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We develop a field theory of quantum magnets and magnetic (semi)metals, which is suitable for the analysis
of their universal and topological properties. The systems of interest include collinear, coplanar, and general
noncoplanar magnets. At the basic level, we describe the dynamics of magnetic moments using smooth vector
fields in the continuum limit. Dzyaloshinskii-Moriya interaction is captured by a non-Abelian vector gauge
field, and chiral spin couplings related to topological defects appear as higher-rank antisymmetric tensor
gauge fields. We distinguish type-I and type-II magnets by their equilibrium response to the non-Abelian
gauge flux, and characterize the resulting lattices of skyrmions and hedgehogs, the spectra of spin waves, and
the chiral response to external perturbations. The general spin-orbit coupling of electrons is similarly described
by non-Abelian gauge fields, including higher-rank tensors related to the electronic Berry flux. Itinerant electrons
and local moments exchange their gauge fluxes through Kondo and Hund interactions. Hence, by utilizing
gauge fields, this theory provides a unifying physical picture of “intrinsic” and “topological” anomalous Hall
effects, spin-Hall effects, and other correlations between the topological properties of electrons and moments.
We predict “topological” magnetoelectric effect in materials prone to hosting hedgehogs. Links to experiments
and model calculations are provided by deriving the couplings and gauge fields from generic microscopic models,
including the Hubbard model with spin-orbit interactions. Much of the formal analysis is generalized to d spatial
dimensions in order to access the πd−1(Sd−1) homotopy classification of the magnetic hedgehog topological
defects, and establish the possibility of novel quantum spin liquids that exhibit a fractional magnetoelectric
effect. However, we emphasize the form of all results in the physically relevant d = 3 dimensions, and discuss a
few applications to topological magnetic conductors like Mn3Sn and Pr2Ir2O7.
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I. INTRODUCTION

Topological defects are crucial protagonists in the uncon-
ventional behaviors of both classical and quantum magnets.
They can be seen as the bedrock of all topological states
of matter [1]. Static topological defects in classical magnets
can produce unusual magnetic orders featuring skyrmions
[2] and hedgehogs [3]. A seemingly distinct arena for topol-
ogy and magnetism are topological semimetals, where mag-
netism is sought to provide time-reversal symmetry breaking
for the emergence of Weyl nodes in the electron spectrum
[4,5]. However, magnetic and electronic topological behaviors
are found to go hand in hand in many materials, such as
Mn3Sn, Mn3Ge, Pr2Ir2O7, Nd2Mo2O7, PdCrO2, CoNb3S6,
and others [6–22]. The desire to understand all aspects of
the correlated electronic and magnetic topology, and envision
new related phenomena, is the main source of motivation
for this work. Perhaps the most exciting phenomenon, and
the most difficult one to realize, is topological order with
fractionalized excitations featured in quantum spin liquids
[23–29]. It has been argued recently [1] that novel types
of topological order, exhibiting fractional magnetoelectric
effect, could exist in topological magnets with pronounced
quantum fluctuations that spare the spin coherence at cer-
tain short length scales. The resulting states are incompress-

ible quantum liquids of magnetic monopoles and hedge-
hogs.

Here we derive a unifying quantum field theory of the
mentioned magnetic systems, with intention to analyze their
universal phase diagrams and topological dynamics. The
main agents of unification are static background gauge fields:
their embedded fluxes generate topologically nontrivial states.
When the low-energy fluctuations of lattice electrons and local
magnetic moments are captured by a set of smooth fields,
the resulting charge and spin currents are minimally coupled
to the gauge fields in a manner completely determined by
symmetries and gauge invariance. The complicated micro-
scopic details determine only the set of the low-energy degrees
of freedom, and the values of gauge field components and
coupling constants in the effective theory. We explain how
these parameters can be derived from microscopic models.

Gauge fields related to spin currents have played important
roles in the theory of magnets [30–36] and electronic spin-
orbit systems [37–39], but their full potential is far from
being harnessed in theories of topological states of matter. In
this paper, we specialize to the continuum-limit dynamics of
low-energy electrons and coarse-grained magnetic moments
(ferromagnetic and general antiferromagnetic), described in
real space. The vector gauge fields in magnets take form of
Berry connections. Their temporal components arise from
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the quantum Berry phase of spins and couple only to the
residual local magnetization of the coarse-grained spins. The
spatial components are tied to incommensurate noncollinear
spin textures, and also obtain as the continuum limit of
the Dzyaloshinskii-Moriya interaction. Similarly, the electron
spin-orbit coupling can be mathematically represented as a
non-Abelian vector gauge field which is minimally coupled
to the electrons’ spinor. The vector gauge fields of local
moments and particles have identical non-Abelian canonical
forms compatible with spin currents. When a Kondo-type
interaction mixes the spin currents of electrons and local mo-
ments, it also necessarily transfers the gauge fluxes between
them, thereby correlating various aspects of their topological
behaviors. We emphasize here the real-space description of
topological dynamics, but the equivalent momentum-space
description in terms of the Berry flux can be constructed
in analogy to the case of quantum Hall states generated by
Abelian U(1) gauge fields [40].

More intricate spin interactions, such as the chiral spin
coupling S1(S2 × S3), are found to become antisymmetric
tensor gauge fields in the continuum limit. Similar tensor
gauge fields also occur in the context of topologically non-
trivial electronic bands in three dimensions. While being less
familiar, tensor gauge fields generate nontrivial topology in
higher dimensions the same way vector gauge fields do it
in two dimensions. In that sense, they provide a real-space
description of three-dimensional topological phenomena on
par with the description of the quantum Hall effect using
magnetic fields [1]. Tensor gauge fields are minimally coupled
to the currents of line defects, their flux quanta are monopoles
and hedgehogs, and their uniform “magnetic” flux gives rise
to a magnetoelectric effect [41–44].

The primary goal of this study is to develop a theoretical
tool for assessing the strongly correlated dynamics of topolog-
ically nontrivial magnets despite their enormous microscopic
complexity. At the basic level, the developed theory can be
used to calculate the low-energy quasiparticle and collective
excitation spectra in a broad range of topological magnets,
to be compared with spectroscopy measurements. It can be
also used to calculate the universal phase diagrams and char-
acterize the critical points of interacting electrons and local
moments which experience a spin-orbit coupling. The main
sought application is to analyze magnetic conductors and
correlated insulators where the electron spin-orbit coupling
is entangled with the ordering or dynamics of magnetic mo-
ments. Such materials can exhibit a large “topological” Hall
effect, unconventional magnetic ordering, topological bands,
etc. [6–22,45]. We also anticipate a possible use in the study
of the classical dynamics of topological defects.

Even though most of these interesting applications are left
for future work, we obtain here several immediate results.
First, we derive a detailed connection between the micro-
scopic spin-orbit coupling and the gauge fields presented to
local moments of arbitrary magnets in the continuum limit.
Then, we show exactly how these gauge fields and their
fluxes give rise to lattices of topological defects in equilibrium
spin textures. In this regard, we find that magnets fall into
two groups, type I and type II, analogous to the behavior of
superconductors in magnetic fields. Skyrmions and hedgehogs
are generated by different types of non-Abelian flux, and

hedgehog lattices are predicted to contain additional anti-
hedgehogs due to the non-Abelian character of the gauge
fields. The consequences of defect delocalization by quan-
tum fluctuations are readily understood with the field theory,
leading to the prediction of novel chiral spin liquids with
fractional excitations [1]. Furthermore, we demonstrate that
spin waves exhibit spin-momentum locking and determine
the topological features of their spectra (e.g., Dirac or Weyl
nodes) in relation to the gauge fluxes and chiral spin textures.
We derive the Lorentz-type force exerted on spin currents due
to the non-Abelian gauge flux, with intention to provide an
intuitive and universal insight into chiral responses of magnets
to external perturbations (similar to Hall effect).

The constructed theory explains in a rather simple fashion
how and why various topological phenomena appear to be
correlated: the simultaneous appearance of anomalous Hall
and spin-Hall effects [6,46] in Mn3Sn, the presence of elec-
tronic Weyl nodes in some chiral magnets [14,47,48], etc. It
provides a unifying insight into “intrinsic” and “topological”
anomalous Hall effects, viewing both from the real-space
perspective and relating them mathematically to either static
or quantum-delocalized magnetic line defects. We predict
the possibility of observing a “topological” magnetoelectric
effect: the analog of the “topological” Hall effect induced by
magnetic textures with hedgehog point defects (the likes of
which have been recently observed [3]). Since the developed
field theory goes beyond the previous static-spin treatments
[49–55], it enables and streamlines (rarely attempted [56–60])
calculations of fluctuation corrections to all these effects. We
provide a simple explanation for the temperature dependence
of the anomalous Hall effects [61] observed in several experi-
ments [7,8,14,19,21,62].

The effective theory makes it apparent that exotic quantum
liquids of hedgehogs could appear in magnets with strong
spin-orbit coupling and quantum fluctuations. We have not
yet encountered such magnets in nature, instead, we discov-
ered only their “parent” systems where topological defects,
skyrmions, or hedgehogs form a lattice [2,3]. Magnetic orders
with such structures can be studied in a straightforward mean-
field fashion using tensor gauge fields: a hedgehog lattice is
a magnetic d = 3 analog of an Abrikosov lattice in d = 2
superconductors, produced by the flux of a tensor instead of a
vector gauge field. The quantum melting of a skyrmion lattice
can produce either a gapless or gapped chiral spin liquid
depending on whether the delocalized line defects can tear [1];
an exciting material candidate [9–11] is Pr2Ir2O7. The quan-
tum melting of a hedgehog lattice is extremely interesting and
expected to yield a new family of d = 3 fractionalized chiral
spin liquids with topological orders [1,63–74] that generalize
fractional quantum Hall states. The theory we develop here
describes these quantum liquids with topological Lagrangian
terms [1].

The formal analysis in this paper is simplified by con-
sidering only magnetic systems whose spin anisotropy, if
any, can be attributed to the effective gauge fields. This
may impose a limitation on the universality classes that one
wishes to address in materials, but allows us to “easily” gain
valuable insights about the topological aspects of dynamics,
which transcend many aspects of symmetries. We also gen-
eralize discussions to an arbitrary number d � 2 of spatial
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dimensions. The price to pay is not high, and the required
mathematical language reveals deeper relationships between
the dynamics and topology, which is especially useful for
predicting and classifying novel fractionalized spin liquids
[1]. The spins in d spatial dimensions are handled with the
Spin(d) group in order to ensure topological protection of
their hedgehog point defects. In specializing to the physical
d = 3 dimensions, we always cover all spin S representations
of the Spin(3)→ SU(2) group. We do not emphasize much
the d = 2 case: it is fully included in the general analysis, and
equivalent to the dynamics of U(1) superfluids. The dynamics
of interest retains spin coherence at some short length and
time scales, i.e., the order parameter in the continuum limit is
a set of continuous vector fields. Quantum states with resonant
valence bonds, including Z2 spin liquids, are beyond the scope
of this paper.

Paper layout and conventions

The paper is organized in three major parts: Section II
develops a theory of pure magnets without charge fluctuations,
Sec. III extends it to include the coupling of conduction
electrons to local moments, and Sec. IV presents several
applications of the theory to realistic two-dimensional (2D)
and three-dimensional (3D) magnets. Readers who are not
interested in the theory construction can skip to the self-
contained Sec. IV and see how non-Abelian and tensor gauge
fields can be used in real space to study chiral magnets. The
theory development aims to describe all possible magnets that
have a spin “gauge” symmetry. It emphasizes the continuum
limit degrees of freedom in order to address the low-energy
dynamics and reveal the nature of topologically protected
defects [75]. For the sake of being systematic, Sec. II reviews
several topics of the quantum magnetism theory [76] in the
course of introducing gauge fields and generalizing to d
dimensions.

The discussion starts with ferromagnets (Sec. II A), and
the classification of degrees of freedom in general antiferro-
magnets (Sec. II B). We construct the continuum limit of arbi-
trary spin exchange couplings and Berry phase in Sec. II C.
Integrating out Gaussian fluctuations in Sec. II D leaves us
with the final minimal effective theory of quantum magnets.
Partial restoration of spin-rotation symmetry by fluctuations
can introduce chiral tensor fields in d dimensions, as dis-
cussed in Sec. II E. Dzyaloshinskii-Moriya and other chiral
spin interactions are introduced in Sec. II F and converted
to gauge fields. The analysis of pure magnets concludes in
Sec. II G with the construction of a canonical field theory that
transparently addresses the dynamics of spin currents.

The discussion of magnets coupled to electrons begins in
Sec. III A with the derivation of gradient couplings involv-
ing the gauge fields that represent the spin-orbit interaction.
Section III B discusses the Kondo/Hund interactions between
electrons and local moments. The exchange of gauge fluxes
between the two degrees of freedom is analyzed in Sec. III C,
and the induction of anomalous Hall effects is scrutinized in
Sec. III D. We conclude with an outlook toward microscopic
effects that produce Chern-Simons and other topological ac-
tion terms in Sec. III E.

The examples of theory applications start with skyrmion
and hedgehog lattices in Sec. IV A. There we classify chiral
magnets as type I or type II, deduce the qualitative properties
of defect arrays, and explain the path to chiral spin liquids cre-
ated by hedgehog delocalization. Continuing this analysis, we
deduce the qualitative spectrum and spin-momentum locking
of spin waves in Sec. IV B, and develop in Sec. IV C a simple
semiclassical picture of the chiral response to external per-
turbations on par with the classical real-space understanding
of Hall, Nernst, and thermal Hall effects. The last application
is a simple calculation of the temperature dependence of
topological Hall effect in Sec. IV D, elucidating behaviors
both in the adiabatic and nonadiabatic (thermally activated)
regimes.

After summarizing all conclusions and presenting final
thoughts in Sec. V, we provide technical information on the
Spin(d) group, coherent-state path integral, and single-spin
Berry phase in the Appendices. The last Appendix presents
the derivation of the gauged spin Hamiltonian from the
Hubbard model of localized electrons with spin-orbit cou-
pling.

We set h̄ = 1 and use Einstein’s convention for the sum-
mation over repeated indices. Upper indices a, b, c, . . . ∈
{1, . . . , d} label spin projections, while lower indices μ, ν, . . .

label space-time directions; μ = 0 is time, j ∈ {x, y, z, . . . }
is spatial. εi jk, εabc, etc., stand for the Levi-Civita tensor.
Sometimes we use boldface to indicate vectors in “spin”
space, e.g., n = (nx, ny, nz ), and an arrow to indicate vectors
in real space, e.g., �k = (kx, ky, kz ). In lattice contexts, lower
indices i, j indicate lattice sites instead of spatial directions,
but sometimes we use the special index δ to denote a lattice
direction from one site to another. The field theory is formu-
lated in imaginary time without making distinction between
upper and lower space-time indices, except when equations of
motion are discussed.

II. EFFECTIVE THEORY OF PURE SPIN SYSTEMS

The coherent-state path integral of a magnet represents
spins on lattice sites i by unit vectors n̂i and governs their
dynamics with the imaginary-time action

S =
∫

dτ

[
−i

∑
i

∂n̂i

∂τ
A(n̂i ) − 1

2

∑
i j

Ki j n̂in̂ j −
∑

i

Bin̂i

]
.

(1)
The first term is the Berry phase that reflects the quantum
nature of spins, the second term (Ki j = Kji) is the rotation-
invariant interaction between two spins, and the last term is
the Zeeman coupling to an external magnetic field B. We
will later add more complicated terms such as Dzyaloshinskii-
Moriya interaction. From a classical point of view, this action
has the same form regardless of the number d of spatial
dimensions. Therefore, it will not be difficult to keep the
discussion very general. We will analyze the dynamics in
arbitrary d dimensions in order to relate to possible quantum
liquids of magnetic topological defects, which have been
homotopically classified [1] as a function of d . All important
results will be also summarized and formulated specifically
for the physically accessible d = 3 dimensions.
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The quantum dynamics of spins in d dimensions is for-
mally based on the Spin(d) group, which is a double covering
of the rotation group SO(d). In d = 3, this is simply the
familiar SU(2) group, and we are free to work with any
representation. Understanding the spin algebra is needed only
for the derivation of the Berry’s phase, i.e., the specific form
of the Berry’s connection gauge field A(n̂). Most of our
discussion will not bear this burden, and the formulas for
A(n̂) are available in all SU(2) representations for d = 3.
The Spin(d ) group is reviewed in Appendix A. The above
action appears in the spin coherent-state path integral derived
in Appendix B, and the Berry’s phase of spins in d dimensions
is discussed in Appendix C.

Our goal is to obtain the effective theory of spin dynamics
at low energies in the continuum limit. The effective theory
hides all microscopic complexities of interacting systems, and
enables the calculation of excitation spectra, universal phase
diagrams, and topological properties. Taking the continuum
limit will involve identifying degrees of freedom that vary
smoothly on short length and time scales. This task qualita-
tively depends on the spin correlations at short scales, and we
will analyze multiple cases: ferromagnets, collinear antifer-
romagnets, coplanar antiferromagnets, noncoplanar correla-
tions, and generalizations to higher dimensions. The dynamics
of smooth fields will be deduced by coarse graining the action
(1), and will generally take form of a gauge theory. One of
our objectives is to provide a bridge between the effective and
microscopic descriptions, e.g., by relating the relevant gauge
fields of the effective theory to the microscopic interactions
between the spins.

