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The n-pairing states are a set of exactly known eigenstates of the Hubbard model on hypercubic lattices, first
discovered by Yang [C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989)]. These states are not many-body scar states
in the Hubbard model because they occupy unique symmetry sectors defined by the so-called n-pairing SU(2)
symmetry. We study an extended Hubbard model with bond-charge interactions, popularized by Hirsch [J. E.
Hirsch, Physica C 158, 326 (1989)], where the n-pairing states survive without the n-pairing symmetry and
become true scar states. We also discuss similarities between the n-pairing states and exact scar towers in the
spin-1 XY model found by Schecter and Iadecola [M. Schecter and T. Iadecola, Phys. Rev. Lett. 123, 147201
(2019)], and systematically arrive at all nearest-neighbor terms that preserve such scar towers in one dimension.
We also generalize these terms to arbitrary bipartite lattices. Our study of the spin-1 XY model also leads us to
several scarred models, including a spin-1/2 J; — J, model with Dzyaloshinskii-Moriya interaction, in realistic

quantum magnet settings in one and two dimensions.
DOI: 10.1103/PhysRevB.102.075132
I. INTRODUCTION

Quantum many-body scar states refer to sets of exceptional
states in the spectra of some many-body nonintegrable mod-
els. These states do not obey the eigenstate thermalization
hypothesis (ETH) [1,2], a framework used to describe how
closed quantum many-body systems equilibrate to thermal
distributions for local measurements. Scar states violate the
ETH by having local quantities that are different from those
of nearby states in energy, and in particular by having sub-
volume-law entanglement entropy (EE) scaling. Unlike many-
body localized systems [3—11], where every eigenstate vio-
lates the ETH, quantum many-body scarred systems are an
interesting class of models where only a small number of
eigenstates violate the ETH in an otherwise thermal spectrum.

Quantum many-body scarring was first observed in a cold
Rydberg atom experiment [12]. The experiment is modeled by
the “PXP model” [13,14]. While there are several approximate
ways of understanding the scar states in the PXP model
[12-27], only some eigenstates in the middle of the spectrum
are known exactly [17,21].

Conversely, there are nonintegrable systems with exactly
known scar states, such as the Affleck-Kennedy-Lieb-Tasaki
(AKLT) model [28-30], the spin-1 XY model [31,32], and
a spin-1/2 domain-wall-conserving model [33,34], among
others [35-43], including a framework to make target states as
scars in nonintegrable models [35,36]; there is also a growing
number of examples of scars in the Floquet setting [41,44—
48].

The Hubbard model stands apart from this list of models.
There are exactly known states embedded in the spectrum—
the n-pairing states due to Yang [49]. These n-pairing states
are known to have sub-volume-law entanglement [50]. How-
ever, they do not constitute many-body scar states because
the Hubbard model possesses an additional SU(2) symmetry
[51], which we refer to as the “n-pairing SU(2).” The n-
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pairing states are the unique eigenstates in the symmetry
sector of maximal n-pairing SU(2) total spin and are therefore
not expected to be thermalized with respect to the rest of
the spectrum. While there are several proposals for unusual
thermalization in the Hubbard model [52-56], in this paper
we discuss a direct way to make an electronic Hubbard-like
model quantum scarred by the n-pairing states.

We will present several terms that break the n-pairing
SU(2) symmetry, but preserve the n-pairing states |y¥y) (de-
fined below) as eigenstates. This can be achieved while re-
taining the spin SU(2) symmetry, so |yy) will be eigenstates
in the otherwise thermal sector with quantum numbers to-
tal spin § = 0, momentum k = Nz (mod 27), site inversion
I; = 1, and fermion species numbers Ny = N, = N, and thus
constitute many-body scar states. The most notable of these
perturbations is the Hirsch model discussed below.

In Sec. IT we review the Hubbard model and the Hirsch
model, and discuss how the n-pairing states (and some related
states) are scars in this model. In order to discuss our sys-
tematic construction of terms that make the n-pairing states
scars, in Sec. III we first draw parallels between spin-1 and
electronic models, in particular between the spin-1 XY model
scars and the n-pairing states. In Sec. IV we systematically
construct such scarred models in spin-1 systems, which goes
beyond previously known models. We then map these results
over to electronic systems in Sec. V, with the result that the
Hirsch model belongs to a small family of models scarred by
the n-pairing states, and is arguably the most easily realized
of this family.

Lastly, our study of the spin-1 XY model scars with
k = m bimagnon towers naturally leads us to consider k = 0
bimagnon towers as scars. In Appendix D, we show that the
spin-1 k =0 bimagnon towers are scars in a model with
the Dzyaloshinskii-Moriya interaction (DMI) replacing the
XY spin-exchange term. In the presence of conservation of
the number of zeros (i.e., sites where S; =0), the k=0
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bimagnon tower maps onto a spin-1/2 k = 0 magnon tower.
We also find a model scarred by this tower: the J; — J, model
with spin-1/2 DMI.

II. HIRSCH MODEL: THE HUBBARD MODEL WITH
BOND-CHARGE INTERACTIONS

A. Hubbard model, p-pairing states, and n-pairing SU(2)
symmetry

The Hubbard model is a model of interacting electrons
given by

Hyw, = —t Z(C;acj,o +H.c)+U ananjvi
(ij) J

— 1Y g, (1)
j.o
i

where c:i'o creates an electron at site j with spin o, and nj, =

chyacj,g. The model is composed of hopping, interaction, and
chemical potential terms with coefficients ¢, U, and u, re-
spectively. For analysis in later sections, it will be convenient
to denote the on-site states as {h, 1, |, d}, where h indicates
an empty site (“holon”), 1 or | indicates a singly occupied
site with a spin-up or spin-down electron, and d indicates a
doubly occupied site (“doublon”). The Hubbard model on the
one-dimensional (1D) chain with nearest-neighbor hopping is
exactly solved [57], but this is not important for the present
paper.

Yang [49] introduced the n-pairing states as eigenstates of
the Hubbard model on any bipartite lattice. For our purposes
we will specialize to hypercubic lattices of V sites. The n-
pairing states are

[n) = Cy(n')"|vac.), 2)

where

o irjr f Lt
=) e ©)
j

where Cy = +/(V — N)!/(VIN!) is the normalization con-

stant, |vac.) is the electronic vacuum state, and 7w =
(m,m, ..., ). The number of pairs N can range from zero to
V. We also note that our definition of 5" differs from that in the
literature by a sign—this choice is made for easy comparison
with the spin-1 model operator Q" below. There is a significant
body of work investigating the possibility of realizing these
states as ground states as well as signatures of 5 pairing in
Hubbard models (see, e.g., Refs. [58—63]).

|[¥n) has energy (U — 2u)N. It is trivially an eigenstate
of the interaction and chemical potential terms, and is anni-
hilated by the hopping term, owing to cancellations from the
momentum 7z construction [49].

When U =2u, Hygy in fact is SU(2) symmetric un-
der the following generators [51]: [Hyyp, 11 = [Huw, n] =
[Huub, n°] = 0, where

1 1
7’]Z = 5 an’o' - V = §(N¢ +N¢ - V) (4)

jo

Hyyp is also SU(2) symmetric under the total electron-spin
generators S + §% where

St=> "¢, ST=EN 5)
i

1 1
§ =3 > i —nyy) = SNy = N)). (6)
i

The generators n', 7, n° and S*, §% obey SU(2) commutation
relations [1%, 7] = n', [T, n] = 2%, and all n-pairing gener-
ators commute with all spin SU(2) generators. Therefore there
are two independent SU(2) symmetries in Hyy,. Changing
u simply shifts the energies by the corresponding values
determined by the n* quantum numbers and does not affect
the eigenstates or change any symmetry sectors.

The n-pairing states |y ) lie in the spin sector S = 0. They
have n* = (2N — V)/2. Therefore, as N values run from zero
to V, they comprise the unique multiplet of states with the
maximum possible total n-pairing “spin” V/2.

On any lattice, at fixed pair density v = N/V, these states
were shown in Ref. [50] to have sub-volume-law EE:

Sa = 3{1 +In2zv(1 = v)V4l}, )

where S4 is measured at a cut which partitions V into subsys-
tems A with V} sites and B with V — V} sites. The EE of an
eigenstate |y) is given by Sx = —Tr(pa log pa), where ps =
Trp(|y)(¥|) is the reduced density matrix of that eigenstate
with respect to subsystem A.

However, because |yy) are the unique states in a given 7,
n* sector, Ref. [50] concluded that they did not violate the
ETH.

Lastly, we note that other related exact states are known in
the Hubbard model [50,51]:

) = e Y T el dolvac, ®
keF

for any set F of wave vectors K, because there is no interaction
between electrons of the same spin species. However, we
restrict our attention to the original n-pairing states |Yy)
because they are the only states that survive under the Hirsch
term and other perturbations (and in any dimension).

B. Hirsch model

The Hirsch model was popularized by Hirsch [64] and
Hirsch and Marsiglio [65] as a model of hole superconduc-
tivity. It is given by

H=- Z[I — X (Mo +nj—o)(c] ¢; , +Hec)

i,0%j,o
(ij).o
+U Z nj AN, — M1 Z Mo = Huuw + Hiirseh,  (9)
J j.o

where “—o¢” indicates the opposite spin species to o. The
Hirsch model adds to the Hubbard model a “bond-charge
interaction” term [59,66—69], which modifies the hopping
constant depending on the occupations across the bond. This
term is alternatively called “correlated hopping” [70,71]. This
term was originally estimated by Hubbard [72] in solid-state
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FIG. 1. (a) r statistics of the Hirsch model with U =¢ =1 and X = 0.3 on a periodic chain of length L = 12, in the symmetry sector
N; = N, = 4, total spin § = 0, momentum k = 0, and site inversion /; = 1. The Hilbert-space dimension is 3072. The r statistics are consistent
with the Wigner-Dyson GOE prediction for quantum chaotic models. (b) Bipartite EE in the same symmetry sector. The n-pairing state |1/4) is
a clear EE outlier. Each point is colored by the density of states at the corresponding energy, with colorbar (normalized to 1) on the right.

systems, and there are also proposals to realize this with
ultracold atoms [73]. We lastly note that the 1D Hirsch model
is integrable when X = ¢ [74,75], but this special point is not
important for the scar physics of interest to us.

