture is generally accepted as
valid. For the free electrons and holes in CuCl, the Fröhlich-
coupling parameter (α) is in the intermediate-coupling regime
so that a variational treatment based on the Lee-Low-Pines
(LLP) transformation [16] is appropriate [1]. Haken extended
the LLP transformation of single particles to the exciton-
phonon system by representing the wave function as a product
of the excitonic state and a phonon cloud described by a
coherent state. Pollmann and Büttner found a suitable ansatz
for the displacement function in the phonon coherent state
and derived an effective local Hamiltonian for the exciton-
phonon system [10]. This approach was extended by Matsuura
and Büttner to the 2s and 3s excited states of an L = 0
exciton [13,14]. A more general approach that avoids the
variational ansatz for the phonon displacement was developed
by Iadonisi, Bassani, and Strinati (IBS) [17]. However, their
method is practical only for nodeless wave functions and
has been applied to the lowest exciton states with L = 0–
4. Furthermore, in all these calculations, the exciton wave
function has been treated variationally using a hydrogenic
form.

In this paper we present an accurate calculation of exciton
states in CuCl including the phonon coupling using Haken’s
LLP transformation. For the lowest energy state of the exciton,
for each angular momentum, we can avoid any further approx-
imations by numerically integrating the resulting equations for
the phonon displacement functions and exciton wave function.
We refer to this as the generalized Iadonisi-Bassani-Strinati
(GIBS) method. This procedure provides a reference for
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FIG. 1. Schematics of conduction band, valence band, and the
exciton state. (a) The bare gap energy E (0)

g . (b) The gap energy Eg

measured experimentally, which is reduced from the bare gap by
the polarization energy of a free electron-hole pair. (a) and (b) are
represented in the single-particle picture. (c) The exciton state (X) in
the multiparticle picture, which is excited optically by the excitation
energy h̄ωns. |Ens| corresponds to the difference between the bare gap
and the excitation energy. e (h) is a free electron (hole) not coupling
to phonons and e∗ (h∗) is a free electron (hole) polaron. Ẽns is the
binding energy that could be experimentally measured.

further approximations necessary for relevant excited L = 0
states (s states) which are readily observed in experiments.

An approach that applies to excited s states is the use of
the Pollmann-Büttner ansatz for the phonon displacement.
We find that this method gives results nearly identical to the
more accurate numerical solution. Therefore, for the excited
s states we use the Pollmann-Büttener ansatz for the phonon
displacement but treat the exciton wave function numerically
using a finite-difference discretization without assuming any
functional forms.

In our formulation, orthogonalization constraints on the
wave function are built into the calculation which have been
neglected in the past [13,14]. The approximation using the
partial orthogonality may reproduce measured binding ener-
gies fortuitously in some semiconductors in which excitons in
all states are affected by phonons nearly to the same degree.
In contrast, inaccuracy of the partial orthogonalization will be
significant in semiconductors like CuCl, in which an exciton
in the ground state undresses phonons while the undressing
is only partial for excitons in excited states. This could partly
explain the failure of past calculations to reproduce exciton
energies in CuCl.

Optical properties of CuCl have been extensively studied
experimentally. However, quantitative comparison with the-
ory has so far met with limited success. The deviation of
energies from 1/n2 dependence mentioned above has only
been qualitatively explained. Calculations that reproduce the
relative energies of 2s and 3s excitons have failed to accurately
predict the 1s exciton energy [13,14]. In the first place, there
are inconsistencies in the effective electron and hole masses
used to calculate the energies of the excitons and the biexciton.
Effective electron and hole masses of me ∼ 0.4m0 and mh ∼
4m0 were obtained by fitting exciton energy measurements
and effective hydrogenic approximations, where m0 is the
free electron mass. Meanwhile, the total mass of the exciton
(center of mass) is accurately known to be 2.3m0, as obtained

directly from exciton dispersion measured by one photon
absorption [18,19]. Not only does the sum of the electron
and hole masses fail to agree with that of the center of mass,
neglect of the state-dependent dressing of polarons in the
exciton states leads to incorrect determination of parameters.
Therefore, the effective electron and hole masses in CuCl
should be reexamined. We determine effective electron and
hole masses by fitting the calculated binding energies of n =
0–4 states to experimental values. For the dielectric constants,
both ε0 and ε∞ are known from independent measurements
and our approach does not require any phenomenological
“effective” dielectric constant.