A. Effective theory of a Spin(d ) ferromagnet

As a warmup, we first consider spins with ferromagnetic
correlations on a lattice, i.e., Ki j > 0 in (1). The Berry’s phase
is well defined because the boundary conditions for imaginary
time are periodic. Infinitesimal variations δn̂i change the
lattice action by

δS =
∫

dτ
∑

i

⎡⎣−i
∂ n̂a

i

∂τ
J ab

i −
∑
j∈i

Ki j n̂
b
j − Bb

i

⎤⎦δn̂b
i . (2)

Here, j ∈ i indicates all lattice sites j found in the vicinity of
i, i.e., the nearest neighbors, next-nearest neighbors, etc. The
variation of the Berry phase, derived in Appendix C 1, intro-
duces the expectation value of the spin angular momentum
operator Jab in the spin coherent state |n̂〉:

J ab
i = 〈n̂i |Jab|n̂i〉. (3)

Note that in general d dimensions we need two indices
to specify the plane in which Jab generates rotations. The
familiar relationship J ab = Sεabcn̂c, where εabc is the Levi-
Civita tensor and S is the spin magnitude, holds only in d = 3
dimensions. Classical equations of motion are obtained from
the stationary action condition δS = 0 under small variations
of n̂ by δn̂ ⊥ n̂. This removes any constraints on the vector
components parallel to n̂. The equation of motion in real time

(τ = it) reads as

∂ n̂a
i

∂t
J ab

i = −
⎛⎝∑

j∈i

Ki j n̂
a
j + Ba

i

⎞⎠(δab − n̂a
i n̂b

i

)
(4)

on every lattice site i. In d = 3 dimensions we may use J ab =
Sεabcn̂c to simplify the equation of motion:

∂n̂i

∂t
d=3−−→ 1

S
n̂i ×

⎛⎝∑
j∈i

Ki j n̂ j + Bi

⎞⎠. (5)

Assuming that the ferromagnetic spins n̂i vary smoothly on
the lattice, we can readily take the continuum limit by coarse
graining:

S =
∫

dτ dd r

[
−i

∂n
∂τ

A(n) + K

2
( �∇n)2 − μBn + · · ·

]
. (6)

The local vector n(�r) is the instantaneous average of micro-
scopic vectors n̂i on N lattice sites in the vicinity of position
�r:

n = 1

N

N∑
i=1

n̂i, (7)

so its magnitude is no longer fixed. However, the magnitude
fluctuations cost high energy through the terms −u|n|2 +
v|n|4 + · · · represented by the dots in the above action. As
usual, we neglect the higher powers of derivatives generated
by the coarse graining of Ki j because they do not affect the
universal aspects of dynamics.

The Berry connection A is also coarse grained. The formal
procedure starts by substituting n̂i = n + δni in the micro-
scopic action S = S[n(�r)] + δS, where n given by (7) is
uniform on the coarse-graining length scales, and δni are
small site-dependent fluctuations. We will integrate out δni

in Sec. II D and obtain various quadratic corrections to the
action that can be neglected for now because the dynamics
of a ferromagnet is dominated by the linear first-order time
derivative term in S[n]. The coarse-grained part of the action
S[n] is given by (6). Its Berry phase term obtains by analyti-
cally continuing the Berry connection from n̂ to the softened
n. This leaves invariant the physically relevant nonsingular
part of the Berry connection’s curl at finite |n|. For example,
A(n̂) given by (C26) in d = 3 dimensions is a gauge field
of a Dirac monopole at the “origin” if we interpret n as a
“position” vector. Its analytic continuation

standard gauge . . . A = − S

|n|2
ẑ × n

1 + ẑn/|n| ,

rotation gauge . . . A = S

|n|
(ẑn)(ẑ × n)

(ẑ × n)2
(8)

describes the same monopole with the same flux quantized
by the microscopic spin magnitude S. In conclusion, we are
free to average out small fluctuations n̂i → n and accordingly
renormalize all couplings for the softened spins in order to
obtain the nominal form of the coarse-grained action written
above.
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The coarse-grained equation of motion for low-energy spin
waves is generally

∂na

∂t
J ab = −[K ∇2na + μBa + · · · ]

(
δab − nanb

|n|2
)

(9)

and specifically

∂n
∂t

d=3−−→ 1

S|n|2 n × (K ∇2n + μB + · · · ) (10)

in d = 3 dimensions. The classical solution for small-
amplitude (δn 	 n0) spin waves in d = 3 and magnetic field
B = Bẑ

n(�r, t ) = n0ẑ + δn(x̂ cos θ (�r, t ) + ŷ sin θ (�r, t )),

θ (�r, t ) = θ0 − μB

n2
0S

t + �k�r − ωt, ω = K

n0S
k2 (11)

illustrates both the wave motion and Zeeman precession.
These equations show that the dynamics of a ferromagnet

is nonrelativistic. The spin-wave excitations have gapless
spectrum in spontaneously magnetized states (B = 0), with
d − 1 degenerate polarizations. Applying a magnetic field
B 
= 0 gaps all spin waves due to |n| = |n0 + δn| → const
through a Zeeman “mass” term 1

2μB(δn)2 for transverse
modes δn ⊥ n0 ‖ B. We generally consider only spin waves
with small amplitudes |δn| 	 n0. Large-amplitude fluctua-
tions are allowed only at large scales in the continuum limit,
so that the coarse-grained field n remains locally meaningful
even if it is disordered at global scales.

B. Low-energy degrees of freedom in Spin(d ) antiferromagnets

The microscopic imaginary-time action for antiferromag-
netically (AF) correlated spins on a lattice is given by (1),
but Ki j < 0 changes its continuum limit. Characterizing AF
correlations on either short or long length scales requires more
information than a single reference “magnetization” vector n.
This information has to be represented by dynamical fields
in the continuum limit, some of which might be possible to
discard as high-energy degrees of freedom. Here we identify
the relevant degrees of freedom in various cases of interest.

1. Collinear antiferromagnets

A collinear AF can be described by a rectified staggered
magnetization ŝi = (−1)in̂i, where the sign changes (−1)i

match the staggered orientations of n̂i on lattice sites i. The
coarse-grained field

s = 1

N

N∑
i=1

ŝi (12)

is smooth in the continuum limit, and its spin waves have
d − 1 gapless degenerate polarizations in ordered states which
spontaneously break the spin-rotation symmetry. A micro-
scopic translation of the staggered order that is equivalent to
the global spin flip ŝi → −ŝi reduces to the plain spin flip s →
−s in the continuum limit, so translational invariance also
requires the invariance under s → −s in the effective theory.
The small-amplitude long-wavelength spin waves of s can
never produce ferromagnetic magnetization, so the coarse-
grained dynamics admits an additional magnetization field

m. Microscopically, a small magnetization of fixed-magnitude
spins is always perpendicular to the collinear staggered order,
m ⊥ ŝ. This is easy to see in the Neel state on a d-dimensional
cubic lattice when the spins n̂1 on one sublattice and the spins
n̂2 on the other sublattice cant in arbitrary different directions:

m = n̂1 + n̂2

2
, s = n̂1 − n̂2

2
⇒ ms = 0. (13)

The exchange energy cost of canting in this simple model
with only the nearest-neighbor interaction Ki j = −J is always
found to be

δE

Jd
= 1 + n̂1n̂2 = 2|m|2, (14)

so the magnetization modes are gapped. The orthogonality
m ⊥ s can be relaxed only if the magnitude of spins is
not fixed; this becomes possible after coarse graining, but
the magnitude-changing longitudinal modes always cost high
energy. For these reasons, an external magnetic field B that
induces magnetization m ‖ B favors setting the staggered
moments s perpendicular to B.

The AF field s does not directly couple to the external
magnetic field B, so the number of its gapless polarization
modes is naively independent of B. However, rotating s in the
plane spanned by s and m violates either the condition s ⊥ m
or m ‖ B. The former costs exchange energy and the latter
Zeeman energy:

δE = μB|m|(1 − cos θ ) ≈ μB|m|
2

θ2 ≈ μB

2|m| |δm|2 (15)

for the spin-wave amplitude |δs| ∝ |δm| ≈ |m| tan θ ≈ |m|θ .
Therefore, this spin wave becomes gapped, which leaves
behind d − 2 gapless modes. The precession of s is formally
captured by a Berry connection gauge field A ∝ s × B in the
effective action (which we show in Sec. II D), but this does
not affect the spectrum because an isolated spin does not
have intrinsic kinetic energy. Namely, we can freely boost the
action into the rotating “precession” frame: the action remains
the same by the rotation invariance while the precession gets
removed, so we recover the original spin waves for staggered
spins. By symmetry, we expect this conclusion to hold in any
number of dimensions d .

2. Coplanar antiferromagnets

If the “plane” manifold spanned by all staggered spins
in a representative microscopic cluster (e.g., a unit- cell)
is p dimensional, then we can use p mutually orthogonal
smooth vector fields sk (k = 1, . . . , p) to describe it in the
continuum limit. The staggered spins σ i on the sites of the
cluster centered at a continuum position �r are site-dependent
linear combinations of the smooth fields at �r:

σ i =
p∑

k=1

Ck,i sk . (16)

A uniform configuration of orthogonal sk reproduces the clas-
sical ground state of a commensurate antiferromagnet. The
exchange interactions between spins define only the micro-
scopic spin texture within the p-dimensional manifold, not the
manifold orientation in the d-dimensional space. Therefore,
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PREDRAG NIKOLIĆ PHYSICAL REVIEW B 102, 075131 (2020)

rotational symmetry protects

Nd,p =
(

d

2

)
−
(

d − p

2

)
= d (d − 1) − (d − p)(d − p − 1)

2

= 2d − p − 1

2
p (17)

low-energy spin-wave modes, which are gapless in AF-
ordered phases. We counted the number of independent ro-
tations that transform at least one of the sk vectors, knowing
that any such rotation is specified by a 2-plane that has some
overlap with the p-dimensional AF manifold.

Chiral paramagnetic states of matter can arise when the
dynamics partially (or completely) restores the rotational
symmetry. Consider the antisymmetric tensor

Sa1...ap =
1...p∑
P

(−1)P
p∏

k=1

saP (k)

k (18)

constructed from the vectors sk . In this notation, we sum over
all permutations P of p elements, and denote the parity of a
permutation by (−1)P . If the fluctuations destroy the AF cor-
relations even at relatively short coarse-graining length scales,
then the fields sk cease to describe any aspect of low-energy
dynamics. However, the microscopic spins can still main-
tain long-range correlations that are naturally described by
Sa1...ap . The antisymmetric tensor Sa1...ap itself becomes a low-
energy smooth field in these circumstances. Mathematically,
Sa1...ap defines an oriented p-dimensional manifold embedded
in the d-dimensional space. Sa1...ap transforms nontrivially
under some rotations, so it carries angular momentum. The
spin-rotation symmetry protects a spin-wave mode for every
2-plane ab that harbors a nontrivial rotation of the order
parameter Sa1...ap :(

p∏
i=1

Raibi
ab

)
Sb1...bp 
= Sa1...ap . (19)

If the ab 2-plane has no overlap with the manifold of Sa1...ap

spanned by its indices, then the rotation does not impact
Sa1...ap . The same is true if the ab 2-plane is completely em-
bedded in the manifold of Sa1...ap ; an antisymmetric tensor is
isotropic within the manifold it defines, so it remains invariant
under such rotations. But, if we fix b = ai then there are d − p
choices for a 
= {a1 . . . , ap}, yielding

N ′
d,p = p(d − p) (20)

manifold-tilting spin-wave modes. There are d − 1 modes for
the collinear order p = 1, and 2 modes for the coplanar chiral
order in d = 3 dimensions. Note that the partial restoration of
the rotation symmetry gaps out the spin waves of the vectors
sk (k = 1, . . . , p) constrained to the p-dimensional manifold,
and their number p(p − 1)/2 is precisely the difference be-
tween (17) and (20).

As before, we can introduce an independent gapped mag-
netization field m in the continuum limit and expect it to be
perpendicular to the AF plane:

(∀ k) masa
k = 0, maSb1...bk−1abk+1...bp = 0. (21)

Deviations from this involve costly longitudinal modes when-
ever the effective action for the staggered spins has a non-

magnetized classical ground state, which is the case by defini-
tion in the considered rotation-invariant theories. Namely, the
staggered spins have no reason to make a compromise with an
external magnetic field B regarding their preferred ordering.
Being unmagnetized, they are effectively decoupled from B
and merely give up some of the ordering amplitude to allow
building up a small magnetization m ‖ B. The pinned spin
magnitude then ensures the orthogonality (21). The presence
of B 
= 0 gaps out p spin-wave modes whose fluctuations
violate this orthogonality. Note that local spin anisotropy can
spoil the condition (21) in the ground state.

3. Further generalizations

A noncoplanar AF can be viewed as a special case of a
“coplanar” AF whose ordered Spin(d ) spins in a unit cell span
a (p = d)-dimensional manifold. The corresponding rank-d
antisymmetric tensor Sa1...ad is equivalent to a scalar with-
out low-energy dynamics, but we generally have d degrees
of freedom sk that describe the rigid spin texture. There
are d (d − 1)/2 low-energy spin-wave modes in AF-ordered
states.

Some ordered states of lattice spins may spontaneously
break a discrete symmetry, for example, a point-group sym-
metry of the lattice, beyond what can be represented with a set
of smooth fields sk . If that happens, then we must introduce
one or more discrete variables qk that describe the discrete
symmetry breaking. These variables become fields in the
effective theory, and their fluctuations relate to the dynamics
of domain walls. Ultimately, the discrete nature of qk needs to
be softened in order to construct the continuum limit, but this
softening should occur at larger length and time scales than
the coarse graining of the spin variables sk and m. We will not
discuss this further, but keep in mind that the spin fields could
be coupled to additional fields.

Frustrated magnets can produce various low-energy modes
that must be associated with local coarse-grained cells in the
continuum limit, and hence described by separate emergent
fields, which can be even continuous. This also goes beyond
the scope of the present discussion. We will not consider in
this paper any kind of dynamics with large spin fluctuations
at short scales, including resonating-valence-bond and U(1)
spin liquids. Still, the theories we obtain will be able to
describe the spin liquids with large-scale fluctuations, which
can carry unconventional topological orders associated with
the dynamics of monopoles and hedgehogs [1].

C. Spatial and temporal Berry connections

In order to derive the effective continuum limit action Seff,
we first need to separate the smooth sk, m, and microscopic
δni fluctuations of lattice spins:

n̂i = ni + δni, ni =
p∑

k=1

Ck,i sk + m. (22)

The smooth fields are extracted from the microscopic ones
by averaging or coarse graining over the clusters of N sites
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surrounding the continuum position �r:

m = 1

N

N∑
i=1

ni , sk = 1

N

N∑
i=1

C−1
k,i (ni − m). (23)

At this stage, sk, m depend both on �r and the lattice site
within the cluster, but the latter dependence is weak, which
we indicate by suppressing the site index. The smooth fields
sk, m have non-negligible Fourier transform amplitudes only
at wave vectors |k| � a−1N−1/p defined by the cluster size N
and the lattice constant a. Larger wave vectors are collected
into δni and integrated out in order to obtain the effective
action:∫

Dn̂i e−S[n̂i] =
∫

Dδ niDskDm e−S[sk ,m]−δS[sk ,m,δni]

=
∫

DskDm e−Seff[sk ,m].

We will postpone this integration to Sec. II D, and derive here
only the “mean-field” part S[n] of the effective action.

In order to obtain a manifestly translation-invariant effec-
tive theory, we must insist that the coefficients Ck,i be periodic
on the lattice, i.e., depend on the lattice site index i only
relative to the local coarse-graining cluster. Ideally, a cluster
should be at least large enough to have zero net magnetization,
and it can be larger than one unit cell of the classical staggered
AF order. However, the cluster size is limited from above by
the energy scale of fluctuations δni that we wish to integrate
out. Hence, zero-cluster magnetization is not an option in
incommensurate antiferromagnets. The coarse-grained fields
still depend on the continuum position �r, but the resolution of
�r is reduced down to the scale of N lattice sites.

The continuum limit of the mean-field spin exchange
Lagrangian “density”

Li = −1

2

∑
j∈i

Ki jnin j (24)

generally involves gauge fields coupled to the spin currents.
Let us examine∑

i

Li = −1

2

∑
i j

Ki jnin j = −1

2

∑
i j

Ki j (|ni|2 + |n j |2)

− 1

2

∑
i j

Ki j (ni − n j )(n j − ni ) + 1

2

∑
i j

Ki jnin j

and define a lattice derivative


δni = ni+δ − ni. (25)

We labeled by δ ≡ j − i the displacements between pairs of
lattice sites, which can have an arbitrary length and direction.
The set of δ can depend on the originating site i inside a peri-
odically repeating unit cell. The symmetry under translations
implies Ki j ≡ Kδ , and K−δ = Kδ by definition. We can now
deduce

Li = −tex|ni|2 + 1

4

∑
δ

Kδ (
δni )
2. (26)

If we substitute (22) here, we get


δni =
p∑

k=1

(Ck,i+δ − Ck,i )sk +
p∑

k=1

Ck,i+δ
δsk + 
δm

and hence

1

N

N∑
i=1

(
δni )2 =
∑

k

tk|sk|2 + (
δm)2 +
∑

kl

K̄kl 
δsk 
δsl

+ 2
∑

l

Āl,δ 
δsl + O
(

3

δ

)
, (27)

with

K̄kl = 1

N

N∑
i=1

Ck,iCl,i,

Āl,δ[sk] = 1

N

N∑
i=1

p∑
k=1

(Ck,i+δ − Ck,i )Cl,i+δ sk. (28)

Coarse graining eliminates all mixing between m and sk

because the staggered spins (the linear powers of Ck,i) average
out to zero.

