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Over recent decades, a growing number of systems, many of them quantum critical, have been shown to
exhibit non-Fermi-liquid behavior, but a full analytic understanding of such systems out of equilibrium is
still lacking. In this paper, we provide a distinct example with broad applications in correlated mesoscopic
systems to address this issue—a two-channel Kondo-Luttinger model where a Kondo impurity couples to two
voltage-biased interacting electron leads, experimentally realizable in a dissipative quantum dot. Therein, an
exotic quantum phase transition has been known to exist since the 1990s from the one-channel to two-channel
Kondo ground states by enhancing electron interactions in the leads, but a controlled analytic approach to
this quantum critical point has not yet been established due to the breakdown of weak-coupling perturbation
theory near this strong-coupling critical point. We present a controlled method to this long-standing problem
by mapping the system in the strong-coupling regime to an effective spin-boson-fermion Hamiltonian. Another
type of non-Fermi-liquid quantum critical point is discovered with a distinct logarithmic-in-temperature and
-voltage dependence in transport. We further obtain an analytical form for the universal differential conductance
out of equilibrium near the transition. Our approach can be further generalized to study nonequilibrium physics
of other strong-coupling low-dimensional non-Fermi-liquid fixed points. The relevance of our results for recent
experiments is discussed.
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I. INTRODUCTION

Over recent decades, there has been growing experimen-
tal evidence for correlated electron systems whose low-
temperature thermodynamic and transport properties violate
Landau’s Fermi-liquid paradigm [1,2]. Such non-Fermi-liquid
(NFL) behavior, ranging from heavy-fermion unconventional
superconductors [3–5] to Kondo impurity quantum dot sys-
tems [6,7], often appears near a quantum phase transition
(QPT) [8] as a result of competing ground states. While the
equilibrium aspects of QPTs have been extensively studied,
much less is known about their properties out of equilibrium.
In particular, exact or analytical results are rare [9,10] despite
their relevance for experiments [9–13]. The study of nonequi-
librium NFL in low-dimensional systems is of wide interest
not only because of its lessons to higher dimensions, but also
for the large field of low-dimensional physics in mesoscopics
[9,12–17], cavity electrodynamics [18], in cold atom physics
[19–21], and more recently in the realization of Majorana
fermions [22].

Highly tunable nanoscale quantum impurity systems of-
fer an excellent playground to study nonequilibrium behav-
ior near the NFL QPTs [14,23]. A typical example is the
Kondo-Luttinger system, experimentally realizable in various
correlated mesoscopic systems, including dissipative Kondo
dot devices in carbon nanotubes [15,16] and in two-channel

semiconductor quantum dot devices subject to either dissipa-
tion or electron interactions in the leads [7]. The model con-
sists of a spin-1/2 Kondo impurity coupled to two Luttinger
liquid wires (left L and right R) via interlead and intralead
couplings, JLR and JLL/RR, involving screening of the impurity
spin by the conduction electrons of both leads and of one lead,
respectively. In each wire the electrons interact repulsively,
their effective interaction given by a Luttinger parameter K <

1 [see Fig. 1(a)].
The equilibrium behavior of the system is well known. In

the weak-coupling limit (Jαα′ → 0) at a higher temperature,
the repulsive electron interactions in the leads are known to
suppress the JLR terms in a power-law-in-T fashion, JLR ∼
T 1/2(1/K−1) [24,25]. The JLL/RR terms are unaffected by inter-
actions and show a typical Kondo logarithmic decrease with
increasing temperature. On the other hand, as T → 0, it has
been predicted since the 1990s that this model undergoes an
exotic QPT from the conducting one-channel Kondo (1CK)
ground state to the insulating two-channel Kondo (2CK)
ground state with increasing electron interaction (or decreas-
ing K) in the wire. In the conducting 1CK ground state both
JLR and JLL/RR couplings exhibit power-law divergences as the
temperature is lowered and the two leads are coupled to form a
single Kondo screening channel; in the insulating 2CK ground
state, the JLR (JLL/RR) coupling is T -power-law suppressed
(enhanced) and the two leads independently Kondo-screen
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FIG. 1. (a) The original Kondo-Luttinger model (above) with
two electron branches (left moving and right moving) in each of
the two leads of a length L/2 can be transformed to an equivalent
chiral Kondo-Luttinger model (below) where both leads are now
unfolded and extend from −L/2 to L/2 with only one electron
branch left. (b) Schematic phase diagram of the Kondo-Luttinger
model as functions of V , T , and the Luttinger parameter K .

the impurity spin [24,26]. The 1CK-2CK quantum critical
point (QCP) is expected at K = 1/2 [see Fig. 1(b)] [24,26].
While the RG flow diagram is well understood, accessing
the NFL properties of this QCP becomes challenging due
to the lack of controlled theoretical approaches to physics
near the strong-coupling 2CK ground state where JLL/RR →
∞ and the standard weak-coupling perturbation theory breaks
down.

In this paper, we reexamine the Kondo-Lutinger sys-
tem and establish a controlled theoretical framework to cir-
cumvent the above difficulty and study both the equilib-

rium and nonequilibrium transport near the 1CK-2CK QCP.
This is achieved by being able to exactly map the strong-
coupling problem near K = 1/2 onto an effective weak-
coupling Hamiltonian whose nonequilibrium transport prop-
erties are then studied with the Keldysh Green’s functions.
By a series of transformations involving bosonizations and
refermionizations detailed below, we obtain the form of the
effective Hamiltonian near the 2CK fixed point in the effective
weak-coupling regime. Since the current is determined by
JLR, we study its renormalization group (RG) flow around
the QCP, which allows for a reliable study in the effective
weak-coupling regime. Our RG analysis at two-loop order
shows another type of NFL QCP with a distinct logarithmic-
in-temperature and -voltage dependence in transport. To sim-
plify our calculations, we work in the channel symmetric
case (JLL = JRR) and near the Toulouse limit where only JLR

dominates. Nevertheless, our results can be extended more
generally to parameter space away from the Toulouse limit.
This can be done for the following reasons: (i) The operators
around this limit—the transverse (xy) component of JLR and
the longitudinal (z) component of JLL/RR—are all irrelevant
and hence will always stay in the weak-coupling regime, and
(ii) the RG flow for JLR at one-loop order in this limit [see
Eq. (7)] shows a negligible difference from that up to two-loop
order and away from this limit [see the inset of Fig. 1(c)].
This indicates that our analytic results based on Eq. (7) are
accurate and reliable enough to be extended to the parameter
space away from the Toulouse limit. The universal nonlinear
I-V curve of the effective model is then analytically obtained
near the QCP for K < 1/2 and K = 1/2 via the Keldysh
nonequilibrium Green’s function formalism. Our results go
beyond the equilibrium power law in transport near K =
1/2 given in Refs. [24,25,27] and thus offer a rare example
of analytically accessible nonequilibrium transport near an
impurity quantum critical point. Our analytical approach can
be further generalized to study the nonequilibrium physics of
other strong-coupling low-dimensional NFL fixed points.

II. THE KONDO-LUTTINGER MODEL

The Hamiltonian of our system in the presence of particle-
hole symmetry reads [28,29] H = H0 + Hint + HK + Hμ with

H0 = −ivF

∑
α,σ

∫
dx[R†

α,σ (x)∂xRα,σ (x) − (R ↔ L)],

Hint =
∑

α;σ,σ ′

∫
dx

[g4

2
[ρα,σ (x)ρα,σ ′ (x) + ρα,σ (x)ρα,σ ′ (x)]

+ g2ρα,σ (x)ρα,σ ′ (x)
]
,

Hμ = eV

2

∑
σ

∫
dx[ρLσ (x) + ρ̄Lσ (x) − ρRσ (x) − ρ̄Rσ (x)],

HK =
∑

i;αα′;σσ ′
Jαα′Si · ψ†

ασ (0)
τ i

σσ ′

2
ψα′σ ′ (0), (1)

where α = L, R, σ =↑,↓ are the lead and spin indices, re-
spectively, Si is the impurity spin, and τ i

σσ ′ is the Pauli matrix
with i = x, y, or z, and we set h̄ = 1. The integrations are
taken from x = −L/2 to x = 0 for α = L, and from x = 0 to
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x = L/2 for α = R. The electron field operator is defined as
ψα,σ (x) = Rα,σ (x) + Lα,σ (x), with Rα,σ (x) [Lα,σ (x)] being
the right (left) moving electrons; the corresponding elec-
tron density operators are ρα,σ (x) = R†

α,σ (x)Rα,σ (x) and
ρα,σ (x) = L†

α,σ (x)Lα,σ (x). Here, H0 + Hint describes the Lut-
tinger liquid wire with H0 being the kinetic term of free-
electron leads and Hint being the electron-electron interaction
in the leads, and Hμ is the bias voltage term.