The Hirsch term breaks the n-pairing SU(2) symme-
try, which can be verified by evaluating the commutator
[HHirschs r/T]. However, the Hirsch term preserves the spin
SU(2). This is clear by the rewriting on each bond (ij):

Z(ni,,a +nj o )(cigcjya + H.c.)

a

(10)

= |:Z(ni,a’ +njor) — 1] Z(c;acj!g +H.c.).

From Eq. (10), we also immediately see that Hyirsch|¥n) =
0, because on bonds connecting opposite sublattices
the rightmost operator in Eq. (10) annihilates |y¥y):

> (cioc.,a + H.c.)|¥y) = 0. The latter is the property from
Yang’s original paper [49] and is easily verified because the
only nontrivial term is

Z(Ci]tocjﬁ

o

A
+He) (e o | —cf el Dlvac,)

= (C},Tci',¢ —¢ 0 — Ci',TCJTJ + CiT,¢CjT,T)|VaC') =0.
(11)

Therefore the n-pairing states |yy) remain eigenstates of H
for any strength of the Hirsch term. They are embedded in
the symmetry sectors S = 0,k = Nx(mod 2r), Iy = 1, Ny =
Ny =N, where S denotes total spin, k momentum, I site
inversion, and N,, the number of o species electrons.

From numerical studies of the above model in 1D systems
with periodic boundary conditions (PBCs), we verify that the
level-spacing statistics in these sectors follow the Wigner-
Dyson Gaussian orthogonal ensemble (GOE) predictions [see

Fig. 1(a)] and that |y) are bipartite EE outliers in their
respective sectors [see Fig. 1(b)].

To compute the r statistics, we take the spacing between
consecutive energies: s, = E, 1 — E,. The ratio r,, is given by
r, = min(s, /S,—1, S,—1/$,) and is a frequently used diagnostic
of many-body nonintegrability [4,76]. r,, is bounded between
0 and 1, and we plot its histogram distribution in Fig. 1(a). The
bipartite EE is defined as the entanglement entropy of a cut in
the middle of a chain of length L, i.e., that divides the chain
into subsystems A = {1,...,L/2}and B={L/2+1,...,L}.

We therefore conclude that in the Hirsch model the -
pairing states constitute true many-body scar states. We finally
note that while the Hirsch model has been around for some
time the presence of the scar states in the nonintegrable model
was not known. Also, we identified it through a systematic
study of two-site terms that break the n-pairing SU(2) but
preserve the n-pairing states, discussed in Sec. V below.

Lastly, while we identified the Hirsch model as a model
that contains the n-pairing states as scars, our subsequent nu-
merical investigation revealed additional entanglement outlier
states in one dimension, some of which constitute two ad-
ditional scar towers |y ) = (VM) and |py) = sT|¥y).
The operators ¢ and s' create nearest-neighbor triplets |1, 1)
and singlets |1, }) — |, 1), with momentum 7. They are
defined in Appendix A, in which we also prove these states.

III. ANALOGY BETWEEN THE SPIN-1 XY SCAR TOWER
AND 75-PAIRING STATES

To systematically construct Hamiltonians that make the
n-pairing states scarry, we first understand scarring in spin-1
systems. In particular, the spin-1 XY model [31,32] is known
to contain an exact tower of scar states, which are analogous to
the n-pairing states in the Hubbard model. We first construct
scarred models in the simpler spin-1 setting, then show how
these results translate to electronic models. We also note that
while there is a separate tower of scar states in the spin-1
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AKLT model [28,29] their electronic model analogs are not
immediate.

The spin-1 XY model is one of the simplest models known
to have an exact tower of scar states [31,32]. In Ref. [31],
Schecter and Iadecola considered spin-1 XY models of the
form

Hspn1 =7 Y (SES;+S/S) +1 Y55 +D Y (55)
(ij) J J

= Hyy + H. + H,. (12)

Here the S; are spin-1 spin operators. In what follows whether
the S’s refer to spin operators of the spin-1 model or electron-
spin operators of the Hubbard model should be clear from
context.

In one dimension, one has to introduce a third-neighbor
term Hy = J3 ) (S}S},5 + S;ijﬁ) to break a special nonlo-
cal SU(2) symmetry present in sectors with even magnetiza-
tion [32,77]. On hypercubic lattices, the scar tower |Sy) is
formed by the operator Q':

N . 1 .
Sv) = @12, Q" =33 TS (3
J

where |Q2) =|—1,—1,...,—1) and N =0,...,V. These
states have energies Ey = h(2N — V) + DV.

We immediately see that the QF operator in the spin-1
model is analogous to the n' operator in the Hubbard model
[Eq. (3)]. 3(5*)* sends |—1) — 1), while cfc] sends [h) —
|d), where h indicates an empty site (“holon”) and d indicates
a doubly occupied site (“doublon”). This hints at identifying
the spin-1 states |—1), |1) with the electronic |h), |d), respec-
tively. Furthermore, comparison of SU(2) algebra relations
such as [QT, Q] = S, in the spin-1 case with [, n] = Ny +
N, —V in the electron case suggests relating spin-1 models
with S% . conservation and electronic models with conserved
total electron number. There is some ambiguity with identi-
fication of the spin-1 state |0), but we will argue that for the
purposes of our paper electron-spin SU(2) invariance—which
is natural to require in an electronic model to reduce the space
of models under consideration—makes our identification
unambiguous.

IV. SYSTEMATIC CONSTRUCTION OF SPIN-1 MODELS
WITH THE XY SCAR TOWER

In Ref. [31], Schecter and Iadecola noted an SU(2) sym-
metry obeyed only by the scar tower |Sy). In Ref. [34], we
found a model “embedded” in the XY model:

Hy =Y (11,0)(0, 1] = |=1,000, =1| + Hc.yyj,  (14)
(i)
such that
Hxy = Hy + Hyy, (15)
where
Hiy = Y _[(11,=1) +|=1,1)X0,0|
(ij)

+2|—1,0)(0, —1| + H.c.]i;. (16)

This rewriting is significant because Hy commutes with QF
and S5, while Hy, annihilates |Sy). Operators 0%, Q, and
0O° = S%.,/2 obey the SU(2) commutation relations and there-
fore generate a “pseudospin” SU(2) symmetry present in Hy
analogous to the n-pairing SU(2) in the Hubbard model. As
with the n-pairing states, |Sy) are the unique states occupying
the sector of the highest total pseudospin V /2. The pseudospin
SU(2) is broken by Hy, and hence the total Hamiltonian Hxy
contains |Sy) in an otherwise thermal spectrum.

The above observation inspired this paper, and a natural
question is to systematically generate all other spin-1 nearest-
neighbor models that share the scar tower |Sy). To do so we
list the following operators: (A) nearest-neighbor operators
that commute with Q' and S%ot» (B) nearest-neighbor operators
O such that [0, Q'] = QF, and (C) nearest-neighbor operators
that annihilate |Sy). For simplicity, in each group we only
consider Hermitian operators, although our procedure is also
able to find non-Hermitian operators satisfying the above
properties.

It is clear that if |$2) is an eigenstate of a model in group A
so too are all the |Sy). This is immediately true for the state
|€2), because this state has the highest possible pseudospin
quantum number of V/2 and hence is always an eigenstate
of any model with the corresponding SU(2) symmetry.

It is natural to consider terms in groups B and C mod-
ulo those in group A. As discussed below, it turns out that
the unique operator in group B, modulo terms in group A,
is O°=58%,/2. Adding a term proportional to Q° to the
Hamiltonian uniformly shifts each S%, sector in energy, but
does not change any eigenvectors or symmetry sectors. In
any model composed of terms from groups A and B, the
Schecter-Iadecola states |Sy) will not be “true” scar states
for the same reasons that the n-pairing states are not in the
original Hubbard model.

We can break the pseudospin symmetry and turn |Sy)
into true scars with any linear combination of such a model
and those in group C that annihilate |Sy). In the example in
Eq. (15), Hy belongs to group A, and Hy, belongs to group C.
The energies of the scar states are split by the term H, = hS7, .

A. Operators that commute with Q7 and S%,,

We first note that [0, S%,] = 0 is a necessary condition for
[0, OT] = 0, because Stot = [0, 01.

It is immediate that the only on-site operators that commute
with O are |0)(0]; and [1)(1]; 4+ |—1)(—1|; = (S;)2 (the two
terms sum to identity, and so are not independent for our
purposes). We list these operators in Table I for reference. We
also list their translations to electronic models, which will be
explained later in Sec. V.

We then focus our attention on two-site (nearest-neighbor)
operators. The results in group A below hold on any bipartite
lattice. However, because we will rely on matrix product state
(MPS) techniques to find operators that annihilate |Sy), we
will simplify our notation to the 1D case going forward.

By elementary methods discussed in Appendix B, we find
that terms 1-7 in Table IT commute with OF.

We recover known terms that commute with O, such
as Hy in Eq. (14) (no. 5 with ¢ =0) and the pure bi-
quadratic term (S; - Sj+1)2 [30] [no. 1-no. 6 (¢ = 0) + no.
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TABLE 1. On-site operators that either commute with Q7 or
satisfy [0, Q7] = Q. The two on-site operators in group A sum to
identity.