The quantities Āl,δ[sk] act as spin-dependent “gauge fields”
and generally have both “longitudinal” (parallel to sl ) and
“transverse” (perpendicular to sl ) parts. It is useful to un-
derstand the physical consequences of the longitudinal parts
before continuing with the continuum limit construction. As a
simple example, consider the collinear Neel order on the cubic
lattice with only the nearest-neighbor exchange coupling and
no net magnetization. The staggered spin manifold is p =
1 dimensional. Substituting Ci ≡ C1,i = (−1)ix+iy+··· in (28),
with (ix, iy, . . . ) being the integer coordinates of the site i,
quickly reveals K̄ ≡ K̄1,1 = 1 and

Āδ[s] = [1 − (−1)δx+δy+···]s
nearest−−−−−→

neighbor δ
2s. (29)

The gradient part of the lattice Lagrangian “density” (26) con-
tains only the nearest-neighbor terms (δ ∈ n.n.) and averages
to (27). Dropping the fixed |s|2 initially,

Li = K

4

∑
δ∈n.n.

(
δni )
2 → K

4

∑
δ∈n.n.

(
δs + Āδ )2

= K

4

∑
δ∈n.n.

(
δs + 2s)2 = K

4

∑
δ∈n.n.

(4|s|2 − |
δs|2) (30)

(see Fig. 1). The gradient coupling for the smooth spin-wave
field is now positive because the exchange coupling K is neg-
ative in antiferromagnets. Note that the long-wavelength spin
waves with small wave vectors 
δ → kδ cost least energy.
However, this is a staggered wave vector; the microscopic
wave vector corresponding to kδ → 0 is k → a−1π , so the
spin waves of a Neel antiferromagnet have minimum energy
at the first Brillouin zone boundary. This is the only physical
effect of the purely longitudinal Āδ ‖ s.

Generally, we can separate the longitudinal ĀL
δ ‖ s and

transverse ĀT
δ ⊥ s parts of the “gauge field” associated with

any smooth spin field s ≡ sk:

ĀL
δ = 1

|s|2 s(sĀδ ), ĀT
δ = Āδ − ĀL

δ . (31)
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FIG. 1. A visualization of Eqs. (30), (31), and (32). The two solid
radial lines s = |s| represent the directions of the smooth field s on
neighboring lattice sites in a snapshot of a spin wave.

We temporarily make the analogous decomposition of 
δs,
noting that

|
δs| = 2|s| sin θ,


δsL = − s
|s| |
δs| sin θ = −|
δs|2

2|s|2 s,

|
δsT | = |
δs| cos θ = |
δs| + O(|
δs|3) (32)

(see Fig. 1). Then, writing Kδ → −κ we have

−κ (
δs + Āδ )2 = −κ (Āδ )2 − κ (
δs)2 − 2κĀT
δ 
δsT

+ κ
∣∣ĀL

δ

∣∣ |
δs|2
|s| + O(|
δs|3)

= κχ + κ

η

(

δs − ηĀT

δ

)2 + O(|
δs|3),

(33)

where

η =
(∣∣ĀL

δ

∣∣
|s| − 1

)−1

,

χ = −∣∣ĀL
δ

∣∣2 −
∣∣ĀL

δ

∣∣∣∣ĀL
δ

∣∣− |s|
∣∣ĀT

δ

∣∣2. (34)

We see that η > 0 turns a negative antiferromagnetic ex-
change coupling Kδ = −κ < 0 into a positive gradient cou-
pling κ/η > 0 for the smooth fields. The residual low-energy
dynamics of staggered spins is also shaped by an emergent
transverse gauge field −ηAT

δ , which can be now antisym-
metrized to make a spatial vector

A(δ) = −η

2

(
ĀT

δ − ĀT
−δ

)
(35)

since 
δ = −
−δ cancels out the symmetric component from
the action.

The last step of taking the continuum limit is the averaging
of (26) over the site displacements δ. We replace


δs = a δ j∂ js, (36)

where a is the lattice constant, and then sum over δ. Here,
j is the spatial index summed over independent directions
x, y, z, . . . , and δ j is the signed two-site displacement mea-
sured in lattice constants along the spatial direction j. This
average is weighted by the exchange couplings Kδ . The ensu-
ing gradient terms in the coarse-grained Lagrangian density of
an isotropic system are

Lg → 1

2

p∑
k,l=1

Kkl

(
∂ js

a
k

)(
∂ j s

a
l

)+
p∑

k=1

Aa
k, j∂ j s

a
k + (∂ j m)2.

If not already diagonal, the quadratic part involving the anti-
ferromagnetic fields sk can be diagonalized with an orthogonal
transformation

sa
k →

p∑
l=1

Ukl s
a
l (37)

that preserves the norm and orthogonality of the vectors sk .
The gradient Lagrangian density simplifies into

Lg = 1

2

p∑
k=1

Kk (∂ jsk + Ak, j )
2 + (∂ jm)2 (38)

with an adapted form of the gauge field in the new basis. The
effective Lagrangian density also needs to control the softened
magnitudes and orthogonality of the smooth fields through the
couplings (t, u,w > 0)

Lint =
p∑

k=1

(−t |sk|2 + u|sk|4 + · · · ) + w
∑
k 
=k′

|sksk′ |2. (39)

After absorbing the longitudinal parts as detailed above,
the quantities Ak, j[sk] are transverse gauge fields both in or-
dinary space and spin space. They add spatial components to
the “temporal” Berry connection A ≡ A0 featured in (1), and
thus complete the definition of a full gauge field Aμ coupled to
spins. The presence of Aμ 
= 0 generally leads to nonuniform
orders of the smooth fields, so one should obtain Aμ = 0 in
all commensurate antiferromagnets. This is discussed more
in Sec. II C 2. The condition Aμ = 0 can be even used to
determine the spin configuration that minimizes the classical
ground-state energy in commensurate antiferromagnets, in
other words, to calculate Ck,i in (22).

In summary, the effective theory is constructed from a
microscopic lattice model by first finding the static spin
configuration that minimizes the classical exchange energy on
the lattice. Using this information, one parametrizes the local
staggered spin configuration with a set of smooth vector fields,
calculates (27) and (28), extracts the transverse spatial Berry
connections, and eventually obtains the continuum limit (38)
of the exchange interactions. The procedure may seem com-
plicated, but it is straightforward and universally applicable
to all types of unfrustrated magnets. The main benefits of the
presented general exercise are the qualitative characterization
of the spin-wave dynamics linked to the microscopic model,
and the realization that nontrivial gauge fields dependent on
the smooth fields can shape this dynamics in noncollinear
incommensurate antiferromagnets.
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Now, let us coarse grain the “mean-field” Berry’s phase
action

SB =
∫

dτ

[
−i

∑
i

∂ni

∂τ
A(ni )

]
(40)

which obtains from the “temporal” component of the Berry’s
connection

Aa(n̂i ) = i〈n̂i |
∂

∂ n̂a
|n̂i 〉 → Aa(ni ) ≡ Aa

i (41)

when we analytically continue it to the vector space of soft-
ened lattice spins n̂i → ni. If we split the Berry connection
Ai = Am;0 + As;0;i into its ferromagnetic Am;0 and staggered
As;0;i parts

Am;0 = 1

N

N∑
i=1

Ai , As;0;i = Ai − Am;0, (42)

then Am;0 is approximately site independent and As;0;i aver-
ages to zero within a coarse-graining cluster. The continuum
limit of the mean-field Berry’s phase takes the general form

SB →
∫

dτ dd r

(
−i

∂m
∂τ

Am;0 − i

〈
∂σ i

∂τ
As;0;i

〉)
, (43)

where σ i = ni − m is the staggered spin component at site i,
and the average is carried out over a coarse-graining cluster.
The magnetization part of the Berry phase has the same form
(6) as in pure ferromagnets, and we only need to further
analyze the staggered part.

In a general d-dimensional antiferromagnet, we need d
parameters α1(�r), . . . , αd (�r) to specify a smooth deformation
δn(�r) of the classical spin texture: d − 1 parameters determine
a rotation axis, and one parameter specifies the spin-rotation
angle of the local coarse-graining cluster. The coarse-grained
Berry phase Lagrangian density changes by

δLB = − i

N

N∑
i=1

[
∂na

i

∂τ
J ab(ni )δnb

i

]
= −i

d∑
k,l=1

C̃kl
∂αk

∂τ
δαl

(44)
due to a deformation δαk of the given lattice spin ni configu-
ration. We will show next that the scalar coefficients

C̃kl = 1

N

N∑
i=1

J ab(ni )
∂na

i

∂αk

∂nb
i

∂αl
(45)

vanish at least in d = 3 dimensions when the coarse-graining
cluster has zero magnetization:

N∑
i=1

ni = 0. (46)

If δLB vanishes as a consequence of C̃kl → 0, then SB has
an unobservable constant value in all smooth deformations of
the classical antiferromagnetic order. The ensuing mean-field
temporal Berry connection for the smooth fields sk is zero.

1. Berry phase of antiferromagnets in d = 3 dimensions

Here, we prove that the coarse-grained Berry phase (43)
vanishes in any commensurate three-dimensional antiferro-
magnet whose classical ground state has zero magnetization.
A nontrivial Berry phase appears only when the system be-
comes magnetized. Conceptually, one can consider a cluster
of N lattice spins

n̂i = x̂ sin θi cos φi + ŷ sin θi sin φi + ẑ cos θi, (47)

that satisfy (46), and rotate it rigidly on a closed trajectory
in spin space. Each spin ni of the cluster traces out a loop
on the unit circle which is seen through a solid angle �i. The
total Berry phase (C23) of all cluster spins accumulated in this
motion is

SB = −S
N∑

i=1

�i = −S
N∑

i=1

∮
dτ n̂i

(
∂n̂i

∂τ
× δn̂i

)
→ 0 (48)

as a result of (46). This is easy to see in collinear antiferro-
magnets by placing only two spins n and −n in a cluster and
rotating them rigidly in a loop.

In general noncollinear cases, we proceed with a formal
calculation. An arbitrary cluster spin rotation in d = 3 dimen-
sions can be specified by a rotation axis unit vector

ζ̂ = x̂ sin α cos β + ŷ sin α sin β + ẑ cos α (49)

and a rotation angle γ . The lattice spins ni of a cluster rotate
into R̂αβγ ni given by

Rab
αβγ = ζ̂ aζ̂ b − εabcζ̂ c sin γ + (δab − ζ̂ aζ̂ b) cos γ . (50)

The scalars (45) that appear in (44) are specialized to d = 3
with J ab(n̂) = Sεabcn̂c and computed to be

C̃αβ,i = 1

N

N∑
i=1

4 sin α sin2
(γ

2

)
[sin α sin θi cos(φi − β ) + cos α cos θi],

C̃βγ ,i = 1

N

N∑
i=1

2 sin α sin
(γ

2

){
cos

(γ

2

)
[cos α sin θi cos(φi − β ) − sin α cos θi] − sin

(γ

2

)
sin θi sin(φi − β )

}
,

C̃γα,i = 1

N

N∑
i=1

{
2 sin2

(γ

2

)
[cos α sin θi cos(φi − β ) − sin α cos θi] + sin γ sin θi sin(φi − β )

}
.

Every term in these expressions contains as a linear factor some projection of the lattice spins n̂i subjected to a “global” z-axis
rotation by the angle β:

n̂′
i = x̂ sin θi cos(φi − β ) + ŷ sin θi sin(φi − β ) + ẑ cos θi.
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The condition (46) implies that each projection of n̂′
i averages

out to zero by coarse graining, so (44) vanishes in generic
antiferromagnets whose classical ground state has no net
magnetization.

2. Incommensurate and other large-scale antiferromagnets

The size N of a coarse-graining spin cluster is limited from
above by the desire to capture the low-energy dynamics using
a small number of smooth fields. If a cluster is too large, then
it could support cheap internal fluctuations which look like
local excitations instead of waves after coarse graining. This
presents a problem when we want to describe an incommen-
surate antiferromagnet without magnetization: it may take a
very large N to reduce the net magnetization of a classically
ordered cluster below a predefined small magnitude. Even
commensurate orders with a very large unit cell may have the
same problem. We must adapt our approach in such cases, and
we already have all the needed ingredients.

We shall keep the benefits of a simple effective theory by
coarse graining on reasonably small clusters. The price to pay
is having nonuniform ordered states of the smooth fields sk

beyond the coarse-graining length scale, and a finite cluster
magnetization m 
= 0 even in the absence of a magnetic field
B = 0. The magnetization averages to zero on macroscopic
scales if B = 0, so it cannot be uniform. The fixed dimen-
sionality p of the staggered spin manifold requires a rigid
relationship between m and sk , which can be written as a
linear combination

m =
p∑

k=1

Mksk (51)

and enforced dynamically in the effective action [the term
vinc in Eq. (65)]. The necessity of nonuniform sk, m ordering
in classical ground states implies that the gradient couplings
for these smooth fields must contain nontrivial transverse
gauge fields A j , which can be determined using the procedure
derived earlier in this section. A temporal Berry connection
A0 will necessarily affect the magnetization dynamics, and
in that indirect sense influence the fluctuations of staggered
moments. The effective action can be ultimately expressed
either in terms of all sk , or in terms of m and all-but-one sk .

The interesting physical consequence is that antiferromag-
nets with incommensurate classical orders or other large-scale
spatial modulations (such as skyrmions and hedgehogs) have
intricate dynamics that requires gauge fields in the continuum
limit description. The Berry connection gauge field Aμ has
the same units as momentum, and needs to be much smaller
than the momentum cutoff of the theory (finding a too large
gauge field in the calculations described above indicates an
incorrect assumption about the classical ground-state spin
configuration). We will show in Secs. II F and II G that Aμ

becomes a non-Abelian gauge field coupled to spin currents.
Dzyaloshinskii-Moriya (DM) interaction also generates an
independent vector gauge field Aμ. It will later become ap-
parent that Aμ is just the first member of a tensor gauge-
field hierarchy. These additional gauge fields describe chiral
spin interactions and, together with the DM interaction, bear
responsibility for any topologically nontrivial aspects of spin
dynamics.

D. Dynamics of staggered spins

Here we scrutinize small spin fluctuations δni at micro-
scopic length scales beyond the local background order ni

that can be parametrized by smooth vector fields. Writing the
microscopic lattice spins as

n̂i = ni + δni, ni =
p∑

k=1

Ck,isk + m, (52)

we will integrate δni using the Gaussian approximation and
obtain corrections to the effective theory for the smooth fields.

We begin by expressing the action S = S0 + S′ + Sint as a
sum of the mean-field S0 and fluctuation S′ terms:

S0 =
∫

dτ

[
−i

∑
i

∂ni

∂τ
A0 − 1

2

∑
i j

Ki jnini −
∑

i

Bni

]
,

S′ =
∫

dτ

{∑
i

[
−i

∂na
i

∂τ
J ab −

∑
j∈i

Ki jn
b
j − Bb

i

]
δnb

i

− 1

2

∑
i j

Ki jδnb
i δnb

j + · · ·
}
.

The “interaction” part Sint is responsible for keeping the
softened spin magnitude |ni| pinned at an optimum value: it
gaps out all “longitudinal” spin modes. We used (2) to obtain
the linear correction of the action. The featured J ab and Aa

are analytically continued to the vector space of the softened
spins ni, and the dots represent the quadratic terms that
originate from the Berry’s phase and all higher-order terms.
Given the correct parametrization (52), the complete quadratic
couplings for δni are ensured to have positive eigenvalues
which stabilize the fluctuations of δni.