We now wish to cast the Hamiltonian in a form that is
convenient to study at strong coupling. To begin with, we
represent H in terms of chiral boson fields through standard
bosonization �α,σ (x) = lima→0

1√
2πa

ηα,σ e−iφα,σ (x) with ηα,σ

being the Klein factor and φα,σ (x) being the chiral boson fields
[see Fig. 1(a)] [29]. Upon bosonization, the isotropic Kondo
term HK in Eq. (1) is further divided into the transverse (xy)
and longitudinal (z) components with coupling constants J⊥

αα′
and Jz

αα′ , respectively. The bosonized J⊥
αα , Jz

αα , J⊥
LR, Jz

LR terms
all take different forms in boson fields [24], and JLL �= JRR in
general. Though the Kondo couplings are isotropic in Eq. (1),
J⊥
αα′ = Jz

αα′ , the transverse and longitudinal components of
Jαα′ after bosonization obey different RG scaling equations
due to their different forms in boson fields (see below). The
resulting Hamiltonian Hcb, expressed in terms of chiral boson
fields, is then transformed into an equivalent form Hcb →
U †HcbU = Hsc + Hμ with U = e−iSzφs (0) [24], where

Hsc =
∫ L

2

−L
2

dx

4π

⎛⎝ ∑
μ=c, f

vc[∇φμ(x)]2 +
∑

ν=s,s f

vF [∇φμ(x)]2

⎞⎠
+ JLR

πa
Sx cos

(
φ f√

K

)
− Jz

LR

πa
Sz sin φs f sin

(
φ f√

K

)
+ J+

πa
Sx cos φs f − J−

πa
Sy sin φs f

+ (Jz
+ − 2πvF )

4π
Sz∇φs + Jz

−
4π

Sz∇φs f ,

Hμ = eV

4π

∫ L
2

−L
2

dx∇φ f (x). (2)

In Eq. (2), the chiral boson fields φc/ f /s/s f are defined
as [30]

φc =
∑

α=L,R

φcα/
√

2, φ f =
∑

α=L,R

τ z
α,αφcα/

√
2,

φs =
∑

α=L,R

φsα/
√

2, φs f =
∑

α=L,R

τ z
α,αφsα/

√
2,

(3)

with φcα = ∑
σ φα,σ /

√
2, φsα = ∑↓

σ=↑ τ z
σ,σ φα,σ /

√
2, and

J+ = J⊥
LL + J⊥

RR

2
, J− = J⊥

LL − J⊥
RR

2
,

Jz
+ = Jz

LL + Jz
RR

2
, Jz

− = Jz
LL − Jz

RR

2
.

(4)

In addition, vc is the renormalized Fermi velocity and K ≡√
1−g2/(8πvF +g4 )
1+g2/(8πvF +g4 ) [29].

Note that J+, J− become the most relevant couplings (with
a scaling dimension [J+/−] = 1/2), while JLR is the leading

irrelevant term for K < 1/2 with [JLR] = 1/2K and hence re-
mains in the weak-coupling regime. The more irrelevant terms
are Jz

+/− ([Jz
+/−] = 1/2K + 1) and Jz

LR ([Jz
LR] = 1/K + 1/2).

In the following, we discuss the model [Eq. (2)] in the channel
symmetric case (J⊥

LL = J⊥
RR and Jz

LL = Jz
RR), where J− = 0 and

Jz
− = 0, and near the Toulouse limit [δJz = Jz

+ − 2πvF �
O(1)]. Also, the most relevant J+ term is pinned at a large
value, while the most irrelevant Jz

LR term is neglected here. As
a result, only the leading irrelevant Kondo couplings JLR and
δJz terms survive.

For K � 1/2, by adding a decoupled bosonic bath Hb =
vc
4π

∫
(∇φ̃)

2
dx, we refermionize Eq. (2) near the strong-

coupling 2CK fixed point and the Toulouse limit in terms of
effective free fermions weakly coupled to an impurity spin
and an Ohmic bosonic bath H ′

b = vc
4π

∫
[∇ϕ(x)]2dx. With the

following transformation [31],√
1

K
φ f =

√
2φ′

f +
√

1

K
− 2ϕ,√

1

K
φ̃ =

√
1

K
− 2φ′

f −
√

2ϕ, (5)

the Hamiltonian Eq. (2) can be refermionized as H ′
sc + H ′

μ +
H ′

b = Hsc + Hμ + Hb, where

H ′
sc =

∑
μ = cL, cR;

k

vck c′†
μ,kc′

μ,k +
∑

ν = sL, sR,

k

vF k c′†
ν,kc′

ν,k

+ J+
πa

Sx cos φs f + JLR

L Sx

∑
k,k′

(c′†
cL,kc′

cR,k′ei
√

1
K −2ϕ(0)

+ H.c.) + δJz

√
2L

Sz

∑
k

(c′†
sL,kc ′

sL,k + c′†
sR,kc ′

sR,k ),

H ′
μ = eV

√
K

∑
k

(c′†
cL,kc ′

cL,k − c′†
cR,kc′

cR,k )

+ eV
√

1 − 2K
∫ L

2

−L
2

dx

4π
∇ϕ(x),

H ′
b = vc

4π

∫ L
2

−L
2

[∇ϕ(x)]2dx. (6)

Here, the k-space effective free fermions in this new basis

read c′
μ,k = 1√

L

∫ L
2

−L
2

� ′
μ(x)e−ikxdx, with � ′

cL/cR(x) =
lima→0

1√
2πa

ηcL/cRe−i[φc (x)±φ′
f (x)]/

√
2, and � ′

sL/sR(x) =
�sL/sR(x) = lima→0

1√
2πa

ηsL/sRe−i[φs (x)±φs f (x)]/
√

2. Equation
(6) is an effective weak-coupling Hamiltonian (JLR, δJz < 1)
near the strong-coupling (J+ → ∞) 2CK fixed point where
standard perturbation theory is applicable. This Hamiltonian
describes two voltage-biased free-fermion leads (c′

cL/cR)
showing an interlead coupling to an impurity spin (Sx)
subject to a dissipative bosonic bath, while another two
free-fermion leads c′

sL/sR couple to Sz. We will show below
that this effective model of Eq. (6) gives rise to another type
of the NFL QCP and distinct equilibrium and nonequilibrium
transport properties near the transition.
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FIG. 2. The schematic diagram of the RG flow of jLR with
different values of K . The green (blue) line represents the line of fixed
point of 2CK (1CK) The line of fixed points (blue curve) for 1CK
state follows j∗ 2

LR = 2(1 − 1
2K ). K = 1/2 is a QCP separating the line

of fixed point of 2CK and 1CK. Arrows denotes the schematic RG
trajectories.

III. RG ANALYSIS OF THE EFFECTIVE
HAMILTONIAN NEAR 2CK

To determine the ground state phase diagram and the nature
of the phase transition in Eq. (6), we perform an RG analysis.
The RG scaling equations up to one-loop order for JLR and δJz

are derived via Eq. (6) as

dJLR

dl
=

(
1 − 1

2K

)
JLR,

dδJz

dl
= − 1

2K
δJz, (7)

where dl = −d�/�, with � being a running energy cutoff.
Note that we find no quadratic contributions in Kondo cou-
plings to Eq. (7) due to the decoupling of the fields ccL/cR in
the JLR term from csL/sR in the δJz term. Based on Eq. (7), the
JLR term is irrelevant (relevant) for K < 1/2 (K > 1/2). As
a result, the 1CK-2CK QCP occurs at K = 1/2, separating
the 1CK state with J+ → ∞, JLR → ∞ for K > 1/2 from
the 2CK state with J+ → ∞, JLR → 0 for K < 1/2 [see
Fig. 1(b)] [24]. Note that the coupling JLR at the QCP is a
marginal term up to one-loop RG, indicating a Fermi-liquid
ground state with constant metallic conductance Gc(V, T →
0) = G0

c . However, this nature of QCP is drastically changed
upon including two-loop order corrections in the RG analysis.
The RG scaling equations at two-loop order read [up to cubic
in coupling constants—see Appendix C (valid for 0 < K �
1/2) and Appendix D (valid for both K � 1/2 and 1/2 < K <

1) for details]

d jLR

dl
=

(
1 − 1

2K

)
jLR − 1

4
( jLR)3 − 1

8
(δ jz )2 jLR,

dδ jz

dl
= − 1

2K
δ jz − 1

4
( jLR)2δ jz − 1

8
(δ jz )3

(8)

with jLR = JLR/2πvF and δ jz = δJz/2πvF . Here, we have
chosen h̄ = 1. The structure of Eq. (8)—the presence (ab-
sence) of linear (quadratic) in Kondo couplings—is distinct
from previously studied RG scaling equations of Kondo and
Anderson impurity models. Consequently, the RG flows of jLR

and δ jz show unique features near the QCP at K = 1/2. For
K > 1/2, instead of flowing to a strong-coupling 1CK line
of fixed point up to one-loop order, the jLR term flows to an
intermediate-coupling 1CK fixed point at ( j∗LR)2 = 2(1 − 1

2K )
(the blue curve of Fig. 2). For K < 1/2, there is no new

critical point appearing as the linearized RG equations near
the 2CK fixed point j∗LR = (δ jz )∗ = 0 reduce to the same QCP
via Eq. (7) (green line of Fig. 2). Note that due to decoupling
of the fields ccL/cR in the JLR term from csL/sR in the Jz term,
all the terms in the RG equations beyond two-loop order with
even power in coupling constants vanish, and all terms with
odd power in coupling constants are all more irrelevant terms.
As a result, the qualitative features of our RG flow diagram
in Fig. 2 survive by including higher-order terms beyond
two-loop order. Moreover, the nature of the transition revealed
by the RG flows in Fig. 2 represents a distinct type of quantum
critical point from previously known ones (see below).

