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The nonlinear supermatrix σ model is widely used to understand the physics of Anderson localization and
the level statistics in noninteracting disordered electron systems. In contrast to the general belief that the
supersymmetry method applies only to systems of noninteracting particles, we adopt this approach to the disorder
averaging in the interacting models. In particular, we apply supersymmetry to study the Sachdev-Ye-Kitaev
(SYK) model where the disorder averaging has so far been performed only within the replica approach. We use
a slightly modified time-reversal invariant version of the SYK model and perform calculations in real time. As a
demonstration of how the supersymmetry method works, we derive saddle-point equations. In the semiclassical
limit, we show that the results are in agreement with those found using the replica technique. We also develop
the formally exact superbosonized representation of the SYK model. In the latter, the supersymmetric theory
of original fermions and their superpartner bosons is reformulated as a model of unconstrained collective
excitations. We argue that the supersymmetry description of the model paves the way for precise calculations in
SYK-like models used in condensed matter, gravity, and high-energy physics.
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I. INTRODUCTION

The study of disordered and chaotic systems is a prevalent
topic in condensed-matter physics, and various models of
interacting particles have been under intensive investigation
for more than half a century. Less expected has been a recent
application of models with disorder to gravity and quantum
field theory [1–3]. This field of research is fast growing, and
the study of disorder and chaos can nowadays be considered as
an interdisciplinary. The latter, in particular, means that meth-
ods of calculations developed in condensed-matter theory can
be used in gravitation and high-energy physics.

Of course, one can simply use diagrammatic expansions in
both the interaction and disorder [4] and sum the most impor-
tant diagrams as it has been performed in Ref. [3]. However,
this approximation does not generally give full information
about the system, and one has to use nonperturbative methods.

Quantum phenomena in disordered or chaotic systems can
efficiently be investigated analytically using methods of quan-
tum field theory. Three most popular approaches are based
on the replica trick [5], the Keldysh technique [6–9], and
the supersymmetric σ -model approach originally developed
by one of the authors [10,11]. The necessity of applying
these techniques stems from the fact that physical correlation
functions of interest are expressed in terms of functional
integrals containing weight denominators whereas averaging
over quenched disorder has to be performed at the end of
calculations. This makes a direct application of methods of
quantum field theory difficult. All the methods of Refs. [5–12]
allow one to eliminate the weight denominator Z–the partition

function of the system—and average over disorder just at the
beginning of all calculations. As a result of this manipulation,
one obtains an effective field theory for “interacting” particles
and application of well-developed methods and approxima-
tions become feasible.

Although the replica, Keldysh, and supersymmetry tech-
niques look similar to each other, their efficiency when being
applied to different problems is very different. The replica
approach allows one to avoid explicitly calculating Z by
introducing an integer number of copies of the system and
making use of the replica trick. It can be used for various
systems of interacting particles, spins, etc., but the method
requires an analytical continuation to noninteger numbers
of replicas and assumes the existence of the replica limit
when the number of copies n → 0. A general procedure of
this continuation does not exist, and one obtains very often
unphysical results in certain situations, although one can also
obtain important results using this method [12]. Within the
Keldysh technique, one doubles the degrees of freedom to
obtain a normalized theory with partition function Z = 1.
The Keldysh σ -model representation of disordered systems is
formally exact, but it can be quite complicated for some spe-
cific cases. Both approaches have been successfully applied
to interacting theories with the disorder, but their efficiency
in making essentially nonperturbative calculations is rather
limited.

The supersymmetry approach makes use of the fact that
the partition function of noninteracting fermions is always the
inverse of that of the analogous bosonic theory. Therefore,
if one introduces additional bosonic degrees of freedom that
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replicate the fermionic action, the overall partition function
of the supersymmetric theory will be reduced to one. The
approach is proven to be a handy tool for studies in various
fields of physics and, in particular, in models of quantum
chaos involving random matrix theory (RMT) and various
models of disorder [10,11,13].

One of the prominent methods employing supersymmetry
is the nonlinear supersymmetric σ model [10,11] description
of disordered metallic conductors. According to this stan-
dard formalism, effective field theory is described by action
with coordinate-dependent supermatrix field Q(r), obeying
the constraint Q2(r) = 1. This method has a broad range of
applications, including the study of Anderson localization,
mesoscopic fluctuations, levels statistics in a limited volume,
quantum chaos. The limitation of the supersymmetric ap-
proach was that it was deemed to be inapplicable to systems
of interacting particles.

However, it turns out that there are important nontrivial
models of interacting particles with the disorder that can
be written in a supersymmetric form, and one can average
over the disorder at the beginning of calculations. The main
goal of this paper is to identify such models and develop
the supersymmetry approach to the disorder averaging. To
be more specific, we will apply this approach to study the
Sachdev-Ye-Kitaev (SYK) model [1,14], originally consid-
ered in Refs. [15,16]. In this model, the disorder averaging
was so far performed only within the replica trick approach.
Our mapping of the SYK model onto a supersymmetric model
containing both fermion and boson degrees of freedom, and
subsequent averaging over the disorder is exact. Moreover,
we demonstrate that the new supersymmetric model with
an effective particle-particle interaction can be reformulated
in terms of some generalized supermatrix σ model (super-
bosonization). This procedure is also exact. Leaving investi-
gation of new nontrivial regimes of the SYK model for the
future, we concentrate, here, on analyzing the semiclassical
limit of the model. The results obtained in the semiclassical
limit within this new approach are in agreement with those
found earlier using the replica technique. The applicability of
the supersymmetry method to the SYK model opens a new
way of calculations for a certain class of models in condensed-
matter, gravity and high-energy physics.

The SYK model exhibits inherently non-Fermi-liquid
behavior and quantum many-body chaotic eigenspectrum
[2,3,17–22]. This suggests that the two-point correlation func-
tion of the original fields of the model does not fully capture
the many-body level statistics. The reason is that these are
the many-body states that entirely determine the close energy
levels. Thus, the many-body level statistics of the SYK model
that follows the universal behavior of Wigner-Dyson random-
matrix ensembles is inaccessible to original single-particle
fields. To account for many-body effects of the model, we
perform the superbosonization transformation and rewrite the
model in terms of the collective many-body excitations. To
show the workability of the representation, we reproduce
earlier established results. We also demonstrate that the devel-
oped superbosonized description of the SYK model is capable
of producing novel nonperturbative many-body effects.

The paper is organized as follows. In Sec. II, we introduce
the SYK model. In Sec. III, we develop a new supersymmetric

σ -model representation for interacting disordered fermion
systems and apply it to SYK model. To derive it, we decouple
the interaction Hamiltonian using the conventional Hubbard-
Stratonovich approach. Then, we notice that the Hubbard-
Stratonovich field can, in some situations, be gauged out from
the denominator. This enables one to supersymmetrize the
interacting theory. In Sec. IV, the new formalism is tested by
calculating the fermion Green’s function in the SYK model at
long times and is argued to be efficient for other interacting
models with the disorder.

In Sec. V, we rewrite the supersymmetric SYK model as
a model describing unconstrained supermatrices represent-
ing collective many-body excitations. Such a representation
where the partition function is represented in a supermatrix
action formulation without any constraints is dubbed super-
bosonization. Since the transformation is exact, it is fully
capable describing the many-body modes instead of the orig-
inal fermions of the SYK model. As such, it represents the
first step towards derivation of the Wigner-Dyson eigenvalue
statistics and the calculation of the Thouless time at which
the universal random-matrix behavior sets in. Our conclusions
and the possible directions for the future research are dis-
cussed in Sec. VI.

II. MODEL

The study of out-of-time correlation functions [23] in
the SYK model shows [18,24–27], that it exhibits chaotic
behavior at all timescales. At short times, it has exponentially
decaying correlators, whereas at ultralong times, otherwise
nearly zero temperatures when the energy scale is less than
the many-body level spacing, one has maximal chaoticity in
the large system size limit. This happens because Lyapunov
exponent saturates to the conjectured upper bound [25]. One
of the important problems here is the test of eigenstate ther-
malization hypothesis (ETH) [28,29], which is a conjecture
about the nature of matrix elements of physical observables
that, if holds, reconciles the predictions of statistical physics
of equilibrating states with those of quantum mechanics in the
long-time limit.