We also calculated the oscillator strengths of exciton states.
In general, the phonon coupling acts to decrease oscillator
strengths for excitons with increasing effect of phonons seen
in higher excited states. As the energies and dispersion of
exciton polariton states [20] are sensitive to the oscillator
strengths, measured polariton dispersion [4,21,22] provide an
excellent testing ground for our calculated results. A detailed
comparison between predicted and observed polariton disper-
sion is presented.

II. ELECTRON-HOLE INTERACTION INCLUDING
FRÖHLICH COUPLING WITH LO PHONONS

The Hamiltonian describing the exciton coupled to
phonons is written as

H = P̂
2

2M
+ p̂2

2μ
− e2

ε∞r
+

∑
k

h̄ω0a†
kak

+
∑

k

[Vkakρk(r)eik·R + H.c.], (1)

ρk(r) = eishk·r − e−isek·r, (2)

where

Vk = − i

k

√
2πe2h̄ω0

V ε∗ , (3)

1

ε∗ = 1

ε∞
− 1

ε0
, (4)

P̂ and p̂ are conjugate momenta of the center of mass R and
the relative coordinate r, respectively, ω0 is the LO phonon
frequency, M is the exciton mass, se = me/M, sh = mh/M,
and μ is the reduced mass.

Following the LLP framework [16] we write a trial func-
tion for the nl exciton as

|�nl〉 = TUnlϕnl (r)|0〉. (5)

The translational-motion operator and the coherent-state op-
erator are given by

T = exp

[
i

(
Q −

∑
k

a†
kakk

)
· R

]
, (6)

and

Unl ≡ Unl (r) = exp

{∑
k

(F ∗
nlk(r)ak − Fnlk(r)a†

k)

}
. (7)
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Here we set the total momentum Q to zero to eliminate the
center-of-mass motion from the wave function.

Minimization of the energy E = 〈�nl |H |�nl〉 with respect
to ϕnl gives the following equation for ϕnl :[

h̄2

2μ
∇2

r − e2

ε∞r
+ Veff (r)

]
ϕnl (r) = Enl ϕnl (r), (8)

where

Veff (r) = h̄2

2μ

∑
k

|∇rFnlk|2
∑

k

(
h̄ω0 + h̄2k2

2M

)
|Fnlk|2

−
∑

k

(VkρkFnlk + H.c.). (9)

On the other hand, minimizing E with respect to Fnl (k)

gives

− h̄2

2μ
∇2Fnlk− h̄

μ

∇ϕnl (r)

ϕnl (r)
∇Fnlk+

(
h̄2

2μ
+ h̄2k2

2M

)
Fnlk = Vkρk.

(10)
The coupled set of equations for ϕnl [Eq. (8)] and Fnlk

[Eq. (10)] is to be solved self-consistently to determine the
exciton states. This task is greatly simplified using a total
angular momentum basis so that these equations may be re-
duced to a set of coupled ordinary differential equations [17].
However, unlike Ref. [17], we do not assume hydrogenic
wave functions for ϕnl , and instead numerically integrate the
differential equations.