At the QCP (K = 1/2), the jLR term is marginally ir-
relevant, and δ jz is strongly irrelevant; therefore, the RG
equation for jLR is reduced to d jLR/dl ≈ (−1/4) j3

LR, leading
to a logarithmic-in-� dependence of the marginally irrelevant
jLR term (see Fig. 2) [11]

jLR(�) =
√

2

ln(D/�)
, (9)

with D = �0 exp[2/( j0
LR)2], �0 being the ultraviolet cutoff,

and j0
LR ≡ jLR(�0).

For the nonequilibrium case, the running Kondo coupling
jLR(ω,�) in the presence of a voltage bias acquires an addi-
tional energy/frequency (ω) dependence under RG [32]. Its
RG scaling equation takes the following form [11],

d jLR(ω)

dl
= −1

4

∑
η=±1

[
jLR

(
ηV

2

)]3

�ω+ηV/2, (10)

where

�(x) =

⎧⎪⎨⎪⎩
1, x > 1,
1
2 , x = 0,

0, x < 0,

(11)

denotes the Heaviside step function and �ω+ηV/2 = �(� −
|ω + ηV/2 + i�̄|) with �̄ being the decoherence rate de-
fined as �̄ = (π/4)

∑
η,η′=± j2

LR(ω) f (ω − ηV/2)[1 − f (ω −
η′V/2)]. Equation (10) gives rise to the following logarithmic-
in-voltage dependence of jLR for � → 0 and V/T � 1,

jLR(V, ω → 0) ≈ 2

√√√√ 1

ln
(

2D2

V 2

) − 1

4 ln
(D

V

) . (12)

Via the aforementioned jLR(�) and jLR(V, ω → 0), the
QCP at K = 1/2 provides an example of the NFL QCP with
distinct logarithmic-in-temperature and -voltage dependence
in transport (see below), therefore belonging to a different
universality class.

IV. CURRENT AND CONDUCTANCE NEAR
THE QCP (K � 1/2)

Near the QCP, the steady-state charge current, defined as
the charges passing through the Kondo dot from the left
to right lead per unit time, is derived from the Heisenberg
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FIG. 3. The equilibrium (blue) and the nonequilibrium (or-
ange) conductance at the QCP. The inset shows Gneq(ω)/Geq(ω)
with Gneq(ω) ≡ Gc(V → ω) while Geq(ω) ≡ Gc(T → ω) defined in
Eqs. (16) and (20), respectively. We choose j0

LR = 0.5.

equation of motion via Eq. (6),

I = − e
d〈N〉

dt
= ie

h̄
〈[N̂, Hsc]〉

=
√

K

(
4 − 1

K

)
e

h̄

JLR

L
∑
k,k′

Re{G<
RL,k′k (t, t )}, (13)

where N = ∑
σ (NLσ − NRσ )/2, and G<

RL,k′k (t, t ′) =
i〈c′†

cL,k (t ′)Sx(t )c′
cR,k′ (t )ei

√
1
K −2ϕ(t )〉 is the lesser Green’s

function for ccL/cR,k .
The equilibrium transport of our model at one-loop RG

for K � 1/2 is known [24,25]: With decreasing temperatures
from the weak-coupling (Jαα′ → 0) fixed point at T = �0,
the Hamiltonian H gives a power-law-in-T suppression in
the differential conductance G(T ) ∼ T 1/K−1 via [JLR] = (1 +
1/K )/2, while as T → 0, it shows a different power-law-in-T
behavior near the QCP in the strong-coupling limit (J+ → ∞)
via Eq. (7): G(T ) ∼ T 1/K−2 [see Fig. 1(b) and the blue dashed
arrow therein]. Including contributions from the two-loop
RG, the equilibrium conductance near the QCP acquires a
subleading logarithmic correction,

G(T ) ∼ T 1/K−2/ ln

[D
T

]
. (14)

Surprisingly, however, for K = 1/2 at the QCP, instead of the
Fermi-liquid ground state with a marginal JLR term up to the
one-loop RG of Eq. (7), the equilibrium conductance

Gc(T ) ≡ dI|K=1/2

dV

∣∣∣∣
V →0

= 2
√

2πe2

h

〈
S2

x

〉
h̄2 j2

LR(� → T ) (15)

via two-loop RG displays another type of NFL QCP with
logarithmic-in-temperature dependence of conductance [see
jLR(�) and the blue curve of Fig. 3],

Gc(T ) = e2

h

〈
S2

x

〉
h̄2

4
√

2π

ln(D/T )
. (16)

Via Eq. (16), the equilibrium conductance at the QCP, Gc(T ),
exhibits a different universal logarithmic-in-D/T scaling, dis-
tinct from the T -power-law behavior of a typical quantum crit-

ical point [3] and the 1/ ln2[T/D] in the Kosterlitz-Thouless
transition of the anisotropic Kondo model [11].

A. Nonequilibrium I-V curve via first-order in perturbation

We now analyze the nonequilibrium transport near the
QCP. Within the Keldysh nonequilibrium Green’s function
approach [33,34], the right-left lesser Green’s function in
the time domain G<

RL,kk′ (t − t ′) in Eq. (13) is obtained via
perturbative expansion up to first order in JLR, given by [35]

G<
RL,k′k (t − t ′)

= JLR
〈
S2

x

〉
L

∑
k′′

∫ ∞

−∞
dt1

{[
gr

R,k′ (t − t1)g<
L,k (t1 − t ′)

+ g<
R,k′ (t − t1)ga

L,k (t1 − t ′)
]
b<(t − t1) + [

gr
R,k′ (t − t1)

+ g<
R,k′ (t − t1)

]
g<

L,k (t1 − t ′)br (t − t1)
}
, (17)

where gr/a/<

R/L,k is the retarded/advanced/lesser component
of the bare Green’s functions of the effective
noninteracting right/left lead, and b<(t − t ′) =
−i〈e−i

√
1
K −2ϕ(t ′ )ei

√
1
K −2ϕ(t )〉0, br (t − t ′) = −iθ (t −

t ′)〈[e−i
√

1
K −2ϕ(t ′ ), ei

√
1
K −2ϕ(t )]〉0 are the bare lesser and

retarded bosonic correlation functions, respectively. In the
thermodynamic limit, the explicit analytical form of the
nonequilibrium current via Eqs. (13) reads

I = −
√

K

(
4 − 1

K

)
e2

h̄
V

j2
LR

�( 1
K − 1)

〈
S2

x

〉
h̄2

(
2πkBT

D

) 1
K −2

×
∣∣∣∣∣�( 1

2K + i eV/2
2πkBT )

�(1 + i eV/2
2πkBT )

∣∣∣∣∣
2

, (18)

where jLR ≡ JLR/2π h̄vF , 2D is the bandwidth of the bosonic
bath H ′

b, and �(x) is the gamma function. Note that both the
fermionic and bosonic fields in H ′

μ of Eq. (6) contribute to the
current.