The study of the low-energy (long time) scale [30,31]
shows ETH behavior because the eigenstates exhibit volume
law entanglement [32,33] suggesting that system becomes
ergodic. However, one of the major questions, here, is associ-
ated with finding the intermediate time/energy scale at which
the system transfers to a thermalized state. The characteris-
tic timescale that leads to ergodicity in the SYK system is
analogous to Thouless time in dirty metals, whereas the states
are analogous to diffusive modes there. In the intermediate
stage, one does not have an ergodic state. To study the latter,
in Refs. [31,34–36], the local two fermions hopping term
(SYK2) with random coupling was added to the four-fermion
long-range randomly interacting SYK4 Hamiltonian. Here,
the thermalization properties, including the Lyapunov expo-
nent (or scrambling rate) and the so-called butterfly velocity,
were analyzed. The butterfly speed is the speed at which
the impacts of a local perturbation proliferate, whereas the
scrambling rate is a proportion of the rate at which the local
perturbation is mixed into nonlocal degrees of freedom. It has
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been demonstrated that in a general quantum framework, the
Lyapunov exponent is limited by the temperature.

Another development in this direction was reported in
Refs. [37–53], where d-dimensional generalization of SYK
model was proposed by taking a number of SYK droplets
in real space and including fermion hopping terms between
them. This line of investigations is, however, out of the scope
of the present paper.

The level statistics in the generalized SYK4 + SYK2 model
was studied recently using exact diagonalization [34]. The
results suggest that upon fixing the range of two-fermion
hopping and keeping the four-fermion interaction sufficiently
long ranged, the spectral correlations will not change sub-
stantially compared to the random-matrix prediction, which
is typical for chaotic quantum systems. However, by reducing
the range of the two-fermion terms, one will see a transition
into an insulating state, characterized by Poisson statistics. It
appeared, that in the vicinity of the many-body metal-insulator
transition point, the spectral correlations share all the features
that had been previously found in systems at the Anderson
transition and in the proximity of the many-body localization
transition. This indicates the potential relevance of general-
ized SYK models in the context of many-body localization
and exhibits itself as a starting point for the exploration of a
gravity dual of this phenomenon.

An important demonstration of the SYK model being
maximally chaotic is the fact of having a finite entanglement
entropy at zero temperature [30,33], indicating that, at long
timescales, there is maximal mixing in the ground state.
Basic features of the SYK model, that, in turn, support the
existence of a gravity dual, include maximal chaos in the
strong-coupling limit, finite zero-temperature entropy, linear
specific heat in the low-temperature limit, the exponential
growth of low-energy excitations, and the short-range spectral
correlations given by random-matrix theory.

In its simplified version [2], the complex SYK model is
a system of randomly interacting N (originally Majorana)
spinless fermions represented by their annihilation (creation)
operators ĉi (ĉ†

i ), i = 1, . . . , N with random all-to-all interac-
tions given by the Hamiltonian,

Ĥ =
∑
i j,kl

Ji j,kl ĉ
†
i ĉ j ĉ

†
k ĉl − μ

∑
i

ĉ†
i ĉi. (2.1)

The coupling constant Ji j,kl was assumed to be a random
complex number,

J∗
i j,kl = Jlk, ji, (2.2)

with a Gaussian distribution characterized by the following
average and variance:

〈Ji j,kl〉 = 0, 〈Ji j,kl J
∗
i′ j′,k′l ′ 〉 = J2

N3
δii′δ j j′δkk′δll ′ . (2.3)

Averages of the type 〈Ji j,kl Ji′ j′,k′l ′ 〉 are equal to zero unless they
can be reduced to Eq. (2.3) using the symmetry relation (2.2).
The generalization of the SYK model to the case of random
q-fermion interaction with even q is dubbed in the literature
SYKq model. In the latter, instead of four fermion interactions
with random coupling, one has a q-fermion interaction.

At long timescales (low temperatures), the SYK model
is conformal because the term that contains a time

derivative in the Lagrangian can be ignored. The action of
the model can be written using the so-called G, � repre-
sentation and the Schwarzian theory [1,3] can describe its
soft-mode fluctuations. It has been shown that this theory is
equivalent [17,18,54] to two-dimensional dilaton gravity and
the Jackiw-Teitelboim model [55–57]. This fact points out the
link between AdS2 black-hole physics and the SYK model.

The spectral form factor in the SYK model was studied
numerically in Ref. [58] (analogous two-point correlation
functions were studied using the random-matrix approach
in Refs. [36,59]). Roughly, the spectral form factor is the
Fourier transform of the connected two-point density-density
correlation function 〈ρ(E )ρ(E ′)〉 in random-matrix theory.
The question of the precise window of universality in which
random-matrix theory is applicable is still unknown.

The supersymmetric reformulation of the SYK model we
propose below, may give a possibility to derive it theoreti-
cally. The method may also allow one to study corrections
beyond this universality regime. It is worth emphasizing that
developing the supersymmetric representation we start with a
fermionic SYK model analogous to the one given by Eq. (2.1).
Bosons appear after certain transformations and are somehow
“fictitious bosons,” such as those that appear in the supersym-
metry technique for electron systems [10,11].

All this clearly contrasts works on supersymmetric gen-
eralizations of the SYK model. For example, Ref. [60] re-
ported a supersymmetric generalization of the SYK. In that
model, however, the four-fermion coupling constants Ji jkl

are not entirely random (they are correlated and defined
by free-coupling constants in supercharge Q). The bosonic
field appears, here, as a nondynamical field to linearize the
supersymmetry transformation and realize the supersymme-
try algebra off shell. Similar supersymmetric lattice models
were reported in Refs. [61–67]. Specific correlations of the
random couplings of these models lead to N = 1 and N = 2
supersymmetries. Previous attempts to use a supersymmetry
technique for the k-body matrix models were reported in
Ref. [68]. Supersymmetric models with random couplings
that include both bosons and fermions were considered in
Refs. [69,70], whereas Ref. [71] explored the possibility
of extending the (1 + 1)-dimensional bosonization technique
to (0 + 1)-dimensional SYK-type systems. Reference [72]
suggested that the SYK model with Majorana fermions and
without fine-tuned couplings has the capacity of possessing
some hidden supersymmetry, which may also be present in
the complex SYK model when the chiral symmetry is present
[73].

III. SUPERSYMMETRY REFORMULATION OF THE SYK
MODEL: AVERAGING OVER QUENCHED DISORDER

Now, we apply the supersymmetry approach to the inter-
acting SYK model. We believe that such an approach opens
the door to analyzing the many-body effects and exponentially
small bulk level spacing of the model. The formalism could
also be adapted to study the effects in generalized SYK mod-
els, such as SYK4 + SYK2 and establish a fruitful connection
between complex and Majorana models.

Although the original model Eq. (2.1) has been written
in the Hamiltonian representation, it is more convenient to
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use the functional integral representation with fermionic fields
χi(t ), χ∗

i (t ). They obey the anticommutation relations,

{χi, χ j} = {χ∗
i , χ∗

j } = {χi, χ
∗
j } = 0, (3.1)

and we use the convention (χ∗
i )∗ = −χi.

In order to develop the supersymmtery approach for the
model with the fermion-fermion interaction, we slightly mod-
ify the original model specified by Eq. (2.1). Using the an-
ticommuting Grassmann fields χ , we write correlation func-
tions in terms of a functional integral over these fields as

Gi j (t, t ′) = − i
∫

χi(t )χ∗
j (t ′) exp(iS[χ, χ∗])DχDχ∗∫

exp(iS[χ, χ∗])DχDχ∗ . (3.2)

In Eq. (3.2), the product of the fields χi(t ) and χ∗
j (t ) for

arbitrary i, j and times t defines the Green’s function Gi j .
Here, we start with the action S[χ, χ∗], which is slightly
different from the field representation of the model given by
Eq. (2.1). Namely, we consider

S[χ, χ∗] =
∫ ∞

−∞

⎡
⎣ N∑

i=1

χ∗
i (i ∂t + μ)χi(t )

−
N∑

i j,kl=1

Ji j,kl [χ
∗
i (t )χ j (t ) − χ∗

j (t )χi(t )]

× [χ∗
k (t )χl (t ) − χ∗

l (t )χk (t )]

⎤
⎦dt . (3.3)

The random coupling constants Ji j,kl in Eq. (3.3) are assumed
to be real and obey the symmetry relations,

Ji j,kl = −Jji,kl = −Ji j,lk = Jkl,i j . (3.4)

Their distribution is Gaussian with zero average,

〈Ji j,kl〉 = 0, (3.5)

and the variance,

〈Ji j,kl Ji′ j′,k′l ′ 〉 = J2

8N3
[(δii′δ j, j′ − δi j′δ ji′ )(δk,k′δll ′ − δkl ′δlk′ )

+ (δik′δ j,l ′ − δil ′δ jk′ )(δk,i′δl j′ − δk j′δli′ )].