As Eq. (10) involves ϕnl (r) in the denominator, the above
approach is well defined only for exciton states with nodeless
spatial wave function, viz., for the lowest state of each angular
momentum (1s, 2p, 3d , . . . states). As we are interested in
excited zero angular momentum states (2s, 3s, 4s, . . .), a
modified approach is necessary. For this purpose, we take the
Polmann-Büttner ansatz for the displacement amplitude [10],

Fnlk(r) = V ∗
k

h̄ω0

(
f (e)
nlke−ishk·r − f (h)

nlk eisek·r), (11)

and minimize the energy E = 〈�nl |H |�nl〉 with respect to
f (e)
nlk and f (h)

nlk ,

f (e)
nlk = 1 + R2

hk2(1 − Gn) − |Gn|2(
1 + R2

ek2
)(

1 + R2
hk2

) − |Gn|2
, (12)

f (h)
nlk = 1 + R2

ek2(1 − G∗
n ) − |Gn|2(

1 + R2
wk2

)(
1 + R2

hk2
) − |Gn|2

, (13)

where Gn = ∫
dr|ϕnl (r)|2eik·r and Ri =

√
h̄

2miω0
.

So far the Polmann-Büttner approach has been applied for
exciton-phonon systems in various semiconductors. In these
calculations [11,12], hydrogenlike functions with variational
parameters were taken as the excitonic orbital parts of the
wave functions ϕnl (r). In Refs. [13,14] the binding energies
and other properties for s- and p-wave excitons up to n = 3
were calculated. However, in these studies the orthogonality
was not strictly imposed on exciton states; not total wave
functions |�nl〉 but excitonic orbital functions ϕnl (r) were

orthogonalized to each other. For proper orthogonality,

〈�nl |�n′l〉 =
∫

drϕ∗
nlϕn′l exp

[
−

∑
k

(Fnlk − Fn′lk)2

]
= 0,

(14)
Eq. (8) is replaced with[

h̄2

2μ
∇2

r − e2

ε∞r
+ Veff (r)

]
ϕnl (r)

−
∑
n′<n

λn′ exp

[
−

∑
k

(Fnlk − Fn′lk)2/2

]
ϕn′l (r) = Enl ϕnl (r),

(15)

and the left-hand side of Eq. (10) acquires an additional term
of

∑
n′<n

λn′ exp

[
−

∑
k

(Fnlk − Fn′lk)2/2

]
(Fnlk − Fn′lk)

ϕn′l (r)

ϕnl (r)
.

(16)
Here we make two improvements in the calculation pro-

cess: One is that we numerically calculate ϕns(r) by solving
the differential equation (15) using a finite-difference ap-
proach. The other is that we impose the orthogonality of total
wave functions. We apply this generalized Polmann-Büttner
(GPB) method to calculate the s-wave excitons with n = 1–4
in CuCl.

The transverse exciton mass has been estimated to be in the
range M = 2.0m0–3.0m0 from experiments [18,19,23,24]. We
use M = 2.3m0 following the analysis of exciton dispersion
obtained from two-photon Raman scattering [18]. The only
unknown parameter is the electron-hole mass ratio, which
is determined so that the binding energy for the 2p state
calculated by the GIBS method matches the measured val-
ues with all other parameters fixed at M = 2.3m0, h̄ω0 =
25.6 meV [25], ε0 = 6.1 [26], and ε∞ = 3.7 [27]. This pro-
cedure gives a value of me

mh
= 0.18. We list all the parameters

used in the present calculation in the first row in Table I.
The exciton energies calculated by GPB and GIBS meth-

ods are listed in Table II and the corresponding wave functions
of s-wave excitons are shown in Fig. 2. The GPB method is in
excellent agreement for the 1s state with the GIBS method,
which is performed with no assumptions on the functional
form of ϕnl and Fnl . This supports the use of the Polmann-
Büttner ansatz for extending the calculation to excited states.