The smooth fields sk, m and their fluctuation corrections

δni =
p∑

k=1

Ck,iδsk + δm (53)

in (52) are separated at the level of Fourier transform:
the smooth fields are collected from “small” wave vectors
|k| < ξ−1 while the corrections are comprised of “large”
wave-vector modes with |k| > ξ−1, where ξ is the coarse-
graining cell size. The fluctuation corrections live at high
energies by the virtue of having small wavelengths, and there
is hardly any relevant distinction between their longitudinal
and transverse modes. The spatial correlations between δni are
limited to the length scale ξ , so integrating out δni generates
couplings between the smooth fields which are effectively
local on the length scales ξ :

S′ → −D
∫

dτ
∑

i

X a
i X a

i =
∫

dτ
∑

i

(L1 + L2 + L3 + L4),

(54)
where

X b
i = −i

∂na
i

∂τ
J ab(ni ) −

∑
j∈i

Ki jn
b
j − Bb

i . (55)

We will now calculate the nonconstant coarse-grained contri-
butions to S′ that obtain from squaring X b

i (the site index of
smooth fields will not be suppressed).
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The first ingredient we need is

∑
j∈i

Ki jn
a
j = K̄ma

i +
∑

δ

Kδ

p∑
k=1

Ck,i+δ
sa

k,i

+
∑

δ

Kδ 
δma
i +

∑
δ

Kδ

p∑
k=1

Ck,i+δ

δsa

k,i

= K̄ma
i +

∑
δ

Kδ

p∑
k=1

Ck,i+δ
sa

k,i

+ 1

2

∑
δ

Kδ 
2
δma

i + 1

2

∑
δ

Kδ

p∑
k=1

Ck,i+δ

2

δsa
k,i

+1

2

∑
δ

Kδ

p∑
k=1

Ck,i+δ

2δsa

k,i, (56)

where K̄ = ∑
δ Kδ . In addition to the discrete derivative


δni = ni+δ − ni, we introduced the following discrete oper-
ators:


2
δni = ni+δ + ni−δ − 2ni, 
2δni = ni+δ − ni−δ

that transform into derivatives


2
δ = 
δ + 
−δ → a2∂2

j , 
2δ = 
δ − 
−δ → 2a∂ j

in the continuum limit (a is the lattice constant). Note that

2δ is involved in a construct that turns into a scalar product
δAj∂ j in the continuum limit. Substituting (56) into X b

i X b
i and

averaging over spin clusters gives us immediately the first
fluctuation correction

L1 = −2DBa

⎛⎝∑
j∈i

Ki jn
a
j

⎞⎠ → −δμBm + K ′
m

2
B∂2

j m

→ −δμBm. (57)

All terms with an odd number of Ck,i factors average to zero
under coarse graining. One of the leftover terms couples the
magnetic field B to the magnetization Laplacian, and vanishes
under the assumption that B is uniform (after an integration
by parts). Hence, the coarse graining of L1 only renormalizes
the magnetic moment μ.

The term

L2 = −D

⎛⎝∑
j∈i

Ki jn
a
j

⎞⎠⎛⎝∑
j∈i

Ki jn
a
j

⎞⎠
→ −δtm|m|2 −

p∑
k,l=1

δts;kl sksl −
p∑

k=1

δKs;k

2
(∂ j sk )2

− δKm

2
m∂2

j m −
p∑

k,l=1

δKs;kl

2
sk∂

2
j sl −

p∑
k=1

δAk, j∂ jsk (58)

coarse grained in a similar fashion is a renormalization of
the gradient and mass terms for the smooth fields. We can
combine these corrections with the “mean-field” terms (38) in

S0 and rediagonalize the gradient couplings of the staggered-
spin fields.

Next, we turn to the fluctuation corrections that involve
the Berry phase. We may express the angular momentum
dependence on spin in a generic fashion

J ab(n) = J abcnc (59)

using a constant tensor J abc = −J bac. This is validated by
the fundamental invariance under rotations. No vectors other
than n are allowed to appear in this expression, and any
nonlinearity can appear only as a function of |n|, which is
irrelevant because the magnitude of n is dynamically pinned.
Then, we find

L3 = DJ acJ bc ∂na
i

∂τ

∂nb
i

∂τ

→ DJ acqJ bcr

〈(
mqmr +

p∑
k,k′=1

Ck,iCk′,is
q
ksr

k′

)

×
(

∂ma

∂τ

∂mb

∂τ
+

p∑
l,l ′=1

Cl,iCl ′,i
∂sa

l

∂τ

∂sb
l ′

∂τ

)

+ 2
p∑

k,l=1

Ck,iCl,i

(
mqsr

k + mrsq
k

)∂ma

∂τ

∂sb
l

∂τ

〉
. (60)

The averaging covers N sites of a local coarse-graining cluster.
In d = 3 dimensions we have J abc = Sεabc, and J acqJ bcr =
S2(δabδqr − δarδbq) yields

L3 → DS2

〈
−4Pab

σ

∂2ma

∂τ 2
mb +

(
|m|2 +

p∑
k=1

C2
k,i|sk|2

)

×
(∣∣∣∣∂m

∂τ

∣∣∣∣2 +
p∑

l,l ′=1

Cl,iCl ′,i
∂sl

∂τ

∂sl ′

∂τ

)〉
. (61)

Note that m · (∂m/∂τ ) = σ i · (∂σ i/∂τ ) = 0 for transverse
modes. The first term in L3 contains the operator

Pab
σ = 1

N

N∑
i=1

σ a
i σ b

i = 1

N

N∑
i=1

p∑
k,l=1

Ck,iCl,is
a
k,is

b
l,i

that projects onto the spin manifold of staggered spins σ i =
ni − mi and introduces a bias within the manifold when
the microscopic staggered spins σ i do not evenly sample
all spatial directions. The derivation steps leading to this
term

4(mσ i )

(
∂m
∂τ

∂σ i

∂τ

)
−
(

∂ (mσ i )

∂τ

)2

→ −4(mσ i )

(
σ i

∂2m
∂τ 2

)
include an integration by parts (arrow), and the observation
that the factors mσ i are rigidly fixed at low energies in all
types of antiferromagnets. In collinear and coplanar antifer-
romagnets, mσ i → 0 makes the Pab

σ term vanish, while in
noncoplanar magnets the magnetization likes to point in a
unique optimal direction relative to the local staggered spins
(with all magnetization modes pushed to high energy). Taking
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the continuum limit yields

L3 → δK0m

2

(
∂m
∂τ

)2

+
p∑

k,l=1

δK0s;kl

2

∂sk

∂τ

∂sl

∂τ

+
p∑

k=1

δK0m;k

2

(
sk

∂m
∂τ

)2

. (62)

The last term comes from Pab
σ and exists only in noncoplanar

magnets; its possible anisotropy is tied only to the local
ordering of staggered moments. The time derivatives of stag-
gered moments appear mixed, but it is always possible to
diagonalize them. If we first diagonalize the spatial gradient
terms to define the smooth fields sk in (52), as discussed
in Sec. II C, and further renormalize sk to ensure the same
gradient coupling constant for all k modes, then we can safely
diagonalize the quadratic time derivatives without spoiling
the spatial gradients. This redefines the smooth fields sk and
accordingly adjusts their quadratic and quartic nongradient
couplings in the action.

The last fluctuation correction affects the Berry connec-
tions of staggered spins and magnetization:

L4 = −2iD
∂na

i

∂τ
J ab

(
Bb

i +
∑
j∈i

Ki jn
b
j

)

→ −2iDJ abc

〈(
(mc ∂ma

∂τ
+

p∑
k,l=1

Ck,iCl,is
c
k

∂sa
l

∂τ

)

×(Bb + K̄mb) +
∑

δ

Kδ

p∑
k,l=1

Ck,iCl,i+δ

×
(

mc ∂sa
k

∂τ
+ sc

k

∂ma

∂τ

)(
sb

l + 1

2

2δsb

l

)〉

→ −i
∂m
∂τ

δAm;0 − i
p∑

k=1

∂sk

∂τ
δAs;k0. (63)

We have neglected the combinations of derivatives beyond
quadratic order. Specifically, in d = 3 dimensions,

δAm;0 = αm(B × m) + βkl, j (∂ jsl × sk ),

δAs;k0 =
p∑

l=1

[(αs;klB + βs;kl m) × sl + βkl, j (∂ jsl × m)]

(64)
with coefficients αm, αs;kl = αs;lk, βs;kl = βs;lk and βkl, j =
−βlk, j obtained through coarse graining. The physical effect
of these Berry connections is the introduction of precession
for staggered spins and a renormalization of the magnetization
precession rate. Both are found to depend on the wave vector
and polarization of spin waves in a manner that reflects the
space-group symmetries of the staggered order.

Collecting all findings so far gives us the following qualita-
tive form of the minimal effective action for antiferromagnets:

Seff =
∫

dτ dd r

{ p∑
k=1

Ks;k

2
(∂μsk + As;kμ)2

+
p∑

k=1

(−ts|sk|2 + us|sk|4 + · · · ) + ws

∑
k 
=k′

|sksk′ |2

+ Km

2
(∂μm + Amμ)2 − μBm + tm|m|2

+wm

p∑
k=1

(skm)2 + vinc

(
m −

p∑
k=1

Mksk

)2

+ · · ·
}
.

(65)

At this point, we are keeping only the essential features
needed for describing the universal properties of antiferro-
magnets, and neglecting many details contained explicitly
or implicitly in the previous derivations from a microscopic
model. If desired, these details can be readily considered to
obtain the accurate coupling constants, spin-wave velocities,
and gauge fields: this is useful for calculating the spin-wave
spectra and comparing to experiments.

Certain detailed conclusions we reached have important
consequences for the universal phase diagram: (1) the number
p of smooth fields sk that describe the dynamics of staggered
spins is equal to the dimension of the staggered spin manifold
(p = 1 for collinear spins, p = 2 for coplanar spins, etc.); the
classical ground-state texture of staggered spins determines
the dispersion and interactions of spin waves; (2) the gapped
magnetization field m is perpendicular to the staggered spin
manifold whenever possible, and can be safely integrated out
unless one wants to study the magnetization of antiferromag-
nets in external magnetic fields; (3) the magnetization Berry
connections are Am;0 
= 0 and Am; j = 0; (4) the staggered
spin Berry connections are As;0 = 0 and As; j 
= 0, although
the former becomes finite for some modes in the presence
of magnetic field or magnetization, and the latter vanishes
in collinear or commensurate antiferromagnets; (5) the Berry
connections generally depend on the smooth spin fields, and
an absence of a temporal Berry connection component renders
the dynamics of the corresponding field relativistic.

E. Chiral fluctuations of the spin manifold

The description of dynamics in the previous sections was
built upon a set of vector fields. Here, we explore gen-
eralizations that involve tensor fields and have the ability
to characterize certain quantum paramagnets. We begin by
introducing an antisymmetric tensor Sa1...ap that defines a
p-dimensional spin manifold of staggered lattice moments.
The smooth mutually orthogonal fields sk (k = 1, . . . , p) that
determine the staggered moments via (16) were free to rigidly
rotate in the earlier setup. Now, we pass that freedom onto
Sa1...ap constructed as (18), and restrict sk to the manifold of
Sa1...ap . The continuum limit Lagrangian density must contain
spin-rotation-invariant terms such as

L =
∑

k

[
Ks;k

2
(∂μsk + Akμ)2 − ts|sk|2 + us|sk|4

]

+ws

∑
k 
=k′

|sksk′ |2 + γ

(
Sa1···ap −

1···p∑
P

(−1)P
p∏

k=1

saP (k)

k

)2

+LDM,

where γ > 0, and the Dzyaloshinskii-Moriya terms LDM,
which stimulate spin chirality, will be introduced in the next
section. The manifold tilting modes are now governed by
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Sa1...ap , and the spin rotations inside the manifold are covered
by sk . Adding gapped magnetization modes to the effective
theory is straightforward.

The tensor gauge fields A
a1...ap
μ are generalized Berry con-

nections. We expect A
a1...ap
μ = 0 in normal circumstances.

However, nontrivial patterns of manifold orientations could be
generated by A

a1...ap
μ 
= 0. For example, the coplanar spin plane

in d = 3 dimensions handled by Sab may be alternatively
described using a dual pseudovector V a = εabcSbc, and it is
possible for V a to develop a hedgehog configuration in space.

If the fluctuations manage to reduce the spin correlation
length to microscopic scales, the resulting dynamics may still
feature long-wavelength fluctuations of the spin manifold field
Sa1...ap . The vector fields sk are gapped in such states, and can
be safely integrated out to reveal an effective theory for the
low-energy tensor modes

L = KS

2

(
∂μSa1...ap + A

a1...ap
μ

)(
∂μSa1...ap + A

a1...ap
μ

)
− tS (Sa1...apSa1...ap ) + uS (Sa1...apSa1...ap )2. (66)

This theory can be applied to study the dynamics of spin
chirality in three-dimensional coplanar magnets. If the spin
orientations are restricted to a plane and not invariant under
an in-plane inversion through a line, then it is possible for
fluctuations to restore the continuous rotation symmetry with-
out restoring the discrete inversion symmetry. An example is
a coplanar antiferromagnet with a 120◦ short-range order on
triangular plaquettes. The inversion symmetry transformation
can be characterized as a change of the plane orientation in the
sense of a cross product: when two vectors s1 and s2 define a
plane, their cross product s1 × s2 defines the plane orientation
and changes sign under inversion. The tensor that captures the
plane orientation Sab = sa

1sb
2 − sa

2sb
1 is equivalent to a pseu-

dovector V a = εabcSbc ∝ εabcsb
1sc

2 in d = 3 dimensions. The
above theory describes the ordering-disordering transitions of
the “chirality vector” V a in coplanar quantum paramagnets.
Note that the spin-rotation symmetry is still broken in the
paramagnetic ordered phase, but reduced from that of an anti-
ferromagnetic ordered phase (there are two instead of three
gapless modes). Both ordered and disordered paramagnetic
phases can be invariant under spatial translations and in-plane
rotations.

F. Dzyaloshinskii-Moriya and other chiral spin interactions

The Lagrangian density can contain additional terms that
violate some of the space-group and point-group symmetries.
Spin(d ) spins in d dimensions can experience a generalization
of the Dzyaloshinskii-Moriya (DM) interaction. If n is a
smooth vector field, its generalized DM interaction has the
following Lagrangian density in the continuum limit:

LDM =
d−1∑
k=1

Dak+1...ad−1
μ1...μk

εa0...ad−1 na0
(
∂μ1

na1
)
. . .

(
∂μk

nak
)

= Dc1...cd−2
μ εabc1...cd−2 na(∂μnb) + · · · . (67)

Specifically, the DM interaction in d = 3 dimensions has the
continuum limit

Di j (ni × n j ) = Di j[ni × (n j − ni )]

→ Dμ[n × (∂μn)] = Dc
μ εabcna(∂μnb). (68)

The chiral coupling on a triangular plaquette in d = 3 dimen-
sions has a similar continuum limit:

D123 n1(n2 × n3) = D123 n1[(n2 − n1) × (n3 − n1)]

= D123 n1(
21n1 × 
31n1)

→ Dμνε
abcna(∂μnb)(∂νnc). (69)

A chiral coupling of a smooth vector field n on a simplex with
n + 1 vertices in d dimensions coarse grains into

Dcn+1...cd−1
01...n εa0...ancn+1...cd−1 na0

0 na1
1 . . . nan

n

→ Dcn+1...cd−1
μ1...μn

εa0...ancn+1...cd−1 na0
0

n∏
i=1

(
∂μi n

ai
)
. (70)

The formal procedure for constructing the continuum limit
is the same as before. We need to represent the microscopic
lattice spins with smooth fields, and replace the discrete
lattice derivatives 
δ = aδ j∂ j with ordinary derivatives ∂ j

before summing over lattice site pairs δ. The microscopic
lattice Lagrangian of a general translationally invariant DM
interaction can be written as

LDM =
∑

i

d−1∑
k=1

∑
{δ}

Dak+1...ad−1
δ1...δk

εa0...ad−1 n̂a0
i

k∏
l=1

(

δl

n̂al
i

)
. (71)

If we substitute (52) here, we will get a “mean-field” part
whose coarse-grained limit contains (67) for every smooth
field sk, m, including mixed combinations of s1, . . . , sp, m
factors denoted by dots:

LDM =
d−1∑
k=1

εa0...ad−1

[
Dak+1...ad−1

m;μ1...μk
ma0

k∏
i=1

(
∂μi

mai
)

+
p∑

l=1

Dak+1...ad−1

s;l;μ1...μk
sa0

l

k∏
i=1

(
∂μi

sai
l

)+ · · ·
]
. (72)

A mixed coupling Dak+1...ad−1
μ1...μk to n factors of sk has to be

computed by averaging a product of n coefficients Ck,i over
a coarse-graining cluster. The inherent nonlinearity of such
averages may allow finite values for some of these couplings
and introduce significant complexity in the exact continuum
limit when p > 1.

The fluctuation part of (71) will be an expansion in powers
of short-wavelength fluctuations δni, which we integrate out.
The fluctuation corrections of the DM Lagrangian contain
various chiral powers of derivatives, which can be interpreted
as currents of higher rank coupled to non-Abelian antisym-
metric tensor gauge fields (see Sec. II G). Considering the
coupling of δni to B and other conventional action terms,
the corresponding fields will be dynamically inserted in the
generated terms upon integrating out δni. We will not further
analyze these fluctuation-generated terms.

G. Canonical formulation

We have derived the effective continuum-limit theory of
spins from a microscopic lattice model. This section ex-
presses the obtained effective theory in a canonical form. The
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canonical field theory is universal: it utilizes spin currents and
higher-rank tensor currents within the couplings shaped by
symmetry instead of any microscopic detail. The canonical
formulation of spin dynamics is useful for a unifying descrip-
tion of all chiral phenomena in spin systems. It will also aid
the construction of more complicated theories of electrons
coupled to local moments in Sec. III.

The continuum-limit Lagrangian density of staggered spins
(and equivalently ferromagnetic spins) contains the following
space and time derivatives:

Ld,s =
p∑

k=1

Ks;k

2

(
∂μsa

k + Aa
s;kμ

)2
. (73)

We expect that the dynamics of staggered spin waves is
relativistic. Let us focus on any particular smooth field flavor
k. The canonical momenta πa

μ corresponding to the canonical
coordinates sa are

πa
μ = δL

δ∂μsa
= Ks

(
∂μsa + Aa

μ

)
. (74)

The Lagrangian density is invariant under local spin rotations

sa → sa + δsa,

Aa
μ → Aa

μ + δAa
μ − εabc1...cd−2 sb∂μδωc1...cd−2 (75)

which are generated by an infinitesimal antisymmetric tensor
δωc1...cd−2 , up to the order of δω2 → 0. Here,

δsa = εabc1...cd−2 sbδωc1...cd−2 ,

δAa
μ = εabc1...cd−2 Ab

μδωc1...cd−2 . (76)

This Spin(d ) symmetry implies a conserved current

jμ ∝ πa
μδsa = Ks εabc1...cd−2

(
∂μsa + Aa

μ

)
sbδωc1...cd−2 .