The conductance in the noninteracting limit (K = 1/2)
deserves further discussions. For the K = 1/2 limit and
setting 〈S2

x 〉 = h̄2/4, our system in the Toulouse limit dis-
plays a fractional conductance G = (

√
2π j2

LR/2)(e2/h) with a
nonuniversal coefficient (

√
2π j2

LR/2) within the first-order in
perturbation theory via Eq. (18), distinct from the quantized
conductance per spin, G = e2/h, as studied in Ref. [36] in
the K = 1 limit. The origin of this “fractional” conductance
comes from the nondiagonalizable (nonquadratic in fermion
fields) and marginal (up to one-loop in RG) JLR term [see
Eq. (6)] at K = 1/2, leading to the conductance proportional
to j2

LR within the perturbative calculation. By contrast, the JLR

term for K = 1 in the Toulouse limit studied in Ref. [36] is
relevant with a scaling dimension [JLR] = 1/2. Their Hamil-
tonian in this case is quadratic in fermion operators and there-
fore can be exactly solved: The system goes to the resonant
tunneling limit with G = e2/h per spin at the ground state.
Note that our JLR term becomes irrelevant at the two-loop RG,
leading to a logarithmic correction to the JLR term and to the
differential conductance [refer to Eqs. (9), (12), and (20) and
see below].
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(a)

(b)

FIG. 4. (a) G(V, kBT0/D)/G(0, , kBT0/D) with fixed kBT0/D =
10−3, the normalized nonequilibrium differential conductance at the
strong-coupling fixed point with different values of the Luttinger
parameter K � 1/2. The black solid lines are power-law fit to
V 1/K−2. Inset: RG flows for jLR for K = 0.46 with bare coupling
jLR = 0.1 up to one-loop order (green), two-loop in the Toulouse
limit (T. l., red), and two-loop away from the Toulouse limit with
bare value of δ jz = 0.2 (blue). (b) Universal eV/kBT scaling in
normalized differential conductance G(V, T )/G(0, T ) at different
values of temperature for K = 0.49. The inset shows nonrescaled
conductances.

The analytical differential conductance G(V, T ) = dI/dV
near the QCP for K < 1/2 via Eq. (18) is plotted in Figs. 4(a)
and 4(b) for various values of K and temperatures. Near
the QCP, the equilibrium conductance shows a power-law-
in-T suppression, G(V = 0, T ) ∝ T 1/K−2 [27], leading to an
insulating 2CK state. For V � T and for a fixed T = T0,
the � functions in the analytic I-V curve in Eq. (18) lead
to the asymptotic power-law conductance of the equilibrium
form, G(V, T0) ∼ (V/T0)1/K−2. For V � T , however, G(V, T )
deviates from this power law and shows a universal crossover
to the equilibrium value G(0, T ) [see the universal V/T scal-
ing of G(V, T ) in Fig. 4(d)] [10]. The conductance G(V, T )
via Eq. (18) offers an analytical and complete universal
crossover function from 2CK nonequilibrium quantum crit-
ical (V � T ) to the equilibrium 2CK (V � T ) limits. Our
analytic crossover function in the I-V curve provides not

only a qualitative but also a quantitative basis to compare
with experiments. The analytic form in Eq. (7) reduces to a
constant conductance for K = 1/2 in the wide-band (D →
∞) limit [37].

B. I-V curve via two-loop RG

At the QCP (K = 1/2) (Fig. 2), the quantum critical cur-
rent Ic ≡ I (V, T )|K=1/2 via two-loop RG takes the form [see
Eq. (18)]

Ic ≈ 2
√

2πe2

h

〈
S2

x

〉
V

h̄2

[
jc
LR(max[V, T ])

]2
, (19)

where jc
LR ≡ jLR|K=1/2 follows from jLR(�) for T � V and

jLR(V, ω → 0) for V � T . The charge current therefore ac-
quires other (logarithmic) corrections in V or T .

For V � T , we obtain an analytic form of the nonequi-
librium conductance at the QCP, Gc(V � T ) = dIc

dV (see the
orange curve of Fig. 3),

Gc(V ) ≈ e2

h

8
√

2π
〈
S2

x

〉
h̄2

[
1

ln
(

2D2

V 2

) − 1

4 ln
(D

V

)]
. (20)

Note that Gc(V � T ) shows a logarithmic-in-voltage de-
pendence, a signature of another type of NFL QCP out of
equilibrium. It is a universal function of V/D, and is distinct
from its equilibrium counterpart Gc(T,V → 0) due to the
nonlinear voltage dependence of the decoherence rate �̄ � V
(see Fig. 3), which serves as the cutoff scale for the nonequi-
librium RG scheme [11,12].

For K < 1/2, the charge current with the inclusion of
the two-loop RG correction to jLR is given by I2-loop ≈

I
( j0

LR )2 [ jc
LR(max[T,V ])]2, where I is obtained via Eq. (18)

within first order in perturbation theory with jLR → j0
LR.

The differential conductance G2-loop = dI2-loop/dV therefore
acquires a logarithmic correction via jc

LR(V ), and is not a
universal function of V/T .

Nevertheless, we find that G2-loop(V, T )/Gc(T,V ) shows
an approximate universal scaling in V/T for V � T and
V � T , G2-loop(V,T )

Gc (V,T ) ≈ G(V,T )
G(0,T ) ≡ �(V

T ), with �(V/T ) being a
universal V/T -scaling function of differential conductance
via Eq. (18). Note that for V � T , contributions from
d[ jc

LR(V )]2/dV to G2-loop(V, T ) are negligible.

V. DISCUSSIONS AND CONCLUSIONS

First, in Refs. [15,16], the emulated Luttinger wire was
realized experimentally in a spin-polarized carbon nanotube
quantum dot subject to an Ohmic dissipation where the resis-
tance R is side coupled to the dot. The effective Luttinger pa-
rameter K is related to the dimensionless dissipation strength
r ≡ Re2/h via K = 1/(1 + r). When the dot is symmetrically
coupled to the leads, the system approaches to a quantum
critical point of the 2CK type. The conductance for V → 0
and T → 0 reaches the unitary limit of G(V, T ) → 2e2/h in
a power-law fashion, G(V, T ) ∼ (V/T )α with α = 2/(1 + r).
Generalizing this setup to the spinful case, a Kondo-Luttinger
system equivalent to our model was proposed [27] and has
been realized experimentally in a dissipative Kondo dot sys-
tem with K = 1/(1 + 2r) [38]. Though their Hamiltonian is
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somewhat different from Eq. (2), the same 1CK-2CK QPT
occurs at r = 1/2 (or K = 1/2) [27]. Second, since the δ jz

term is more irrelevant than jLR, a finite δ jz will only lead to
negligible two-loop RG corrections to jLR and to the current.
The RG flows for jLR [see the inset of Fig. 1(c)] show a
negligible difference between the results up to one-loop order
in the Toulouse limit and two-loop order away from this limit.
Consequently, our results can be extended to the parameter
regime away from the Toulouse limit with finite δ jz. Third, the
channel asymmetric J− term is a relevant perturbation of our
results, making the 2CK fixed point unstable towards the one-
lead dominated 1CK fixed point. Nevertheless, channel sym-
metry has been achieved experimentally in an accurate and
controllable manner by gate tuning in a two-channel Kondo
dot device in Ref. [7] as well as for our model in Ref. [38]
and for its spinless version in Refs. [15,16]. Finally, in the
presence of particle-hole asymmetry, a potential scattering
term U cos[φs f (0)] cos[φ f (0)/

√
K] is generated [24,25]. For

K < 1/2, this term becomes irrelevant [[U ] = (1 + 1/K )/2]
and can be neglected, while for K > 1/2, it is a relevant per-
turbation [[U ] = (1 + K )/2], and the conducting 1CK state
becomes unstable towards the insulating 1CK state [[JLR] =
(1 + 1/K )/2] with G(T ) ∼ T 1/K−1 as T → 0.

In conclusion, we have established a framework to inves-
tigate the equilibrium and nonequilibrium transport near the
strong-coupling fixed point of a Kondo-Luttinger system close
to the well-known one-channel Kondo to two-channel Kondo
quantum critical point at the Luttinger parameter K = 1/2.
We discover another NFL critical point which exhibits distinct
equilibrium and nonequilibrium properties.

Our work is a theoretical exploration of the nonequi-
librium physics of such a non-Fermi-liquid fixed point. Its
results provide an example of analytically solvable universal
nonequilibrium transport near a quantum critical point in
the Kondo-Luttinger system, showing a marked difference
from the equilibrium properties. Our analytical approach
can be further generalized to study nonequilibrium physics
of other strong-coupling low-dimensional non-Fermi-liquid
fixed points. Further experimental investigations in a dissi-
pative Kondo impurity in quantum dot devices are needed to
clarify our predictions.
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APPENDIX A: CHIRAL REPRESENTATION OF THE
KONDO-LUTTINGER SYSTEM

In this Appendix, we will exhibit how to map the Kondo-
Luttinger Hamiltonian from the original left and right moving
branches basis to a chiral (one moving branch) basis in
the weak tunneling limit. Although the mapping is widely
used in much of the literature, for the purpose of making
it more accessible to the readers, we will give a derivation
with consistent notations in the main text and related to our

situation directly, which demonstrate that the mapping is still
valid while the charge-spin basis is used.