Note that the absolute values of exciton eigenenergies,
|Enl |, do not correspond to experimental binding energies,
E expt

nl . In ionic semiconductors free electrons in the conduction
band and free holes in the valence band couple to phonons
to form polarons. As a result, the measured gap energy Eg

is smaller than the bare gap energy E (0)
g by an amount equal

to the free e-h pair polarization energy, �0 ≡ �e + �h (see
Fig. 1). The experimental binding energies are determined by
subtracting the excitonic excitation energies, h̄ωnl , not from
the bare gap energy E (0)

g but from the measured gap energy
Eg. On the other hand, the absolute values of exciton eigenen-
ergies obtained theoretically, |Enl |, are binding energies from
states consisting of a free electron and free hole not coupled
to phonons, which corresponds to the energies obtained by
subtracting h̄ωnl from the bare gap energy E (0)

g . Therefore, the
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TABLE I. Material parameters of CuCl. Rex is the phonon radius for the exciton. a0 and a∞ are the Bohr radii estimated with ε0 and ε∞,
respectively. aeff is the effective exciton radius defined as a radius at the maximum radial probability density. Ryd is the Rydberg energy.

ε0 ε∞ μ/m0 me/m0 mh/m0 h̄ω0 (meV) Rex (Å) a0 (Å) a∞ (Å) aeff (Å) Ryd (meV)

Extended LLP
Present 6.1 3.7 0.30 0.35 1.95 25.6 22.4 10.9 6.6 6.9
Ref. [11] 7.4 3.7 0.39 0.44 3.6 27.2 19 10 5.0 5
Ref. [12] 7.4 3.7 0.39 0.44 3.6 27.2 19 10 5.0
Refs. [13,14] 7.43 3.73 0.39 0.44 3.6 27.2 19 10.1 5.06 6.7a

Ref. [14] 7.43 3.73 0.35 0.392 3.17 27.2 20 11.2 5.64
Ref. [17] 7.4 3.7 0.39 0.44 3.6 27.2 20 10 5.0 10.1

Rydberg series with effective dielectric constant
Ref. [28] εeff ∼5 0.39 0.78 0.78 7.3 213
Ref. [6] εeff ∼5.41 0.406 0.415 20 7.03 189

Mass estimation from experiment
Ref. [29] 0.4 0.5 2.0
Ref. [30] 0.39 0.44 3.6 7
Ref. [31] 0.39 0.43 4.2 7

aThe average radius of 10 Å was given in Ref. [13]. The effective exciton radius listed here is estimated by dividing the average radius by 1.5
to compare the effective radius.

energies Ẽnl = |Enl | − �0 should be used to compare with the
experimental binding energies. In unbounded k-space, �0 =
αeh̄ω0 + αhh̄ω0, where αe and αh are the Fröhlich coupling
constants for the electron and the hole, respectively. We
calculate �0 = 123.8 meV using the parameters in Table I.
For application to real solids, however, the sum over k extends
only up to the boundary of the first Brillouin zone. To account
for this we use �0 = λeαeh̄ω0 + λhαhh̄ω0, which is evaluated
to be 117.3 meV, where λi = 2

π
tan−1(kmaxRi ) and kmax is the

radius of a sphere with the same volume as that of the first
Brillouin zone. The effect on the binding energy due to the
cutoff in k-space is significant especially for the 3s and 4s
states.

In the present calculation we determined the electron and
hole masses of CuCl as me = 0.35m0 and mh = 1.95m0.
These masses, however, are quite smaller than those used in
earlier calculations, me ∼ 0.4m0 and mh ∼ 4m0, which were
quoted from Ref. [30].

The exciton binding energies Ẽnl in Table II agree rather
well with experimental binding energies. In earlier studies
for CuCl [11,12,17] the calculated binding energy of the

TABLE II. Energies of excitons in CuCl. Enl and Ẽnl are re-
spectively the eigenenergy and the binding energy calculated by
GPB or GIBS. E expt

nl is the experimental binding energy. The ex-
perimental binding energies are estimated using exciton excitation
energies [2,21] and the gap energy Eg = 3.3990 eV in Ref. [2].
Energies are in meV.

GPB GIBS

1s 2s 3s 4s 1s 2p

−Enl 318.5 151.1 131.1 124.8 319.8 145.1
Ẽnl 201.3 33.8 13.8 7.5 202.5 27.9
E expt

nl 196.8a 32.5b 14.4b 7.9b 196.8a 27.3c

aReferences [2,21].
bReference [21].
cReference [2].