(3.6)

One can interpret the model described by Eq. (3.3) as a time-
reversal invariant symmetrized version of the SYK model. The
model was also recently considered in Ref. [74].

First, under the functional integral, we introduce a time-
dependent Hubbard-Stratonovich real antisymmetric matrix
field MF

i j (t ) and decouple the four-fermion interaction of the
SYK Hamiltonian (2.2) by inserting the identity operator,

1 ≡
∫ DMF

Det[Ji j,kl ]
exp

⎧⎨
⎩i
∫

dt
N∑

i j,kl=1

N∑
i′ j′,k′l ′=1

× [MF
i j − i(χ∗

l χk − χ∗
k χl )Jkl,i j

]

× (J−1)i j,i′ j′
[
MF

j′i′ − Ji′ j′,k′l ′ i(χ
∗
k′χl ′ − χ∗

l ′ χk′ )
]⎫⎬⎭, (3.7)

into the functional integrals over χ, χ∗ in Eq. (3.2). Here,
(J−1)i j,kl is the inverse of Ji j,kl , namely,∑

kl

(J−1)i j,kl Jkl,mn= δimδ jn. (3.8)

Using the last property in Eq. (3.4) of the coupling Ji j,kl

and the Hermiticity of the matrix Mi j (t ), we see that the
exponent in Eq. (3.7) is purely imaginary and the integral over
matrix Mi j (t ) converges. Then, the action for the time-reversal
symmetric modification of the SYK model is now equivalent
to that of a system of electrons moving in a fluctuating real
antisymmetric field Mi j (t ) with random Ji j,kl ,

S[χ, χ∗, MF ]

= S0[χ, χ∗, MF ] + Sfluct[M
F ]

=
∫ ∞

−∞
dt

N∑
i j=1

{
χ∗

i t (t )[(i∂t + μ)δi j − 2iMF
i j (t )]χ j (t )

+
∑
i jkl

MF
i j (t )(J−1)i j,kl M

F
lk (t )

}
. (3.9)

Here Sfluct[MF ] represents the Gaussian fluctuations of MF (t ).
This action, therefore, defines the Green’s function Gi j of
fermionic fields χi(t ), χ∗

j (t ) as

Gi j (t, t ′)

= − i
∫

χi(t )χ∗
j (t ′) exp(iS[χ, χ∗, MF ])DχDχ∗DMF∫
exp(iS[χ, χ∗, M])DχDχ∗DM

.

(3.10)

The random coupling Ji j,kl enters both the numerator and
the denominator in Eq. (3.10), and one cannot average over
this coupling directly. This situation is typical for problems
with quenched disorder. The standard supersymmetry ap-
proach of Refs. [10,11] relies on the fact that the system is
initially noninteracting. In that case, one replaces the denom-
inator by an integral over bosonic fields in the numerator.
Since, here, we deal with an inherently interacting system, we
generate a field Mi j which enters both numerator and denom-
inator in Eq. (3.10) and seemingly invalidates the possibility
of supersymmetrizing the action.

Although this obstacle cannot be generally overcome, the
SYK model considered here is, in this respect, exceptional.
Now, we make a crucial observation. We show, now, that the
integral over the fermionic fields χ, χ∗ in the denominator
of Eq. (3.10) does not, in fact, depend on the Hubbard-
Stratonovich field M(t ). The reason is that the real antisym-
metric matrix M(t ) can be reduced to a time-independent
constant matrix M0 by a gauge transformation 2M(t ) =
2U T M0U − U T ∂tU of the orthogonal group U T U = 1. Here,
the constant matrix M0 is block diagonal with real 2 × 2
antisymmetric blocks along the diagonal μ̂i = ( 0 μi

−μi 0 ) with
i = 1, 2, . . . , N/2. The matrix M0 represents the zero mode
of M(t ) and appears due to periodicity of restrictions on
U (t ). At zero temperature, it vanishes, M0 = 0, and the trans-
formation reduces to a pure gauge transformation 2M(t ) →
−U T ∂tU . Since the gauge transformation of free fermions is
not anomalous [75], it helps us to simplify the integral in the
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denominator of Eq. (3.10),∫
exp(iS0[χ, χ∗, M])DχDχ∗

= Det[(i∂t + μ)δi j − 2iMi j]

= Det[U T (i∂t + μ)U ] = Det[(i∂t + μ)]. (3.11)

So, what we end up having in the denominator is just a deter-
minant Det[(i∂t + μ)], which is independent of the fluctuating
field M(t ) and random coupling constants Ji jkl . This point
is crucial, and it allows one to express the integral over the
fermionic fields in the denominator in Eq. (3.10) via additional
bosonic superpartner fields. This is a standard procedure of
the supersymmetric approach developed in Refs. [10,11].

Following this approach, we introduce complex bosonic
fields si(t ), i = 1, 2 · · · N and a new bosonic model with the
action,

SB[s, s∗] =
∫ ∞

−∞

⎡
⎣ N∑

i=1

s∗
i (t )(i∂t + μ)si(t )

−
N∑

i j,kl=1

Ji j,kl [s
∗
i (t )s j (t ) − s∗

j (t )si(t )]

× [s∗
k (t )sl (t ) − s∗

l (t )sk (t )]

⎤
⎦dt . (3.12)

The action SB[s, s∗] looks identical to action S[χ, χ∗],
Eq. (3.3), and it is real. Moreover, the coupling constant Ji j,kl

obeys the same symmetry relations (3.4). Now, we write the
bosonic partition function,

ZB =
∫

exp(iS[s, s∗])Ds Ds∗. (3.13)

As the action SB[s, s∗] is real, the integral over s(t ) in
Eq. (3.13) converges. Then, we make the same decoupling
of the interaction in Eq. (3.13) as we have performed for the
fermionic model and write the partition function ZB in the
form

ZB =
∫

exp(iSB[s, s∗, MB])Ds Ds∗DMB. (3.14)

Here, the action SB[s, s∗, MB] equals to

S[s, s∗, MB]

=
∫ ∞

−∞
dt

N∑
i, j=1

⎧⎨
⎩s∗

i (t )
[
(i∂t + μ)δi j − 2iMB

i j (t )
]
s j (t )

+
∑
i j,kl

MB
i j (t )(J−1)i j,kl M

B
kl (t )

⎫⎬
⎭. (3.15)

The matrix MB(t ) in Eqs. (3.14) and (3.15) has the same
symmetry as the matrix MF (t ) in Eqs. (3.7)–(3.11), and we
can calculate the Gaussian integrals over the bosonic field s(t )

in the same manner as previously,∫
exp

[
i
∫ ∞

−∞

[
s∗

i (t )(i∂t + μ)δi j − 2MB
i j (t )

]
s j (t )dt

]
Ds Ds∗

= {Det
[
(i∂t + μ)δi j − 2MB

i j

]}−1 = [Det(i∂t + μ)]−1.

(3.16)

We see that the matrix MB(t ) is gauged out, and the result
of the integration over s(t ), s∗(t )is performed exactly in the
same way as in the fermionic determinant. This matrix is also
real and antisymmetric. However, in contrast to Eq. (3.11),
one obtains the inverse of the determinant. It is this property
of bosonic determinants that allows one to get rid of the
denominator in Eq. (3.2).

Combining the fermionic and bosonic degrees of freedom,
one can form a supervector � ≡ ({χi}; {si}) ∈ U (N, 1|N, 1)
and its Hermitian conjugate supervector �† ∈ U (N, 1|N, 1)
. This allows us to write a supersymmetric action for the
time-reversal invariant SYK model as

S̃[�,�†, M̂]

=
∫

dt

⎡
⎣∑

i,a

�
†
i (t )[(i∂t + μ)δi j − 2M̂i j (t )]� j (t )

+
∑
i jkl

Tr[M̂i j (t )(J−1)i j,kl M̂kl (t )]

⎤
⎦, (3.17)

where the two-component supervectors have the following
structure:

�i(t ) =
(

χi(t )
si(t )

)
, �

†
i (t ) = [χ∗

i (t ) s∗
i (t )]. (3.18)

and

M̂i j (t ) =
(

MF
i j (t ) 0
0 MB

i j (t )

)
(3.19)

is a diagonal matrix in the space of the supervectors �. Having
set up this structure, one can readily write the fermion Green’s
function Gi j in Eq. (3.2) as

Gi j (t, t ′)

= −i
∫

�1
i (t )�1†

j (t ′) exp(iS[�,�†, M̂])D� D�†DM̂.