Spin-1 model Electronic model

A. Operators that commute with QF, or with '
10){01; MM+ 1
[1)(L]; + [—=1){-1l; ld)(d|; + [h){hl;
B. Operators O with [0, Q'] = O, or [0, '] = n'
5y S =0 52 (d)(dl; — 1h)(hl ;) = i

7 + I]. We lastly note that there are longer-range terms
that commute with O, suchas )~ 10, 0, 0)(0, 0, 01 j 11, j12—
one could also systematically construct them with such an
approach.

B. Operators with [0, Q7] = OF

The computation in the previous section also immediately
gives us that the only nearest-neighbor operator that satisfies
[0, Q"] = QT is in fact the on-site operator Q% = S%/2 (no.
8), modulo any linear combination of operators in group A
(nos. 1-7 in Table II). We can prove this fact: given an O such
that [0, Q] = Q, we write O = O — Q% + Q7. It follows that
[0 — 0% 071 =0, so O will be the sum of terms in group
A and Q°. Therefore Q¢ is the only independent term in
group B.

C. Operators that annihilate the scar tower

We next study nearest-neighbor operators that annihilate
the scar tower |Sy). To do so we compress all |Sy) into a
single MPS: |S(2)) = Y _y(ZV/NDISy) = exp(zQ)|), with
parameter z. We then express nearest-neighbor operators as
matrix product operators (MPOs). Focusing on operators that
conserve S% . it suffices to find all such nearest-neighbor
operators that annihilate |S(z)). We adopt an approach similar
to Ref. [78]. In the MPO and MPS language this becomes a
problem of finding all null eigenvectors of some small matrix
[Eq. (28) below]. The parameter z is arbitrary, and for our
numerical computations we take z = 0.1. Before proceeding
with details, we note that in the present case |S(z)) is a
product state, and we could in principle calculate without
using the full MPO-MPS formalism (and even find all scarry
models without compressing the scar tower, see Appendix
C). Nevertheless, the presented formalism is very powerful
and can be applied as a black-box tool to any set of scars
compressed into an MPS and will be applied also to the AKLT
scar tower in Appendix F.

Writing exp(zQ") in MPO form,

L
exp(zQ") = b [ [ [M; |bn.

j=1
.
Mj= <z(sj+)12/2 1 )

=) =)

TABLE II. Nearest-neighbor operators that either commute with of, satisfy [O, 01 = QF, or annihilate the scar states |Sy). In the left

column, we show Hermitian operators in the spin-1 model that preserve S%

or» While in the right column we show translations to the electronic

model in the ket-bra notation (see Sec. V). Operators 1-4 sum to the identity, and the on-site operators in Table I are linear combinations of
nos. 1-4, e.g., |0)(0|; = no. 1+no. 4. We also note that in nos. 9-11 the +1 and —1 options are not independent—they are related by operators
3-5 in group A. While the systematic procedure for finding group C assumes translationally invariant operators on the 1D chain, we drop the
summation over j where it is not necessary: nos. 1-11 can be generalized to any bipartite lattice.

No. Spin-1 model operator

Electronic model operator

A. Operators that commute with Q7, or '

|o1, 02)(03, 04l j11 + Hec., 01 + 02 =03 + 04

(Id){d| + [h)(hD);(d){d]| + [R)(h]) 11

(a)Y{d] + [m) RD; A (P 4+ YD+

DY+ YD ()] + [h) (A1

O, d)(d, N+ 1, d)(d, L — 11, h)(h, 1]
—14a B, D), gy + Hee.

(1, 1) = L WA, bl + (h,dl); 40 +Hee.

(Id, by + |h, d))({d, bl + (R, d]); j+1

B. Operators O with [0, Q'] = O, or [0, '] = n'

nt =13, (d)(dl]; — |h){hl;)

C. Operators that annihilate scar tower

1 100){00;,j+1

2 DL+ [=D(=1D; AL 4+ [=1){=1Djm1
3 UL+ [=1)(=1D;(10)(0)) 41

4 0XOD; ALL] + [=1){(=11) 41

5 (|0, 1)(0, 1| = |0, =1){(=1,0]); ;, + H.c.
6 €i¢|00>((1,—1|+<—1,1|)j,j+l + H.c.

7 (1, =1) + =1, IHUL, =1 + (=1, 1] j+1
8 =335

9 |1, 0) (1, 0],

10 10, £1)(0, 11,1

1 €10, £1)(£1,0];,41 + H.e.

12 DS (I I T I TR |

[d)dl; AN+ YD+ (or [R)(hl))

AN+ YA D 1dYd] 41 (or [h) (Al j41)

I, d)(d, M+ I, d)(d, L)
+H.c. (or & instead of d)

iy (Ih,d){d, hl —1|d, h)(h,d]); 1
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we can write |S(z)) in MPS form:

L
o TTA™" erltoh
{oj} Jj=1

IS(2)) =

We express translationally invariant operators O in the natural
basis:

O= Y caeay_lab)cdljjn (19)

1 0 a+b=c+d J
=11 —_ [ — [0] _
A - < 0 1)’ A - 0’ = Z Cab,cdoab,cd- (20)
a+b=c+d
A=z 1 0 ) (18) We can express O, .4 as an MPO:
L
Oab cd = b[ 1_[ ab,cd,j r s (21)
I, Ja){cl;
0 0 |b){d|; 0
0 0 ;
Wah,cd j = 0 |b> <d|j 0 5 (22)
0 0 I; la){cl;
0 0 0
[
Given null eigenvectors cgp 4, We construct Hermitian
P=1 0 0 1 0 0O, (23)  operators by imposing the additional condition ¢, .y = Ccd.ab-
This procedure found the new operators 9-12 in Table II.
=0 0 1 0 0 1. 24) Although this procedure was done for translationally invariant

This lets us write Ogp c4|S(z)) in MPS form (an MPO x MPS
is an MPS [29]):

ab Ld|S(Z)

> @) HBL‘;zd
{o}}

[o] a.0 [of
Bade ZWade®A
o’

b,l{o}}),

by = b?/, ® by (25)

Then for O = Zab’cd Cab,cdOab.ca We evaluate |) = O|S(2)).

We want |) = 0, so it suffices to evaluate

(Wy= >

a+b=c+d,
d+b=cd+d

CZ’b’,c’d’ Cab,cd <S(Z) | Oz’b’,c’d/ Oab.cd |S(Z)> .

(26)

This becomes a linear problem in ¢y ¢, With matrix coeffi-

cients (S (z)lOa y.erq Oab,calS(2)). We obtain this by forming
the transfer matrix

’b ,c'd";ab,cd = Z B[(fb]*c d’ ([;Z]Cd (27)

and calculating
(S@I0L sy 1 OurcalS@) = () Elyy o, cal®
bi), = b}, @ by (28)

The desired coefficients c,p s are the null eigenvectors of
the Hermitian matrix (S(Z)|Ol’b’,c’ 2 Oab.calS(z)). In practice
it suffices to use the case L = 16, because our operators are
strictly nearest neighbor. (We have numerically verified that
choosing larger L does not give additional terms).

operators, only for no. 12 is translational invariance needed,
while, similar to group A, terms 9—11 can be applied on each
bond independently.

1. Null operators

One must take some care to recognize “null operators”
in this nearest-neighbor operator basis, that is, operators that
appear nontrivial but vanish under summation over j. For op-
erators that conserve S5, there are two linearly independent
null operators:

> (1 =1)(1, =1+ [1,0)(1, 0]
J
— =1L (=1, 1] —

—Z 11)(1]; —

Z(|o,—1 (0, =11+ 10, 1)(0, 1]

J

[0, 1){0, 1]);,j+1
1)(1]j41) =0, (29)

— =1, 0){=L,0] = [1, 0)(L, O1);,j+1

= Zuo )ol; —

The null operator corresponding to Z (J=1)(=1]; —
|[=1)(—=1];41) is linearly dependent in thlS basis on the
above two terms. The MPS procedure finds all operators of
the form Eq. (19) that annihilate |S(z)) but by itself does
not know that some of them are null operators, and as such
these two terms will have to be subtracted from the null space
obtained by this procedure.

For example, the procedure above gives the seemingly
new term Zj(|1, =1L, 1] = |=1, [){(=1,1]); j;; that

0){0[j+1) = 0. (30)
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annihilates |Sy). This term also has an appealing inter-
pretation of measuring the number of “left” domain walls
“l, —1” minus the number of “right” domain walls “—1, 1,”
which always cancel in |Sy) because there are no zeros.
However, by Eq. (29), this term is actually equivalent to
Zj (10, 1){0, 1| — |1, 0)(L, O[); ;11> which is no. 10-no. 9 in
Table II. We also note that of the four choices in nos. 9 and 10
only three are linearly independent, modulo Eq. (30).

For non-S%_ -preserving operators, specifically those that
change S5, by 1 or 2, the null operators are ) e (|1)(0]; —
|1)(0];41) + Hee. and 3, €(0) (—1]; — [0)(~1];41) + H.c.
ory; e?(|1)(—1]; — [1)(—1];41) + H.c., respectively.

It is possible to eliminate the null operators from the
start, e.g., by representing range-k translationally invari-
ant operators in the basis of length-k “Gell-Mann strings”
> AE.“ R )‘yﬁk)q (spin-1 analogs of “Pauli strings” in spin-
1/2 chains), where the start of the string A*!) must be a non-
trivial Gell-Mann matrix while the other positions A%, 2 <
i < k can also be an identity matrix. For range-2 operators,
our overcomplete basis choice with proper treatment of the
null operators is equivalent but is more symmetric between
the two sites and makes it somewhat easier to unpack results
of the black-box search. A similar use of two-site operator
basis (overcomplete for range-2 translationally invariant op-
erators) is also very convenient for the analytical argument in
Appendix C.

2. Discussion of results

While it is easy to see that nos. 9-11 annihilate |Sy)
because |Sy) contain no zeros, that no. 12 does is less
immediate.