1s state was quite larger than the experimental energy; for
example, the binding energy was reported as Ẽ1s = 233 meV
in Ref. [17]. Our calculation with updated parameters gives
Ẽ1 = 201.3 meV.

III. WAVE FUNCTIONS AND OSCILLATOR STRENGTH

The excitonic orbital functions ϕns(r) multiplied by r for
n = 1–4 are shown in Fig. 2. The Bohr radius defined as a∞ =
ε∞h̄2/μe2 equals 6.6 Å with our CuCl material parameters
while rϕ1s(r) has a maximum at 6.9 Å. Defining the effective
exciton radius aeff as a radius of maximum radial probability
density of the 1s state, the exciton-phonon interaction in-
creases slightly the effective exciton radius to 6.9 Å.

Compared to the hydrogenic wave functions ϕH
ns(r) with

a∞ = 6.6 Å, the excitonic orbital functions are broader in
distribution and smaller in amplitude due to the exciton-
phonon interaction. The deviations from the hydrogenic wave
functions are much more noticeable for states with n = 2–4,
whereas for the 1s exciton the excitonic orbital function is
close to the hydrogenic wave function. We can see that the
effect of phonon coupling relates to the exciton size compared

to the e-h polaron radius Rex =
√

h̄
2μω0

, which is 22.4 Å for

CuCl. For the 1s state, whose size is much smaller than Rex,
the electron and the hole in the exciton do not interact strongly
with phonons due to screening of the charges, whereas radial
states with n � 2, which are larger than Rex, are affected
considerably by the phonon coupling similar to the strong
influence of phonons on the free electron–hole pair.

The oscillator strength of the ns exciton state is written as

fn ∝ |ϕns(0)|2 e−gn (0), (17)

with

gn(r) =
∑

k

|Fnk(r)|2. (18)

Figure 3 shows the function gn(r) for n = 1–4. Although
gn(r)’s are increasing functions for all the states, g1(r), which
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FIG. 2. Excitonic orbital function multiplied by the e-h distance
r for n = 1–4. The red solid and green dashed curves show excitonic
orbital functions obtained using GPB and GIBS methods, respec-
tively. The blue dashed curves are the hydrogenic wave function
multiplied by r.

is for the 1s state, remains relatively small in the whole
range of r. The magnitude of gn(r) becomes larger with
n and levels off at n � 3. Thus gn(0) causes to suppress
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FIG. 3. gn’s for n = 1–4 as functions of radius r.

the oscillator strength especially for n � 2. In addition, the
phonon coupling reduces ϕns(0) considerably for n � 2 as can
be seen from the ratios of ϕns(0) to ϕH

n (0), which are listed
in the second row of Table III. The reduction of ϕns(0) also
contributes to reduce the oscillator strengths for n � 2.

Imposing orthogonality of the total wave function as op-
posed to that of the spatial part alone is essential to correctly
determine excited states. For the 2s state the present calcula-
tion with the proper orthogonality gives the binding energy
as 33.8 meV while a conventional calculation with partial
orthogonality gives 33.5 meV. The difference is only about
0.3 meV. However, differences in wave functions are more
apparent as shown in Fig. 4. The use of proper orthogonality
makes the orbital function smaller at short distances and the
function gn larger at longer distances.

In the limiting case of vanishing exciton-phonon interac-
tion, i.e., ϕns(r) = ϕH

n (r) and gn(r) = 0, the oscillator strength
obeys the 1/n3 law: fn/ f1 = 1/n3. In practice, however, fn/ f1

shifts to a smaller value than 1/n3 since fn for n � 2 is
reduced considerably due to the exciton-phonon interaction,
whereas the reduction for f1 is small. The ratios of fn to f1

are listed in the third row of Table III. We define an oscillator
strength reduction factor sn as a parameter characterizing the
phonon effect on oscillator strength by

fn

f1
= sn

1

n3
. (19)

The reduction factors are estimated to be s2 = 0.27 and s3 =
s4 = 0.22. One can see that sn converges to approximately
0.22 with increase in n.

