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Signatures of multiple charge excitations in resonant inelastic x-ray scattering spectra of metals
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We study how multiple charge excitations appear in the resonant inelastic x-ray scattering (RIXS) spectra
of metals. Typically, the focus is upon single excitations in the problem, the plasmons and electron-hole pairs,
while the multiexcitation processes are neglected. However, at small momentum transfer the multiexcitation
contributions may dominate the signal and one needs to understand how to interpret the data in such cases.
In particular, we demonstrate how to “decode” the total multiexcitation intensity and extract the plasmon
dispersion. While our calculations are based on the random phase approximation for jellium, which does
not allow us to obtain quantitatively precise results in the entire region of parameters, we expect them to
capture semiqualitatively all features expected for charged Fermi-liquid states, including universal and singular

properties of the RIXS spectra.
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I. INTRODUCTION

Resonant inelastic x-ray scattering (RIXS) is a very
promising technique for studying collective excitations in
condensed-matter systems [1-8]. However, extracting the nec-
essary information from the RIXS data is a highly nontrivial
task. The deep core hole, created by an incident photon,
disturbs the system, which leads to a variety of multiparticle
processes contributing to the measured RIXS signal. To ex-
tract the relevant information about excitations of interest, one
needs to properly understand all the processes involved and be
able to distinguish single- and multiexcitation processes.

Now, traditionally in condensed matter, one is interested
in coherent excitations and pays much less attention to multi-
particle continua. In RIXS experiments, however, the single-
particle contribution can be weak and masked by multiparticle
ones. This turns out to be the case in Coulomb systems where
the single-particle contributions (plasmons and e — & pairs)
are suppressed at small momentum transfer [9]. In that case,
we have to learn how to extract information about single
excitations from multiexcitation processes. These processes
(typically characterized by rather broad frequency signals)
also contain information about coherent excitations but in a
convoluted form. Thus, understanding their properties is very
important, especially in regions of phase space where they
dominate the RIXS intensity. In general, studies of multiple
excitations may prove to be a convenient practical way of
extracting the underlying physics from the broad frequency
signal, provided its universal features and the corresponding
singularities are well understood.

One example of the importance of multiexcitation pro-
cesses in understanding the RIXS amplitude is the role that
bimagnons play in the RIXS response of magnetic mate-
rials. The bimagnon response is associated with a four-
spin correlation function [10,11] (whereas the magnonic
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excitation is probed by a more standard two-point spin-
correlation function). It has been demonstrated that the bi-
magnon signal forms an important part of the RIXS signal
[10,12-15]. (The bimagnon response also plays a key role in
magnetic Raman scattering, see, for instance, Refs. [16-18].)

In this paper, in a similar way, we want to understand the
role that the multiexcitation processes play in metallic systems
where a correct treatment of dynamic screening of long-range
Coulomb interactions is necessary. Our goal is ultimately to
learn how to “decode” the total multiexcitation intensity and
extract all the important information from it.

There are several approaches for calculating the Kramers-
Heisenberg amplitude that describes RIXS spectra. These
include single-particle approaches [19-21] appropriate for
weakly correlated systems, methods that emphasize the ex-
citonic state formed by the core hole and the excited elec-
tron [22,23]. nonperturbative approaches such as exact di-
agonalization [1,24-26], dynamical mean-field theory [27],
integrability [11], and the density matrix renormalization
group [28], methodologies that emphasize the idea that the
Anderson orthogonality catastrophe is at the heart of the
RIXS response [29-32], and, finally, diagrammatic methods
[9,33-36]. Because we are interested in understanding the
multiexcitation response, it is natural to employ the latter.
The advantage of the diagrammatic approach is that one can
analytically isolate the effects of the different multiexcitation
branches in the presence of long-ranged Coulomb interac-
tions. Hence we will follow the diagrammatic framework laid
out in our earlier work, Ref. [9].

As explained in Ref. [9] and discussed briefly in Sec. II,
we work in the UCL limit. This gives as a natural small
parameter 2,1/I" where € is the plasmon frequency and I~
is the core-hole lifetime. The natural material candidates for
our work will then be Dirac and topological metals involving
first-row transition-metal elements (i.e., FeTe,_,Se, family)
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FIG. 1. The leading order diagrams for the RIXS cross section
in the UCL limit (e.g., for the K-edge case) with [ and !’ indexes
standing for either s hole or p electron, and {w;, q;} and {wy, q5}
specifying the incoming and outgoing photon energies and momenta.
The dynamically screened Coulomb potential U, shown by the blue
dotted line, can connect any upper s — p bubble line (s or p) with
any lower s — p bubble line; here, for brevity, we present only one
particular way of connecting the bubbles.

whose K edges are accessible on current generation hard x-ray
RIXS beamlines.

An outline of the paper is as follows. In Sec. II we provide
a description of our model and the attendant formalism used
to solve it for the indirect RIXS response. In Secs. III and
IV, we discuss the contribution of single- and multiexcitations
to the RIXS response, respectively. In Sec. V, we use the
discussion of the previous two sections to provide a derivation
of the dispersion of the plasmon from the two-excitation
contribution to the RIXS signal. This is one of the main
results of the paper. In Sec. VI, we consider in additional
detail how the single- and multiparticle spectra can be seen
in measurements of the RIXS signal in metals. Finally, in
Sec. VII we offer our conclusions.