(3.20)

Importantly, the absence of the weight denominator in
Eq. (3.20) allows one to average over the random coupling
Ji j,kl in the beginning of all calculations.

We see that, although we have started with an interacting
theory, the supersymmetry approach to quenched averaging
[11] works in this case as well due to the fact that the spatial
dimension in this problem is effectively zero. We emphasize
that all the transformations reducing Eq. (3.2)–(3.20) are
formally exact. Now, we integrate in Eq. (3.20) over the matrix
M̂(t ) to obtain

Gi j (t, t ′) =
∫

�1
i (t )�1†

j (t ′) exp(iS[�,�†])D� D�†,

(3.21)
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Here, in Eq. (3.21), the action S[�,�†] equals

S[�,�†] =
∫ ∞

−∞
dt

[∑
i

�
†
i (t )(i∂t + μ)�i(t )

−
2∑

a=1

∑
i j,kl

Ji j,kl
[
�

a†
i (t )�a

j (t ) − �
a†
j (t )�a

i (t )
]

× [�a†
k (t )�a

l (t ) − �
a†
l (t )�a

k (t )
]]

, (3.22)

where a = 1 denotes the fermionic component of the super-
vector �(t ) defined in Eq. (3.18), whereas a = 2 stands for
the bosonic one.

Before performing disorder averaging, it is convenient to
use more compact notations via introducing four-component
supervectors 	(t ) as

	i(t ) = 1√
2

⎛
⎜⎜⎝

χ∗
i (t )

χi(t )
s∗

i (t )
si(t )

⎞
⎟⎟⎠,

	̄i = 1√
2

[χi(t )χ∗
i (t ) − si(t )s∗

i (t )]. (3.23)

The supervector 	̄ is related to 	 by a charge conjugation,

	̄ = (C	)T , (3.24)

where T stands for transposition and the matrix C is given by

C =
(

c2 0
0 c1

)
, c1 =

(
0 −1
1 0

)
, c2 =

(
0 1
1 0

)
.

One can note that 	̄ has a simple connection to the Hermitian-
conjugated supervector 	†,

	̄ = 	†τ3, (3.25)

where

τ3 =
(

1 0
0 −1

)
(3.26)

is the Pauli matrix in the “particle-hole” space of matrices c2

and c1.
Furthermore, the square of the modulus of the supervector

	 is equal to

|	|2 = 	†	 = 	̄τ3	. (3.27)

It is also seen that

	̄i	 j = −	̄ j	i. (3.28)

Substituting Eqs. (3.23)–(3.28) into Eqs. (3.21) and (3.22), we
rewrite the fermion Green’s function in a more compact form

Gi j (t, t ′) =
∫

	1
2i(t )	1†

2 j (t ′) exp(iS[	,	†])D	 D	†.

(3.29)
In Eq. (3.29), superscripts numerate blocks in the superspace,
whereas first subscripts numerate elements in the particle-hole

space. The action S[	,	†] entering Eq. (3.29) is given by

S[	,	†] =
∫ ∞

−∞
dt

[∑
i

	̄i(t )(i∂t + τ3μ)	i(t )

− 4
2∑

a=1

∑
i j,kl

Ji j,kl
[
	̄a

i (t )	a
j (t )
][

	̄a
k (t )	a

l (t )
]⎤⎦,

(3.30)

where 	a(t ), a = 1, 2 stand for the fermion and boson com-
ponents of the supervectors 	. Substituting Eq. (3.30) into
Eq. (3.29), one can easily average over the random Ji j,kl using
Eq. (3.6). The expression for the disorder-averaged Green’s
function, thus, will read as

〈Gi j (t, t ′)〉 =
∫

	1
2i(t )	1†

2 j (t ′) exp(iS̄[	,	†])D	 D	†,

(3.31)
where the nonlocal action action S̄[	,	†] equals

S̄[	,	†] =
∫ ∞

−∞
dt

N∑
i=1

	̄i(t )(i∂t + τ3μ)	i(t )

× iJ2

N3

2∑
a,b=1

N∑
i j,kl

∫ ∞

−∞

[
	̄a

i (t )	a
j (t )
][

	̄a
k (t )	a

l (t )
]

× [	̄b
l (t ′)	b

k (t ′)
][

	̄b
j (t ′)	b

i (t ′)
]
dt dt ′. (3.32)

We see that the action S̄[	,	†] in Eq. (3.32) does not contain
disorder anymore, and the integral over the supervectos 	

†
i (t )

and 	 j (t ) in Eq. (3.31) is clearly convergent.
Of course, in Eq. (3.32), the addition of extra bosonic

degrees of freedom comes at the price of introducing addi-
tional integrals. However, the resultant theory Eqs. (3.31) and
(3.32) does not contain disorder and is fully supersymmetric.
As such, it has many simplifications. One simplification is
the cancellation of a variety of Feynman diagrams in the
perturbation theory in interactions due to the supersymmetry.
Another simplification follows from the superbosonization of
this supersymmetric action discussed in Sec. V. In the su-
perbosonized representation, instead of the functional integral
over supervectors, one deals with an integral over superma-
trices. In that approach, the number of integration variables
can significantly be reduced upon the diagonalization of the
supermatrices.

However, let us fist make a saddle-point approximation that
has to become exact in the limit N → ∞. This is performed
in the next section. Comparison of the hereby obtained results
with those obtained within the replica approach in Refs. [2,14]
can be performed, but one cannot expect a full coincidence
because we consider a somewhat different model. In contrast
to the calculations presented there, we use the real-time repre-
sentation.

IV. SADDLE-POINT APPROXIMATION

The saddle-point approximation is expected to become
exact in the limit N → ∞. In order to see this property
explicitly and proceed with the calculations, let us introduce
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2 × 2 supermatrices W ab(t, t ′) as

W ab(t, t ′) = 2

N

N∑
i=1

	a
i (t )	̄b

i (t ′), (4.1)

where supervectors 	 and 	̄ are specified in Eq. (3.18). The
supermatrix W (t, t ′) has the evident symmetry,

W †(t, t ′) = W (t ′, t ). (4.2)

Using Eqs. (4.1) and (4.2), and the disorder averaging proce-
dure resulting in Eq. (3.32), we explicitly reduce Eq. (3.32) to
a considerably more compact form

S̄[	,	†]

=
∫ ∞

−∞
dt

N∑
i=1

	̄i(t )(i∂t + τ3μ)	i(t )

+ iNJ2

2

∫ ∞

−∞

∫ ∞

−∞
dt dt ′(2{[W 21(t, t ′)W 12(t ′, t )]}2

+{[W 11(t, t ′)W 11(t ′, t )]}2 + {Tr[W 22(t, t ′)W 22(t ′, t )]}).

(4.3)

where 2 × 2 matrices W ab have matrix-valued entries. Ele-
ments of matrices W 21(t, t ′) and W 12(t ′, t ) are anticommuting
fields, whereas those of the matrices W 11(t, t ′) and W 22(t, t ′)
contain products of two anticommuting fields or are conven-
tional complex functions.

Here, we would like to invite the reader’s attention to the
resemblance of the action (3.32) with the replicated imaginary
time action of the SYK model outlined in Ref. [2] [see
Eq. (16) there]. However, now we have the formally exact
supersymmetric representation of the model where no replica
limit n → 0 (see, e.g., Refs. [76–79]), has to be taken. It is also
worth emphasizing that, here, we have 4 × 4 supermatrices
W (t, t ′) instead of n × n matrices in the replica approach. We
emphasize that Eqs. (3.31) and (4.3) are still exact for any N .

Now, one can explicitly see that the interaction term in
Eq. (4.3) is proportional to N , and the accuracy of the saddle-
point approximation should follow from the assumption that
this number is large. Although details are different, we use the
general chain of transformations suggested in Refs. [2,14] and
analyze the behavior of the fermion Green’s function.