We start from the original Kondo-Luttinger Hamiltonian,
defined as H = H0 + Hint + HK f + HKb + Hμ with

H0 = −ivF

∑
α;σ

∫
[R†

α,σ (x)∂xRα,σ (x) − (R ↔ L)]dx,

Hint =
∑

α;σ,σ ′(σ �=σ ′ )

∫
dx

[g4‖
2

[
ρ2

α,σ (x) + ρ2
α,σ (x)

]
+ g4⊥

2
[ρα,σ (x)ρα,σ ′ (x) + ρα,σ (x)ρα,σ ′ (x)]

+ g2‖ρα,σ (x)ρα,σ (x) + g2⊥ρα,σ (x)ρα,σ ′ (x)
]
,

HK f =
∑
i,σ,σ ′

JLRSimp
i · ψ

†
L,σ (0)

τ i
σ,σ ′

2
ψR,σ ′ (0) + H.c.,

HKb =
∑

i,α,σ,σ ′
JααSimp

i · ψ†
α,σ (0)

τ i
σ,σ ′

2
ψα,σ ′ (0),

Hμ = eV

2

∑
i,σ

∫
[ρL,σ (x) + ρL,σ (x) − (R ↔ L)]dx, (A1)

where α = L, R, σ =↑,↓ are the lead and spin indices, re-
spectively, τ i

σ,σ ′ is the Pauli matrix, where i = x, y, or z,
and we set h̄ = 1 here. In H0 and Hint, the integrals are
taken from x = −L/2 to x = 0 for α = L, and from x = 0
to x = L/2 for α = R. The electron field operator is defined
as ψα,σ (x) = Rα,σ (x) + Lα,σ (x), with Rα,σ (x) denoting the
right moving electrons and Lα,σ (x) the left moving ones. The
electron density operators are ρα,σ (x) = R†

α,σ (x)Rα,σ (x) and
ρα,σ (x) = L†

α,σ (x)Lα,σ (x).
The charge-spin basis of the electron density operators

relate to the spin-up and the spin-down basis by [28]

ρc,α = ρα↑ + ρα↓√
2

, ρc,α = ρα↑ + ρα↓√
2

,

ρs,α = ρα↑ − ρα↓√
2

, ρs,α = ρα↑ − ρα↓√
2

,

(A2)

which decouple the interaction term Hint into a charge sector
Hc

int and a spin sector Hs
int, Hint = Hc

int + Hs
int with

Hint =
∑

α

∫ [
g+

4

2

[
ρ2

c,α (x)+ρ2
c,α (x)

]+ g−
4

2

[
ρ2

s,α (x)+ρ2
s,α (x)

]
+ g+

2 ρc,α (x)ρc,α (x) + g−
2 ρs,α (x)ρs,α (x)

]
dx, (A3)

where g+
i = gi‖ + gi⊥ and g−

i = gi‖ − gi⊥. The interaction
term Hint can be divided into the charge and the spin parts
Hint = Hc

int + Hs
int,

Hc
int =

∑
α

∫ [
g+

4

2
ρ2

c,α (x) + g+
2 ρc,α (x)ρc,α (x)

]
dx,

Hs
int =

∑
α

∫ [
g−

4

2
ρ2

s,α (x) + g−
2 ρs,α (x)ρs,α (x)

]
dx. (A4)
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In the weak tunneling limit where the electron density
vanishes at the ends of the wires, the open boundary condition
is imposed. A more convenient chiral field representation
is used here, �α,σ (−x) = Rα,σ (−x) = Lα,σ (x), with only
one species (L or R) of electron branch or chiral fermion
in each wire by unfolding the two wires from −L/2 to
L/2 [29]. Standard bosonization is applied here: �α,σ (x) =
lima→0

1√
2πa

ηα,σ e−iφα,σ (x). Here, ηα,σ is the Klein factor for
the electron of a given species (α, σ ) and φα,σ (x) denotes the
chiral boson field, which complies with the commutation re-
lation [φα,σ (x),∇φα′,σ ′ (x′)] = 2π iδα,α′δσ,σ ′δ(x − x′) [28,29].
Now, the Hamiltonian of the system in the chiral fermion
representation reads [28]

H0 = −ivF

∑
α = L, R;
σ =↑, ↓

∫ L
2

− L
2

[�†
α,σ (x)∂x�α,σ (x)]dx,

Hint =
∑

α

∫ L
2

− L
2

1

2

[
g+

4 ρ2
c,α (x) + g−

4 ρ2
s,α (x)

+ g+
2 ρc,α (x)ρc,α (−x) + g−

2 ρs,α (x)ρs,α (−x)
]
dx,

HK f =
∑
i,σ,σ ′

JLRSimp
i · �

†
L,σ (0)

τ i
σ,σ ′

2
�R,σ ′ (0) + H.c.,

HKb =
∑

i,α,σ,σ ′
JααSimp

i · �†
α,σ (0)

τ i
σ,σ ′

2
�α,σ ′ (0). (A5)

Upon unfolding the wires, the forms of the Kondo terms
HK f , HKb and the kinetic term H0 (with the integration taken
now from −L/2 to L/2) are invariant. Hint can be diagonal-
ized via the Bogoliubov rotation although there are nonlocal
interactions appearing in Hint [29],

ρc/s,α (x) → cosh(ϕc/s)ρc/s,α (x) + sinh(ϕc/s)ρc/s,α (−x).
(A6)

With

tanh(2ϕc) = −g+
2

8πvF + g+
4

, tanh(2ϕs) = −g−
2

8πvF + g−
4

,

(A7)

the rotated Hamiltonian H ′
0 is diagonalized, given by

H ′ = H0 + Hint = −i
∫ L

2

− L
2

(
vc

∑
α

[�†
c,α (x)∂x�c,α (x)]

+ vs

∑
α

[�†
s,α (x)∂x�s,α (x)]

)
dx, (A8)

where the renormalized Fermi velocities vc = (8πvF +
g+

4 )/ cosh(2ϕc) and vs = (8πvF + g−
4 )/ cosh(2ϕs), and the

Fermi fields in the charge-spin basis (�c/s,α) and in the spin-
up, spin-down basis (�α,↑/↓) follow the same transformation
as the density operators in Eq. (A2). At the same time, the
bosonized form of the electron fields �μ are changed to [29]

�μ(x) = ημ√
2πa

e
i[ 1√

Kμ
[φμ(x)+φμ(−x)]+

√
Kμ[φμ(x)−φμ(−x)]]

, (A9)

where

Kc,α = exp(2ϕc) =

√√√√√1 − g+
2

8πvF +g+
4

1 + g+
2

8πvF +g+
4

,

Ks,α = exp(2ϕs) =

√√√√√1 − g−
2

8πvF +g−
4

1 + g−
2

8πvF +g−
4

(A10)

are the charge (Kc,α) and spin (Ks,α) Luttinger parameters,
which indicate the strength of the charge and spin interac-
tions [29]. For a repulsive interaction, i.e., g2‖/⊥ > 0, we
have Kc/s < 1, and the larger the interaction the smaller the
parameter [28]. In this work, we focus on the case where only
the charge interaction is involved, i.e., Ks = 1 and Kc = K .

APPENDIX B: REFERMIONIZATION OF THE
KONDO-LUTTINGER HAMILTONIAN FOR K � 1/2

In this Appendix, we give the details about the refermion-
ization process from Eq. (2) to Eq. (6), where we refermion-
ize the strong-coupling Kondo-Luttinger Hamiltonian in the
vicinity of K � 1/2 including the bias voltage term.