II. MODEL AND FORMALISM FOR INDIRECT RIXS

In the indirect RIXS process, the incident photon with
energy o; and momentum q; excites the deep core electron
into the high-energy (potentially mobile) p state and leaves
behind a (localized) core hole s. [Our labels for bands are
arbitrary and can change depending on the material studied.]
Eventually, the p-electron repopulates the s-hole through the
emission of a photon with energy w; and momentum ¢. In
what follows we are going to work in the ultrashort core-hole
lifetime limit (UCL) [9,37-39], frequently employed in the
RIXS calculations. In this limit, the s — p dipole emits low-
energy collective excitations (represented by bosonic lines
U in Fig. 1) only during the very short-time interval, I'~'.
The differences, Q = q; — qf and Q = w; — wy, describe the
corresponding momentum and energy transfer to excitations.

The Hamiltonian appropriate for the computation of in-
direct RIXS intensity has the following description (see, for
instance, Ref. [40]). To formulate the Feynman diagram ex-
pansion for the RIXS cross section, one needs to introduce
two replicas of core electrons (with creation operators s, a =
1, 2) localized at different space points at a distance R, from

each other, and two replicas of high-energy electrons (created
by p)), and a species of conduction electrons (created by d7).
The different replicas enter into different s — p fermion bub-
bles depicted on Figs. 1(a), 1(c), and 1(d). The corresponding
Anderson model can be formulated as follows:

H =H;+ H,y +Hp+Hdd +va+Hvd +dea

Hs = Z €s S;a So',a + Hs,Fv
o,a=1,2
i . i
HP = Z fp(k) pk,ma,a Pi,mo,a> Hd = Z €d(k) dk,a dk,(f7
k,o,a ko

é? e
Hyy = /dl‘nd(l‘) X [|R1 - ns1+ R x| ns.2:|: ()
where 0 = = is the spin index, €, gives the energy of the core
electron, €,(k)/€;(k) gives the dispersion of the p/d elec-
trons, and n; 4 , are the corresponding number densities. H; r
defines the core hole with a finite lifetime ' ~!. The interaction
Hamiltonians Hy,, H,;, and Hy, have similar structures based
on the Coulomb potential, V; = e*/r or Vo = 4me*/Q? (for
brevity, we present explicitly only H,). Here and below we
are using units such that the Planck’s constant, %, the Fermi
momentum, kr, and the Fermi energy, ¢, are set to unity.

By integrating the d electrons out, one arrives at the model
where s /p electrons are coupled by the action

S =358+ / dridrodridryp(ry, 1)U (112, T12)p (12, T2),

p(r) =Y [8(r — Ro)neq + npa(r)l, )

a

where Sy is the bare action for s holes/p electrons and U
is the dynamic part of the screened Coulomb potential. In
this formulation, the correlation function, g, responsible for
the RIXS cross section, can be written as (see, for instance,
Refs. [31,32])

xr(Ri2s 11, 12, 1) = (Di(qi, 11/2) Di(qys, —11/2)
x Di(qi, 12/2 4 1) Da(qr, —12/2 + D)) rers

3
where the dipole operator on site R, is defined as
DY(@) =Y Pu(@)em Y PirgmoaSya )
m k,o

The RIXS cross section is then extracted from the imaginary
part of the analytically continued Fourier transform of this
correlation function in direct analogy to the Raman scattering
response [40]. Here we have made explicit the polarization
of the incident photon: ¢,, m = 1,0 while P,(g) is an
appropriate atomic matrix element dependent on the photon
momenta. We note that because our system is rotationally
invariant, we are computing the part of the RIXS response
that contains the elastic peak [2]. This might then obscure
low-energy features of interest to us. However, the plasmon
dispersion, one of the main foci of this paper, is a finite fre-
quency phenomenon. While the particular polarization used
experimentally is relevant for the RIXS response in specific
materials, we will simply absorb factors of €,, into an overall
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prefactor (below Y;). We also note that we will not take into
account the g dependence of the atomic form factor, P, (q),
although in real materials this will effect the overall response,
particularly at large g.

Within the diagrammatic formalism of Ref. [9], the first or-
der [in the dynamically screened interaction U, see Fig. 1(b)]
contribution to the RIXS intensity is shown in Fig. 1(a). It
describes the single-excitation contribution from plasmons
and e — h pairs. The second order diagrams, Figs. 1(c) and
1(d), are responsible for contributions from the two-excitation
processes involving either two plasmons, or two e — h pairs,
or one plasmon and one e — h pair (we call the latter a hybrid
process). Contributions from higher order processes are small
because each additional U line comes with the extra factor
o I'2. Such processes would include interactions between
single excitations, something that we then do not account for
here.

The first-order contribution to the RIXS intensity for mo-
mentum and energy/frequency transfers is given by

o _ Y
with
DV = Q) ImU (R, Q), (©6)

where the dynamically screened Coulomb potential U is given
by [see Fig. 1(b)]
Vo 47 e?