First, we decouple the interaction terms in Eq. (4.3) by
introducing auxiliary functions Pab(t, t ′) and integrating over
them. We write

exp

⎡
⎣−J2N

2∑
a,b=1

∫ ∞

−∞

∫ ∞

−∞

1

2
{Tr[W ab(t, t ′)W ba(t ′, t )]}2dt dt ′

⎤
⎦

= Z0

∫
DP exp

⎧⎨
⎩−N

∫ ∞

−∞

∫ ∞

−∞
dt dt ′

2∑
a,b=1

[
Pab(t, t ′)Pba(t ′, t )

2J2
− iPab(t, t ′)Tr[W ab(t ′, t )W ba(t, t ′)]

]⎫⎬
⎭, (4.4)

where

Z0 =
∫

DP exp

⎡
⎣−N

N∑
a,b=1

∫ ∞

−∞

Pab(t, t ′)Pba(t ′, t )

2J2
dt dt ′

⎤
⎦. (4.5)

In Eqs. (4.4) and (4.5), P11(t, t ′) and P22(t, t ′) are real symmetric functions, whereas P12(t, t ′) = [P21(t ′, t )]∗. The contribution
of off-diagonal elements W ab(t, t ′), a �= b to Eq. (4.4) is subleading at N � 1. The reason for this is that these elements are
Grassmann variables, and upon expanding the exponent in (4.4), one generates only first-order and mixed second-order terms that
come with small powers of N . Thus, in the main approximation in N , contributions coming from W aa(t, t ′) are most important,
and we concentrate on them.

To simplify the action and analyze its equations of motion, we have to decouple the terms {Tr[W (t, t ′)W (t ′, t )]}2 by one more
Gaussian decoupling. To do this, we introduce a new diagonal matrix-field Qaa(t, t ′), a = 1, 2 and use the following identities:

exp

[
Ni
∫ ∞

−∞
Paa(t, t ′)W aa(t, t ′)W aa(t ′, t )dt dt ′

]

=
∫

DQ exp

⎡
⎣−Ni

N∑
i j

∫ ∞

−∞
Paa(t, t ′){Tr[Qaa(t, t ′)Qaa(t ′, t ) + 2Qaa(t, t ′)	a(t ′)	̄a(t )]}dt dt ′

⎤
⎦Za[P]

= Za[P]
∫

DQ exp

⎡
⎣−Ni

∑
i j

∫ ∞

−∞
{Tr[Paa(t, t ′)Qaa(t, t ′)Qaa(t ′, t )] − 2(−1)a−1	̄a(t )Paa(t, t ′)Qaa(t, t ′)	a(t ′)}dt dt ′

⎤
⎦,

(4.6)

where a = 1, 2 and we introduced the following notation:

Za[P] =
∫

DQ exp

⎡
⎣iN

∑
i j

∫ ∞

−∞
Paa(t, t ′)Qaa(t, t ′)Qaa(t ′, t )

⎤
⎦. (4.7)
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In Eq. (4.6), the new matrices,

Q(t, t ′) =
(

Q11(t, t ′) 0
0 Q22(t, t ′)

)
(4.8)

have the following symmetry:

Q̄(t, t ′) = CQT (t, t ′)CT = Q†(t, t ′). (4.9)

All these decouplings and notations allow us to write the
full partition function Z of the model in the form

Z =
∫

exp(iS[	,	†, P, Q])Z[P]D	 DP DQ, (4.10)

where the integrant contains a factor Z[P] given by

Z[P] = Za[P]Zb[P]Z0. (4.11)

In Eq. (4.10), the functional S[	,	†, P, Q] is given by

S[	,	†, P, Q]

=
∫ ∞

−∞
dt dt ′

⎡
⎣ N∑

i=1

	̄i(t )[δt,t ′ (i∂t ′ + τ3μ)

+ 2P(t, t ′)Q(t, t ′)]	i(t
′)

− N
N∑

i, j=1

Tr[P(t, t ′)Q(t, t ′)Q(t ′t )] + iN

2J2
Tr[P2(t, t ′)]

]
,

(4.12)

where

P(t, t ′) =
(

P11(t, t ′) 0
0 P22(t, t ′)

)
. (4.13)

Integrating out the supervectors 	,	†, one obtains, using
Eq. (4.10), the following formula for the partition function Z:

Z =
∫

Z[P, Q]DP DQ, (4.14)

with the integrant Z[P, Q] being equal to

Z[P, Q] = exp

{
N
∫ ∞

−∞

∫ ∞

−∞
dt dt ′

[
− Tr P2(t, t ′)

2J2

+ Tr[k ln[δ(t − t ′)(i∂t ′ + τ3μ) + 2P(t, t ′)Q(t, t ′)]

− i Tr[P(t, t ′)Q(t, t ′)Q(t ′, t )]

]}
. (4.15)

Here, we introduced a 2 × 2 matrix k, that differentiates
between bosonic and fermionic superpartners,

k =
(

1 0
0 −1

)
.

The presence of the large N in the exponential in
Eq. (4.15) allows one to calculate the integral over
P(t, t ′) and Q(t, t ′) using the saddle-point method. Min-
imizing action − ln Z[P, Q] with respect to the matrices
Q(t, t ′) and P(t, t ′), we obtain the following saddle-point

equations:

Q(t, t ′) = −ik[δ(t − t ′)(i∂t ′ + τ3μ) + 2P(t, t ′)Q(t, t ′)]−1,

(4.16)

P(t, t ′) = −iJ2Q(t, t ′)Q(t ′, t ) + 2J2Q(t, t ′)

×k[(i∂t + τ3μ)δ(t − t ′) + 2P(t, t ′)Q(t, t ′)]−1.

(4.17)

Using Eq. (4.16), we rewrite Eq. (4.17) in a simpler form

P(t, t ′) = iJ2Q(t, t ′)Q(t ′, t ). (4.18)

As the next step, substituting Eq. (4.18) into Eq. (4.16), one
will obtain a closed equation for Q(t, t ′),

Q(t, t ′) = −ik[(i∂t + τ3μ)δ(t − t ′)

+2iJ2Q(t, t ′)Q(t ′, t )Q(t, t ′)]−1. (4.19)

Note that, Eq. (4.19) can also be written in a form of a
differential equation,

[(i∂t + τ3μ)Q(t, t ′) + 2iJ2
∫

Q(t, t ′′)Q(t ′′, t )Q(t, t ′′)]

× Q(t ′′, t ′)dt ′′ = −ikδ(t − t ′). (4.20)

As the function Q(t, t ′) is diagonal, one can solve Eq. (4.20)
separately for the fermion and boson parts. At small energies
(long-time limit) and μ = 0, one can neglect the first line in
Eq. (4.20). Assuming that the solutions depend on the time
difference, one comes to the following set of equations:

2J2
∫

[QF (t − t ′′)]2QF (t ′′ − t )QF (t ′′ − t ′)dt ′′ = −δ(t − t ′),

(4.21)

2J2
∫

(QB(t − t ′′)]2QB(t ′′ − t )QB(t ′′ − t ′)dt ′′ = δ(t − t ′),

where QF (t, t ′) and QB(t, t ′) are fermion and boson parts the
matrix Q(t, t ′). The structure of Eqs. (4.22) is similar that
of equations obtained in Ref. [2], although there are small
differences due to a fact that we considered, here, a slightly
different model Eq. (3.3) written in real time.

From Eqs. (4.18)–(4.20), we can find the Green’s function
of fermions and bosons in energy space,

G(ω) = [ω14 − �(ω)]−1,

where 14− is a four-dimensional identity matrix and �(ω) is
the Fourier image of the electron/boson self-energy,

�(t − t ′) = −2J2kG2(t − t ′)G(t ′ − t ). (4.22)

In Eq. (4.22), � and G are 4 × 4 diagonal matrices. For the
fermionic part, this relations fully coincide with ones obtained
in Ref. [2], whereas bosonic self-energy has the opposite sign
as it should be. One can see easily that this sign difference
gives the unity partition function Z[P, Q] given by Eqs. (4.14)
and (4.15). Indeed, writing the derivative of the logarithm of
the partition function Z and using the saddle-point equations
(4.16) and (4.18), we obtain

− ∂

∂J
ln Z[PJ , QJ ] = − N

J3
Tr P2

J (t, t ′), (4.23)
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where QJ and PJ are solutions of the saddle-point equations
(4.16) and (4.18). Using Eqs. (4.18), (4.22), and (4.23) and
reconstructing the partition function Z[PJ , QJ ] from its deriva-
tive we conclude that it is equals one. This confirms that the
saddle-point solution does not contradict the supersymmetry.
Although study of the solution of Eqs. (4.22) at arbitrary time
is also interesting, we do not perform it here.