Given the d (d − 1)/2 degrees of freedom for the choice of the
tensor δω, we may identify d (d − 1)/2 different conserved
currents (selected by δω that takes a nonzero value only for
one combination of its index values):

jc1...cd−2
μ = εabc1...cd−2 sa

(
∂μsb + Ab

μ

)
. (77)

The tensor fields Sa1...ap defined in earlier sections trans-
form nontrivially under spin rotations and hence also carry
conserved spin currents. Their canonical momentum obtained
from (66) is

�
a1...ap
μ = δL

δ∂μSa1···ap
= KS

(
∂μSa1...ap + A

a1...ap
μ

)
(78)

and transformations Sa1...ap → Sa1...ap + δSa1···ap under spin
rotations are

δSa1...ap =
p∑

i=1

εaibic1...cd−2 Sa1...ai−1biai+1...apδωc1...cd−2 . (79)

Noether’s theorem then identifies the conserved spin current

jc1...cd−2
S;μ = εabc1...cd−2

p∑
i=1

Sa1...ai−1aai+1...ap

×(∂μSa1...ai−1bai+1...ap + A
a1...ai−1bai+1...ap
μ

)
. (80)

Note that the spin current is contributed only by the S tensor
components that have exactly one index different than all

c1, . . . , cd−2; only this constitutes a nontrivial rotation of the
spin manifold defined by Sa1...ap .

Now consider the following consequence of (77):

jc1...cd−2
μ jc1...cd−2

μ

= (d − 2)!
[|s|2(∂μsa + Aa

μ

)2 − (
1
2∂μ|s|2 + saAa

μ

)2 ]
→ const × (

∂μsa + Aa
μ

)2 + const. (81)

We assumed that |s| is effectively pinned to a constant and
utilized saAa

μ = 0 for “transverse” Berry connections. From
this we find that the continuum-limit Lagrangian density (73)
can be canonically expressed in terms of the spin currents:

Ld,s =
p∑

k=1

K̃s;k

2

(
jc1...cd−2

s;kμ

)2
. (82)

Similarly, the square of jc1...cd−2
S;μ currents is equivalent to

the gradient term for S provided that |S|2 is fixed. We will
emphasize the gauge structure in subsequent discussions by
defining bare spin currents and spin-current gauge fields for
every smooth field:

jc1...cd−2
μ = εabc1...cd−2 sa∂μsb,

Ac1...cd−2
μ = εabc1...cd−2 saAb

μ. (83)

The canonical Lagrangian density is manifestly a gauge the-
ory in terms of these quantities:

Ld,s =
p∑

k=1

K̃s;k

2

(
jc1...cd−2

s;kμ
+ Ac1...cd−2

s;kμ

)2
. (84)

Note that the spin-current gauge fields are automatically
“transverse” to the spin direction. Couplings between the
spin currents of different fields are allowed, and specifically
there are couplings between the currents of different staggered
moments sk , magnetization m, and staggered manifold tensors
Sa1...ap .

The magnetization modes can be treated with the same
formalism as the staggered spins since quantum fluctuations
generate a second-time-derivative coupling in the coarse-
grained Lagrangian density. However, the dynamics of mag-
netization is dominated by the Berry’s phase with the first time
derivative, and one may choose to neglect the higher deriva-
tives. In that case, the magnetization dynamics is manifestly
nonrelativistic and requires an adjustment of the canonical
formulation. The Berry’s phase Lagrangian density can be
written in real time in a gauge-invariant manner

LBm =
(

∂ϕ

∂ma
+ Aa

m;0

)
∂0 ma, (85)

where ϕ is a pure-gauge part of the Berry connection. The
modified temporal components of the canonical momentum
and conserved current are

πa
m;0 = δL

δ∂0ma
= ∂ϕ

∂ma
+ Aa

0,

jc1...cd−2
m;0 = εabc1...cd−2 ma

(
∂ϕ

∂mb
+ Ab

0

)
. (86)

The obtained temporal current component jc1...cd−2
m;0 is U(1)

gauge invariant, and not parallel to ma.
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The full action is completely independent of ϕ. The formal
presence of the unphysical field ϕ in the gauge-invariant La-
grangian density and measurable currents is unpleasant in the
least. Hence, the coherent-state path integral can be viewed
as not an ideal starting point for dealing with ferromagnets.
Instead, it works better to represent magnetic moments us-
ing spinors of localized fermions, ma = ψ†γ aψ , where the
fermion field operator ψ is treated as a canonical coordinate
in a gauge-invariant Lagrangian density and eventually con-
strained by |ψ†ψ | = 1. The temporal spin-current component,
calculated in Sec. III, becomes

jc1...cd−2
m;0 = εabc1...cd−2J ab(m) (87)

and features the angular momentum expectation value
J ab(m) = ψ†Jabψ that turns into the angular momentum
density in the continuum limit. The analogy to the nonrela-
tivistic charge currents of particles is evident, and the formula
is U(1) gauge invariant without an additional field ϕ.

The spin current (83) is at the bottom of a hierarchy of
antisymmetric tensor currents

jan+1...ad−1
μ1...μn

= 1

n!
εa0...ad−1 sa0

n∏
i=1

(
∂μi

sai
)
. (88)

Together with tensor gauge fields of the same rank, they
describe the flow of topological singular manifolds [1]. In
d = 3 dimensions, for example, the spin currents of particles
ja
μ or localized moments can form vortexlike flows around

line singularities. The current density jμν associated with the
motion of such singular strings needs two space-time indices,
and the gauge field Aμν coupled to jμν has a quantized rank-2
“flux” at the locations of topologically protected hedgehog
defects [1]. We discovered in Sec. II F that the generalized
Dzyaloshinskii-Moriya (DM) interactions (72) contain pre-
cisely these tensor currents in the continuum limit:

LDM = −
d−1∑
n=1

Dan+1...an−1
μ1...μn

jan+1...an−1
μ1···μn

+ . . . . (89)

As argued in Ref. [1], the tensor currents acquire their own
dynamics from the quantum fluctuations of topological singu-
larities, so the DM interactions can be seen as the linear terms
in the gauge-invariant gradient couplings

L′
DM =

d−1∑
n=1

Kn

2

(
jan+1...an−1
μ1...μn

+ Aan+1...an−1
μ1...μn

)2
. (90)

Every DM interaction is effectively a background gauge field
Aan+1...an−1

μ1...μn ∝ −Dan+1...an−1
μ1...μn applied in the system.

We deduced in previous sections how the continuum-limit
vector and tensor gauge fields arise from incommensurate
orders and chiral spin couplings on a lattice. This entails a cer-
tain connection between the gauge fields and magnetic orders.
Even if such a connection were not initially apparent, one can
make it explicit through a singular gauge transformation: start
from a particular magnetic order with nontrivial equilibrium
currents (83) and (88) having only spatial components, then
separate out their topologically nontrivial parts into the gauge

fields, keeping (84) and (90) invariant. The ensuing gauge
fields will carry flux, and the highest-rank flux is localized
and quantized in any magnetically ordered phase by the
πd−1(Sd−1) homotopy group. The gauge fields are linked
across ranks by the virtue of being derived from the same
spin field, but acquire independence if fluctuations destroy
the magnetic order. The remaining smooth currents directly
describe spin waves at rank 1, and topological defect currents
at higher ranks. Now, the gauged dynamics can manifestly
exhibit the non-Abelian and higher-rank generalizations of the
phenomena familiar from the motion of electrons in exter-
nal magnetic fields: spin-momentum locking, chiral response
functions, etc. Magnetic orders that emerge from the fluxes
of these gauge fields can in some cases be viewed as arrays
of topological defects [3], in analogy to Abrikosov vortex
lattices in superconductors. But, this theory is not limited to
ordered phases, it also describes chiral spin liquids featuring
Hall effect and generally magnetoelectric effect.

d = 3 dimensions

In d = 3 dimensions, the ordinary DM interaction intro-
duces a non-Abelian gauge field Aa

μ to spin currents, and the
chiral spin coupling n1(n2 × n3) introduces a rank-2 gauge
field Aμν . A nontrivial flux of these gauge fields will stim-
ulate a crystallization of topological defects in magnetically
ordered phases. Consider such a chiral ordered phase and
extract the topological spin structure from the currents into
gauge fields via a singular gauge transformation. The flux
of the resulting tensor gauge field through closed (sphere)
manifolds

�(S2) = 1

4π

∮
S2

d2x εi jAi j

= 1

4π

∮
S2

d2x εi j
1

2
n(∂in × ∂ jn) (91)

is topologically quantized and reflects the presence of hedge-
hog point defects. The flux of Aμν through an open (plane)
manifold reflects the number of skyrmion lines that cross the
manifold. In any magnetically ordered phase, Aμ and Aμν are
derived from the same magnetic order parameter n and hence
related [1]: the Maxwell coupling of Aμ in the Lagrangian
is linked to the gradient coupling (90) of Aμν . Hence, the
presence of skyrmions in the magnetic ground state Aμν 
= 0
induces a vector gauge potential Aμ 
= 0 with a nonzero flux.
The latter is directly coupled to spin currents and induces
spin-momentum locking of spin waves [77–81].

We will find in Sec. III that the rank-1 (spin-current)
gauge field can be imparted on the local moments from the
microscopic spin-orbit interaction of itinerant electrons. This
correlates the topological dynamics of charge and spin cur-
rents when itinerant electrons coexist with local moments. It
also hints at the microscopic spin-orbit origin of non-Abelian
gauge fields intrinsically presented to local moments (derived
in Appendix D). A broad range of related phenomena, here
universally captured with the help of gauge fields, have been
studied in the recent literature: spin-momentum locking of
spin waves [82–85], protected boundary spin-wave modes
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[86–89], magnon Weyl nodes [90,91], and chiral spin-wave
response to external perturbations [92–95].

III. EFFECTIVE THEORY OF COUPLED ELECTRIC
AND MAGNETIC DEGREES OF FREEDOM

Here we consider the topological dynamics of charged
particles coupled to localized magnetic moments (the topo-
logical magnetism of purely itinerant electrons can be studied
using a simple adaptation of the following theory). Both
degrees of freedom experience gauge fields that can produce
topologically nontrivial states. We will first derive the basic
but general continuum-limit formalism for spinor particles,
starting from a lattice model with arbitrary spin-orbit and
multipole-orbit interactions. Since the analogous formalism
for local moments was derived in Sec. II, we will then proceed
with the analysis of the interactions between the two degrees
of freedom, and the interplay between their topological behav-
iors.

A system of mobile charged particles coupled to localized
spins can be described by the following lattice action:

S =
∫

dτ

[
−i

∑
i

∂n̂i

∂τ
A0(n̂i ) −

∑
i j

Ki j

2
n̂i n̂ j −

∑
i

Bi n̂i

+
∑

i

ψ
†
i

∂ψi

∂τ
−
∑

i j

ti jψ
†
i eiAi j ψ j

+
∑

i

(−μ0ψ
†
i ψi + U (ψ†

i ψi )2) + · · ·
]

+ SK. (92)

The part SK is a Kondo interaction between particles and
spins, which we will discuss in Sec. III B. The particle field
ψ is a Grassmann spinor for fermions or complex spinor
for bosons. The gradient couplings for particles ti j = t ji are
scalars, but the particles are minimally coupled to an external
U(1)×Spin(d ) non-Abelian vector gauge field A which is
represented by a matrix and defined for every pair of lattice
sites i, j:

Ai j = −A ji = ai j +
d∑

n=1

Aa1...an
i j ξn γ a1 . . . γ an . (93)

All gauge-field components Aa1...an
i j are real valued and an-

tisymmetric with respect to their upper indices. A d = 2
example can be found in Refs. [96,97]. The factors

ξn = in(n−1)/2 (94)

keep the matrix Ai j Hermitian despite the anticommutation of
Spin(d ) generators γ a. The U(1) gauge field ai j is dynamical
and reproduces the ordinary electromagnetism of particles.
The non-Abelian gauge fields Aa1...an

i j have no dynamics and
generalize the spin-orbit coupling. We will be particularly
interested in the n = 2 flavor and show that it couples to the
currents of angular momentum in general d dimensions. Not
all flavors 1 � n � d are necessarily independent due to the
“duality” relation

γ bn . . . γ b1γ d+1 = ξd

(d − n)!
εb1...bnan+1...ad γ

an+1 . . . γ ad (95)

derived in Appendix A. Specifically in d = 3 dimensions,
γ 4 = 1 implies that Aa

i j ∼ εabcAbc
i j are equivalent. Analogous

construction in higher representations of the SU(2) group in
d = 3 dimensions comes with a modified relationship (95),
due to {γ a, γ b} 
= δab, and allows us to describe general spin-
multipole-orbit coupling with gauge fields.

A combined topological charge and spin dynamics can
also arise from a single itinerant electron field. The following
discussion can be adapted to this case merely by removing all
intrinsic local-moment terms from (92) that have n̂ displayed.
The field n̂ is to be kept only as an artificial degree of freedom
that derives all of its dynamics from electrons via the retained
Kondo coupling SK. Then, integrating out the particle fields
yields an effective action for the spin dynamics. The generated
spin-action terms can be calculated perturbatively, and some
nonlocal and dissipative couplings will generally emerge in
conducting systems.

A. Gradient coupling

In simplest cases, the gradient term for particles has the
following continuum limit:

−
∑

i j

ti jψ
†
i eiAi j ψ j = −

∑
i j

ti jψ
†
i (1 + iAi j + · · · )ψ j

→
∫

dd r

[
K

2
|(∂ j + iA j )ψ |2 + δt |ψ |2

]
.

(96)

In the second line, the summed index j ∈ {x, y, z, . . . } labels
independent spatial directions. The spatial vector

A j = a

K

∑
δ

tδAδδ j + · · · (97)

is derived from the microscopic lattice gauge field Ai j

by coarse graining: first express the lattice quantities as
ti j = tδ, Ai j = Aδ, ψi = ad/2ψ, ψi+δ = ad/2(1 + aδ j∂ j )ψ ,
where a is the lattice constant and δ is the lattice site
displacement with projections δ j ∈ Z measured in unit
cells, then sum over δ. The dots in (96) and (97) represent
the contributions of higher orders from the expansion of
exp(iAi j ); larger products of γ a can be reduced to smaller
ones by {γ a, γ b} = 2δab and (95). We will later carry out the
exact calculation in d = 3 dimensions.

A uniform non-Abelian gauge field A j = γ j produces a
chiral Weyl spectrum. An example of the gauge field for the
spin-Hall effect in d = 2 dimensions is the Rashba spin-orbit
coupling A j = Aa

jγ
a = qε0 jaγ

a, which carries a “magnetic”
Yang-Mills flux [39] given by the matrix

�0 = �a
0γ

a = ε0i j

(
∂i Aa

j + εabcAb
i Ac

j

)
γ a = 2q2γ 3. (98)

This example falls slightly outside of the cases discussed in
this paper because it involves Spin(N ) spins in d dimensions
where N = 3 is not equal to d = 2. Switching to d = 3
dimensions brings us back on track with N = d at the expense
of adding a spatial index to form �0k and a three-dimensional
(3D) curl on the right-hand side: this describes a spin-Hall
effect in the plane perpendicular to a special axis k (e.g., due
to symmetry breaking).
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If the low-energy quasiparticles live in multiple regions
of the microscopic first Brillouin zone, which are centered
at wave vectors �Q1, . . . , �QN , then one needs to express the
microscopic spinor

ψ (�r) =
N∑

n=1

ei �Qn�rψn(�r) (99)

in terms of smooth spinor fields ψn(�r) and derive the
continuum-limit theory that contains a gradient coupling (96)
for every quasiparticle flavor ψn(�r). The procedure is straight-
forward and analogous to the rectification of staggered mag-
netic moments that introduced smooth fields sk in Sec. II D.
Weyl fermions always live on multiple nodes, so they must
be rectified into one flavor per node for the continuum-limit
representation.

The effect of the gauge fields on particles is further re-
vealed by expanding the gradient Lagrangian density in (96):

Lpg = K

2
|(∂ j + iA j )ψ |2

= K

2
(∂ j ψ

†)(∂ j ψ ) + Kaj j j + K
∑

n

Aa1...an
j Ja1...an

j

− K

2
ψ†A2

jψ. (100)

The Hermitian and gauge-covariant particle currents

j j =− i

2
[ψ†(Djψ )−(Djψ )†ψ],

Ja1...an
j =− iξn

2
[ψ†γ a1 . . . γ an (Djψ )−(Djψ )†γ a1 . . . γ anψ]

(101)

are defined using the covariant derivative

Dj = ∂ j + iA j . (102)

It is clear from (100) that the physical current aims to screen
the corresponding gauge flux. The screening is global when-
ever the dynamics is shaped by the Anderson-Higgs mech-
anism, i.e., in ordered phases (superconducting, magnetic,
etc.). Otherwise, the screening is limited in space and time
by the correlation length and time scales.