By adding an Ohmic bosonic bath Hb = vc
4π

∫
[∇φ̃(x)]2dx

with φ̃ being decoupled to any other field in Hsc + Hμ of
Eq. (2), we have [φ̃(x), φμ(x′)] = 0 (μ = c, f , s, s f ). We
next apply the transformation of Eq. (5) to re-fermionize the
Hamiltonian of Eq. (2). Here, we choose K � 1/2 to keep the
values in the square roots of Eq. (5) real. After doing this
transformation, the Hamiltonian Hsc + Hμ + Hb in the new
basis becomes H ′

sc + H ′
μ + H ′

b, given by

H ′
sc =

∫ L
2

−L
2

dx

4π

⎛⎝vc[∇φc(x)]2 + vc[∇φ′
f (x)]2

+
∑

ν=s,s f

vF [∇φμ(x)]2

⎞⎠ + J+
πa

Sx cos φs f + δJLR

4π
Sz∇φs

+ JLR

πa

Sx

2
(ei

√
2φ′

f (0)ei
√

1
K −2ϕ(0) + H.c.),

H ′
μ = eV

4π

∫ L
2

−L
2

dx[
√

2K∇φ′
f (x) + √

1 − 2K∇ϕ(x)],

H ′
b = vc

4π

∫
[∇ϕ(x)]2dx. (B1)

Define the new bosonic basis through

φ′
cL/cR(x) = φc(x) ± φ′

f (x)√
2

,

φ′
sL/sR(x) = φsL/sR(x) = φs(x) ± φs f (x)√

2
,

(B2)

the related new fermion operators are � ′
cL/cR(x) =

lima→0
1√
2πa

ηcL/cRe−iφ′
cL/cR (x) and � ′

sL/sR(x) = �sL/sR(x) =
lima→0

1√
2πa

ηsL/sRe−iφsL/sR (x), and the kinetic term of H ′
sc can

be refermionized as
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∫ L
2

−L
2

dx

4π

⎛⎝ ∑
μ = cL, cR

vc�
′†
μ (x)∂x�

′
μ(x) +

∑
ν = sL, sR

vF � ′†
ν (x)∂x�

′
ν (x)

⎞⎠
via the identity ∇φ(x)/4π = �†(x)�(x). The Kondo terms in H ′

sc are also refermionized as

JLRSx

∑
k,k′

[� ′†
cL(0)� ′

cR(0)ei
√

1
K −2ϕ(0) + H.c.] + δJz

√
2

Sz[�
′†
sL(0)� ′

sL(0) + �
′†
sR(0)� ′

sR,k (0)], (B3)

and the bias voltage term Hμ becomes

H ′
μ = eV

4π

∫ L
2

−L
2

dx[
√

2K∇φ′
f (x) + √

1 − 2K∇ϕ(x)]

= eV
√

K
∫ L

2

−L
2

dx[� ′†
cL,k (x)� ′

cL,k (x) − �
′†
cR,k (x)� ′

cR,k (x)] + eV
√

1 − 2K
∫ L

2

−L
2

dx

4π
∇ϕ(x).

Using � ′
μ(x) = 1√

L
∑

k c′
μ,keikx, the refermionized Hamilto-

nian in a momentum representation of Eq. (6) can be readily
obtained.

APPENDIX C: DERIVATION FOR RG EQUATIONS OF THE
KONDO-LUTTINGER SYSTEM UP TO TWO-LOOP ORDER

In this section, we calculate the RG equations for
the Kondo coupling JLR and Jz to the two-loop order
of Eq. (6). With the RG equations, we identify that the
one-channel Kondo to two-channel Kondo quantum criti-
cal point is at the Luttinger parameter K = 1/2. In ad-
dition, we set h̄ = 1 throughout the derivation of the
RG equations.

We begin with the action of Eq. (6), given by

S′
sc =

∫
dτ

⎛⎜⎜⎜⎝ ∑
μ = cL, cR;

k

vck c′ †
μ,kc′

μ,k +
∑

ν = sL, sR,

k

vF k c′ †
ν,kc′

ν,k

⎞⎟⎟⎟⎠
− JLR

L

∫
dτSx

∑
k,k′

(c′ †
cL,kc′

cR,k′ei
√

1
K −2ϕ(0) + H.c.)

− δJz

√
2L

∫
dτSz

∑
k

(c′ †
sL,kc′

sL,k + c′ †
sR,kc′

sR,k ),

Sb = vc

4π

∫
dτ

∫
[∇ϕ(x)]2dx. (C1)

To find the RG corrections to the coupling constants, we
integrate out the higher-frequency modes of the fields (such as
cK or ϕ) in the action to obtain a low-energy effective action
S< describing the low-energy behavior of the system, which

is given by

S<
LR = −JLR

L

∫
dτSx

∑
k,k′

(c′ †
cL,kc′

cR,k′ei
√

1
K −2ϕ<(0)

× 〈ei
√

1
K −2ϕ>(0)〉> + H.c.), (C2)

where ϕ> + ϕ< = ϕ, ϕ>/< is the higher-frequency (fast mode
�′ < k < �)/lower-frequency (slow mode k < �′) part of ϕ,
and 〈· · · 〉> denotes the averaging with respect to only the
fast mode in Sb. Thus, the first-order RG correction for JLR

becomes

JLR(�′) = JLR(�)

(
�

�′

)1− 1
2K

⇒ dJLR

dl
=

(
1 − 1

2K

)
JLR,

(C3)

where � is a running energy cutoff, �′ = � − d� and
dl = −d ln | �

�′ | = − d�
�

. From Ref. [39], we know that
the scaling dimension of Sz is 1/2K , which can be ac-
quired from the correlation function of Sz, 〈Sz(τ )Sz(0)〉 ∝

1
τ 1/K . Therefore, the first-order RG corrections for δJz are
given by

dδJz

dl
= − 1

2K
δJz. (C4)

Since the fermions in JLR and δJz terms are decoupled,
there are no one-loop order contributions to the RG equations
of JLR and δJz. So we go forth to compute the third-order
corrections to δJz and JLR from the third-order cumulant
expansion,

δS<
K = 1

3!

(〈
S3

K

〉
>

− 3〈SK 〉2
>〈SK〉> + 2〈SK 〉3

>

)
= 1

3!

〈
S3

K

〉c
>
, (C5)

where 〈· · · 〉c denotes the averaging only including the con-
nected diagrams. It is found that there are two third-order
terms, 〈S2

JLR
SδJz 〉c

> and 〈S3
δJz 〉c

>, which give the correction
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to δJz,

δS<
δJz = 1

3!

(〈
S2

JLR
SδJz

〉
>

− 3
〈
S2

JLR

〉
>
〈SδJz 〉> + 2〈SJLR〉2

>〈SδJz 〉>
) = 1

3!

〈
S2

JLR
SδJz

〉c
>

= − 1

3!

J2
LR

4

δJz

2

∫
dτdτ ′dτ ′′Tτ [S+(τ )S−(τ ′)Sz(τ ′′)]

{〈[
ψ

′†
L↑(τ )ψ ′

R↓(τ )ψ ′†
R↓(τ ′)ψ ′

L↑(τ ′)ei
√

1/k−1ϕ(τ )e−i
√

1/k−1ϕ(τ ′ )

+ ψ
′†
R↑(τ )ψ ′

L↓(τ )ψ ′†
L↓(τ ′)ψ ′

R↑(τ ′)e−i
√

1/k−1ϕ(τ )ei
√

1/k−1ϕ(τ ′ )][
ψ

′†
L↑(0)ψ ′

L↑(0) − ψ
′†
L↓(0)ψ ′

L↓(0)

+ ψ
′†
R↑(0)ψ ′

R↑(0) − ψ
′†
R↓(0)ψ ′

R↓(0)
]〉c

>

} × 3!. (C6)

So the correction to δJz is

δ(δJz ) = J2
LRδJz

8

1

(βL)2

∑
k;iω,iω′

∫
dτdτ ′dτ ′′

∫
dω1dω2

(2π i)2

[
eiω1(τ−τ ′′ )

ω1 − iη

eiω2(τ ′−τ ′′ )

ω2 − iη

+ eiω1(τ ′′−τ )

ω1 − iη

eiω2(τ ′′−τ ′ )

ω2 − iη
−eiω1(τ−τ ′′ )

ω1 − iη

eiω2(τ ′′−τ ′ )

ω2 − iη
− eiω1(τ ′−τ ′′ )

ω1 − iη

eiω2(τ ′′−τ )

ω2 − iη

]

×
(

e−iω(τ−τ ′ )

iω − εk

e−iω′(τ ′−τ ′′ )

iω′ − εk
+ e−iω(τ ′′−τ )

iω − εk

e−iω′(τ−τ ′ )

iω′ − εk
− e−iω(τ−τ ′′ )

iω − εk

e−iω′(τ ′′−τ ′ )

iω′ − εk

)

= J2
LRδJz

8

1

(βL)2

∑
k

[ − f (εk ) f (−εk )

(εk − η)(εk + η)
+ − f (−εk ) f (εk )

(εk + η)(εk − η)
+ [ f (−εk )]2

(εk + η)2
+ [ f (εk )]2

(εk − η)2

]

= J2
LRδJz

8

1

(βL)2

∑
k

[
f (−εk )

εk + η
− f (εk )

εk − η

]2

= − J2
LRδJz

4(2πvF )2
dl. (C7)

Following a similar approach, the other third-order correction proportional to (δJz )3 is given by〈
S3

δJz

〉c
>

= (δJz )3

8

∫
dτ1dτ2dτ3Tτ [Sz(1)Sz(2)Sz(3)]{〈[ψ ′ †

L↑(1)ψ ′
L↑(1) − ψ

′ †
L↓(1)ψ ′

L↓(1) + ψ
′ †
R↑(1)ψ ′

↑(1) − ψ
′ †
R↓(1)ψ ′

R↓(1)]

× [ψ ′ †
L↑(2)ψ ′

L↑(2) − ψ
′ †
L↓(2)ψ ′

L↓(2) + ψ
′ †
R↑(2)ψ ′

R↑(2) − ψ
′ †
R↓(2)ψ ′

R↓(2)]

× [ψ ′ †
L↑(3)ψ ′

L↑(3) − ψ
′ †
L↓(3)ψ ′

L↓(3) + ψ
′ †
R↑(3)ψ ′

R↑(3) − ψ
′ †
R↓(3)ψ ′

R↓(3)]〉c
>} × 3!, (C8)

leading to

δ(δJz ) = 1

3!