In the scaling low-energy limit ω 
 J and zero chemi-
cal potential, the expression for the Green’s function Ga(ω)
(where a = 1, 2 corresponds to fermions and a = 3, 4 to
bosons) has a one-dimensional time reparametrization, t =
f (σ ), and emergent U (1) gauge invariance, defined by
Sachdev in Ref. [2] for imaginary time,

Ga(t, t ′) = [ f ′(σ ) f ′(σ ′)]−1/4 g(σ )

g(σ ′)
Ga(σ, σ ′)

�a(t, t ′) = [ f ′(σ ) f ′(σ ′)]−3/4 g(σ )

g(σ ′)
�a(σ, σ ′). (4.24)

Here, f (σ ) and g(σ ) are arbitrary functions. These symme-
tries impose strong restrictions on G and � and lead to the
following asymptotic expression for the Green’s function at
zero temperature,

G1(t ) =
⎧⎨
⎩

Ce3iπ/4 sin[π/4+θ]√
πt

, t � 1/J,

Ce−3iπ/4 sin[π/4+θ]√−πt
, −t � 1/J,

with constant C. These expressions were first obtained in
Ref. [2]. Therefore, at least, in the asymptotic regime of
long times (low energies), we do not expect a difference
between our supersymmetric formulation of the SYK model
and the replica approach to it. However, at intermediate times,
when we cannot ignore the kinetic term for supersymmetric
(fermionic) fields in action (4.12), a difference may be essen-
tial.

V. SUPERBOSONIZATION OF THE SYK MODEL

In Sec. IV, we explicitly developed a supersymmetry
method for the interacting SYK model, which produced
nonperturbative results. Remarkably, in the above-developed
approach, the supersymmetry is explicit at the level of the
saddle-point equations. These equations are very interesting
and may potentially provide some more new information
about the system behavior at various energy scales. At the
same time, as we can see from saddle-point equations (4.22),
the fermion and boson sectors of the diagonal matrix field
Q(t, t ′) are decoupled. Thus, bosons and fermions do not
interfere with each other in this formulation.

Interestingly enough, there is an alternative conceptually
similar but technically different way of formulating the SYK
model as a supersymmetric σ model. It is the superbosoniza-
tion procedure, which will be developed in this section. We
will show that at the level of the saddle-point equations in
the superbosonized description, bosonic degrees of freedom
interfere with fermions. This interference effect can be ac-
counted for analytically. It may potentially become crucial for
revealing novel modes in correlation functions—the advan-
tage of the supersymmetric approaches as compared to replica

and imaginary time methods is that they allow for controlled
analysis of the intermediate-time regime.

Consider a function F (� ⊗ �†) of the tensor product of a
supervector � and its conjugate �† given by Eq. (3.18). Gen-
erally, after ensemble averaging of disordered single-particle
systems, one deals with integrals of type

∫
D� D�†F (� ⊗

�†). The superbosonization formula essentially allows evalu-
ating such a supervector integral to an integral over a super-
matrix Q, where Q has no constraints (unlike direct product
� ⊗ �†).

Being formally exact, the superbosonization approach
[80–82] proved to be very efficient in producing nonper-
turbative results, for example, in the theory of almost di-
agonal random matrices [82–84] where the standard super-
symmetry method [10,11,85] was also instrumental [86,87].
To derive the superbosonized representation of the SYK
model, here, we will follow a slightly different path from
the one outlined in Sec. III. In contrast with Eq. (3.17),
wherein the joined fermion-boson action contained two dif-
ferent Hubbard-Stratonovich fields MF (t ) and MB(t ) defined
in (3.19) for fermions and bosons, respectively, here, we
introduce a unique field M(t ) [88]. This procedure is allowed
because of the property that the determinant in the denom-
inator Eq. (3.11) is independent of the fluctuating Hubbard-
Stratonovich field. Then, this procedure will lead to to the
action,

S =
∫

dt

⎡
⎣∑

i,a

�+
i,a[(i∂t + μ)δi j − 2Mi j]�i,a

+
∑

i jkl,a,b

Mi j[J
−1]Mkl

⎤
⎦. (5.1)

Furthermore, we integrate over the Gaussian fluctuating field
M. This procedure gives the following expression for the
action:

S =
∫

dt
∑
i,a

�+
i,a

⎡
⎣(i∂t + μ)�i,a

+
∑

i jkl,a,b

Ji jkl�
†
i,a(t )� j,a(t )�†

k,b(t )�l,b(t )

⎤
⎦. (5.2)

As the next step, we perform disorder averaging. The in-
tegration measure of random couplings Ji jkl is Gaussian:
∼exp (−N3∑

i jkl J†
i jkl Ji jkl/8J2) with J†

i jkl = Jjilk . However,
since the couplings have a property of Ji jkl = −Jilk j =
−Jk jil = Jkli j , only half of them are independent. We can
select the independent part of couplings Ji jkl by using the
ordering of the indices and choosing i > k, j > l term. Other
terms with i > k, j < l, i < k, j > l, i < k, j < l are
equal to selected one with the appropriate sign. The measure
over independent couplings, thus, becomes

W (J ) = exp

⎛
⎝− N3

2J2

∑
i>k, j>l

|Ji jkl |2
⎞
⎠. (5.3)
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According to the ordering of indices decribed above, the interaction term on the right-hand side of (5.2) is a sum of four
independent terms Ji jkl , i > k, j > l ,∑

a,b

∑
i jkl

Ji jkl�
†
i,a(t )� j,a(t )�†

k,b(t )�l,b(t )

=
∑
a,b

∑
i>k, j>l

2Ji jkl [�
†
i,a(t )� j,a(t )�†

k,b(t )�l,b(t ) − �
†
i,a(t )�l,a(t )�†

k,b(t )� j,b(t )]. (5.4)

The disorder averaging (i.e., the integration over independent Ji jkl ), thus, produces an interacting theory with action that is similar
to the one in Eq. (3.32),

S =
∫

dt

⎧⎨
⎩
∑
i,a

�
†
i,a(t )(i∂t + μ)�i,a(t ) + 2iJ2

N3

∫
dt dt ′ ∑

aba′b′

∑
i>k, j>l

[�†
i,a(t )� j,a(t )�†

k,b(t )�l,b(t )

×�
†
j,a′ (t ′)�i,a′ (t ′)�†

l,b′ (t ′)�k,b′ (t ′) − �
†
i,a(t )� j,a(t )�†

k,b(t )�l,b(t )�†
l,a′ (t ′)�i,a′ (t ′)�†

j,b′ (t ′)�k,b′ (t ′)]

}
. (5.5)

Equation (5.5) is invariant under the supersymmetry trans-
formation δχi = εbi, δbi = −εχi, i = 1 · · · N , where ε is an
infinitesimal Grassmann parameter. The reason for this is that
the building block of the action, namely, �+

i,a�i,a, is invariant.
There are two distinct approaches for superbosonization

of the SYK model. A general approach is based on the
introduction of identity into the partition function,

1 =
∫
Hn

dQia, jb(t, t ′)δ[Qia, jb(t, t ′) − �ia(t )�†
jb(t ′)]. (5.6)

Here, Qia, jb(t, t ′) is a nonlocal supermatrix. The second sim-
pler way would be through introducing

1 =
∫
Hn

dQi
aa′ (t, t ′)δ

[
Qi

aa′ (t, t ′) − �ia(t )�†
ia′ (t ′)

]
(5.7)

imposed by the nonlocal matrix Qi
aa′ (t, t ′). Here, Hn is the

linear space of Hermitian 2n × 2n supermatrices. We recall
that formal sums of formal products � ⊗ �†, where � ∈

U (n, 1|n, 1) and �† ∈ U (n, 1|n, 1) are supervectors, con-
stitute a vector space. This vector space is defined, up to
isomorphism, by the condition that every antisymmetric bi-
linear map f :U (n, 1|n, 1) × Ū (n, 1|n, 1) → G determines a
unique linear map g:U (n, 1|n, 1) ⊗ Ū (n, 1|n, 1) → G with
f (�,�†) = g(� ⊗ �†). This implies that, if we consider a
map, F :Hn → G, then, the integral

∫
D� D�† F (� ⊗ �†)

is now well defined. From now on, we will restrict ourselves to
the case of maps F such that the above integral is convergent.