Charge and spin currents are conserved in the presence of
U(1) and Spin(d ) symmetries, respectively. Spin(d ) rotations
in the ab plane are generated by the angular momentum
operator

Jab = − i

4
[γ a, γ b]

a 
=b−−→ − i

2
γ aγ b. (103)

The particle spinor changes under infinitesimal rotations as

ψ → e−iJabδθψ = ψ + δψab, δψab = −iJabδθ ψ.

Since the canonical momentum corresponding to the canoni-
cal coordinate ψ in the effective theory is

πμ = δL
δ∂μψ

∝ (Dμψ )†, (104)

the conserved Noether current is

Iab
μ ∝ πμδψab → − i

2
(ψ†Jab(Dμψ ) − (Dμψ )†Jabψ ).

(105)
It is now evident from (94) and (103) that the original n = 2
current Jab

j = −2Iab
j in (101) is the physical spin current (up

to a constant factor). We will also use the canonical form of
the particle spin current in d dimensions:

j̃c1...cd−2
μ + Ãc1...cd−2

μ = εabc1...cd−2 Jab
μ (106)

with

j̃c1...cd−2
j = i εabc1...cd−2 [ψ†Jab(∂ j ψ ) − (∂ j ψ )†Jabψ],

Ãc1...cd−2
j = −εabc1...cd−2 ψ†{A j , Jab}ψ (107)

in order to establish the relationship between the spin currents
of particles and local moments.

For nonrelativistic particles, we must modify the temporal
component of the spin current:

π0 = δL
δ∂0ψ

= iψ† ⇒ Iab
0 = ψ†Jabψ. (108)

Its canonical form becomes the angular momentum (spin)
density

j̃c1...cd−2
0 = εabc1...cd−2ψ

†Jabψ,

which in d = 3 dimensions is

j̃c
0 = εabcψ†Jabψ = ψ†γ cψ. (109)

Electrons in d = 3 dimensions

The Clifford algebra anticommutator {γ a, γ b} = 2δab en-
ables a simple exact calculation of the continuum-limit gauge
fields in d = 3 dimensions. The generators γ a ≡ σ a are just
Pauli matrices. Only the linear powers of γ a are independent
in

Ai j = ai j + Aa
i jγ

a = ai j + |Ai j |
Aa

i j

|Ai j |γ
a, (110)

with |Ai j | = √
Aa

i jA
a
i j , and

eiAi j = eiai j

[
cos(|Ai j |) + i

sin(|Ai j |)
|Ai j | Aa

i jγ
a

]
. (111)
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Substituting in (96) yields

−
∑

i j

ti jψ
†
i eiAi j ψ j = −

∑
i

∑
δ

tδ

{
sin(|Ai,δ|)

|Ai,δ|
[
− cos(|ai,δ|)Aa

i,δJa
i,δ + sin(|ai,δ|)

|ai,δ| ai,δAa
i,δKa

i,δ

]

+ cos(|Ai,δ|)
[

cos(|ai,δ|)ki,δ − sin(|ai,δ|)
|ai,δ| ai,δ ji,δ

]}
,

where δ = j − i, Xi,δ ≡ Xi j ,

ki j = 1
2 (ψ†

i ψ j + ψ
†
j ψi ),

Ka
i j = −1

2
(ψ†

i γ aψ j + ψ
†
j γ

aψi ) (112)

are bond scalars ki,δ = ki,−δ, Ki,δ = Ki,−δ , and the lattice
charge and spin currents

ji j = − i

2
(ψ†

i ψ j − ψ
†
j ψi ),

Ja
i j = − i

2
(ψ†

i γ aψ j − ψ
†
j γ

aψi ) (113)

have continuum limits given by (101) without the gauge
fields. The gradient coupling has the same form (96) in the
continuum limit as before, but now we can compute the exact
coarse-grained gauge fields

a j = a

K

∑
δ

tδ cos(|Aδ|) sin(|aδ|)
|aδ| aδδ j,

Ab
j = a

K

∑
δ

tδ cos(|aδ|) sin(|Aδ|)
|Aδ| Ab

δδ j (114)

from their lattice versions. We are assuming that the system is
isotropic, and then

K = a2
∑

δ

tδ δ2
x . (115)

B. Kondo/Hund coupling

The interaction between the spin currents of local moments
jc1...cd−2
μ and particles j̃c1...cd−2

μ is given by the Kondo coupling
action SK. In d = 3 dimensions, we can write the familiar
“double-exchange” form

SK = JK

∫
dτ

∑
i

n̂a
i ψ

†
i γ aψi → JK

∫
dτ

∑
i

ja
0 j̃a

0 (116)

which couples the spin densities of the local moments ja
0

and particles j̃a
0 in a nonrelativistic spinor representation

(109). The microscopic Zeeman interaction between mag-
netic moments and particles’ spins couples only the temporal
components of the spin currents. When the short-length-scale
magnetic fluctuations are integrated out by coarse graining, a
part of this interaction re-emerges as a spin current drag, i.e.,
a coupling between the spatial current components at larger
length scales. For simplicity, and without loss of generality,
we will describe the spin-current drag relativistically:

SK = JK

∫
dτ dd r jc1...cd−2

μ j̃c1...cd−2
μ . (117)

This continuum-limit Lagrangian density naturally applies to
the Spin(d ) group in an arbitrary number of dimensions d ,
but it couples the spin angular momenta of particles and
local moments rather than their spins directly. An interaction
of this kind ought to be included between the spin currents
of particles and all modes (staggered s and magnetization m)
of the local moments:

LK =
[ p∑

k=1

JKs;k jc1...cd−2

s;kμ
+ JKm jc1...cd−2

m;μ

]
j̃c1...cd−2
μ . (118)

Note that the currents are stripped of their background gauge
fields here, e.g., j̃ is given by (107). Any shifts of the currents
in this formula would arise from the microscopic details of the
Kondo coupling instead of the particle’s spin-orbit coupling,
Dzyaloshinskii-Moriya interaction, etc., which produced the
gauge fields in the gradient terms. In other words, some gauge
fields could in principle obtain in the above formula (and
formally make it gauge invariant), but there is no reason
for them to be the same as the earlier gauge fields, and
we will ignore them for simplicity. Ultimately, the Kondo
Lagrangian density LK describes the low-energy processes
in which the spin angular momentum is transferred between
mobile particles and local moments.

C. Gauge flux transfer between electrons and moments

All manifestations of nontrivial topology in physics are
a consequence of suppressing some high-energy degrees of
freedom in systems with gauge fluxes. For example, lat-
tice electrons in a magnetic field can form a quantum Hall
state only when some high-energy bands in their Hofstadter
spectrum are unoccupied. We can generally expect similar
emergence of topology-related phenomena in the systems of
coupled electrons and magnetic moments. The symmetric
form of the Kondo interaction (118) indicates that the spin-
current gauge fields will be dynamically shared between the
two kinds of spins.

If the particles ψ become localized and all of their ex-
citations are pushed to high energies, then we can integrate
them out to obtain an effective theory for the original local
moments n̂i alone. The classical gradient energy of localized
particles is minimized when their gauge-covariant spin current
given by (106) vanishes. Therefore, the intrinsic spin-current
fluctuations tend to spread symmetrically around the gauge-
field background j̃ = −Ã. Integrating out ψ with (118) in the
Lagrangian density will induce a coupling

L′
K = −

(
p∑

k=1

JKs;k jc1...cd−2

s;kμ
+ JKm jc1...cd−2

m;μ

)〈
Ãc1...cd−2

μ

〉
+ · · · (119)
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between the spin currents of local moments jc1...cd−2
μ and the

gauge fields Ãc1...cd−2
μ that incorporate the spin-orbit coupling

of particles. Some gauge-field averaging takes place because
Ãc1...cd−2

μ depends on the field ψ that we are integrating out.
The immediate physical consequence is a tendency to repli-

cate the electrons’ spin-momentum correlations in the dynam-
ics of spin waves. If the mobile electrons exhibit a spin-Hall
effect, e.g., captured by (98), so will the local moments too.
Interesting possibilities include a spin-momentum locking of
spin waves [82–85], protected boundary spin-wave modes
[86–89], magnon Weyl nodes [90,91], and chiral spin-wave
response to external perturbations [92–95].

Spin dynamics can further scramble the relationship be-
tween fluxes and microscopic fields. For example, consider
hedgehogs, the stable topological point defects of collinear
spins in d = 3 dimensions. Their density and currents can
be naturally described [1] by the fluxes of an antisymmetric
rank-2 tensor gauge field Aμν . The ordinary gauge field Aa

μ

of rank 1 describes line defects with its fluxes, but they are
not topologically protected in d = 3 dimensions. An isolated
static defect carries a flux quantum of the appropriate gauge
field. If the defects proliferate and become mobile due to
quantum or thermal fluctuations, their flux diffuses and can be
conveniently described by a smoothly distributed gauge field.

The connection of these gauge fields to the spin order
parameter n̂ is easily extracted in ordered phases where the
gauge fields carry localized flux quanta (attached to defects),
and currents screen those fluxes via an Anderson-Higgs mech-
anism:

Aa
μ ∼ −εabcn̂b(∂μn̂c), Aμν ∼ −1

2
εabcn̂a(∂μn̂b)(∂ν n̂c).

(120)

This reveals intricate correlations between the gauge fields
of different ranks, which can influence the dynamics even
when the order parameter n̂ becomes disordered and the
gauge fluxes diffuse. Specifically, the flux ε0i jk∂iA jk in d = 3
dimensions is the density of hedgehogs that enjoys topological
protection against any smooth fluctuations of n̂, even as they
restore the spin-rotation symmetry of the ground state. It has
been shown [1] that fluctuations dynamically generate the
couplings

d−1∑
n=1

κn

2

(
1

n!
εa0...ad−1 n̂a0

n∏
k=1

(
∂μk n̂ak

)+ Aan+1...ad−1
μ1...μn

)2

(121)

between the tensor currents (88) and gauge fields at all ranks
in d dimensions through the links such as (120). The fluxes
at higher ranks arise from the nontrivial gauge fields at lower
ranks, tracing back to the rank 1 where the gauge field has
a microscopic origin. In the present situation of interest, the
particles ψ transfer their spin-orbit gauge fields by (119) to
the local moments n̂, and then the higher-rank couplings (121)
emerge due to fluctuations. Even if there are no independent
local moments n̂i, the particles ψ can retain their spin degrees
of freedom at low energies as they localize; the residual spin
currents of particles are governed by the effective spin-only
theory constructed in Sec. II, and affected by the emergent
Berry connection gauge fields together with the interactions
(121) at higher ranks. Inducing a gauge field on the spin

degrees of freedom is not sufficient for generating a topo-
logically nontrivial dynamics, but it is a necessary ingredient.
The hedgehog flux of the highest-rank gauge field Aμ1...μd−1

is always related to the topological Berry flux in momentum
space [1].

Using these theoretical tools, one finds additional implica-
tions of the electrons’ spin-orbit coupling to the dynamics of
local moments, ranging from unconventional magnetic orders
to exotic fractionalized states of matter. In the language of
(d = 3)-dimensional spins, the rank-1 gauge field is equiv-
alent to the Dzyaloshinskii-Moriya coupling, and the rank-2
gauge field amounts to a “chiral” spin interaction. Both go
against simple zero-gradient magnetic orders and stimulate
the formation of skyrmion and hedgehog lattices [2,3] in
classical magnets, in analogy to the way magnetic fields
stimulate Abrikosov vortex lattices in superconductors. The
gauge fields that maintain a constant density of topological
defects have an even more profound effect when fluctuations
restore the spin-rotation symmetry. A remarkable possibility
are topologically ordered states in which a fractional amount
of electron’s charge or spin binds with a hedgehog topological
defect to form a fractionalized quasiparticle. A liquid of
such objects has many qualitative similarities with fractional
quantum Hall states, and can be viewed as a novel kind of a
spin liquid [1].

In the opposite direction, the intrinsic gauge fluxes of local
moments can influence the topological properties of particle
bands. We have identified the Dzyaloshinskii-Moriya and
chiral spin interactions as the gauge fields coupled to local
moments in Sec. II F. If we integrate out the local moments
in a theory with the Kondo coupling (118), the particles will
acquire a correction

L′′
K = −

(
p∑

k=1

JKs;k

〈
Ac1...cd−2

s;kμ

〉+ JKm

〈
Ac1...cd−2

m;μ

〉)
× j̃c1...cd−2

μ + · · · (122)

to their intrinsic spin-orbit coupling. This aims to transfer
any spin-momentum locking of spin waves to the conduction
electrons. A more dramatic possibility is the introduction or
removal of Berry flux singularities in the bands of mobile
electrons, whose physical manifestations are the Weyl nodes
in topological semimetals and topologically protected surface
states.

All these considerations indicate that it is quite natural to
expect topologically nontrivial electronic bands in materials
that exhibit topologically nontrivial magnetic textures, and
vice versa. The actual expressions of topological dynamics
depend on additional factors such as symmetries and interac-
tions that can protect or spoil energy gaps and degeneracies.
However, the gauge fields are an essential ingredient for
topological dynamics, and they are shared between interacting
degrees of freedom.

D. U(1) flux induction and the topological
Hall/magnetoelectric effect

Beyond spin currents, the transfer of gauge flux also af-
fects the charge currents of particles. This is the origin of
the topological Hall effect in magnetic topological materials
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[6,7,14,49–56]. In the simplest scenario, often considered in
the literature, one neglects the fluctuations of local moments
n̂i and assumes that their frozen spin configuration presents
a strong Zeeman field to conduction electrons via the Kondo
coupling. If the electron spins end up rigidly aligned with the
nearest local moments, one obtains the “adiabatic” regime:
electron spin fluctuations cost high energy and may be in-
tegrated out. The particle spinor ψ keeps track of both spin
and charge fluctuations, so we first extract all charge currents
jμ = |ψ |2∂μθ into the U(1) gauge field aμ with a gauge
transformation

ψ → ψe−iθ , aμ → aμ + ∂μθ.

After this, ψ = ψ0 + δψ contains only spin fluctuations and
can be integrated out. There are two characteristic conse-
quences even at the mean-field level, which neglects the
deviations δψ from a static background ψ0. Unpacking the
gradient coupling (100) and substituting (93)

Lpg = K

2

∣∣∣∣(−i∂μ + aμ + ∂μθ

+
d∑

n=1

Aa1...an
μ ξn γ a1 . . . γ an

)
ψ

∣∣∣∣2

= K (aμ + ∂μθ )
d∑

n=1

Aa1...an
μ 〈ψ†ξn γ a1 . . . γ anψ〉 + · · ·

(123)

shows that the charge current jμ = 〈|ψ |2〉∂μθ is evidently
coupled as jμã′

μ to a vector quantity

ã′
μ =

d∑
n=1

Aa1...an
μ

〈ψ†ξnγ
a1 . . . γ anψ〉

〈ψ†ψ〉 . (124)

This is an effective U(1) gauge field induced via the spin-
orbit coupling. In d = 3 dimensions, this gauge field carries
a magnetic flux which could be nonzero in the presence of
magnetic order:

b̃′
μ = εμνλ∂ν ã′

λ = εμνλ∂ν

(
Aa

λsa
)
, sa = 〈ψ†γ aψ〉

〈ψ†ψ〉 . (125)

Another similar effect obtains from the Kondo coupling
(118). Integrating out the spin fluctuations ψ generates an
effective interaction (119) as before, even at the mean-field
level. However, the outcome now has a different interpreta-
tion. We are interested in the charge dynamics buried inside
the U(1) gauge field part of Aμ in (107) and (93):

Ãc1...cd−2
μ = −εabc1...cd−2 ψ†{aμ + ∂μθ , Jab}ψ + · · ·

→ −2εabc1...cd−2 (aμ + ∂μθ )〈ψ†Jabψ〉 + · · · .

The charge current jμ = 〈|ψ |2〉∂μθ is evidently coupled as
jμã′′

μ in (119) to a vector quantity

ã′′
μ = 2εabc1...cd−2

〈ψ†Jabψ〉
〈ψ†ψ〉

×
(

p∑
k=1

JKs;k jc1...cd−2

s;kμ
+ JKm jc1...cd−2

m;μ

)
+ · · · (126)

that can be interpreted as an emergent background U(1) gauge
field. This gauge field can carry an effective magnetic field of
large magnitude, given that the background spin angular mo-
mentum 〈ψ†Jabψ〉 can vary rapidly even on the microscopic
lattice length scales. The observable physical consequences in
d = 3 dimensions (focusing on one local moment mode)

jc
μ = εabcna(∂μnb), εabc 〈ψ†Jabψ〉

〈ψ†ψ〉 = 〈ψ†γ cψ〉
〈ψ†ψ〉 = sc

are associated with the emergent magnetic field:

b̃′′
μ = εμνλ∂ν ã′′

λ = 2JKεμνλ∂ν ε
abc 〈ψ†Jabψ〉

〈ψ†ψ〉 jc
λ

= 2JKεμνλε
abc[sa(∂νnb)(∂λnc) − na(∂νsb)(∂λnc)]. (127)

In the “adiabatic limit,” the electron spin sa ∝ na precisely
follows the local moment spin and b̃′′

μ vanishes: the two
terms in the last line cancel out even though each could
individually produce a topological Hall effect, a conversion
of the skyrmion density εμνλε

abcna(∂νnb)(∂λnc) into magnetic
flux. A nonzero flux here requires some coherent mismatch
between the electron and local moment spins, perhaps caused
by an independent spin-density-wave instability.