Number 12 can be viewed as an exchange of 1, —1 and
—1, 1, with opposite sign for the two directions of the process.
We can see that it annihilates |Sy) by a preimage argument:
The image only contains product states of 1s and —1s. There
are equal numbers of 1,—1 and —1, 1 strings. For each
“+1, F1,” there is a preimage where that string was “F1, +1.”
Each of these preimages has the same sign in |Sy), and
therefore they cancel out in the image.

An alternate proof is the observation that

ino. 12+ (1L, =1)(1, —=1] = =1, (=1, 1), ;,

J
=" 1) = =L 1)UL =1+ {1, 1) ;1. BD
J
=ino. 12 = Z((ll, —1) — =1, 1)1, =1+ (=1, 1))
J

+ 11, 0)(1, 0] — 10, 1){0, 1) j+1. (32)

with (1, —1| 4+ (=1, 1|, (1,0], and (0, 1| annihilating |Sy).
While no. 12 can be rewritten into a sum of local terms
that annihilate |Sy), this is only possible after the nonlocal
rewriting in Eq. (29). This nonlocal cancellation is captured
by our MPS method.

We remark that terms 1-7 and 9-11 correspond to the S%, -
conserving part of the Shiraishi-Mori structure discussed in
Refs. [31,34], while here we have additionally separated them
into nonscarry [pseudospin-SU(2) symmetric] and true scarry

terms. Nonlocal term 12 is new and does not appear to fit
under this Shiraishi-Mori framework, at least with projectors
in the space of nearest-neighbor operators.

We can show that operator 12 is indeed independent of
this Shiraishi-Mori space as follows: Since no. 12 is purely
imaginary, it suffices to show that it is independent of the
other purely imaginary terms. These are nos. 5, 6, and 11,
with ¢ = 7 /2. Consider the state |1, 1,...,1, —=1;,1,...,1).
While nos. 5 and 11 annihilate it and no. 6 can send it to either
i, 1,...,0,0;,1,...,1) or il,1,...,0;,0,1,...,1),
no. 12 maps this to i1,1,...,1,—-1;_4,1,...,1) —
i, 1,...,1,—1;4,1,..., 1). Thus, no. 12 indeed cannot be
written as a superposition of nos. 5, 6, and 11.

While terms 1-7 and 9-11 generalize to any bipartite
graph, with arbitrary bond-dependent couplings, term 12 ap-
pears special to the 1D chain with PBC and with one coupling.
However, from the nature of the scar states, we see that such
a term placed on any closed loop of any bipartite lattice also
annihilates the scar states, which allows us to generate analogs
of no. 12 on any such lattice with arbitrary loop-dependent
couplings. Equivalently, the term

i) RU=LINL =1 = L, =1 (=1, 1], (33)

(ij).ieA,jeB

with 7 fij = 0 for all i from sublattice A and }; fij =0
for all j from sublattice B, annihilates the scar states. As an
example, if every site on the bipartite lattice has even degree
[79], we can achieve the above with f;; = £1 by assigning an
orientation to every bond such that on every site the number of
inward bonds equals the number of outward bonds (a so-called
Eulerian orientation).

As discussed in Appendix E, to find non—S%, -preserving
terms that annihilate |Sy), it suffices to consider only terms
that change S5, by a fixed amount. We find that the following
terms annihilate |[Sy):

(@0, £1) + Bl£1,0))(0, 0, ;41 + Hec.,
(@|0, £1) 4+ B1£1, 0)(1, =1 4 (=1, 1]); 41 + H.c.,
(@0, 1) + BI1, 0))(y (0, —=1| + 8(—1,00); j+1 + Hc.,, (34)

for arbitrary complex «, 8, y, 8, after removing the null oper-
ators. These terms correspond to the non—S% ,-preserving part
of the Shiraishi-Mori structure in Refs. [31,34], which hence
exhausts such nearest-neighbor scarry Hamiltonians.

In Appendix C we provide an analytic derivation of the
results in this section. We use this derivation in Appendix D
to study the £k = 0 bimagnon tower: |81’\‘,:°) = (Q;:O)N |2),
where QLO = %Z j(Sj*)z. We further consider the related
spin-1/2 k = 0 magnon tower and find natural scarred models
for both towers of states.

In Appendix E we prove that our systematic search is ex-
haustive in the space of nearest-neighbor models. In Appendix
F we then systematically construct all spin-1 nearest-neighbor
operators that annihilate the AKLT scar tower [28], revealing
that the only family of nearest-neighbor models containing the
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AKLT scar tower is

0
Hakir + 0S5+ Y Y ConnDI o) (Tonljjir (35

j mn==2

where |Tp,0) = (|1, —1) +2(0,0) + |1, 1))/v/6, |Th_y) =
(10, —1) +1-1,0))/+/2, and |T_5)=|-1,—1), and
cum(j) = ¢, (j) for Hermiticity but can vary with j. This
corroborates the results in Refs. [30,34].

V. ELECTRONIC MODELS WITH 5-PAIRING SCAR
TOWERS FROM SPIN-1 MODELS WITH XY TOWERS

As discussed in Sec. III, the similarity between the elec-
tronic n-pairing operator 1’ and the spin-1 operator Q' sug-
gests making the identification |—1) — |h), [1) — |d). We
can identify |0) either with |1) or || ). This identification is
useful to convert our results in Sec. IV into the electronic
setting. By making the natural choice to restrict to electronic
models with spin-SU(2)-invariant operators (which combined
with electron number conservation imply separate conserva-
tion of both 1 and | species), we find that almost every spin-1
model operator has a unique mapping to an electronic model
operator.

A. Ket-bra notation in electronic models

Before we discuss the procedure we make a comment on
notation. While in the spin setting the notation |a, b)(c, d|
is unambiguous, in the electronic setting some care has to
be taken. The notation |a, b)(c, d| is well defined when we
restrict our discussion to nearest-neighbor terms in one di-
mension (and naturally to terms that conserve fermion number
parity).

We adopt the Fock space ordering convention that the ¢'s
should be ordered first with larger site numbers to the right,
then with |s to the right of 1's. Therefore we identify the kets:

{njal) = (CI,T)""T(Ch)""*(c;T)"z'T(c;¢)”2-¢ ... |vac.).

We adopt the notation that (for the part of the ket
associated with site j) |h;) =|njy =0,n;, =0), |d;) =
|nj»T = l,nm = 1), |Tj) = |nj,T = 1,I’lj’¢ = O), and N,j) =
|nm = 0, nj, = 1)

Diagonal single-site operators are independent of the
choice of convention:

[hy(hl; < (1 —nj ) —n; ),
ld)(d|; <> njrnj,, (36)
M) (1] <> njr(1—nj ),

and likewise for [{)(] |;. However, our convention allows the
ket-bra notation to be sensible for single-site off-diagonal
terms and nearest-neighbor terms with even fermion parity.
For example,
ot
|d)(hl; <> ciyciys
VAR
(37

|T><\L|] < C;ch’w

etc. In particular, we have a direct connection between the
Q" and n' operators, including all signs. However, terms

like |1)(h|; are not well defined (i.e., cannot appear in the
electronic Hamiltonian by themselves), because they change
total fermion parity. Hence it is natural to only consider
operators where this does not happen.

We next consider two-site operators. We restrict our-
selves to nearest-neighbor operators, because it is clear
that, in general, operators f;g; composed of fermionic
operators f; and g depend on the occupations be-
tween sites j and k and do not have well-defined (lo-
calized) ket-bra representations. Our Fock space conven-
tion allows unambiguous conversion between operator and
ket-bra notation for nearest-neighbor terms. For exam-
ple, consider the operator c; 1Cj41,4 7.4 j+1,1» Which sends
[...d;»djg1--) > £|...dj, {41 ...). The corresponding
sign of |d, |)({,d|; j+1 is determined by writing

;
CiaCipr it s d)j

o Por s
= €4C541,4 (€54 €14 €1,y I VAC))

= —cl el chy vac) = —Id, ) . (38)

Therefore ¢/ ¢,y vy nj, < —Id, 1){L,dlj 11 [80].

The ket-bra notation is not well defined (does not give nice
localized expressions) in every Fock space convention. Con-
sider the convention where all up spins are listed before down
spins, and are thus site ordered within each spin grouping.
This convention, while convenient in numerical computations,
is not a local one and thus does not support the nice ket-bra
notation.

B. Mapping spin-1 model operators to electronic model
operators

Having clarified the meaning of |a, b){c, d| for fermions,
we can map spin-1 model operators to electronic model
operators. In each case we map 1 — d, —1 — h, but the zero
term requires some thought. There are several cases.

(1) Only 1Is and —1s appear in the ket and bra. Here the
mapping is straightforward, and d behaves as a boson hopping
over h. Numbers 2, 7, and 12 fall in this case.

(2) One zero appears in the ket and bra each. To conserve
each fermion spin species, we map the zero in both the bra
and ket to the same species. Numbers 3—5 and 9-11 fall in this
case, and we map, for example, |0, 1)(0, 1| — |1, d)(?,d| or
N.d)({.dl|

(3) Two zeros appear in either the ket or the bra, e.g.,
|00)(1, —1]|. To conserve the fermion numbers, |00)(1, —1| —
|1, 4){d, h| or ||, 1)(d, h|. Number 6 belongs to this case.

(4) 100)(00|. Any “00” mappings that conserve the fermion
numbers are allowed, e.g., [t) (M1, [T1){, 1], etc.; no. 1
belongs to this case.