The δ function in Eqs. (5.6) and (5.7) is a functional
defined as in Ref. [82]. Namely, for all A ∈ Hn, the
convergent integral δ(A) = limη→0

∫
Hn

DB exp{i Str[AB] −
η̃ Str[B2]}, taken over Hn with flat Berezin measure [89],
where the symbol “Str” stands for supertrace, satisfies the
condition

∫
Hn

DA′ δ(A′ − A) ≡ 1. Moreover, for any map,
F :Hn → G, that converges exponentially (or faster), the
identity F (Q) ≡ ∫Hn

DAF (A)δ(A − Q) always holds.
Using the above expression for the δ functional in Eq. (5.7),

and inserting the identity to the partition function defined by
Eq. (5.5), we obtain an effective action,

S =
∫

dt dt ′
{∑

i

{(i∂t + μ)δtt ′Str[Qi(t, t ′)] +
∑

a

�
†
i,a(t )Bi

aa′ (t, t ′)�i,a′ (t ′) + Str[Bi(t, t ′)Qi(t ′, t )]

− η Str[Bi(t, t ′)Bi(t, t ′)]} + 2iJ2

N3

∑
i>k, j>l

{Str[Qi(t, t ′)Q j (t ′, t )]Str[Qk (t, t ′)Ql (t ′, t )]

− Str[Qi(t, t ′)Q j (t ′, t )Qk (t, t ′)Ql (t ′, t )]}
}

. (5.8)

We see that the superfield �i,a(t ) enters into this action only as a quadratic form with the matrix Bi(t, t ′). Therefore, the
integral over superfields �i,a in the partition function can be exactly evaluated, producing the superdeterminant of Bi(t, t ′) in the
denominator of the integrand. It is worth mentioning that the supermatrix B should be considered as a matrix by its arguments
Bi(t, t ′) = Bi

t,t ′ . The partition function of the model, thus, becomes

Z =
∫ ∏

i

DBi(t, t ′)DQi(t, t ′)Sdet[B] exp{iS}, (5.9)

where “S det” is superdeterminant.
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Now, omitting for a while the first two terms in Eq. (5.8),
we introduce a notation S̃ for the remaining terms in the
expression and write is in the form

S̃ = lim
η→0

∫ ∞

−∞

∫ ∞

−∞
dt dt ′

⎧⎨
⎩Str[Bi(t, t ′)Qi(t ′, t )]

+ iη
∑

i

Str{[Bi(t, t ′)]2} + 2iJ2

N3

×
∑

i>k, j>l

{Str[Qi(t, t ′)Q j (t ′, t )]Str[Qk (t, t ′)Ql (t ′, t )]

− Str[Qi(t, t ′)Q j (t ′, t )Qk (t, t ′)Ql (t ′, t )]}
⎫⎬
⎭.

Then, following the method introduced in Ref. [82], we join
Q with B by introducing a new supermatrix B̄ = BQ. Here,
we note that the formal sums of Hermitian superbivectors
(product of two supermatrices, each of them being from
the linear space of complex Hermitian supermatrices Hn),
constitute a vector space �2(Hn) called the second exterior
power of Hn. Then, integration over B̄ ∈ �2(Hn) decouples
from the partition function and produces a constant,

Cn =
∫

�2(Hn )
DB̄Sdet[B̄] exp

{∫
dt dt ′Str[B̄(t, t ′)]

}
.

(5.10)
The Berezinian of the transformation B̄ = BQ is one. One can
see this by explicitly writing the transformations using the
matrix form of B̄ (with first indices corresponding to fermion
or boson fields). Namely, the Jacobian of the transformation
B̄Bc = BBaQac is Sdet[Q], whereas for B̄Fc = BFaQac the Ja-
cobian is 1/Sdet[Q]. As a result of the transformation, these
two terms cancel each other in the product. This happens
because the fields B̄Fc and B̄Bc always have opposite fermionic
parity.

Finally, the partition function Z acquires the form

Z =
∫
Hn

∏
i

DQi(t, t ′)
1

SDet[Qi(t, t ′)]
exp{iS̃(Q)}, (5.11)

with the action,

S̃(Q) =
∫

dt dt ′

⎧⎨
⎩
∑

i

Str[(i∂t + μ)δtt ′Qi(t, t ′)]

+ 2iJ2

N3

∑
i>k, j>l

{Str[Qi(t, t ′)Q j (t ′, t )]

× Str[Qk (t, t ′)Ql (t ′, t )]

− Str[Qi(t, t ′)Q j (t ′, t )Qk (t, t ′)Ql (t ′, t )]}
⎫⎬
⎭, (5.12)

It is important, now, to observe that the 2 × 2 matrix Green’s
function Gab

i (t, t ′) of two-component superfields �ia(t ) and
�

†
ib(t ′) (that contains the fermion propagator in its fermion-

fermion block) is equal to the vacuum average of the su-
perbosonization matrix field 〈Qi

ab〉. Indeed, using the identity
Eq. (5.7), one can introduce Qab

i (t, t ′) under the integral and

obtain

Gab
i (t, t ′) = −i〈�ia(t )�†

ib(t ′)〉

= −i
∫

D��ia(t )�+
ib(t ′) exp{iS}

= −i
∫

DQ Qi
ab(t, t ′) exp{iS̃(Q)}

= −i
〈
Qi

ab(t, t ′)
〉
. (5.13)

The functional SDet[Qi(t, t ′)] in the denominator of the
expression (5.11) for Z should be understood as the superde-
terminant of the supermatrix Qi

aa′ (t, t ′), which acts linearly
in the continuous space of time t . Namely, arguments t, t ′
should be considered as matrix indices. One can incorporate
the preexponent 1/SDet[Qi(t, t ′)] into the effective action Seff,
that can be written as

Seff =
∫

dt dt ′

⎧⎨
⎩
∑

i

Str[(i∂t + μ)δtt ′Qi(t, t ′)]

+ 2iJ2

N3

∑
i>k, j>l

{Str[Qi(t, t ′)Q j (t ′, t )]

× Str[Qk (t, t ′)Ql (t ′, t )]

− Str[Qi(t, t ′)Q j (t ′, t )Qk (t, t ′)Ql (t ′, t )]}

+ i
∑

i

Str[ln Qi](t, t ′)δ(t − t ′)

⎫⎬
⎭. (5.14)

Here, ln Qi should be understood as the formal series
ln Qi = (Qi − 1) + 1

2 (Qi − 1) ∗ (Qi − 1) + 1
3 (Qi − 1) ∗

(Qi − 1) ∗ (Qi − 1) + · · · , where the symbol ∗ stands for the
convolution product [A ∗ B](t, t ′) = ∫ dt ′′A(t, t ′′)B(t ′′, t ′).

Now, let us analyze the equation of motion of the field
Qi(τ, τ ′) and compare it with the analysis performed in
Sec. III. The crucial point is that we have an additional
ln Qi(t, t ′) term, which can contribute in the asymptotic anal-
ysis. From Eq. (5.7), we see that 〈Qi(t, t ′)〉 = 〈�i(t )�†

i (t ′)〉
gives the Green’s function G i(t, t ′) and its asymptotic behav-
ior at long timescale t → ∞ is defined by the equation of
motion for matrix field Qi(t, t ′),

δSeff

δQl (t, t ′)
= 0

= (i∂t + μ)δtt ′ + i[Ql (t, t ′)]−1

+ 2iJ2

N3

∑
i>k, j>l

Str[Qi(t, t ′)Q j (t ′, t )]Qk (t, t ′)

− 2iJ2

N3

∑
i>k, j>l

Qi(t, t ′)Q j (t ′, t )Qk (t, t ′).

(5.15)

This equation shows that the solutions can be independent
of the index i and, therefore, we drop it. Putting now
−i〈Q(t, t ′)〉 ≡ G(t, t ′) into Eq. (5.15), setting μ = 0, and
using G(t, t ′) = [(i∂t )δtt ′ − iK (t, t ′)]−1 with K (t, t ′) being the
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self-energy, at the long timescale, we obtain

K (t, t ′) = 2J2Str[G(t, t ′)G(t ′, t )]G(t, t ′)

−2J2G(t, t ′)G(t ′, t )G(t, t ′). (5.16)

In the saddle-point approximation and due to supersymmetry,
we expect that the fermion-fermion (F ) and boson-boson (B)
entries of the Green’s function are equal: GF (t, t ′) = GB(t, t ′).
The implication of this fact is that Str[G(t, t ′)G(t ′, t )] = 0,
which leads to the relation between the self-energy and the
Green’s functions for fermions and bosons,

K (t, t ′) = −2J2G(t, t ′)G(t ′, t )G(t, t ′).