U(Q»Q):W_V@ Vo = 0

(N

and the form factor, f;(Q), vanishes in the small momentum
transfer limit [9]; P is the polarization function. For crystals
with inversion symmetry, it can be modeled by

o 7
Q2+Q§} : ®

with some characteristic momentum cutoff Q; ~ kp. In the
UCL limit, the (s — p) bubbles contribute a frequency-
independent factor and one can replace Y in Eq. (5) with a
constant of the order of unity. In what follows, we will use
1/kr and ep as units of length and energy and not mention
them explicitly in dimensionless ratios Q/kr and Q2/¢ef.

We note that Y| and its counterpart Y, in Eq. (14) contain
atomic form factors and so encode the lack of rotational
invariance present in real materials. Our focus in this paper
is not on the physics contained within these form factors. We
further note that we do not consider our results accurate when
the UCL approximation is violated.

An accurate theoretical prediction requires knowledge of
the dynamic dielectric response function, €(q, w). This is a
difficult computational materials science problem even for
single-excitation processes. It becomes more acute for multi-
excitation processes. On the other hand, significant qualitative
and even semi-quantitative gains in understanding can be
obtained by approximating the dielectric response with the
analytic form based on the Lindhard function [equivalent to
the random phase approximation (RPA)] which captures all
the properties characteristic of the charged Fermi-liquid state.

fl(Q)=|:

In our previous work [9], we employed a simplified de-
scription of the dielectric response function valid in the
q/kr < 1 limit. The two most important qualitative features
not captured by this treatment were the singular behavior
at momenta and frequencies corresponding to the end point
of the plasmon dispersion relation, and the nonanalyticity at
q = 2k . Furthermore, for the process involving two (e — h)
pairs, even at small momentum and energy transfer one cannot
ignore pairs with large momenta ~kr. To eliminate these
deficiencies and achieve a comprehensive semiquantitative
description in a broad parameter range, here we consider
the full Lindhard function [41,42], correctly capturing all the
Fermi-surface effects and the interplay between the plasmon
mode and the e — & continuum. This gives for P,

407 — 04 ‘2Q+Q2_
In

3n
ReP=—| -1
eP 7 |: +

e 803 20— 0%
40 -0t |20+ 0%
BRETE IH‘ZQ—Qi } ®
31n —Q if A
ImP = —[1—-(R/Q—Q)*/4] ifB
8erQ | 11 — (/0 - 0241 ifcC,
A:0<2 0<Q<-0*+20,
B:Q<2 —0"+20<Q2<0%+20,
C:022 0 -20<Q<0°+20, (10

where Q3 = Q =+ Q? and n = kj /372, The definition of the
Coulomb r, parameter is standard: > = (rikp /m)(4/97)"/3.
For momenta Q < Q,,, the ImU = D function can be natu-
rally divided into two contributions D = D,_;, + Dy: the first
one is associated with the electron-hole continuum, and the
other one with the gapped plasmon resonance that exists as a
separate sharp mode only up to a finite momentum Q,, when
it merges into the e — h continuum. In terms of the real and
imaginary parts of the polarization function, we have

- ImP
De—h = B )
[(VQ” —ReP)” + (ImP)?]
Dy = 7 Res[wp(Q)] 8(Q — wp(Q)), ImP =0. (12)

an

The plasmon peak frequency and residue are derived from
properties of the dielectric function e =1 — VP,

1
, =0; R = —, 13
€(Q, wp(Q)) es[w] e /0%, (13)
see Fig. 2.
The second-order contribution to the RIXS intensity reads
TZ
=D 0). (14)

with frequency-independent constant Y, ~ 1 and

DO _ dqdw

=] Gny £(@,Q - D, D - 0, Q- q),

s)
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FIG. 2. Plasmon residue Res(w) as a function of frequency for
rg=1and 5. At @ — 1, Res(w) behaves as o 1/(w — Qp1); at
w — Q,,, Res(w) — Res(2,,) x /R, — w.

where the model form factor,

(q1 - q2)°
ai+03) (a5 +07)°

is designed to respect the small momentum transfer depen-
dence coming from the (s — p) bubbles for the sum of two
second-order diagrams [see Figs. 1(c) and 1(d)]. Below we
set Y12 = 1 and present all results without the I" factors.

Q1 q) = ( (16)

D
eh I-(e-h)
contribution
160 | Q/kF Q/kF
—— 0.0675, rg=1------ 0.0675, rg=5 :
— 0.5400, r¢=1 ------ 0.5400, r=5| i
— 1.0000, r¢=1 ------- 1.0000, rg=5|::
120 H
80
40
. , i

2 3 Q/ Ep

FIG. 3. Single pair contribution to intensity, D,_,, as a function
of Q for different values of momentum transfer Q at r; = 1 (solid
lines) and 5 (dotted lines). The f1(Q) factor is removed.

Y
0.8 1-(e-h)
contribution
_ Ok
— 0.540, r¢=1
------- 0.990, ry=5
0.4
0 -u 1 " 1 ;
0 0.4 0.8 X

FIG. 4. Scaled single-pair contributions to intensity, Y =
De_p/{De_p}max» as functions of X = Q/Q,_,4(Q) for r, =1 and
ry =5 (with the same Q/Q,, & 0.964 ratio for both curves). The
f1(Q) factor is removed.