IV. DISPERSION ANALYSIS OF INVERSE
POLARITON SERIES

The ratios of the oscillator strengths obtained theoretically
in the last section can be tested by utilizing measurements

TABLE III. Properties of ns exciton states with n = 1–4 for CuCl.

ns 1s 2s 3s 4s

ϕn(0)/ϕH
n (0) 0.95 0.58 0.53 0.53

fn/ f1 1 0.034 0.0081 0.0035
sn 1 0.27 0.22 0.22
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of the inverse polariton series (IPS) in CuCl reported in
Refs. [4,21]. The experimental spectral points of the IPS,
[k, ω(k)], are indicated by red dots in Fig. 5. These spectral
points correspond to the lower polariton branch (LPB), upper
polariton branch (UPB), or higher polariton branches (PBns

for n = 2 − 4). The experimental data can be fitted by the
multibranch dispersion of the s-wave polariton by explicitly
accounting for a few lowest energy optically active exciton
states as

c2k2

ω2
= εb +

∑
X (ns)

�2
X (ns)

ω2
X (ns) − ω2

, (20)

where h̄ωX (ns) is the excitation energy of the X (ns) exciton,
�X (ns) is the corresponding Rabi frequency, and εb is the
background permittivity. In the second term of Eq. (20), the
summation for X (ns) is taken over six excitons, Z3(ns) with
n = 1–5 and the 1s state of Z12 exciton. The exciton energy
h̄ωX (ns) has spatial dispersion given by h̄ωX(ns) = EX (ns) + h̄2k2

2M ,
where we take M = 2.3m0 for all the exciton states.
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FIG. 5. The multibranch polariton dispersion for CuCl. (b) PBns

for n = 2–4 in the region where crossing of the dispersion curves is
avoided is enlarged. Solid red circles are measured spectral points.
The solid curves are theoretical dispersions fitted to the measured
spectral points.

TABLE IV. Exciton energies EX (ns) and Rabi frequencies �X (ns)

for Z3(ns) with n = 1–4 and Z12(1s) for CuCl.

X (ns) EX (ns) (eV) h̄�X (ns) (meV)

Z3(1s) 3.2022 452.4
Z3(2s) 3.3665 83.1
Z3(3s) 3.3846 40.8
Z3(4s) 3.391 26.5
Z12(1s) 3.267 741.1

Analysis of the dispersion relation for the IPS emissions
was also attempted in the previous paper [21]. In that work
two assumptions were made with respect to Eq. (20). One
was that the exciton wave function was exactly hydrogen-
like; thus �Z3(ns) followed the 1/n3 law: �2

Z3(ns)/�
2
Z3(1s) =

fZ3(ns)/ fZ3(1s) = 1/n3. The other was that εb was a constant.
With these assumptions the theoretical dispersion curves ap-
proximated well to experimental spectral points for LPB and
UPB, whereas the fitting quality was not adequate for PBns

(n � 2).
In the present work we modify the assumptions as follows.
Condition 1. The 1/n3 law for �2

Z3(ns) is violated since the
wave function deviates from the hydrogenic form due to the
interaction with phonons. Alternatively we have

�2
Z3(ns)

�2
Z3(1s)

= fZ3(ns)

fZ3(1s)
= sn

n3
, (21)

with s2 = 0.27 and s3 = s4 = s5 = 0.22. For s2–s4 we used
the values in Table III, which are estimated from wave
functions. For s5 we took the same value as s4 under the
presumption of convergence of sn in radial states with large
n as mentioned in Sec. II.

Condition 2. εb is approximated by

εb(ω) = εb(0) + �′2

ω′2 − ω2
, (22)

where εb(0), �′, and ω′ are adjustable parameters. Here we
use a constraint that εb(ω) = 4.3 for h̄ω = 3.2 eV in accor-
dance with Ref. [22].