Therefore we see that by just requiring separate conser-
vation of 1 and | electron species each term has at most
two possible mappings (except the [00)(00]00 term). Fur-
ther requiring spin-SU(2) invariance of the electronic terms
leads to a unique choice of mapping, e.g., |0, 1)(1,0| —
[T, d){d, 11+ 1l,d){d, || and (|1, —-1)+[-1,1))(0,0] —
(d, h) + |h, d))({1, 4| — {4, 1) One can see the required
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TABLE III. Translation of electronic operators from ket-bra notation to operator notation. Here we use the projector P; , as shorthand for

l—n]-,g.
No. Ket-bra notation Operator notation
A. Operators that commute with 5"
1 lo1, 02)(03, 04l j+1 +H.c., o1 + 02 =03+ 04 S;-Sjn
or (njy +mjy —2nj 40 )i +njgry = 2041 41j101)
2 (Id){d] + |h) (hD);(Id)(d]| + |h)(R]) j11 Hnjp — )0y — 35+ D1 — DOy — 3+ 1)
3 (d)y{d| + [RYhD ;AN + ) A D j 2((nj4 — %)(”M - %) + %)("_/+1,TP./+I.¢ + Pipiaj,y)
4 UMY+ 1A D Ad) (d] + Th) (] 41 24Py + Pian (g — )50, — 3)+ )
5 Pt d)d, M+ 1L, d)d, L — 11, By (h, ) -2, ¢ (C,+1(, CjoMj—chjyl, o+C]g 41,0 P —oPji1,-0) + Hee.
=N, Ak, D) 4 + He.
6 (1) — 1 U,k + (h.d)); 4 +He. D€ ’d’(C]H oCiolj—oPit1,—o +Cj,, i41,0Mj+1,-0Fj—¢) + Hee.
7 (Id, h) + |h, d))({d, h| + (h, d])j j+1 nj a0y Pipi 1Py + PiaP i 1, + (C;¢C;_¢Cj+1_¢0j+m +H.c)
B. Operators with [0, nT] = '
8 5(1d)(d|; — Ih)(hl;) %Z,-,(,(nj,a -1
C. Operators that annihilate scar tower
9 )M+ D4 (or [R)(R]) nj 41 (M1 4Py + Pitignjiy) (or Py Py instead of njyn; )
10 AN+ YA DjldYd] 41 (or [R) (Al j4+1) (nj1Pjy + Pjanj njei sy (0 Pigg, TP +1, instead of 41 471 )
11 Pt d)d, N+ 1L, d)(d, L) 4 + Hee. -2, c,+1 oCjoMj—oMjt1— +He.
(or h instead of d) (ory_ ¢ cjo €it1.0Pj~oPjt1,—o +He)
12 iy (Ih,d){d, hl —1|d, h)(h,d]); 41 2 (icj+l,TCj+1.¢Cj,¢Cj,¢+H'C')

signs most easily in the ket-bra notation, because we do not
have to worry about signs when applying the electronic Sji
operators onto kets [see Eq. (37)]. For example, for no. 6,

[She €U, 1) + v 1L, AU, h] + (h,d]) + Hec]
=1+ y)It, N((d, hl + (h,d])
—e (1L +y*)d, h) + |h, d)(, L.

This commutator is only zero when y = —1, fixing the sign
of the spin-SU(2)-invariant mapping.

The case of |00)(00] is an exception. In this case there
are two spin-SU(2)-symmetric terms allowed: S; - S; ;| and
200010500, 0" j jrr = (njy 1y = 2nj4m ) (g +
njy1,y — 2nj41,4nj41,,) (the projector onto the space of no
holons or doublons).

This allows us to complete the right column in Table II.
By applying the procedure discussed above, we translate these
operators in terms of standard electronic operators in Table III.
A subtle point is that terms 5, 6, and 11 corresponding to
single-electron hopping cannot be immediately mapped in
their translationally invariant (i.e., summed over j) form,
because there are sign ambiguities with hopping between
sites 1 and L. However, because we can specialize to bond-
wise operators satisfying the desired commutation or scar
annihilation properties, the mapping can proceed, by suitable
redefining of the site numbers, or ordering convention, for
hopping across the ends (for more details, see Sec. VC on
generalizing these results to arbitrary bipartite lattices). Only
no. 12 needs to be mapped in its translationally invariant form.
Here the conversion is valid in PBC because the term moves

(39)

two electrons and the simplistic ket-bra notation still holds
across the end points.

While we verified directly in the fermion picture that the
electronic terms have the desired properties with 5" or |¥y),
these properties are in fact immediate from the spin-1 to
electronic model translation. When considering group A, QF
only involves |#+1) while ' only involves |d), |h). Except
for the case of |00)(00|, due to the electronic spin-SU(2)
constraint, operators involving the “irrelevant” state |0) are
mapped uniquely onto electronic operators involving |1), [{).
Therefore we can establish a bijection between spin-1 model
and electronic model nearest-neighbor operators, and the
commutation result carries from one setting to the other.

Likewise, for group C, terms 9-11 have 1/ in the bras
of the ket-bra and trivially annihilate the n-pairing scar tower.
Number 12 involves only & and d, and the results from the
spin-1 setting carry over with no issue.

A point of curiosity is that the analog of the minus sign
in the spin-1 model Hy [Eq. (14), no. 5 with ¢ = 0] is natu-
rally present in the electronic hopping terms with real-valued
hopping amplitude. The relative minus sign is important for
Hj to be pseudospin SU(2) symmetric [and for the electronic
model that it maps to to be n-pairing SU(2) symmetric].
In the spin-1 setting for physical spins it is less natural to
have a sign difference between |0, —1)(—1, 0] and |0, 1)(1, O]
spin-exchange processes, and so the “natural” spin-1 XY
model studied by Schecter and Iadecola breaks the pseudospin
symmetry.

In electronic models, however, due to fermionic anticom-
mutation, the electronic hopping Hamiltonian (no. 5) gives
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opposite signs to the terms |o, k) (h, | and |o, d)({d, o|. We
recover the pure hopping term from no. 6-no. 5 in Table III
(with ¢ = 0 in both terms), in agreement with the fact that the
electronic hopping, and thus the Hubbard model, is n-pairing
SU(2) symmetric.

To address our original goal of finding simplest models that
turn the n-pairing states into true scar states, we additionally
require that the operators respect inversion and time-reversal
symmetry. This leaves us with the combinations of nos. 9
and 10— (I1) (M + N Djld)d]jn + 1) (d] (1) (4] +
[{){{Dj+1 and its h equivalent—and no. 11. One would
expect the first term to come from a Coulomb interaction
3 >y +n)(mj14 +nj41,,). The other contributions
to the density-density term are %Zj’(w, lo, o' {o, 0]} j+1
and 2 Zj |d,d){d,d|; j+1. The former is a possible transla-
tion of no. 1, but the latter is not in Table III. Therefore the
Coulomb interaction does not preserve the n-pairing states as
scars and we do not expect the first term to arise “naturally.”

Term 11, however, is contained in the Hirsch term [Eq. (9)].
Specifically, from Table III, Hyjseh = X (no. 6-2 no. 11),
with ¢ = 0. We therefore conclude that not only is the Hirsch
model scarred but it is one of few models to have the n-pairing
states as scars. The Hirsch model is also arguably the most
“natural” model in this family of scarred models, having been
previously explored for different reasons.

We lastly note that by adding no. 1 the n-pairing scars are
robust to the presence of spin-spin interactions.

The procedure outlined in this paper gives a framework for
listing families of models which share an exact scar tower.
An interesting question for future study might be to see if
one can then similarly systematically identify sets of states
as candidate scar towers, on which we can apply this method.

C. Generalization to an arbitrary bipartite lattice

While the procedure in Sec. IV assumed translational
invariance, the individual terms in nos. 1-7 and 9-11 across
each bond j, j + 1 satisfy the desired commutation or scar
tower annihilation properties. In the spin-1 model setting, we
can generalize these terms to any bond (ij) between sites i and
j on different bipartite components. This also turns out to be
true in the electronic setting. There is no Fock space ordering
convention that simultaneously preserves locality (in the sense
discussed in this section) for every bond (i, j). However, for a
given bond (ij), we can define a convention that orders site j
operators immediately after site i operators, for example. We
can then define the ket-bra |...)(...];; in this convention and
prove the commutation or scar annihilation properties for the
operator on this bond.

Lastly, as discussed in Sec. IVC2, we can generalize no.
12 onto bipartite lattices by writing it as an operator on closed
loops in the graph.

VI. CONCLUSION

We observed that in the Hirsch model the n-pairing
states—exactly known states in the Hubbard model—become
many-body scar states, because the n-pairing SU(2) symmetry
is broken. While this observation is easy to verify, we arrived
at this conclusion by first studying nearest-neighbor spin-1
models that are scarred by the spin-1 XY scar tower. Our

systematic study separated models in which the spin-1 XY
scar tower states are true scars from models that preserve the
pseudospin SU(2) symmetry. We also found a new model (no.
12) that lies outside the established Shiraishi-Mori projector
structure in the spin-1 XY model. These results give insights
on other spin models with scar towers (Appendix D).

We then translated our findings from the spin-1 setting to
the electronic setting, and obtained a family of models that
are scarred by the n-pairing states, of which the Hirsch model
is a member. This paper thus furthers our understanding of
exact many-body scar towers and provides a systematic way
of constructing families of scarred models.

Note added. Recently, we learned about related work by
Moudgalya, Regnault, and Bernevig [81].
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APPENDIX A: ADDITIONAL SCAR TOWERS IN THE
HIRSCH MODEL

In addition to the n-pairing states |{y) in Eq. (2), we also
find several more towers of scar states in the 1D Hirsch model
[Eq. (9)]. We define these as

lnw) = EOM Yy = ")V vac), (Al
low) = sT[yw) = 5" (n")|vac.), (A2)
where
(=) e (A3)
J
s =) I (el ey (Ad)
J

t' creates a nearest-neighbor triplet |4, 1) with momentum
7, while s* creates a nearest-neighbor singlet |1, |) — ||, 1)
with momentum 7. While ¢* can be applied an arbitrary
number of times to the n-pairing states |¥y) = |¥n.0), s™ can
only be applied once to obtain the exact eigenstate |¢py) =
sT1Yw).

|¥n ) and |@n) both have energies E = NU, independent
of the strength of the Hirsch term X. (Here and below, we set
n = 0 without loss of generality.) Additionally, ¥ 5 has total
spin S = M, momentum k = (N + M)r(mod 2r), and site
inversion number /; = 1, while ¢ has spin § = 0, momentum
k = (N + 1)m(mod 2r), and site inversion number Iy = —1.