Note that the diagrams in Fig. 1 do not account for
interactions between excitations—the corresponding pro-
cesses occur only in higher orders with respect to the
diagrammatic expansion in terms of the number of U
lines. Their consideration goes beyond the scope of present

paper.

D

e-h
0.0016 | 1-(e-h)
contribution

Olkr
0.0012 | — 0.050, r,=1
— 0.075, re=1
— 0.100, r,=1
0.0008 | O 00.050, r=5
& 00.075 r=5
oo 0O 00.100, re=5

0.0004 i
0 oz 1
0 0.1 0.2 0.3 Qlgp

FIG. 5. Single-pair contributions to intensity as functions of €2 at
ry = 1 and 5 when Q/Q,, << 1 for both curves. The fi(Q) factor is
not removed, in contrast to Figs. 3 and 4—this allows us to see the
actual values of the e — & intensity (without the I" factor).

075140-4



SIGNATURES OF MULTIPLE CHARGE EXCITATIONS IN ...

PHYSICAL REVIEW B 102, 075140 (2020)

D(Z)
0.16 -
re=1
0.12 F 2-excitation
contribution
Olkr
0.08L — 0.005
0.04 -
0
0 2 4 6 Qe

D?
40 +
ry=5
2-excitation
contribution
30
O/kr
— 0.0675

Qe

FIG. 6. Total two-excitation RIXS intensity as a function of energy transfer €. It includes two-plasmon, two-(e — k), and the hybrid (see
text) processes shown for several momentum transfers Q. Upper panel: r, = 1. Lower panel: r, = 5.

III. SINGLE-EXCITATION PROCESSES

Here we briefly review the known properties of D. There
is no point in showing the plasmon contribution because it
is completely characterized by the dispersion relation and
the pole residue, see Eq. (13). The e — h pair contribution
results in a broad spectral curve with intensity diverging on
the approach to the end point of the plasmon spectrum, see
Fig. 3. The upper threshold of the e — A spectrum is located at

2
Q1 (Q)=vr0+ ZQ— .
m

The end point of the plasmon dispersion is then defined by the
condition 2,_,(Q,,) = R, leading to the following relation
for ,,:

a7

Q2
Q= m) = m —
@p(Qm) = VFQm + =
For ry = 1 and r; = 5, the largest plasmon momentum equals

O = 0.560kr and Q,, = 1.027 kg, respectively.

(18)

(2)
Dpl
re=1
0.08 | i
. contribution
O/kp
......... — 0.0675
.......... 0.2700
ol — 0.5400
----- 0.8100
0 - 1
; 25 3 Q/ Ep

At small momenta Q, the shapes of the D,_, curves
for different values of r; are nearly indistinguishable. With
increasing Q, the peak amplitude increases until Q = Q,,,
where the e — h continuum “absorbs” the plasmon mode. At
0 > O, the peak maximum decreases while the plasmon
contribution no longer exists. For r; = 1, the Q = kr case
corresponds to Q > Q,, when the intensity is already rather
small, featureless, and broad; for r; =5, this momentum
transfer is slightly below the plasmon end point, Q < Q,,, and
the intensity keeps increasing in a singular fashion.

At the RPA level, there is a certain degree of universality in
the scaled shapes of the curves for small and large values of ;.
It is clear from Fig. 3 that large values of ry; do not introduce
new spectral features; in general, only the positions of peaks
and their intensities are changed. To verify this quantita-
tively, in Fig. 4 the e — h contributions for ry, =1 and r;, = 5
are presented for momentum transfers corresponding having
the same Q/Q,, ratio close to unity. The curves are scaled
to have the same peak amplitude and are plotted as functions

©
40
ry=5
L 2-plasmon
30 contribution
O/kr
— 0.124
200 [ N0 e 0.495
— 0.990
----- 1.485
10
4 5 6 Qe

FIG. 7. Two-plasmon contributions to intensity for several values of Q. Left panel: r;, = 1, the arrow points at the low-frequency minimum.

Right panel: r; = 5, the arrow points at the high-frequency kink.
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Y Y

1F = 1+
0.8r 0.8F

ot 058 e
0.6 —0.270, =1 0.6 bon Vs:j
.......... 0.495, rg=5 7, Fs=

0.4r 041
0.2 02+

. . , . 0 A

0 0.4 0.8 1.2 X 0 0.4 0.8 X

FIG. 8. Scaled two-plasmon intensities Y = D, M

3 ADS Ymax as functions of X = [Q — 2Q(Q/2)1/2[, — Q(Q/2)] € [0, 1] for r, = 1 and

rs = 5. The momentum transfer for two cases was adjusted to have the same ratio Q/Q,,(r).

of the ©2/%,,. It is clear that the characteristic features of
the e — h contribution, shown in Fig. 3 and described above,
barely change as a function of 7;.

At small momentum (and energy) transfer the e — 4 inten-
sity curves become independent of r,, see Fig. 5. At Q <<
vrQ, they are linear in Q2 and the amplitude is proportional
to Q3. The intensity of the plasmon peak under the same
conditions is proportional to rf/ 2(?. These scaling laws imply
that at small Q the single-excitation RIXS spectrum can be
weak and potentially subdominant to higher-order processes
considered next.