Fluctuation corrections to the effects (125) and (127)
can be readily computed, but will not be pursued here. We
will, instead, scrutinize very important properties of the
particle spinor representations that lead to the “intrinsic” and
“topological” anomalous Hall effects [49,52]. In a nutshell,
charge and spin currents (101) extracted from the same spinor
field are correlated, so that topological defects of the charge
currents become bound to the topological defects of the spin
currents.

Consider a fixed-amplitude S = 1
2 spinor in d = 3 dimen-

sions

ψ (ŝ) =
(

cos
(

θ
2

)
sin

(
θ
2

)
eiφ

)
eiγ (128)

which represents smoothly a spin oriented in the direc-
tion ŝ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ . Computing
the charge current is straightforward:

jν = − i

2
[ψ†(∂νψ ) − (∂νψ

†)ψ] = ∂νγ + 1 − cos θ

2
∂νφ.

The charge current can have a nontrivial curl

� = εμν∂μ jν = �0 + 1 − cos θ

2
εμν∂μ∂νφ + 1

2
εμνAμν

(129)
in a plane (indices suppressed, � ≡ �0k). �0 = εμν∂μ∂νγ

obtains from the externally applied magnetic field, formally
via a U(1) gauge transformation, and

Aμν = 1

2
εabcŝa(∂μŝb)(∂ν ŝc)

= sin θ

2
[(∂μθ )(∂νφ) − (∂νθ )(∂μφ)] (130)

is the rank-2 gauge field associated with topologically non-
trivial real-space configurations of the particle’s spin texture
[1]. In any skyrmion or hedgehog configuration, the total 4πn
flux of Aμν is converted to the 2πn flux �. The singular
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part �s = 1
2 (1 − cos θ )εμν∂μ∂νφ comes from the “south” pole

θ = π only, where φ has a quantized nonzero curl. Hence,
�s is 2π quantized and regularized away on the lattice. The
“south” pole is at the infinite distance from the center of an
idealized skyrmion, and contains a Dirac string in the case of a
hedgehog. At the end, the curl of charge currents is determined
both by the external magnetic field �0 and the density of
magnetic topological defects εμνAμν in the spin texture. If the
electron’s spin aligns perfectly with a topologically nontrivial
texture of local moments s ‖ n, then the presence of defects in
the local moment configuration εabcn̂a(∂μn̂b)(∂ν n̂c) 
= 0 will
induce an effective magnetic field for charged particles, thus
leading to the “topological” Hall effect. One can readily repeat
this analysis in the S = 1 representation

ψ (ŝ) =

⎛⎜⎝cos2
(

θ
2

)
e−iφ

1√
2

sin θ

sin2
(

θ
2

)
eiφ

⎞⎟⎠ (131)

to find

� = �0 − cos θ εμν∂μ∂νφ + εμνAμν. (132)

Ignoring the singular part, this is the same as (129) except for
the coefficient to Aμν , generally equal to the spin magnitude S.

The topological correlation between charge and spin cur-
rents is quite general. A coherent-state spinor in d spatial
dimensions can be constructed as

ψ (ŝ) = e−iJd−1,d θd−1 . . . e−iJ2,3θ2 e−iJ1,2θ1 eiγ ψ0 (133)

in terms of the spherical coordinate system angles
θ1, . . . , θd−2 ∈ [0, π ], θd−1 ∈ [0, 2π ) which specify the
spin orientation

ŝ0 = cos θ1,

ŝ1 = sin θ1 cos θ2,

...

ŝd−2 = sin θ1 . . . sin θd−2 cos θd−1,

ŝd−1 = sin θ1 . . . sin θd−2 sin θd−1. (134)

The angular momentum operators Jab are given by (103) in
any particular representation, and ψ0 is an arbitrary fixed
spinor in that representation. It has been shown in Ref. [1]
that any spinor field theory admits a topological Lagrangian
density term

Lt = iKd Jμ

(
J h

μ − Sd−1

2d−1πS
J m

μ

)
, (135)

where

J h
μ = εμνλ1...λd−1

∂ν Ah
λ1...λd−1

,

J m
μ = εμνλ1···λd−1

∂ν Am
λ1···λd−1

(136)

are the currents of hedgehogs (h) and monopoles (m), respec-
tively (expressed using gauge fields), S is the eigenvalue of
the Jab spin angular momentum accessed in the given repre-
sentation, and Sn is the “volume” of a unit-radius n sphere.
The topological term is active only when the particles and
their topological defects simultaneously occupy the same lo-
cations in space; this takes extraordinary quantum fluctuations

with frustrated dynamics, and leads to topologically protected
insulators which can even be fractionalized. Conversely, the
topological term Lt vanishes in all conventional states of
matter, and yields the relationship

Lt = 0 ⇒ J m
μ = 2d−1πS

Sd−1
J h

μ (137)

that reveals a representation-dependent topological correla-
tion between the charge and spin currents of spinor fields:
J h

μ carries the topological defects of spins, and J m
μ carries

the topological defects of charge degrees of freedom. Note
that this equation is consistent with (129) and (132) in d = 3
dimensions.

This generality goes beyond the topological Hall effect.
The general physical effect described by (137) may be called
“topological magnetoelectric effect.” Magnetic topological
defects of particle spins will bind the equivalent charge-
current topological defects, at least in conventional states of
matter. The binding is precisely quantized by the spinor repre-
sentation, i.e., the spin magnitude S and spatial dimensionality
(the latter does not matter in d = 2 and d = 3 dimensions
where 2d−1π/Sd−1 = 1). The binding of line defects in d =
3 dimensions attaches vortices to skyrmions and produces
topological Hall effect (note that a nonzero chirality 〈S1(S2 ×
S3)〉 
= 0 essentially indicates the presence of skyrmions).
The binding of point defects attaches Dirac monopoles to
hedgehogs, leading to an induced magnetoelectric effect. The
monopoles are expressed in a complicated three-dimensional
pattern of charge currents which is made possible only by a
crystal lattice: the unavoidable quantized Dirac string attached
to the monopole singularity is to be threaded through a single
column of lattice plaquettes, so that its flux quantization
would make it physically unobservable.

The electric-magnetic defect binding is a phenomenon dual
to the binding between charge and spin currents. Conventional
states of spinor fields exhibit the electric-magnetic binding
of either their particle currents or defect currents, whichever
is conserved. An example of the former is a Mott insulator
where the same excitation carries both charge and spin, while
the latter conditions occur in states with broken spin-rotation
symmetry, etc. A complete spin-charge separation is possible
in topologically ordered states, and indeed the ensuing Lt 
= 0
enables a detachment of charge and spin topological defects,
without making it necessary. Any residual defect binding will
produce a topological magnetoelectric effect in a completely
quantum-disordered state. Quantum Hall liquids in d = 2
dimensions are examples of such states, while the d = 3
realizations are currently rare [9–11,98].

The binding of electric and magnetic defects is quantized
and rigid only within a single coherent spinor field. Quantum
and thermal fluctuations will generally spoil this rigidity.
Also, one is typically interested in the topological Hall effect
due to the nontrivial spin textures of local moments, induced
on the conduction electrons through a Kondo or Hund’s
coupling JK. A quantized binding of electron charge currents
to the topological defects of local moments also requires the
“adiabatic” regime, a perfect alignment between the electron
and local spins facilitated by a large JK.
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E. Microscopic effects and Berry flux

Finally, we should address the continuum-limit description
of the topological effects shaped at microscopic lattice scales.
Let us gain insight by considering the integer quantum Hall ef-
fect in the familiar Hofstadter problem on a two-dimensional
lattice. If the magnetic field is commensurate with the lattice,
having p flux quanta per q plaquettes (p, q ∈ Z), then the
spectrum has well-defined topological band gaps and the
bands carry quantized Berry fluxes. However, the microscopi-
cally commensurate magnetic field leaves no residual smooth
gauge field coupled to particles in the continuum limit; we
have encountered this phenomenon in magnetic systems as
well in Sec. II C. So, how can the continuum-limit theory
capture the Hall effect without an external gauge field in the
Lagrangian? The only option left is to capture the Hall effect
with a topological Chern-Simons (CS) coupling:

LQHE = K

2
|∂μψ |2 − t |ψ |2 + u|ψ |4 + iKCSεμνλψ

†∂μ∂ν∂λψ

→ K|ψ |2
2

(∂μθ + aμ)2 − t |ψ |2 + u|ψ |4

+ iKCS|ψ |2εμνλaμ∂νaλ. (138)

The arrow applies to incompressible states with a fixed uni-
form density |ψ |2, where the phase fluctuations θ and their
singular part aμ = (∂μθ )sing. carry the low-energy dynamics.
The topological term alone produces a nonzero Hall conduc-
tivity [26], which in turn corresponds to a nonzero Berry
flux [40]. The Chern-Simons coupling constant KCS has to be
quantized only in insulating phases.

We can construct similar topological terms to describe
topologically induced Hall and spin-Hall effects in higher
dimensions, provided that we introduce a “chiral order param-
eter” Bμ1...μd−2 :

LTHE = K

2
|∂μψ |2 − t |ψ |2 + u|ψ |4

+ iKd Bμ1...μd−2εμ1...μd−2αβγ ψ†∂α∂β∂γ ψ + · · · . (139)

The coupling Kd is restricted by symmetries [99], but oth-
erwise has to be calculated microscopically. Suppose the
particles move in a staggered magnetic background of lo-
cal moments. The staggered spins are locally represented
by a set of smooth fields sk, m. Solve microscopically the
problem of particles interacting with the staggered spins of
the uniform sk, m configuration, and find the band structure
and Berry fluxes of the particle bands. Determine Kd (sk, m)
and Bμ1...μd−2 (sk, m) by reproducing the calculated Berry flux
of the populated bands from the above topological term as
discussed in Ref. [1]. In d = 3 dimensions, the chiral order
parameter is a vector Bμ which reflects the spatial direction of
skyrmions in the magnetic texture, and defines the direction
of the effective magnetic field that provides the Hall effect.
The microscopic spin-Hall effect can be captured in a similar
fashion with a modified topological term that involves spin
currents. The topological terms for magnetoelectric effects
that have been constructed in Ref. [1] can be put to the same
use.

The “intrinsic” anomalous Hall effect is not fundamentally
different from the “topological” Hall effect in the point of

view pursued here. Consider, for example, frozen local mo-
ment spins which are Kondo coupled to conduction electrons
in a double-exchange model. If the only dynamic degrees of
freedom are the conduction electrons, then we can regard the
Kondo coupling as a spatially nonuniform Zeeman field with
possibly nontrivial texture. Diagonalizing the Hamiltonian of
these noninteracting electrons is now the only task to perform.
Regardless of whether the magnetic texture is commensurate
with the lattice or not, its outcome is some band structure in
which one may find band gaps and topologically nontrivial
bands characterized by certain topological invariants (e.g.,
quantized Chern numbers in d = 2 dimensions). We can view
the ensuing Hall effect as “intrinsic” since it is associated
with a nonzero Berry flux. At the same time, the Hall effect
arises by the alignment of electron spins with local moments,
which makes it “topological.” One could by convention decide
to associate the “intrinsic” Hall effect with Berry fluxes im-
parted microscopically by large commensurate gauge fluxes,
and the “topological” Hall effect only with residual in-
commensurate fluxes (skyrmion textures) at larger length
scales.

More generally, a Berry flux can be partially imparted on
the electron bands by the spin-orbit coupling, and partially
by a magnetic order (even ferromagnetism, or an external
magnetic field). Additional internal degrees of freedom can
also be involved in producing topologically nontrivial band
structures. Ultimately, one can always derive effective gauge
fields coupled to particles both at microscopic and larger
length scales. Skyrmions and hedgehogs in magnetic textures
will produce spatially dependent gauge fields with localized
fluxes in real space. Spatially uniform gauge fields arising
from the spin-orbit coupling are mathematically equivalent to
a quantum liquid state of skyrmions that lacks positional order
but maintains a nonzero spin chirality reflected in the residual
magnetization. One can describe all topological phenomena
either in real space, using the spin-orbit and higher-rank
gauge fields capable of capturing the diffusion of defects
[1], or equivalently in momentum space using Berry fluxes.
Analogous conclusions apply to all intrinsic and topological
magnetoelectric effects.

IV. APPLICATIONS

The following discussion provides a unified physical pic-
ture of several phenomena in chiral magnets, many of which
have been experimentally observed [82,100–102] or theo-
retically anticipated [77–81,83–86,88–95,103]. We apply the
methods and insights from Secs. II and III in d = 3 dimen-
sions to analyze (1) equilibrium spin textures with skyrmion
and hedgehog lattices, (2) the spin-momentum locking of
spin waves, (3) chiral response to external perturbations,
and (4) the temperature dependence of the topological Hall
effect. This analysis builds in part upon the spin Hamiltonian
that we derive in Appendix D from the Hubbard model of
localized electrons, taking into account the spin-orbit coupling
through an SU(2) gauge field, thus going beyond earlier
similar derivations [104–108]. Having this link to the micro-
scopic properties of materials, we reveal the conditions for
the appearance of skyrmions and hedgehogs in magnetically
ordered and disordered phases. We identify type-I and type-II
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behaviors of magnets based on their equilibrium response to
the spin-orbit SU(2) flux. We qualitatively deduce the nature
of topological defect arrays in relation to the type of flux, and
discover that novel lattices of hedgehogs and antihedgehogs
are possible in natural circumstances. The topological features
of spin-wave spectra and chiral responses are similarly related
to the character of the SU(2) flux. The analysis is ultimately
universal: we use field-theory methods and Landau-Ginzburg
type of arguments to provide the physical understanding of a
broad range of materials.

A. Skyrmion and hedgehog lattices

Spin currents ja
μ are generally coupled to a non-Abelian

gauge field Aa
μ. The currents of line defects jμν are cou-

pled to a rank-2 tensor gauge field Aμν . These gauge fields
can have several origins: (1) the microscopic spin-orbit
coupling of localized electrons that form local moments
(i.e., Dzyaloshinskii-Moriya interaction, see Appendix D),
(2) the spin-orbit coupling of itinerant electrons (Sec. III C),
(3) incommensurate frustration of spins (Sec. II C), and (4)
quantum fluctuations [1]. Even a uniform static non-Abelian
gauge field Aa

i can have a nonzero Yang-Mills flux

�a
i = εi jk

(
∂ j Aa

k − εabcAb
jA

c
k

)
. (140)

If we regard the spatial flux components as matrices �i =
�a

i γ
a, where γ a are the spin group generators (e.g., Pauli ma-

trices), then every gauge transformation �i → e−iθaγ a
�ieiθaγ a

parametrized by θa(�r, t ) preserves the flux matrix eigenvalues.
Therefore, the eigenvalues are gauge invariant, while the
flux components are gauge covariant, i.e., rotate locally in
the spin space under gauge transformations. Here we show
that the non-Abelian flux arising from the spin-orbit inter-
action stimulates the emergence of static topological defects
(skyrmions or hedgehogs) in the magnetic order parameter.
This phenomenon [2,3] is analogous to the emergence of
vortices in type-II superconductors subjected to an external
magnetic field. We will link the types of defects to the nature
of gauge flux, and identify both type-I and type-II behaviors
of magnets.

The essential theory describing the relevant physics is
given by the Lagrangian density

L = K1

2

(
ja
μ + Aa

μ

)2 + K2

2
( jμν + Aμν )2 (141)

of a vector field sa with fixed magnitude |s|2 = sasa = 1.
We choose to emphasize the relativistic dynamics of anti-
ferromagnets: generalizing to a nonrelativistic dynamics is
straightforward. This theory obtains after the rectification of
microscopic spins discussed in Secs. II C and II F. We will
consider a single vector field in order to ensure a topological
protection of skyrmions and hedgehogs in two and three di-
mensions, respectively (keeping in mind that microscopically
noncollinear magnets may require description in terms of
multiple vector fields with similar Lagrangian terms). The
spin and chiral currents

ja
μ = εabcsb(∂μsc),

jμν = εabcsa(∂μsb)(∂νsc) (142)

are assumed for simplicity to carry unit “charges” with respect
to their gauge fields; the actual “charges” depend on the spin
representation, lattice geometry, the spatial range of micro-
scopic spin interactions, and rectification. The spin dynamics
derived from the Hubbard model in Appendix D features the
Dzyaloshinskii-Moriya interaction through the same SU(2)
gauge field Aa

i that gauges the electron hopping on the lattice.
Likewise, the tensor gauge field

Ai j = εi jk

(
φk + sa�a

k

)
, (143)

emerging from the Hubbard model at the third order of pertur-
bation theory, captures the chiral interaction, the tendency of
the spin chirality

χi = εi jkε
abcsa(∂ j sb)(∂k sc) (144)

to align with the external magnetic field φi or the spin-orbit
flux �a

i given by (140).
What is the classical static spin configuration sa → Sa that

minimizes the total energy of the theory (141)? Let us first
scrutinize the rank-1 term (K1). In certain special cases, the
external gauge field Aa

i can be completely screened via

εabcSb∂i Sc = −Aa
i , L = 0. (145)

Then, the gauge flux (140) is rigidly related to the spin
configuration

�a
i = −εi jkε

abc(∂ j Sb)(∂k Sc) − Saχi , (146)

where χi is the equilibrium spin chirality (144). It follows that

Sa�a
i = −2χi, εabcSb�c

i = 0, (147)

so perfect screening would require us to keep Sa parallel
to �a

i in the spin space for all spatial directions i, while
maintaining �a

i = −2χi Sa at all points in space. In other
words, a necessary condition for perfect screening is that the
flux have the form �a

i = ϕi n̂a without entanglement between
the spin and spatial vector spaces, where the function ϕi is
completely determined by the chirality of the vector field n̂a.
This is also, naively, a sufficient condition since gauge trans-
formations keep the Lagrangian density L invariant and can-
not introduce entanglement into �a

i . However, non-Abelian
gauge fields admit configurations which cannot be connected
by smooth gauge transformations despite producing the same
flux [39]: this could introduce additional requirements for
perfect screening.