We prove that |y ») and |¢y) are exact eigenstates using
a commutator argument [34]. We first note that the states of
interest all have exactly N doublons. Hence, it suffices to
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show that they are eigenstates of—in fact annihilated by—
the kinetic terms. In fact, since these states are independent
of X, we show that each hopping process Hyinq,a =1,2,3
independently annihilates the scar towers, where

Hiny =Y _(1h,0)(0, hlj 1 + He),
j.o

Hinz = ) _[(1d, B) + 1, d)((1, L] = (b 4D 01 + Hel,
J

Hyins = Z(W, o)(o,d|jj+1 +Hc).

j.o

(AS5)

The expressions in terms of electron operators are obtained
using the prescription described in Sec. V and Table III
(Hyini3 <> no. 11 and Hinz <> no. 6). We take these
electronic expressions with periodic boundary conditions,
CL+1.0 = Cl,4, as defining our model, but we use the above
ket-bra writings in terms of 4, 1, |, d as being more compact
and better revealing structure in the arguments below. There
is a small subtlety regarding hopping across the bond (L, 1)
[80]. Since our states |y ) and |¢y) always have an even
number of electrons, the hopping terms across (L, 1) for
Hyin o flip sign. For example, the Hyi,; term across (L, 1) is
—(lh,0)(h, oo, hy 1 + H.c.). While in the rest of our proofs
we do not explicitly exhibit this subtlety, it is easy to verify
that appropriate ket-bra expressions for the operators ¢' and
s" also have this flipped sign when the o, ¢’ pair is created
across the bond (L, 1). These sign differences cancel out and
our proofs remain valid.

The Hirsch Hamiltonian in Eq. (9) can be written as H =
—tHyin1 — (t — X)Hin2 + (t = 2X)Hyin3 + U _; 1d)(d];.
Given the fact that |y ) and |¢9) are annihilated by
Hyin, (which we will prove below), if we show that
[Hin.a, 1" 11¥n.m) = [Hiina, 0 1l¢n) =0, it follows that
these states are annihilated by Hyip 4.

From Table III we know that [Hin.,7n']1=0 and
[Hin.1 — Hxin3, n'1=0. Then it suffices to show that
[Hiin1» ' 11¥nm) = Hiint, 0 1l¢w) = 0.

J

Evaluating the commutator gives

[Hiin1,n'1 =Y _[Ih, o) {0, hlj 1 +He, n']
Jj.o
=Y (=1Yllh. o){o. hljjs1 + He., |d) (Al

J.o
— |d){hl 1]
=Y (=1Y(lo.d)(h, 0|

j.o
—|d, o) (o, hl)jj+1- (A6)

This annihilates |y ») and |¢y) because we note that in these
states the spins appear in bound pairs, as elaborated below.

In |Y¥n M), there are only 41 unpaired electrons, which
appear in nearest-neighbor pairs 1, 1. Then

Y (o, d)th.o| = |d. o) o, hl)j i [¥n.m)

= (1, d, T)(hv 1, T'j,j+l,j+2_ 1, d, ™

Al e e - (A7)

Summing over j, we get for [Hin,1, nT]WN, M)

Gt DR A STCV 2 S N € N T PR %))

J

= 0. (A8)

The last line follows because the 4, 1 pair created by ¢ has
momentum k = m, and so such pairs appear in |Yy ) in the
superposition |k, 1, 1) — |1, 1, h).

In |¢,), there is one pair of nearest-neighbor 4 and |
electrons in a singlet state. Then

> (o, d)h.o| = |d, o )0, hl)jjs1l¢n)

= [t d, DA 4+ 1 d ) 4 D

= (o d, DA B+ 1 d D L B o ] 1ow)-

Summing over j gives for [Hyin.1, 1 1|¢n)

=Y =W DR L+ hD e
J

+ 1, d, MU L+ s 1 hD 2y jllgn) = 0.
(A10)

(A9)

(

This is zero because the 4, | and |, 1 pairs have momentum
.

We lastly have to show that the initial states |y ) and
|¢po) are annihilated by each Hyi,,. The case of |y ) =
@hHM |[vac.) is immediate. The only nontrivial term is Hyiy .
Since the bound 1, 1 pairs in | ) can be constructed by
creating electrons in momentum states of the form c? kc?n_ o
the kinetic energy of which is cos(k) + cos(w — k) = 0, we
conclude that |1 ) has zero energy under Hyip 1 -
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In the case of |¢y) = s|vac.), we have to consider both
Hyin,1 and Hyip . To show Hyip 1|¢o) = 0, we write

Higng D (=17 (o bt by = Lo 4y h ks )
J

=3 D0 bbb ) = b )
i

Pl B A b by = Lo Ly 4, )T = 0.
(A1)

Lastly, Hyin2|¢0) = O because
Higna Y (=1 (o b Ay by = Lo b by A )

J
=2 (~V(....hdp b )+ hohydoh, )
J

=0. (A12)

Note that the arguments for [Hiin1, nT]|¢N) =0 and
Hiin q|l¢0) = 0 held for the |1, |) and ||, 1) pairs separately;
we did not require them to be in a singlet. Their triplet
combination is a spin rotation of |1/ ;) = ¢ |vac.) and is also
annihilated by Hyip 4.

We remark that we numerically observe other entangle-
ment entropy outlier states. Specifically, we observe states
with the same energy and in the same symmetry sector as
|¢n) which appear to contain N doublons and an X dependent
superposition of a long-range entangled singlet. There are
also entanglement entropy outliers at k £ 0,7 and S = 0.
However, these states are not states of well-defined doublon
number and do not have simple energies. A detailed study of
these outlier states could be interesting future work.

Lastly, we note that terms 6—8 and 5 and 11 (with ¢ = 0) in
Table III preserve both scar towers. Additionally, the towers
|¢n) and |y 1) are preserved by nos. 2—4, and both SU(2)-
invariant choices of no. 1. Unlike the n-pairing states, since
these new states involve pairs across bonds, hopping terms
“perpendicular” to these pairs do not cancel, and so we do not
expect them to generalize to higher dimensions.

1. Analogous new scar tower in the spin-1 XY model

Given the similarities identified between the spin-1 XY and
Hubbard models, it might not be surprising that in the 1D
spin-1 XY model there is a tower of states analogous to the
“singlet” tower |¢y ). Specifically, defining a state

189 =Y (=1)/|-1,...,=1,0;,0,—1,..., 1), (AlI3)
J

the states

00 N 00
[SV) = (@)"18™) (Al4)
are also zero-energy eigenstates of Hxy. Similar to the singlet
and “triplet” scar towers in the Hirsch model, this can be
proven using the commutator argument and commutation

relation [34]
[Hxy, Q'] = JZ(—l)j(IO, (—=1,0] — |1, 0)

J

X (0, =10, j1. (A15)

Since the zero only occurs in a single 00 in all of these states,
we can write

10, 1)(—1, 01, j+1|S¥)

=10, 1,0)(-1,0, 0|j,j+1,j+2|51(\);0),
11, 0)(0, —11;,11|S¥)

=10,1,0)(0,0, =1];-1;;+1|Sy’).  (A16)
This gives
[Hxy. Q'1[SY) =7 > (=170, 1,0)((~1,0,0]
J
(0,0, = 1D j41.j42|SY).  (A17)

The last line is zero because the 00 in |S,?,°) has momentum
7. The commutator argument is complete by noting that Hxy
annihilates the base of the tower |S™), again because the
00 has momentum . This tower is similar to the singlet
tower in that only one 00 can be present in the tower of
states. Accordingly, there is no analog to the triplet towers
of states |Yy ) in the spin-1 XY model. We lastly note
that due to special symmetries present in the 1D spin-1 XY
model [31,32] we have to add a longer-range term such as
Zj(|0, 0,1) +11,0,0))((0,0, 1] 4+ (1,0,0[)j—1,j,j4+1 for this
tower of states to be “true scars,” that is, states in a quantum
chaotic spectrum.

APPENDIX B: SYSTEMATIC CONSTRUCTION OF SPIN
MODELS THAT COMMUTE WITH Qf

In this Appendix we obtain the set of nearest-neighbor op-
erators that commute with Q' (Sec. IV A). Restricting to Her-
mitian operators O, [0, Q'] = 0 implies that [O, St = 0.
We express the operators O = Y. 0; in terms of the two-site
bases |a, b){a, blc,d j11, a+ b= c+d. It suffices to con-
sider the commutator [0}, [(S]JT)2 - (S;Zrl)z] /2] = [0}, q;]. q;
connects sectors Sj + S§+1 =—-2,0,2 and —1, 1, so we can
consider these groups separately.

The S} + S5 —2,0, 2 group gives

+1 =
a 11, 1)
b c d 1, —1)
0j = c* e f |0’O> ) (Bl)
a fr g |—1,1)
h) ==
0 -1 0 1 0
1
g} = 0 (B2)
—1
Juj+1

The matrix basis is indicated in Eq. (B1)—for example, the
“d” entry indicates the term d|1, —1)(—1, 1] j11.
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Evaluating the commutator, we get

0 b—d*—a

loj. 4[] =

For [0, OT] = 0, each matrix entry must be zero. We obtain
the linearly independent operators 1, 2, 6, and 7 in Table II.