IV. MULTIEXCITATION PROCESSES

We begin by noting that, in the UCL limit, the higher-order
(with respect to the number of U lines connecting the s — p
dipoles) processes are suppressed. However, at small momen-
tum transfer, the second-order processes can dominate the
spectrum even in the region where the first-order intensity is
nonzero because the form factor f; has a different dependence

(2)
Dy,
0.04
re=1
0.03F plasmon + (e-h)
’ contribution
Ok
— 0.0675
0.02 TR e 0.1350
— 0.2700
----- 0.8100
0.01 |
0 1 ~ AL [
1 2 3 4 5 Qlep

on Q, see Eq. (16). Simultaneously, as is has been noted in the
Introduction, the two-excitation spectra can be used to extract
information about single excitations provided the origin of
their characteristic features is well understood.

In Fig. 6, we present the example of the entire two-
excitation RIXS intensity for two different values of r;. The
spectral curves are characterized by some distinct features and
in this section we are going to describe these features in detail.

By substituting Eqgs. (11) and (12) into Eq. (15), we obtain
partial [two-plasmon, two-(e — &), and hybrid] contributions
to the total intensity. In what follows, we first address each
process separately and then conclude with the discussion of
the total two-excitation intensity.

A. Two-plasmon processes

In contrast to the sharp single-plasmon peak located at
wpi(Q), the two-plasmon spectrum is broad—it starts at
2wp1(Q/2) and terminates at 2€2,,. Even for Q = 0 the two-
plasmon spectrum is well outside of the single-plasmon

)
Dy,

6_

=5

plasmon + (e-h)
contribution

Olkr
— 0124

FIG. 9. Hybrid contribution to intensity as a function of <2 for several values of Q at r;, = 1 (left panel) and r; = 5 (right panel).
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(2,
DY

ry=1

plasmon - (e-h)
contribution

0.016

0.012

0.008

0.004

O " 1 " 1
24 2.6 2.8

Qlep

FIG. 10. Hybrid contribution to intensity: D;lz) as a function of Q
at small values of Q and r; = 1.

dispersion range, i.e., the single- and two-plasmon spectra do
not overlap. However, single-pair and two-plasmon peaks can
overlap at large momentum transfer.

Apart from the thresholds, there are two singular points
in spectrum, corresponding to two sets of momenta q; and
q> of two plasmons: (¢; =0, ¢g; = Q) and (¢i = O, q; =
On — Q), where i # j =1, 2. At the first singular point, the
spectrum vanishes because f>(qi, qz2) = 0, see Egs. (15) and
(16). This minimum is located at

Q= Qpl + wpl(Q) (19)
and is clearly seen on the two-plasmon curves in their lower-
frequency part, see both panels of Fig. 7, and is preceded by a
maximum for obvious reasons. When Q — 0, the minimum is
approaching the low-energy threshold and the spectral weight
displays a sharp low-amplitude oscillation. At Q > Q,,/2, the

Y
'_..-"‘: .\
08k plasmon + (e-h)
Y contribution
A O/kr
Y — 0.050, r,=1
.......... 0.092, r=5
04r
0 J . | . L \ : . I
. 0.4 0.8 1.2 16 X

minimum broadens and at Q > Q,, completely reshapes the
spectrum.

At the second singular point, there is no special reason for
the two-plasmon spectrum to vanish; instead, it is seen as a
kink located at

Q= Qp + a)pl(Qm -0).

It is more pronounced on small-to-moderate-Q curves (when
the low-frequency maximum is smaller in intensity than the
central one) in their high-frequency part, see both panels of
Fig. 7. At Q — 0, the kink is approaching the high-frequency
threshold at 2€2,,, while for Q > Q,, it disappears together
with the central maximum.

Disregarding the overall amplitude of the signal, the two-
plasmon curves for 7, = 1 and 5 look very similar and in RPA
the nonperturbative values of r; do not introduce new fea-
tures to the two-plasmon spectra. To quantify this statement
further, in Fig. 8 we compare spectra for ry =1 and r;, =5
using properly scaled variables: the momentum transfer was
chosen to have the same ratio for Q/Q,,(rs), the intensity
was normalized to unity at the maximum, and the frequency
was scaled to be in the [0,1] interval.

It is also worth mentioning that for the two-plasmon
process, the intensity at the central maximum saturates to a
constant when Q — 0 while the spectrum remains broad, in
contrast to the o« Q® spectral weight scaling associated with
the single-plasmon process.