We note similarity with Eq. (4.22) and the similar relation for
fermions obtained using the replica approach. Hence, at long
timescales, our supersymmetric model reproduces the same
asymptotics for the Green’s function as the replica method
provides. However, at intermediate times, suppersymmetric
action is essentially different from the replica field theory,
and we expect that this method will provide new results at
intermediate timescales. In order to see this, we rewrite the
supertrace over the supermatrices Qi in the interaction terms
of the action Seff , defined by (5.14), using fermion-boson (FB)
and boson-fermion (BF) components of the supermatrices,

Str[Qi(t, t ′)Q j (t ′, t )]

= Qi
BF (t, t ′)Q j

FB(t ′, t ) − Qi
FB(t, t ′)Q j

BF (t ′, t )

− Qi
FF (t, t ′)Q j

FF (t ′, t ) + Qi
BB(t, t ′)Q j

BB(t ′, t ). (5.17)

Similarly for the Str[Qk (t, t ′)Ql (t ′, t )] part and
Str[Qi(t, t ′)Q j (t ′, t )Qk (t, t ′)Ql (t ′, t )]. BF and FB components
of the supermatrices are Grassmann variables, and the
integration over them is easily performed. It will produce
separate actions for fermions and bosons of the form of
Eq. (5.14) and preexponential mixed polynomials from
the BB and FF components. Appearance of these mixed
polynomials is a result of the formally exact supersymmetric
approach, and these terms are not captured within the
replica approach. At longe timescales, they have subleading
contributions to the correlation function but will have essential
contributions in the intermediate finite time region. This fact
is a major advantage of the supersymmetric method. More
detailed and complete analysis of these effects is a subject of
future investigations.

The supersymmetry method can also be used to study
nonperturbative effects in general SYKq models. The spectral
correlators in the SYKq models and their deviation from RMT
are studied in Refs. [59,90]. It appears that a small number
of long-wavelength modes, which can be parametrized via
Q-Hermit orthogonal polynomials, describe the deviation.
Moreover, the SYK model with Majorana fermions is more
straightforward and can be formulated as a σ model [30,90].
The analysis of two-point spectral correlators in two-loop
order and shows corrections to RMT, whose lowest-order
term corresponds to scale fluctuations in good agreement with
numerical results [90]. However, the question remains about
other loop terms in the loop expansion, and how they should
(not) contribute. In general, the range of validity of the loop
expansion remains open and is expected to be detectable from
the supersymmetry method. Another obvious open problem is

the model at q = 2. In this case, one should expect Poisson
statistics for the spectral correlation. This is in contrast to the
replica field theory which suggests a RMT behavior with a
significant Thouless scale as shown in Ref. [90].

We expect a more straightforward understanding of the
RMT structure of the SYKq model. The superbosonization
technique is well developed [82] and can provide exact and
nonperturbative results. In our supersymmetric formulation,
there are additional bosonic modes that interact with the
original fermions. In the expression (5.17), we present an
example of such terms. Just long-wavelength modes of these
bosons have the potential of solving the problem of the scale
of Thouless transition universally for q � 4.

Another advantage of the superbosonized σ -model repre-
sentation described above is that it is efficient for compu-
tation of correlation functions. The procedure, described in
Ref. [82], consists of

(1) Diagonalization of the m × m supermatrix field Q as
Q = UQdiagV with diagonalization matrices U ∈ U (m|m) and
V ∈ U (m|m)/U 2m(1) restricted to the unitary supergroup and
its subspace with removed phases.

(2) After the diagonalization of the supermatrix Q, one can
integrate over Q by integrating over its boson-boson eigen-
values in the interval R ≡ {−∞,∞}, whereas the integration
over the fermion-fermion eigenvalues should be performed in
the interval iR ≡ {−i∞, i∞}.

We see that this procedure significantly reduces the number
of integrations one has to perform to calculate correlation
functions within the superbosonized representation.

VI. CONCLUSIONS AND OUTLOOK

Despite being a standard tool for nonperturbative calcula-
tions in disordered and chaotic systems, the supersymmetric
σ model has rather poorly been understood for interact-
ing systems. Historically, it was believed that the Hubbard-
Stratonovich decoupling of the interaction Hamiltonian would
not help to develop a supersymmetric description of the
partition function of the model. The reason is that one has to
introduce two different Hubbard-Stratonovich bosonic fields
M1 and M2 to decouple interaction terms both in the numerator
and in the denominator of the expression for any correlation
function. It was believed, for about 40 yr, that supersymmetric
σ -model representation of interacting systems was impossible
because fluctuating M1 and M2 fields are independent. And,
therefore, supersymmetry cannot become manifest in a theory
that is disordered, interacting, and dynamical.

In this paper, we have challenged this belief and have
developed a rigorous supersymmetric σ -model framework
for interacting disordered systems. The idea that helps to
overcome the above-mentioned problem of independence of
fluctuating fields M1 and M2 is the following. The partition
function of the system is calculated by the functional integra-
tion of an exponentiated action functional over the space of
dynamical field configurations. We showed that, for (0 + 1)-
dimensional systems, such as quantum dots, the Hubbard-
Stratonovich field in the denominator could be gauged out. It
can also be reintroduced back to guarantee supersymmetry. In
order to derive basic formulas of the supersymmetry method,
we have introduced a new version of the SYK model. In
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contrast to the previous versions, the model is time-reversal
invariant. One of the main achievements of this paper is
that we have given a supersymmetric σ -model description of
the SYK model. We have also developed its superbosonized
description, where the functional integral is taken over uncon-
strained dynamical supermatrix fields representing collective
many-body excitations.

It is now a conventional wisdom [1] that the SYK model
exhibits many-body chaotic properties at all timescales. At
short times, chaos shows up in exponentially decaying cor-
relations as manifested in out-of-time correlation functions
[18,23–27] . At long timescales, chaos manifests itself in a
random-matrix ensemble due to quantum energy-level repul-
sion [36]. However, the nature of the transition region from
nonergodic to ergodic regimes remains unclear. Moreover,
the physics of nonergodic states is not yet fully understood,
and dirty metals represent an excellent physically motivated
playground for such studies. Here, an important development
was made in Ref. [91] where the theoretical description of
nonergodic extended states in a modified SYK model was
put forward. The problem of finding the ergodic (Thouless)
time in the SYK model was considered in Ref. [30] where
the questions regarding the nature of the relaxation modes,
their classification by certain effective quantum numbers, as
well as the density of states, were addressed. An important
correlation function, capable of detecting chaotic properties
of the SYK model, is the spectral number variance �2(ε). It
represents the statistical variation in the number of many-body
levels contained in an energy window of width E . The vari-
ance �2(ε) was studied in Ref. [59] where a deviation from
the random-matrix ensemble prediction was reported. This
deviation demonstrates the possible breakdown of ergodicity,
and this is one of the interesting points that can be investigated
further using superbosonization.

The spectral form factor considered in Ref. [58], represent-
ing the Fourier transform of the energy-dependent spectral
two-point correlation function R2(ε) is yet another quantity
of interest. Whereas the long-time profile of it showed a ramp
structure characteristic for random-matrix theory ensembles,
universal deviations from random-matrix theory were ob-
served for shorter times (see Refs. [92–95] for related studies).
Density-density correlators were studied in Ref. [30] within
the replica approach describing the quantum chaotic dynamics
of the SYK model at long times. It was observed that there
are nonergodic collective modes, which relax in some time
interval and become ergodic states by entering into the long-
time regime. The latter modes can be described using the

random-matrix theory. These interesting modes share simi-
lar properties with the diffusion modes of dirty metals and
have quantum numbers which have been identified as the
generators of the Clifford algebra [27]. There, each of the
2N different products formed from N-Majorana operators
represents a mode.

Here, we propose that the superbosonization approach
to the SYK model will open new possibilities to study
intermediate-time regions and reveal new aspects of chaotic
properties. In particular, it would be fascinating to: (i) calcu-
late the one-point correlation function 〈ρ(E )〉 (the density of
states) in a superbosonized representation of the SYK model
and compare it with the universal random-matrix prediction;
(ii) calculate the two-point correlation function 〈ρ(E )ρ(E ′)〉
in the SYK model using its superbosonized representation
and compare it with numerical calculations in Refs. [30,58];
(iii) reveal the role of bosonic excitations presented in a
superbosonized representation and to detect their behavior at
short times.

Systematic deviations from the random-matrix predictions,
for sufficiently well-separated eigenvalues, imply that the
model is not ergodic at short times. The point of departure
from the results of random-matrix theory increases with N ,
which is an indication of having a Thouless energy scale
[96–99] in the system. Detection of Thouless time within a
superbozonized approach is yet another exciting project. It
would be also interesting to calculate moments of the spectral
density within the supersymmetric σ -model approach.

On another front, it is well known that Anderson local-
ization can be avoided under certain conditions for disor-
der potential supporting long-range [100–102] or short-range
[103–109] correlations in low dimensions. It is, thus, very
interesting to investigate the effect of introducing correlations
to the disordered interaction constant Ji jkl . We expect that
such an analysis can also be performed using the technique
outlined in the present paper.
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