(
Jz

2

)3 3!

4

∫
dτdτ ′〈ψ ′ >

L↑ (τ )ψ ′ †>
L↑ (0)〉>,

〈ψ ′ >
L↑ (τ ′)ψ ′ †>

L↑ (0)〉> = − (δJz )3

8(2πvF )
dl. (C9)

Following a similar procedure, we can obtain the third-order
corrections to JLR as well. There are also two corrections to
JLR coming from 〈S2

Jz SJLR〉c
> and 〈S3

JLR
〉c
>. The correction to JLR

from 〈S2
Jz SJLR〉c

> is

δJLR = − (δJz )2JLR

8(2πvF )
dl, (C10)

and the other correction from 〈S3
JLR

〉c
> is

δJLR = − J3
LR

4(2πvF )
dl. (C11)

Defining the renormalized Kondo couplings JLR
2πvF

→ jLR and
δJz

2πvF
→ δ jz, and collecting all the corrections of JLR and δJz

of the first to the third order, we conclude that the RG equa-
tions to the third order for JLR and δJz, as shown in Eq. (8).

APPENDIX D: RG EQUATIONS VIA
BOSONIZED HAMILTONIAN

In this Appendix, provide derivations of the RG equa-
tions via using the bosonized Kondo-Luttinger Hamiltonian
of Eq. (2), which is valid for both K � 1/2 and K > 1/2.

The bosonized Kondo-Luttinger Hamiltonian takes the
form

H = H0 + JLRSx cos

(
ϕ f√

K

)
+ δJzSz∂xφs, (D1)

where

H0 =
∫ L

2

−L
2

dx

4π

⎛⎝ ∑
μ=c, f

vc[∇φμ(x)]2 +
∑

ν=s,s f

vF [∇φμ(x)]2

⎞⎠.

(D2)
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1. RG equation for δJz from J2
LRδJz

The correction from the J2
LRδJz term for δJz is given by

δ(δJz ) = − 3!

3!

1

4

2

4
J2

LRδJz
∫

dτ1dτ2dτ3Tτ [S+(τ1)S−(τ2)Sz(τ3)]〈e
iφ f (τ1 )√

K e− iφ f (τ2 )√
K ∂x3φs(τ3)〉>

= − 1

8
J2

LRδJz
∫

dτ1dτ2〈e
iφ f (τ1 )√

K e− iφ f (τ2 )√
K 〉>e

iφ<
f (τ1 )
√

K e− iφ<
f (τ2 )
√

K

∫
dτ3Sz(τ3)∂x3φ

<
s (τ3)

= − 1

8
J2

LRδJz

(
μ′

μ

)−2(
μ′

μ

)1/K (
μ′

μ

)−1/K (
μ′

μ

)1/2K ∫
dτ ′

1dτ ′
2dτ ′

3S′
z(τ ′

3)∂x3φ
<
s (τ ′

3)

= − 1

8
j2
LRδ jz

(
1

K

dμ′

μ′

) ∫
dτ ′

3S′
z(τ ′

3)∂x3φ
<
s (τ ′

3)

= − 1

4
j2
LRδ jzdl

∫
dτ ′

3S′
z(τ ′

3)∂x3φ
<
s (τ ′

3), (D3)

where jLR ≡ JLR(μ′/μ)−2+1/K and δ jz ≡ δJz(μ′/μ)1/2K . Here, we have approximated ln(μ/μ′) ≈ dl with dl =
−dμ/μ and dμ ≡ μ′ − μ by Taylor expansion, and τ → τ ′/(μ′/μ), x → x′(μ′/μ), and Sz → S′

z(μ′/μ)1/2K . JLR(�′) =
JLR(�)〈ei

√−2+K−1φ>
s (0)〉> = (�/�′)1−(2K )−1

JLR(�). Note that in the short-time limit τ ∼ a � μ (a being the lattice constant),
we may get rid of the double time integrals dτ1dτ2 above by introducing a short-time cutoff τ0 ≈ a/v f , and absorbed it in jLR

via a redefinition.

2. RG equation for δJz from (δJz )3

The third-order correction for δJz from (δJz )3 is given by

δ(δJz ) = − 3!

3!
(δJz )3

∫
dτ1dτ2dτ3Tτ [Sz(τ1)Sz(τ2)Sz(τ3)]〈∂xφs(τ1)∂xφs(τ2)∂xφs(τ3)〉>

= − 1

4
(δJz )3

∫
dτ+dτ−〈∂xφs(τ

−)∂xφs(0)〉> 1

τ 1/K

∫
dτ3Sz(τ3)∂xφ

<
s (τ3), (D4)

where 〈Sz(τ )Sz(0)〉 = 1
4τ 1/K . Also, we may use the relation ∂xφs = (−i/v f )∂τ θs, where φs and θs are conjugate variables, and

〈θs(τ )θs(0)〉 ∼ ln(τ )/2. We therefore have the following relation,∫
dτ+dτ−〈∂xφ

>
s (τ−)∂xφ

>
s (0)〉 = (− v−2

f

) ∫
dτ+dτ−〈∂τ+θ>

s (0)∂τ− θ>
s (τ−)〉

= (− v−2
f

) ∫
dτ−∂τ−〈θ>

s (τ−)θ>
s (0)〉. (D5)

Combining the above relations, we obtain

δ(δJz ) = − 1

8
(δJz )3 ln

[
μ

μ′

](
μ′

μ

)1/K (
μ′

μ

)1/2K ∫
dτ ′

3Sz(τ ′
3)∂xφ

<
s (τ ′

3)

= − 1

8
(δ jz )3dl

∫
dτ ′

3Sz(τ ′
3)∂xφ

<
s (τ ′

3), (D6)

where 1/v2
f is absorbed in the redefinition of δ jz. Finally, the RG equation for δ jz is given by

dδ jz

dl
= −1

8
(δ jz )3. (D7)

APPENDIX E: THE NONEQUILIBRIUM
CURRENT FOR K � 1/2

In this Appendix, we supply the detailed derivations of
the nonequilibrium (finite bias) charge current for the Kondo-
Luttinger system [Eq. (18)] for K � 1/2 via the nonequilib-
rium Green’s function technique.

The steady-state charge current, defined as the charges
passing through the Kondo dot from the left to right lead per

unit time, is derived from the Heisenberg equation of motion
of the refermionized Hamiltonian [Eq. (6)],

I = −e
d〈N〉

dt
=

√
2ie

h̄
〈[N, H ′

sc + H ′
μ + H ′

b]〉, (E1)

where

N = NL − NR

2
=

∫
dx

2π
∇φ f (x), (E2)
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and with the transformation, Eq. (5),

N =
∫

dx

2π
[
√

2K∇φ′
f (x) + √

1 − 2K∇ϕ(x)]

=
√

K
∑

k

[c′†
cL,kc′

cL,k − c′†
cR,kc′

cR,k] +
∫

dx

2π
[
√

1 − 2K∇ϕ(x)]. (E3)

Therefore,

I = ie

h̄

˝⎡⎣N,
JLR

L Sx

∑
k,k′

(c′ †
cL,kc′

cR,k′ei
√

1
K −2ϕ(0) + H.c.)

⎤⎦˛. (E4)

With˝⎡⎣√
K

∑
k

[c′†
cL,kc′

cL,k − c′†
cR,kc′

cR,k], Sx

∑
k,k′

(c′ †
cL,kc′

cR,k′ei
√

1
K −2ϕ(0) + H.c.)

⎤⎦˛ = 2
√

K
∑
k,k′

Re{G′<
RL,k′k (t, t )},

˝⎡⎣∫
dx

2π
[
√

1 − 2K∇ϕ(x)], Sx

∑
k,k′

(c′ †
cL,kc′

cR,k′ei
√

1
K −2ϕ(0) + H.c.)

⎤⎦˛ =
(

2
√

K − 1√
K

) ∑
k,k′

Re{G′<
RL,k′k (t, t )}, (E5)

we obtain

I =
√

K

(
4 − 1

K

)
e

h̄

JLR

L
∑
k,k′

Re{G′<
RL,k′k (t, t )}, (E6)

where G<
RL,k′k (t, t ′) = i〈c′†

cL,k (t ′)Sx(t )c′
cR,k′ (t )ei

√
1
K −2ϕ(t )〉 is

the lesser Green’s function for ccL/cR,k .
To evaluate the nonequilibrium current, we employ the

equation of motion method to solve the lesser Green’s func-
tion G<

RL,k′k (t − t ′),

i
d

dt ′ G
t
RL,k′k (t − t ′)