(20)

B. Hybrid processes

The thresholds for the hybrid spectrum are at €2 and
Qn + QLo (On + Q), as dictated by the energy-momentum
conservation laws and limited momentum support for the
plasmon dispersion. At Q — 0, the upper threshold is located
at 2€2,, [see Eq. (18)]. In Fig. 9, we show the hybrid spectra
for ry, =1 and r, = 5. Since the lower threshold is at the
plasma frequency 2, the hybrid spectrum overlaps either
with the single plasmon or with the single-pair spectrum. At
Q — 0, the intensity of the broad central maximum saturates

Y
0.8 plasmon + (e-h)
contribution
O/kr

—— 0.405, r,=1
.......... 0.743, ry=5

04

. 0 0.8 1.2 X

FIG. 11. Scaled hybrid contributions to intensity for r;, = 1 and r; = 5. The data are plotted for ¥ = DLZ) / {D,(f)}max as functions of X =
[2 — Qul/[Q2m + Re—n(Onm + Q) — 2] € [0, 1]. The momentum transfer for two cases was adjusted to have the same ratio Q/Q,,.
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FIG. 12. Two-pair contribution intensity as a function of €2 for several values of Q at r; = 1 (left panel) and 5 (right panel).

to a constant, in contrast to the o« Q° scaling of the shrinking
single-pair spectrum and o< Q? scaling of the single-plasmon
weight. However, since the hybrid intensity vanishes at 2 —
2,1, it does not obscure the sharp single-plasmon peak in the
O — 0 limit (contrary to the two-pair process discussed next).

At QO > 0, the high-frequency peak emerges from the
threshold, grows in amplitude, see Fig. 10, and ultimately
reshapes the entire curve, see Fig. 9. The origin of this peak
at small Q can be traced to the fact that near the upper
threshold the pair and plasmon excitations both have momenta
close to |Q,,|, but pointing in the opposite directions. The
peak develops from the interplay between the singularities in
the plasmon peak residue and pair intensity when Q2 — €,
see Figs. 2 and 3, and the available phase-space volume. It
is not an accident that the emerging hybrid peak location
correlates with the location of the kink on the two-plasmon
curve because for Q — Q,, the single-pair spectrum intensity
diverges on approach to €2,, mimicking a plasmon resonance.

Again, the curves for different values of r, in Fig. 9 appear
similar, and this observation can be quantified by plotting the
data using scaled variables as was done for the two-plasmon

process. The result is presented in Fig. 11. The intensity of
the hybrid process does not vanish at Q — 0; however, its
features are difficult to observe because of interplay with
the two-pair process discussed below. Nevertheless, the upper
threshold of the hybrid contribution is visible on total curves
at small values of momentum transfer which gives access to
information about the single e — & process.

C. Two-pair processes

The last process contributing to the second-order spectra is
the two-pair one. The result is expected to be a smooth peak.
The typical shapes are presented in Fig. 12—they start at Q2 =
0 and at large frequency demonstrate an asymptotic ~Q~"/2
decay. At small frequencies, the signal is proportional to Q2,
as expected from the single-pair intensity o< €2 at 2 — 0.

The maximum at small momenta is located close to 2€2,,,
where the two-plasmon and hybrid processes have the kink
and the high-frequency peak, respectively. The intensity max-
imum saturates to a constant in the Q — 0 limit, implying
that in this limit the entire RIXS spectrum is dominated

D? D

0.16
re=1 40 =3
total total

0121 contribution 30 contribution
O/kp O/kr

0.08 — 0.0675 — 0.124

R e S | N [PPPPererrn 20 ..........
004 Fla 10
0 ) T L T i
0 2 4 6 8 QO/ep Qlep

FIG. 13. Total second-order intensity as a function of 2 for several values of Q at r; = 1 (left panel) and 5 (right panel).
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D(Z)

re=1, 0=0.0675kr
total

0.16

---------- 2 plasmon
— hybrid
012k N[
0.08 -
0.04 -

rg=5, 0=0.124kp
— total

2 plasmon
— hybrid

20

8 Qlep

D(Z)
re=1, 0=0.54kr
— total
---------- 2 plasmon
0.06 —— hybrid
-=-=2(e-h)

0.04

0.02

1.75 25 3.25 4 Qlep
D?
=5, 0=0.9%p
— total
---------- 2 plasmon
— hybrid
sk
4r \

............

4 6 8

Qlep

FIG. 14. Total and all partial (two-plasmon, two-pairs, and hybrid) contributions to intensity as a function of 2. Upper left panel: r; = 1
and Q = 0.0675kg; the arrow points at the high-frequency kink on the two-plasmon curve. Upper right panel: r, = 1 and Q = 0.54kf; the
arrow points at the low-frequency minimum. Lower left panel: r;, = 5 and Q = 0.124ky; the arrow points at the high-frequency kink on the
two-plasmon curve. Lower right panel: 7, = 5 and Q = 0.99%k; the arrow points at the low-frequency kink.

by the second-order processes. By comparing the two-pair
contribution to other second-order processes, we see that the
former dominates the total two-excitation spectrum in the low-
and high-frequency parts. By comparing curves in the left and
right panels of Fig. 12, we observe similar universality as for
other second-order processes.

D. Total two-excitation intensities

By combining all second-order processes, we obtain the
total two-excitation intensity, see Fig. 13. It is expected that
some of the features clearly seen on individual curves may
be masked when different contributions overlap. At low (2 <
Q1) and high (2 2 2€,,) frequencies, the total signal is dom-
inated by the two-pair process. At intermediate frequencies,
the leading contribution often comes from the two-plasmon
process which is responsible for sharp features at Q < Q,,,
see Figs. 13 and 14.