The background permittivity εb consists of contributions of
oscillators with higher frequency than the gap energy. Hence
εb is in principle written as

εb(ω) = 1 +
∑

i

�′2
i

ω′2
i − ω2

. (23)

For simplification we replaced Eq. (23) with one representa-
tive oscillator represented by Eq. (22).

From analysis of the dispersion relation, the parameters in
Eq. (20) are determined as h̄�Z3(1s) = 452.4 meV, h̄�Z12(1s) =
741.1 meV, h̄�′ = 3.508 eV, h̄ω′ = 4.529 eV, and εb(0) =
3.1. We list the exciton energies EX (ns) and the Rabi frequen-
cies �X (ns) in Table IV. As shown in Fig. 5, the dispersion
relation agrees well with experimental spectral points even in
the high polariton branches.

The two conditions we imposed are essential to fit the
theoretical dispersion of PBns’s for n � 2 to experiments in
the k region where crossing of dispersion curves is avoided.
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TABLE V. Revised material parameters of CuCl.

Reduced mass 0.30m0

Electron mass 0.35m0

Hole mass 1.95m0

Effective exciton radius 6.9 Å

εb(ω) represented by Eq. (20) increases monotonically in
the frequency range for exciton excitations. This shifts the
avoided-crossing region toward higher wave number than
that obtained from the constant εb. Moreover, gradients of
dispersions in this k range are sensitive to Rabi frequencies.
The Rabi frequencies are reduced due to the coupling to
phonons compared with those expected from the 1/n3 law,
which make the gradients more rapid.

V. CONCLUSIONS

We used an accurate variational approach for calculating
exciton states including polaronic coupling in CuCl. The
wave functions of excitons in excited s states with n = 2–
4 are strongly modified by the exciton-phonon interaction.
The sizes of the excitons with n = 2–4 are larger than the
polaron radius and consequently the corresponding oscillator
strengths become much smaller than those predicted by the
1/n3 rule.

The availability of accurate exciton states allows us to
analyze the polariton dispersion obtained from inverse polari-
ton series with unprecedented accuracy. We found that the
reduction of the oscillator strength due to the phonon effect
and the energy dependence of the background permittivity
are essential for reproducing the observed dispersion relations
in the range k = (0.2–0.4) × 106 cm−1, where crossing of

dispersion curves is avoided. The oscillator strengths obtained
from the calculated wave functions are in good agreement
with experimental polariton dispersion.

We determined the electron and hole masses of CuCl as
me = 0.35m0 and mh = 1.95m0 and obtained the effective
exciton radius of the 1s state as aeff = 6.9 Å. As shown in
Table I, these masses are quite smaller than those used in
earlier calculations, which were quoted from Ref. [30]. Most
of the CuCl effective mass estimations in the 1970s [29–31]
were based on exciton energy measurements and the reduced
mass (∼0.39m0). The reduced mass of about 0.39m0 had been
estimated in the 1960s [6,28] by fitting energies of exciton
series to a hydrogenic formula with an effective dielectric con-
stant. Although the reduced mass determined by that simple
method was not accurate, it has been used for determining
the exciton radius as well as the effective masses. Using the
reduced mass of 0.39m0 and the effective dielectric constant
of about 5, the effective Bohr exciton radius is estimated to
be about 7 Å, which was often used for studies on CuCl mi-
crocrystals [32–35]. However, the roughly estimated exciton
radius was consistent with our effective exciton radius, 6.9 Å.
We list the revised material parameters of CuCl in Table V.

Correct interpretation of observed 1s-exciton binding en-
ergy as a difference between a much larger Coulomb energy
and the polaron energy in the free electron–hole pair shows
that the actual Coulomb binding energy of exciton complexes
such as the biexciton is much larger than that naively obtained
by treating the exciton binding energy as the effective Ryd-
berg. Application of this idea and its importance for accurate
modeling of biexcitons is presented in a following paper [8].
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