=
〈
Tt

[
Sx(t )ccR,k′ (t )ei

√
1
K −2ϕ(t ) d

dt ′ c
†
cL,k (t ′)

]〉
= iεk〈Tt [Sx(t )ccR,k′ (t )c†

cL,k (t ′)]〉

+ i
JLR

L
∑

k′′
〈Tt [Sx(t )ccR,k′ (t )ei

√
1
K −2ϕ(t )Sx(t ′)

× c†
cR,k′′ (t ′)e−i

√
1
K −2ϕ(t ′ )]〉

= −εkGt
RL,k′k (t − t ′) − JLR

L
∑

k′′
Gt

R,k′k′′ (t − t ′), (E7)

where Gt
R,k′k′′ (t − t ′) = −i〈Tt [Sx(t )ccR,k′ (t )ei

√
1
K −2ϕ(t )Sx(t ′)

c†
cR,k′′ (t ′)e−i

√
1
K −2ϕ(t ′ )]〉. We also define the noninteracting left

lead time-ordered Green’s function gt
L,k (t − t ′), which obeys

the following equation,(
i

d

dt ′ + εk

)
gt

L,k (t − t ′) = −δ(t − t ′). (E8)

Combing Eqs. (E7) and (E8), the time-ordered right-left
Green’s function Gt

RL,k′k (t − t ′) can be expressed in terms of

an integral equation as follows,

Gt
RL,k′k (t − t ′) = JLR

L
∑

k′′

∫
dt1Gt

R,k′k′′ (t − t1)gt
L,k (t1 − t ′),

(E9)

where the JLR term gives the self-energy correction to either
the left or right Green’s functions. Note that we have already
set h̄ = 1 for convenience and will put it back in the final
form of the current. Assuming a uniform bias voltage VL/R

is applied in the left/right lead with a finite jump in voltage
at the dot, VL = V/2 and VR = V/2, the system is now in the
nonequilibrium situation. Accordingly, we extend Eq. (S3) to
the nonequilibrium case, which is expressed in terms of the
contour-ordered Green’s function Gc

RL,k′k . Equation (E9) has
the same form in nonequilibrium except that the intermediate
time integration runs on the counter c with τ1 being the
contour time,

Gc
RL,k′k (τ, τ ′) = JLR

L
∑

k′′

∫
dτ1Gc

R,k′k′′ (τ, τ1)gc
L,k (τ1, τ

′).

(E10)

In the weak tunneling limit, the JLR is treated as a pertur-
bation term in the Hamiltonian, we can expand the Green’s
function Gc

R,k′k′′ (τ, τ1) and keep the lowest order, which
is 〈S2

x 〉gc
R,k′k′′ (τ, τ1)bc(τ, τ1), where gc

R,k′k′′ (τ, τ1) is the free-
electron Green’s function of the right lead, and bc(t −
t ′) = 〈Tt [ei

√
1
K −2ϕ(t )e−i

√
1
K −2ϕ(t ′ )]〉0 is the boson phase-phase

correlator. Here, 〈· · · 〉0 denotes that the expectation value
is calculated only with respect to H ′

b without the contri-
bution from the JLR term in the Hamiltonian where the
boson field appearing as a phase, and Gc

RL,k′k (τ, τ ′) now
becomes

Gc
RL,k′k (τ, τ ′) =JLR

L
〈
S2

x

〉 ∫
dτ1gc

R,k′ (τ, τ1)bc(τ, τ1)gc
L,k (τ1, τ

′).

(E11)
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Since we are interested in the steady-state nonequilibrium
transport, the transient behavior, which happens when the
system initially turns to nonequilibrium, is neglected here.
The time τ for the nonequilibrium case starts at τ = −∞,
and follows the Keldysh contour from τ = −∞ to τ = +∞,
and finally returns to τ = −∞. Applying the Keldysh con-
tour, the lesser Green’s function G<

RL,k′k (t − t ′) can be writ-
ten as a real time integral and its analytical form is shown
in Sec. IV A.

Because we are discussing the steady-state case, it is
legitimate to set t → ∞. Thus, we have gr

R,k′ (t − t1) +
g<

R,k′ (t − t1) = g>
R,k′ (t − t1), br (t − t1) = b>(t − t1) − b<(t −

t1). Since b<(�t ) = b>(−�t ), we obtain br (t − t1) =
b<(t1 − t ) − b<(t − t1). Furthermore, G<

RL,k′k (t − t ′) can be
put into

G<
RL,k′k (t − t ′) = JLR

L
〈
S2

x

〉 ∫ ∞

−∞
dt1[gr

R,k′ (t − t1)g<
L,k (t1 − t ′)

+ g<
R,k′ (t − t1)ga

L,k (t1 − t ′)]b<(t − t1)

+ g>
R,k′ (t − t1)g<

L,k (t1 − t ′)[b<(t1 − t )

− b<(t − t1)]. (E12)

The nonequilibrium current I now is given by

I =
√

K

(
4 − 1

K

)
e

h̄

J2
LR

L2

〈
S2

x

〉 ∑
k,k′

∫∫
dωdω′

(2π )2

× Re{[gr
R,k′ (ω)g<

L,k (ω′) + g<
R,k′ (ω)ga

L,k (ω′)]b<(ω′ − ω)

+ g>
R,k′ (ω)g<

L,k (ω′)[b<(ω − ω′) − b<(ω′ − ω)]}. (E13)

Since b<(�t ) = [b<(−�t )]∗, b<(ω) should be a real func-
tion. With the general relation between various types of
Green’s functions (gr , ga, g>, g<) held in any given sys-
tem, gr − ga = g> − g<, we have the identity Im[gr] = (g> −
g<)/2, so the current I takes the form

I =
√

K

(
4 − 1

K

)
e

h̄

J2
LR

L2
〈S2

x 〉
∑
k,k′

∫∫
dωdω′

(2π )2
[ f (ω′ − μL )

− f (ω − μR)]Im[gr
R,k′ (ω)]Im[gr

L,k (ω′)]b<(ω′ − ω).
(E14)

Here, we have used the the following equalities, g<
R/L,k′k′′ (ω) =

−2i f (ω − μR/L )Im[gr
R/L,k′k′′ (ω)], where gr

R/L,k (ω) = [ω −
(εk − μR/L ) + iη]−1. In the thermodynamic limit L → ∞, an
explicit closed form of I can be obtained as

I =
√

K

(
4 − 1

K

)
e

h̄

J2
LR

(2π h̄vF )2
〈S2

x 〉
∫ ∞

−∞

∫ ∞

−∞
dεkdεk′ [ f (εk′ − eV/2) − f (εk + eV/2)]

∫ ∞

−∞
dtb(t )e

i
h̄ (εk′−εk )t . (E15)

Once we perform the integral over energy and time, we readily obtain the nonequilibrium current formula shown in Eq. (18).
If we go beyond the first-order perturbation, the second-order contribution to the Green’s function Gc

RL,k′k (τ, τ ′) is

G2c
RL,k′k (τ, τ ′) = − i2

(
JLR

L

)2 ∑
k′′, k1, k2,

k3, k4

∫
dτ ′′dτ1dτ2

〈
Tτ

[
S2

x ccR,k′ (τ )ei
√

1
K −2ϕ(τ )c†

cR,k1
(τ1)ccL,k2

(τ1)e−i
√

1
K −2ϕ(τ1 )

× c†
cL,k3

(τ2)ccR,k4
(τ2)ei

√
1
K −2ϕ(τ2 )c†

cR,k′′ (τ ′′)e−i
√

1
K −2ϕ(τ ′′ )]〉

gc
L,k (τ1, τ

′). (E16)

We examine one of the diagrams from the second-order perturbation term G2c
RL,k′k (τ, τ ′), which is

� = −2

(
JLR

L

)2〈
S2

x

〉 ∑
k2,k4

∫
dτ ′′dτ1dτ2gc

R,k′ (τ, τ1)Bc(τ, τ1)gc
L,k2

(τ1, τ2)gc
R,k4

(τ2, τ
′′)Bc(τ2, τ

′′)gc
L,k (τ ′′, τ ′). (E17)

If we choose the Keldysh contour, the contribution of � to the nonequilibrium current is proportional to [ j2
LR(V/T )1/K−2]2 at

low temperatures. Actually, it is found that the contribution to the differential conductance from the nth-order perturbation term
is proportional to [ j2

LR(V/T )1/K−2]n.
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