In Fig. 14, we present the central part of the spectrum
and compare all partial and total signals side by side to
understand how spectral features in the final result should be
decoded. The low-frequency kink and minimum are due to the
two-plasmon process and these sharp features remain clearly

visible, while the lower threshold for the hybrid process is
masked by the two-pair contribution. The high-frequency kink
in the two-plasmon spectrum (best seen in two left panels in
Fig. 14) is compensated by the nonmonotonous dependence
of the hybrid process and is not visible on total curves.

The interplay between the sharp nonmonotonous hybrid
signal at high frequencies (see Fig. 10) and the two-pair
intensity maximum results in a wigglelike spectral anomaly
seen in Fig. 15 at around 2€2,,. This anomaly is pronounced
only at small momenta and disappears at larger values of
0, see Fig. 16. The position of the developing at Q — 0
minimum corresponds to the upper threshold of the hybrid
process.

As has already been mentioned, the two-plasmon high-
frequency kink is not seen on the total curve, due to the
interplay between the two-plasmon and hybrid processes.
This is because these processes are characterized by the kink
and antikink features that compensate each other (since the
plasmon peak at Q = Q,, is getting absorbed by the e — h
continuum without change in the total spectral weight).

Obviously, the universality of all features established for
partial contributions carries through to the total intensity.
However, as has already been mentioned, the overlap of partial
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D
0.16
=1
012+ total
contribution
-—
Ok
0.08 - — 0.005
0.04
0 1 1 1
0 2 4 6 Qlep

D2
40 +
re=5
total
30k contribution
O/kp
—0.010
20+
10
O 1
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FIG. 15. (Color online.) Total second-order intensity as a function of €2 for small values of Q at r;, = 1 (left panel) and 5 (right panel). The
arrows point at the wigglelike spectral anomaly appearing at small momentum transfer as the result of interplay between the high frequency

hybrid signal near its threshold and the two-pair intensity maximum.

contributions at different values of momenta transfer may
mask some features.

V. RESOLVING THE PLASMON DISPERSION FROM THE
TOTAL TWO-EXCITATION INTENSITY

In this section, we present one of our main results—the
single-plasmon dispersion as extracted from the total two-
excitation intensity by relating various spectral features to
important threshold processes. We also establish the frame-
work for interpreting complex spectra in terms of partial
contributions.

The distinct features on the total two-excitation intensity
curves, shown in Figs. 13-16, provide enough information for
extracting the entire single-plasmon dispersion. The position
of the low-frequency minimum on two-plasmon curves is

D2

rs= 1
total
contribution

0.12

0.1

0.08

FIG. 16. Total second-order intensity in the vicinity of the 2€2,,
frequency for progressively smaller values of Q at r, = 1 demon-
strating the development of the wigglelike spectral anomaly.

given by Eq. (19). This expression can be used right away
since the dispersion starts at the plasma frequency Qp =
VAmne?/m. This gives wp(Q) = Q — Qpi, Where €2, is
the minimum position. Note, however, that at Q > Q,,/2 the
exact position of the low-frequency minimum on the total
curve is no longer determined solely by the two-plasmon
contribution since it becomes relatively broad and derivatives
from the other two processes shift it. Thus, it is best to restrict
the plasmon dispersion analysis using this spectral feature to
data for Q < Q,,/2. This is not a problem since the second
half of the [0, Q,,] interval can be covered by measuring
2wp(Q/2) from the threshold of the two-plasmon spectrum

Wpi(q)/ep

0 L. 1 . 1 . 1 . 1 . 1
0 0.2 0.4 0.6 0.8 1

q/kp

FIG. 17. A comparison of the plasmon dispersions wp(g) for
rg = 1 (red solid line) and r; =5 (blue solid line) derived from
the zeros of the dielectric function with the ones deduced from the
two-excitation RIXS spectra (like the ones shown in Figs. 13-15).
The different symbols correspond to positions of different spectral
features. Q) = w1(0) is the plasma frequency and 22, = wp(Q,) is
the maximal plasma frequency. For details see Sec. V.
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FIG. 18. Total intensities based on Eq. (21) as functions of €2 for small values of momentum transfer Q/kr = 0.05 (dotted blue line) and
Q/kr = 0.01 (red line) at r; = 5. The half width of the smeared single-plasmon peak is increasing from o /er=0.01 in the upper left panel, to
0.1 in the upper right panel, to 0.25 in the lower left panel, and 0.5 in the lower right panel. Blue symbols in the upper left panel mark €2, and

Q,, values for r, = 5.

(low-frequency kink shown by the arrow in the lower right
panel of Fig. 14). This feature is very sharp and provides
accurate data all the way to Q < 20,,.

One also needs to know the end-point of plasmon dis-
persion, 2, = wp(Qy) [from €,, one can easily find Q,,
via Eqgs. (17) and (18)]. €2,, can be found by measuring the
intensity around the spectral anomaly at Q — 0, see Figs. 15
and 16. At Q = 0, the anomaly is located precisely at 2€2,,.
At small but finite O, the anomaly’s minimum position is
determined by the upper threshold of the hybrid process,
Qi+ Qe—n(Q + Q). This then gives access to information
about single e — h processes.

An alternative way to measure Q,, and €2,, is to look at
the Q < Q,, single-pair process which is not supposed to be
masked by the multiexcitation processes. By determining at
which momentum Q the single-pair intensity at the maximum
starts to decrease, one can locate Q,, and, correspondingly, €2,,
(see Sec. III).