Performing a similar analysis for the S} + 57 -1,1
group gives terms 3, 4, and 5 in Table II.

+1 =

APPENDIX C: ANALYTIC PROOF OF SPIN-1 XY
SCARRED MODELS

In Sec. IV, we performed a brute force numerical search to
find the family of all translationally invariant nearest-neighbor
models that contain the spin-1 XY scar tower (Table II). While
the numerical search can be generalized to other scar towers,
such as the AKLT scar towers in Appendix F, in this Appendix
we analytically prove our result in Sec. I'V.

It will be convenient to use the following basis for spin-1,
two-site states [34]:

X1) = (11, —1) + |=1,1)/v/2, |X2) = 0,0),

1X3) =11,0), [X4) =10, 1),

|Xs) =1=1,0), |Xe) =10, 1), (ChH
X7) = (11, =1) — |=1,1))/2,

1Xg) =1, 1), [Xo) =|=1,=1).

We are interested in finding operators that annihilate all |Sy).
We first note that |...)(X;| for 1 < i < 6 trivially annihilates
the scar tower |Sy). So it suffices to consider the action of
.. )X, 7 <i<9on |Sy).

As in Table II, we restrict our attention to terms that pre-
serve S5,. The terms Zj |X3)(Xglj j+1 and Zj 1Xo) (Xolj,j+1
do not annihilate the ferromagnetic states |S;) = |1, 1, ..., 1)
and |Q2) = |—1, —1,..., —1), respectively (and are the only
such terms, so their action cannot be canceled out). There-
fore we only need to consider terms in the linear space
Zj{|X1)(X7|, |X2) (X711, |X7)(X71}}, j+1. Just by considering an-
nihilation of the first state of the tower, |S;) = Of|Q),
we conclude that the only Hermitian term we can con-
struct from this space and its Hermitian conjugates is
Zi c|X1){X11X7; j+1 + H.c.. The choices ¢ = 1 and i span this
space. The ¢ = 1 choice is in fact related to simpler terms
> (1Xa) (Xal — 1X3)(X5]); j41 [see Eq. (29) in Sec. IVCI],
while the ¢ = i choice is proportional to no. 12 in Table. II.
That no. 12 annihilates all scar states |Sy) was proven in
Sec. IVC2.

This exhausts the space of nearest-neighbor, translationally
invariant operators that annihilate |Sy), and we recover the
results in Table II.

c— f*

a+d—g 0
b—d—nh
= f (B3)
d*+h—g
0

Jj+l1

APPENDIX D: COMPLETE FAMILY OF SPIN-1 MODELS
SCARRED WITH THE k = 0 BIMAGNON TOWER

The analytical argument in Appendix C can also be used
to find all models that are scarred by the “k = 0 bimagnon
tower.” By this we mean the tower of states

8570 = (0] _)V 1),

1
32877 IR =1-1....~1). (D2)
J

(D1

0

The szo is similar to the QF operator in the main text

Q" = Qz:ﬂ), except that it imparts zero momentum, instead
of momentum 7. Given that two distinct models—the spin-1
XY and spin-1 AKLT models—contain towers related by Q7,
it is natural to ask if there are any physically interesting
models that host the k = 0 bimagnon tower of states. We
find that, without one special term, any nearest-neighbor
model containing the kK = 0 bimagnon tower conserves the
number of zeros ng, and hence can be mapped, in the ny = 0
symmetry sector, to a family of spin-1/2 models with arbitrary
Heisenberg interactions and special Dzyaloshinskii-Moriya-
type interaction.

Repeating the argument in Appendix C, we can an-
alytically find all nearest-neighbor models that annihilate
|Sk=0). Using the notation in Eq. (Cl), we first note
that any term |...)(X;| for 2 <i < 7 annihilates |81’§,:0).
For S% ,-preserving Hamiltonians, besides the above triv-
ially annihilating terms, we only need to consider terms
Zj 1Xs) (Xglj,j+1 Zj |X9)(Xoljj+1 and in the linear space
2 X0 XL 1Xo) (Xl 1X7) (X1}, j+1. As in the k =7 bi-
magnon case, we can prove that the only Hermitian terms we
can construct using this set that annihilate the k = 0 bimagnon
tower are Zj c|X1){X7| + H.c. Of these, only the ¢ = i choice
gives a term independent of the previously considered terms
|...)(X;| with 2 < i < 7. Thus, the term

i (X)X = 1X) (X)) (D3)
J
=i ) (= DL =1 = 1L =1 (=1 1) o
] (D4)
= S - S 09)
J

is the only new term that annihilates the k = 0 bimagnon
tower, and unlike the other terms the mechanism of annihi-
lation is nonlocal.
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In this set of operators, there is only one term that does not
conserve the number of zeros:

¢1X2)(X7] + H.c. = ¢|0, 0)((1, —1| — (=1, 1])/~/2 + H.c.
(D6)

This term is antisymmetric under spatial inversion and in
general more difficult to come by than the k = case.
For the k = 7 bimagnon tower, the corresponding term is
|0, 0)y((1, —1| + (—1, 1|) + H.c., which is present in the Hxy
spin-exchange term [see Eq. (15)].

However, Eq. (D6), with ¢ =i, can arise as part of a
natural-looking DMI:

-8

M =72 (S; x Sjy1) = SIS TSt

Joj+l1 JRj+l1

= i(v/21X7) (Xa| + |X3)(Xa] + |Xs){X5])j,j+1 +H.c., (D7)

where the additional parts also annihilate the k = 0 bimagnon
tower. On the other hand, the case ¢ = 1 corresponds to a less
natural-looking term:

i(s1s”

TS — S78,)S5ST

i8i41)S5854 + Heee ~ [X7)(X5| + Hee,,

which in addition breaks physical time-reversal invariance
and will not be considered further. On a 1D chain with only
nearest-neighbor interactions, the former DMI model is in fact
unitarily related to the XY chain of Schecter and Iadecola
[31], by the transformation Hxy = UHpyU ™' [82], with

i 0 0
T 7
U:Hexp(zEJS}) =®;|0 1 0, (D8
; 0 0 (i)

in open boundary conditions and PBCs for L = 4n. The
same unitary relates also the k = 0 and = bimagnon towers:
U|S&70%) o< |Sy). (For PBC in L = 4n + 2, Hpy rotates to
an XY chain with antiperiodic boundary conditions. Because
the proof for these terms to annihilate the XY scar tower in
Sec. IV relied on strictly local annihilation, the antiperiodic
XY model, with flipped sign on —S7 87 — S757, also contains
the k = w bimagnon tower.)

Furthermore, thinking directly about models with k = 0
bimagnon towers, it is clear that the above term does not
require bipartite structure and in general is not simply derived
from the spin-1 XY model.

To summarize, analogously to how the model Hyxy +
hS%y + DZJ.(SjZ)2 [Eq. (12)] hosts the k = 7 tower of scars
in any dimension, we expect the model Hpwmi + hS5,, +
D Zj(SJ?)2 to host the kK = 0 tower of scars in any dimension.
In one dimension, just as we need to introduce the additional
term Hy = J3 3 (787,53 + S;’S;H) to break additional sym-
metries, we need to likewise introduce a range-k DMI term
H] =3 ,(S;S},, — §}S7,,) to break the equivalent symmetry
(because we do not need bipartiteness, k can be even or odd
here).

Finally, the term in Eq. (D5) can also be generalized to
higher dimensions, by placing it on oriented loops (main-
taining the same coupling along the loop), exactly as in
the generalization of the term 12 to higher dimensions in
Sec. IVC2.

1. Application: Generalization of models with 7-bimagnon
towers to arbitrary graphs

In the main text, we considered models realizing -
bimagnon towers on bipartite lattices, with two-site terms
defined only on links connecting different sublattices A and B.
We can immediately generalize these to models with two-site
terms defined also on links connecting sites on the same
sublattice, A-A or B-B. Indeed, from the point of view of
one such sublattice, the 7 -bimagnon states look like the k = 0
bimagnon states considered in this Appendix. Hence, all terms
considered above, placed on either A-A or B-B links, will
preserve the w-bimagnon tower of Schecter and Iadecola.

2. Application: Reduction to new spin-1/2 models with a
magnon scar tower

In the absence of the c|X;) (X»|X7 + H.c. term [Eq. (D6)], a
model containing the k = 0 bimagnon scar tower will preserve
the number of zeros ngy. The scar tower will lie in the np =0
sector. In this sector, the only relevant terms are those that
only involve 1s and —1s. These terms can be mapped onto a
spin-1/2 model, replacing 1 with 1 and —1 with |.

There are three terms in the identified family that contain
only Is and —1s. They are

1X7)(X71j.j41 = (11, D LTI DAL 1 (DY)
— 10 DA = D)
= %(Ij,jJrl —Sj-Sjt1)
> IX1) (X511 + He.
J
= Z(IN)(NI — DD+
- o,j (D10)

Y X Xaljjn +He o i) (systy —sTsi,)
J J

=2 Z (S.‘stfﬂ - S§S§+1)’

J

(D11)

where we use s; to denote spin-1/2 spin operators. Equation
(D10) can be seen because Z/‘ |X1)(X7l},j+1 + H.c. maps to
a counting of opposite domain walls Ny, — N4 = 0, which
is zero in a closed spin-1/2 chain. The term in Eq. (D9)
corresponds to a spin-1/2 Heisenberg model, while the term
in Eq. (D11) corresponds to a DMI of spin-1/2s and also
corresponds to term 12 in Table II.

Therefore, if the c|X»)(X7| + H.c. term is not present, a
spin-1 model scarred by the kK = 0 bimagnon tower is equiv-
alent to, in the ny = 0 sector, a spin-1/2 Heisenberg model
with Dzyaloshinskii-Moriya interaction. On the 1D chain with
only nearest-neighbor terms, this model is integrable [83], by
essentially undoing the spin “twist” in the DMI and transform-
ing to an XXZ chain with twisted boundary conditions, which
is in turn solvable by the Bethe ansatz.

The spin-1 model k = 0 bimagnon tower maps onto the
simple spin-1/2 model kK = 0 magnon tower, generated by
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repeated action of the operator Y j s;r on the state
[4sd,...,{). This tower is nothing else but the familiar
S = Vol/2 highest-spin multiplet which would describe the
degenerate ferromagnetic states in an SU(2)-invariant model.

We conclude from these observations that any inversion-
symmetric, nearest-neighbor spin-1 model cannot contain the
spin-1 k£ = 0 bimagnon tower as scars: it will possess ng
conservation and be equivalent to the spin-1/2 Heisenberg
model in the ny = 0 sector. The bimagnon states are not
scars because of the spin-1/2 SU(2) symmetry in the ng = 0
sectors.

However, there are interesting spin-1/2 models scarred by
the kK = 0 magnon tower. These states will be eigenstates of
any spin-SU(2)-invariant model, for example, the J;-J, model:

Hy_j, = Z(Jlsj -Sjp1 + 28 - Sjq0). (D12)
J

We can then add the spin-1/2 DM interaction to get a simple
nonintegrable spin-1/2 model scarred by the £ = 0 magnon
tower:

Hyi_j2+ DHpsi, Homi= ) 2+ (s; xsjp1).  (DI13)
J

This model has been considered in the context of the mag-
netoelectric effect in ferroelectric materials [84—86] and is
believed to describe materials such as LiCuVOy, [87,88] and
LiCu,0; [89,90]. The DM interaction breaks the spin-SU(2)
symmetry, and the presence of this multiplet is a nontrivial
“scar” property. We lastly note that with fine-tuned nearest-
neighbor and next-nearest-neighbor DM terms Ref. [91]
found an additional tower of exact eigenstates corresponding
to “spiral” spin states, focusing on regimes when these are
the ground states. Reference [91] also noticed our observation
here that the DMI preserves the k = 0 magnon tower.

We verified numerically that this model in one dimension
is indeed scarred by the k = 0 magnon scar tower. Apart
from translational invariance and S° conservation, there is
an additional spin-flip plus inversion symmetry given by g =
I—[jcrj’-C x I, whereI|s1, 82, ...,8.) = |sL, S1—1, ..., s1). How-
ever, for small D, the couplings J; and J, must have opposite
signs in order for the ferromagnetic states to be in the bulk
of the spectrum. In our numerical study with couplings J; =
1,J, = —0.6, D = 0.3, this was indeed the case for the scar
state in the sector k =0, 85, =0, g=1. We note that the
“CuO, ribbon chain” materials [87-90,92] have the desired
opposite signs of J; and J,.

We note that the same scar states were also obtained in a
Shiraishi-Mori type “toy model” in Ref. [18] with complicated
four-spin interactions. We found a much simpler and more re-
alistic model with only two-spin interactions; also, our model
does not appear to be of Shiraishi-Mori type with two-site
projectors.

This model can be extended to higher dimensions, as long
as the DMI terms occur in loops. That is, orienting the DMI
vectors with +Z, each directed bond i — j in the term s*iV sj‘ —
s;‘s; belongs to a unique closed loopi — j — k--- — i. This
is in fact the case for the DMI studied in the kagome lattice
material herbertsmithite [93-95] and the triangular lattice ma-
terial Cs,CuCly studied in Ref. [96], for example. Again, if all

nearest-neighbor and further-neighbor Heisenberg couplings
are antiferromagnetic, we expect that for small DMI these
eigenstates are ceiling states and nominally not scars, but they
are still special.

We also note that we can easily prepare a suitable initial
state for perfect revivals in such scarred systems. Following
Schecter and Iadecola’s initial state for the spin-1 XY scars,
we can give the ferromagnetic scars an equal energy splitting
with the term AS% ;. The ferromagnetic state in the x direction
®;[(1) + |¢))]~/\/§] is a superposition of the k = 0 magnon
states and hence will experience perfect revivals.

Finally, we can also consider spin-1/2 models that contain
the spin-1/2 k = w magnon tower. The DMI term corresponds
to no. 12 in Table II and also annihilates the kK = = magnon
tower. Instead of the Heisenberg term, we we need to consider
» ;XD Xalj instead, which corresponds to a less natural

Yy Z oz 3
XXZ model 3 (sjs}, | + 57857, — 8557,,). Therefore, in the
spin-1/2 context, it is more natural to consider models scarred

by the £ = 0 magnon tower, instead of the k = m one.

APPENDIX E: EXHAUSTIVE SEARCH FOR MODELS
SCARRED BY A GIVEN SCAR TOWER

In this Appendix we provide a framework to exhaustively
find all models that contain a given scar tower, provided the
scar tower satisfies certain conditions. We then apply this
method in Appendix F to find a complete family of nearest-
neighbor models scarred with the AKLT scars.

We are given a scar tower {|Sy)}, obtained by |Sy) =
(0" |S,), for some operator Q' and state |S). We then want
to find a family of all models such that the |Sy) are eigenstates
with energy Ey = gN + A, for some g and A. Without loss of
generality, we can set A = 0 by subtracting A/. We observe
that for any such model H we have that

YN, [H, Q"1ISy) = qQ"ISN), H|Sp) = 0. (ED)
Suppose we have Hy such that
[Ho, Q'] = 0", Hp|So) = 0. (E2)
We can then split H into parts:
H =qHy+H (E3)
where
VN, [H', 0"]|Sy) = 0. (E4)

In our case of interest, Q% = S%,,/2 satisfies [Q%, 0" = 0.
Furthermore, in our examples, |Sy) are eigenstates of Q<.

It follows that |Sp) is also an eigenstate of H' (the eigen-
value of which we can again set to zero). Then Eq. (E4) is
equivalent to

VN, H'|Sy) = 0. (ES)

It suffices to consider operators H’ that change the mag-
netization S5, by a fixed amount. This is because we require
H’ to annihilate each |Sy) individually. Since each |Sy) has
fixed magnetization, if ' had components changing S5, by
a different amount, the images, upon action of different such
components, would be in different S5, sectors and would have
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to independently cancel, i.e., each component independently
annihilates all |Sy).

Restricting to operators that change S5, by a fixed amount
has the following advantage: searching for all such H' is
equivalent to finding all Hamiltonians that annihilate a com-
pression of the tower states ), cy|Sy). In the case of the
AKLT model scar tower discussed below, this compression
can be written as an MPS, allowing us to use the methods
discussed in Sec. IV C. We lastly note that the identity should
be trivially added to this list H’, since it was used to set all
eigenvalues to zero.

APPENDIX F: COMPLETE FAMILY
OF NEAREST-NEIGHBOR MODELS SCARRED
WITH AKLT SCARS

Our systematic search for models scarred with the spin-1
XY scar tower revealed the new term 12 that cannot be re-
duced to local terms annihilating these scar states. Motivated
by this observation, in this Appendix we derive the complete
family of nearest-neighbor models that contain the AKLT
tower of scar states. These scar states are defined by acting
the same operator Q" in Eq. (13) on the AKLT ground state
|G). It can be compactly expressed by the MPS [29]:

> TrAld Aoy oy, (FI)

{o1--01}

1G) =

2/0 0
Al“z\/;<_1 0). (F2)

J

The scar states in the AKLT model have energies E,, = 2n and
are given by [28]

1S,) = (Q7)'G). (F3)
For the AKLT model, it is convenient to work in the basis

of states {|77 )} of well-defined total spin J and magnetiza-
tion M across two sites [34]:

T2, 2) = [=1, =1), |T-1) = %(IO, —1) +1-1,0)),
IT20) = %(IL —1)+210,0) + [-1, 1)),
1T2.1) = %(Ila 0) +10. 1)), |T22) = |1, 1),

ITh,—1) = %(IO,—U —1=1,0)), (F4)
IT10) = %(Il, =) ==L 1),
1Th.1) = %(Il, 0) — 10, 1)),
1To.0) = %(Il, —1)=10,0) +|=1, 1)).

As discussed in Appendix E, it suffices to find all terms that
annihilate |S,). To do so we compress all |S,) into a single
MPS with the MPO in Eq. (17), then use the MPS method
outlined in Sec. IV C. By considering translationally invariant
nearest-neighbor operators, as in the main text, we found that
the following terms annihilate |S,,):

Ho = [(10, 1)(1,0[ — [0, =1){=1,0); ;11 + H.c.],
J

|12, o) (T2, 2}, ja1, | T2, —1)(T2, 11, j+1, | T2,0) {120l j, j+15
e\ Ty, 2)(Tr, 1]} j41 + Hee., €| To 2) (Dol j41 + Hee.,
¢?|To,1){Ta0lj,j41 + Hee. (F5)

As in the spin-1 XY model case, most of these terms annihilate |S,) bondwise, as already written above. Unlike the spin-1 XY
model case, however, the H, term needs its sum over j. In addition, Hy and |75 o) (73,0} j+1 commute with Q*. However, since
the scar states here do not have a special relationship with the pseudospin symmetry (namely, they are not eigenstates of the total
pseudospin), this property of the two terms is less important [34]. To get the scar energies E, = 2n we can add S5, In fact, the
AKLT model is contained in this space, by the fact that [34]

1 :
H0 + St = D (B2l Taal + 1) (Taa| = T -){T 1| = T2 (T2 o
J

= Hakr — Y (1To0)(Taol + 21T 1)(To 1| + 21T, 2) (T2 2l j1- (Fo)
J
We can then express the family of Hamiltonians scarred by the AKLT tower as

0
Hakir + 585+ Y Y enn(D| o) (Tl 1 (F7)

Jj mpn==-2

reproducing the results from Refs. [30,34].
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