With these observations, we present the derived plasmon
dispersion in Fig. 17. To get the dispersion curves shown in
this figure, we have only used positions of the low-frequency
minimum and the low-frequency kink. For r; = 1, we have

considered points Q/kr = 0.0675, 0.135, 0.27, 0.675, 0.81,
1.0 while for r; =5 we have used Q/kr = 0.124, 0.248,
0.495, 1.10, 1.485, 1.80. The two different sets of symbols
on the dispersion curves correspond to applying Eq. (19) (the
equation governing the low-frequency minimum and used at
lower frequencies) and 2wp(Q/2) (the position of the low-
frequency kink and used at higher frequencies). Figure 16
has been used to establish the value of €2,,, and thus Q,,, see
Eq. (18). For ry =1 and 5, we have reproduced Q,,/kr =
0.56 and Q,,/kr = 1.027, respectively (L2,,/er = 1.433 and
Qun/er = 3.109); in Fig. 17 these end points are marked by
red and blue circles (red and blue crosses mark the start points,
ie., Qu(ry)).

It is also worth mentioning that, depending on experimen-
tal conditions, narrow plasmon peaks may be hard to locate
and the entire single-excitation intensity quickly vanishes at
small momenta (see, for instance, Fig. 18 in Sec. VI).

VI. FIRST- VS SECOND-ORDER SPECTRA

We are now in a position to explore how the first-
and second-order processes could appear in experiment for
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FIG. 19. Total intensities (as in Fig. 18) for larger values of momentum transfer Q at r, = 1 (left panel) and 5 (right panel) for o /er = 0.1.
Large single-plasmon intensities were cut to fit into the figures. Blue symbols in the left panel mark ) and Q,, for r, = 1.

different values of Q. For this end, we plot the total intensity

I, =DV + D®/1? (21)
and consider, for certainty, (£2,/ I')? =0.1. (Practically
speaking, there is a wide class of actively studied Dirac
materials where the chemical potential is close to the Dirac
point and the above condition can be met; in Dirac materials
the conduction electrons are typically residing in p bands.)
To present data for the single-plasmon resonance, we smear
the §-functional peak into a Gaussian of half-width ¢ and
assume several experimental frequency resolution parameters:
o/er = 0.01, 0.1, 0.25, and 0.5. (We do not smear the e — h
continuum and spectral densities entering the two-excitation
calculations.) The smallest and the largest values of o are,
probably, less realistic, but need to be considered for com-
pleteness of the picture. The most interesting comparison
comes from relatively small values of Q/kr when the two-
excitation processes may dominate in the total signal.

In Fig. 18, we plot the total intensity /;, at small mo-
mentum transfers Q/kr = 0.01 and 0.05 for r; = 5. To reveal
vastly different intensities associated with various processes
for 0 /er = 0.01 one needs to use the logarithmic scale in the
upper left panel. The upper right and lower left panels allow
the reader to gauge various contributions to intensity from
areas under the peaks. As one can see, at small momentum
transfer the single-excitation features, including the plasmon
peak, are severely suppressed. The e — A contribution is barely
visible in all panels. However, one can still extract the in-
formation about single-particle excitation from the higher-
frequency part by measuring various curve anomalies dis-
cussed in this paper.

In Fig. 19, we plot the total intensity at ry, =1 and 5
for larger values of momentum transfer Q, when intensities
of single-excitation processes become far more prominent
while avoiding substantial overlap with the multiexcitation
processes (we take o /e = 0.1). Now one can visibly resolve
the low-frequency two-plasmon minimum and maximum. Ob-
viously, depending on the system and experimental resolution,
these spectral features can be also smeared.

VII. CONCLUSIONS

We have used the Feynman diagram approach to study
the indirect RIXS processes in Coulomb systems in the UCL
approximation often used in the RIXS calculations. We have
discussed the single- and two-excitation processes. For the
latter, we have provided a comprehensive semiquantitative
picture of their contributions. We have demonstrated the need
to account for such excitations at small momentum transfer
because the single-particle contribution here is suppressed by
the size of the matrix element. We have further argued that
in the limit under consideration, higher-order processes are
suppressed and can be neglected.

We have demonstrated that the multiexcitation processes
are important from both the fundamental and practical per-
spectives by showing how to extract the single-plasmon dis-
persion from the total two-excitation intensity. This can be
done by analyzing the universal spectral features of intensity
curves revealed in our work. It is worth mentioning that,
depending on experimental conditions, the sharp plasmon
resonance at low momenta may be rather difficult to observe
because its intensity vanishes in the Q@ — 0 limit (in contrast
to the multiexcitation processes). The intensity vanishing at
Q — 0 is also a characteristic feature of the single electron-
hole process.

Our analysis is based on the RPA. We believe that this
approximation does not qualitatively affect the universal
properties of RIXS spectra in metals which originate from
thresholds in the particle emission. However, there is no
doubt that to obtain quantitatively accurate results for large
values of ry, one has to go beyond RPA to account for the
renormalization of the Fermi-liquid parameters and vertex
corrections. This constitutes the main direction for the future
work.
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