A special case of a screenable gauge field is the uniform
non-entangled configuration Aa

i = αin̂a. This gauge field car-
ries zero flux. The spin configuration that screens it is a “flat”
spiral

Sa(�r) = εa
1 cos(αi xi ) − εa

2 sin(αi xi ), (148)

where εa
1 n̂a = εa

2 n̂a = εa
1ε

a
2 = 0. Smooth gauge transforma-

tions of this configuration generate other zero-flux screenable
configurations.

Normally, the most optimal spin configuration Sa can
screen the external gauge field only partially. Denoting the
screening residue with f a

i , we have

εabcSb∂i Sc = −Aa
i + f a

i , S = K

2

∫
d3r f a

i f a
i → min.

(149)
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By definition, the flux of the shifted gauge field Aa
i − f a

i is
screenable:

δ�a
i = εi jk

[
∂ j

(
Aa

k − f a
k

)− εabc
(
Ab

j − f b
j

)(
Ac

k − f c
k

)]
= �a

i − Fa
i + 2εi jkε

abc f b
j

(
Ac

k − f c
k

)
= −2χi Sa, (150)

where

Fa
i = εi jk

(
∂ j f a

k − εabc f b
j f c

k

)
(151)

is the flux of the screening residue. Consider a finite volume of
space V with a closed boundary B, and the following integral
of (150):

−1

4

∮
B

d2x η̂i Saδ�a
i =

∮
B

d2x η̂i

χi

2
= 4πN

= −1

4

∮
B

d2x η̂i

[
Sa
(
�a

i − Fa
i

)− 2εi jk f a
j

(
∂k Sa

)]
, (152)

where η̂i is the unit vector locally perpendicular to B. The
resulting integration of the spin chirality (144) on the closed
boundary B is a topological invariant of the spin configuration
Sa. N is quantized as an integer and represents the total
topological charge or number of hedgehog point defects inside
the volume V . Denoting by ϕ a tight upper bound on the
contributions of f a

i to (152), we observe the tendency∣∣∣∣−1

4

∫
B

d2x η̂i Sa�a
i − 4πN

∣∣∣∣ � ϕ (153)

of the dynamics (149) to pin the number of hedgehogs N to the
integrated flux �a

i of the gauge field. We will try to estimate
ϕ and determine if it must be finite, e.g., of the order of 2π .
The analogous argument could relate the number of skyrmions
to the gauge flux: the volume V should be a cylinder aligned
with the spatial direction of the flux, while the surface B
should be a cylinder’s cross section; N would be the number
of skyrmion lines crossing B, quantized only in the limit of
a large cylinder radius (provided that the spin configuration
becomes ferromagnetic in the far-away regions).

Estimating ϕ accurately is made difficult by the nonlinear-
ity of the non-Abelian gauge flux (140). In the worst case,
ϕ could scale as the area of B, for example, if the residue
flux (151) maintained a finite spatial average 〈Fa

i 〉 
= 0. A
nonzero curl of f a

i could build 〈Fa
i 〉 
= 0, but this would

require unbounded growth of | f a
i | as a function of position

(on an open surface B), with a high action cost. Supercon-
ductors with Abelian U(1) gauge fields have no other option
for building 〈Fa

i 〉, so keeping the action cost finite requires
zero 〈Fa

i 〉 and achieves the precise matching (ϕ ∼ 1) of the
vortex concentration to the gauge flux. Magnets have another
option: 〈Fa

i 〉 
= 0 can arise from the quadratic non-Abelian
part of (151) even with uniform f a

i . This costs only a finite
Lagrangian density, so ϕ is allowed to scale as the area of B.

In summary, the rank-1 term of the Lagrangian density
(141) is not ensured to generate the topological defects that
screen the gauge flux �a

i . However, the rank-2 term is much
more effective. Its expansion yields the interaction ji j ji j that
captures the energy cost of defect cores, as well as the cou-
pling

ji jAi j = (
φi + sa�a

i

)
χi (154)

that tries to align the chirality χi with gauge fluxes. The
latter produces an energy gain for every aligned topological
defect. Pristine examples of a skyrmion line defect (S) and a
hedgehog point defect (H) are given by the spin configurations
and their chiralities:

S: S(�r) = ẑ cos α(ρ) + ρ̂ sin α(ρ), �χ (�r) = 2
ẑ

ρ

dα

dρ
sin α,

H: S(�r) = r̂, �χ (�r) = 2r̂

r2
,

where the skyrmion line stretches along the ẑ direction, ρ

and r are the radii in cylindrical and spherical coordinates,
respectively, and α(ρ) changes smoothly from 0 to π on the
interval ρ ∈ (0,∞). Skyrmions are attracted and aligned by
the external magnetic field φi , but the equivalent electro-
magnetic effect on hedgehogs would require the presence of
magnetic monopoles. More importantly, the non-Abelian flux
�a

i associated with a homogeneous spin-orbit coupling can
attract both types of defects without a magnetic field:

S: Aa
i = εi jkb jδ

a
k , �a

i = −2bi ba,

H: Aa
i = βδa

i , �a
i = −2β2δa

i . (155)

The Rashba-type spin-orbit coupling parametrized by the vec-
tor bi produces a nonentangled flux that stimulates skyrmions
(S) by aligning both the average magnetization and chiral-
ity with bi near the skyrmion centers. Hedgehogs (H) are
drawn to the gauge field whose entangled flux correlates
the spin and chirality in any direction, sa�a

i χi ∝ siχi . Note
that skyrmions can also benefit from such a flux, but not as
much because they cannot keep their local spin parallel to
chirality everywhere in space. Also, note that the gauge field
(H) imparts Weyl nodes on itinerant electrons.

The actual realization of topological defects in the equilib-
rium spin configuration depends on the competition between
different energy scales. The energy gain 
E− per defect from
(154) is determined by the integral of chirality over all space.
A skyrmion gains finite 
E− per unit length. Its “core” and
spin currents also cost finite energy 
E+ per unit length.
We could classify the “chiral” magnets with 
E+ > 
E− as
type-I in analogy to the type-I superconductors: the gauge flux
is present, but the equilibrium state has no topological defects
(the mechanism in superconductors is based on the expulsion
of the flux from the system, so it is fundamentally different
than in magnets). Likewise, the magnets with 
E+ < 
E−
are type II: their ground state hosts a skyrmion lattice in
response to the gauge flux. The concentration of skyrmion
lines is not determined only by the amount of flux as in
superconductors; it depends on the competition between the

E± energy scales.

In the case of a hedgehog, the energy gain from (154)
is infrared divergent as 
E− ∝ ∫ R

0 d3r Siχi ∼ R. The energy
cost of its spin currents | ja

i | ∼ r−1 from the K1 term in the
Lagrangian density (141) also diverges in the infrared limit
as 
E+ ∼ R. The resulting energy competition enables both
type-I and type-II behaviors. Hedgehogs proliferate in type-II
helical magnets until the energy gain 
E− − 
E+ ∼ R is
cut off by the finite separation R ∼ ξ between the defects.
However, generating a lattice of hedgehogs that have only
the topological charge N = 1 is not a good solution for the
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(H) flux in (155) because the spin and chirality would not be
able to keep alignment with each other throughout the system.
Only the N = 1 unit hedgehog achieves the right alignment,
while any region containing M > 1 unit hedgehogs looks like
a total charge M hedgehog from the outside (a charge-M
hedgehog has a radial chirality configuration like an electric
field of a charge-M particle, but the spin supporting it must
wind M times on equal-latitude circles, making it impossible
to align spin with chirality unless M = 1). Therefore, the
lattice of topological defects will have small antihedgehogs
inserted between the hedgehogs, small in order not to waste
much space on the misaligned spin and chirality. Analogous
arrays of defects and antidefects are also expected in two-
dimensional triplet superconductors shaped by the Rashba
spin-orbit coupling [96,109].

Topological defects in chiral magnets can obtain additional
advantage from fluctuations. The defect currents ji j and spin
chirality χi can be nonzero even in the absence of magnetic
long-range order because they are scalars with respect to
spin rotations. If fluctuations destroy magnetic order, then the
energy cost 
E+ of any surplus spin current becomes washed
out in the noise of current fluctuations; the chiral coupling
(154) survives in its entirety and reigns, as a scalar under
spin rotations. Quantum paramagnets with gapless photon-
like excitations have delocalized line defects, but retain the
localization and energy gap for hedgehog point defects [1].
Gapped quantum paramagnets cannot keep any topological
defects localized. A special class of paramagnets obtains from
the quantum melting of a hedgehog array, provided that the
microscopic crystal lattice can neutralize some fraction of the
small antihedgehogs inserted in the parent ordered state, in a
manner analogous to how fitting a U(1) flux quantum through
a single lattice plaquette makes that flux physically unob-
servable. The remaining larger but delocalized hedgehogs can
enjoy a topological protection of their net topological charge,
giving rise to topological order. The resulting chiral spin
liquids have fractional quasiparticles and form a hierarchy
of three-dimensional phases analogous to fractional quantum
Hall states in two-dimensional electron systems [1].

The above insight into the energy-scale competition allows
us to also explain why skyrmion states and the related topo-
logical Hall effect are seen in various materials only at finite
temperatures [2]. These materials exhibit type-I behavior at
lowest temperatures and develop some competing magnetic
order without flux compensation (e.g., favored by the rank-
1 Lagrangian density). Raising the temperature introduces
fluctuations that eventually destabilize the original magnetic
state and reduce the energy cost 
E+ of spin currents. Being
resilient to fluctuations, skyrmions can take advantage of this
if they are stimulated through the chiral interaction (154)
either by the external magnetic field or by the spin-orbit
coupling in a reconstructed magnetic order.

B. Spin waves with spin-momentum locking

Here we characterize the spin-momentum locking of spin-
current excitations in type-II chiral magnets, governed by
the Lagrangian density (141). A spin-wave excitation is a
small (|δs| 	 1) time-dependent distortion sa = Sa + δsa of
the equilibrium ordered state Sa which satisfies the stationary-
action field equation and Saδsa = 0 due to the fixed magnitude

of spins. The complexity of a chiral order Sa precludes a direct
solution of the field equation. Instead, we will qualitatively
deduce the spectrum of spin waves by applying gauge trans-
formations.

Let us refer to the equilibrium chiral spin configuration Sa

with spin currents Ja
μ = εabcSa(∂μSb) as the “original gauge”

O. Carry out a singular gauge transformation to transfer all
topological defects from the spin currents onto the gauge
field. This is just a position-dependent rotation of spins that
modifies the current, followed by the adjustment of the gauge
field which keeps Ja

μ + Aa
μ covariant (just locally rotated). The

rotation field cannot be analytic if it removes defects. Then,
proceed with another smooth gauge transformation which
aligns the spin configuration into a “ferromagnetic” state. The
final rectified gauge will be denoted by R.

Every space-time configuration of spins in O has a cor-
responding configuration in R that costs the same gauge-
invariant Lagrangian density L. Therefore, we can use R
to calculate the dynamics of real spin waves from the com-
plicated gauge O. The equilibrium spin current εabcSb∂i Sc

vanishes in R. Such a trivial state can minimize the action
of a type-II magnet only if the gauge flux �a

i that drives it
vanishes on average at sufficiently short length scales. In the
worst case, Aa

i can present an inhomogeneous perturbation
to the spin currents in the gauge R, perhaps a periodic one,
but certainly without a significant flux and even without a
finite spatial average 〈Aa

i 〉 (which would create a spin spiral
instead of the ferromagnetic equilibrium state). Consequently,
the dynamics of spin waves with long wavelengths is governed
by the very simple effective Lagrangian density in R:

L → K1

2
(εabcsb∂μsc)2 = K1

2
(∂μsa)2. (156)

The chiral coupling K2 is irrelevant for spin waves since the
rank-2 current jμν remains strictly zero. Parametrizing the
equilibrium ferromagnetic state as Sa = δa3 yields the familiar
solution of the field equation with two degenerate polarization
modes (±) carrying momentum ki:

δsa
± = |δs|[δa1 cos(kixi − ωt ) ± δa2 sin(kixi − ωt )]. (157)

The energy dispersion ω(k) is given by

ω2 = |ki|2. (158)

The spin current of a mode (157)

ja
i = εabcsb∂i sc

= ±|δs|2ki Sa − |δs| ki [δa2 sin(kixi − ωt )

±δa1 cos(kixi − ωt )] (159)

has a “large” transverse part that averages out to zero (a clas-
sical testimony of the Heisenberg uncertainty: the spin pro-
jections perpendicular to the symmetry-breaking spin back-
ground cannot be good quantum numbers). The residual aver-
age current

δ ja
i ≡ 〈

ja
i

〉 = ±|δs|2ki Sa (160)

transparently transports the “longitudinal” spin projection Sa

in the spatial direction ki, with a small amplitude |δs|2. The
spin-wave energy (158) can become a more complicated
function of momentum ki at shorter wavelengths, and even
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develop a band structure, but the spectrum is ensured to
remain topologically trivial in the gauge R.

Now we can switch back to the original gauge O. The
spin waves (157) are very distorted in O but still have the
gauge-invariant dispersion (158) in terms of the wave vector
ki from the rectified gauge. Our goal is to express the energy
dispersion using only quantities which are defined in the
original gauge.

The total steady current ja
i = Ja

i + δ ja
i of a spin wave is

inhomogeneous in O. Neither spin nor momentum are good
quantum numbers. Nevertheless, there is a sense in which
a low-energy spin wave can be characterized in O by an
effective momentum k̄i and spin δS̄a:

ja
i = k̄i δS̄a. (161)

Let 〈Aa
i 〉 be the average of the gauge field Aa

i on the length
scale ξ given by the distance between equilibrium topological
defects. We shall assume that 〈Aa

i 〉 is spatially uniform on
length scales larger than ξ . As the equilibrium spin current Ja

i
tries to screen the gauge flux in type-II magnets, its average
on the length scale ξ will mimic that of the gauge field,
〈Ja

i 〉 ∝ 〈Aa
i 〉, and hence be globally uniform. The effective

momentum k̄i is the rectified momentum ki appropriately
shifted due to the average background 〈Ja

i 〉, as we will explic-
itly demonstrate. This holds for low-energy modes ω2 < ξ−2

in a straightforward fashion. For higher-energy modes in a
periodic array of defects, we promote k̄i to a “crystal wave
vector” and replace 〈Ja

i 〉 with a wave-modulated average of
the spin current appropriate for the given spin-wave band.

Following the outlined principles, we simplify the notation
in (160) with δSa ≡ ±|δs|2Sa and write the total steady spin
current ja

i = 〈Ja
i 〉 + δ ja

i of a mode as

k̄i δS̄a = ki δSa + 〈
Ja

i

〉
. (162)

The energy (158) of the spin wave can be extracted in the
following fashion:

|δS|2ω2 = |δS|2 ki ki = (
k̄i δS̄a − 〈

Ja
i

〉)(
k̄i δS̄a − 〈

Ja
i

〉)
= |δS̄|2 〈n̂|(k̄i − αa

i γ
a
)2|n̂〉, (163)

where αa
i = 〈Ja

i 〉/|δS̄|, γ a are Pauli matrices, and |n̂〉 is the
S = 1

2 spin coherent state corresponding to the spin direction
n̂ = δS̄/|δS̄|. The last equality holds when |n̂〉 is an eigenstate
of αa

i γ
a, and hence of the entire operator in the matrix

element. Therefore, if we normalize the spin magnitude units
to the same value, e.g., |δS̄| = |δS| = h̄, the spectrum of low-
energy spin-wave modes obtains from the operator

ω2 = eigenvalues
{(

k̄i − αa
i γ

a
)2}

(164)

in the S = 1
2 representation of SU(2).

The operator of the last formula appears in the Hamil-
tonian of electrons that experience the spin-orbit coupling,
albeit with a renormalized SU(2) gauge field αa

i ∝ 〈Aa
i 〉. In

fact, Aa
i imparted on spins derives directly from the Hubbard

model followed by spin rectification and coarse graining
(see Appendix D). Consequently, the spin waves of localized
electrons will tend to have the same type of spin-momentum
locking that the microscopic electrons would have if they were
not localized. Note that the assumed relativistic dispersion

only rearranges the density of states relative to the nonrela-
tivistic case, without affecting the topological properties of
bands. Features such as Dirac or Weyl points appear at finite
energies where we can linearize the spectrum. In relation
to the chiral spin textures discussed in Sec. IV A, the spin
waves of hedgehog lattices (or liquids) will feature Weyl
nodes in their spectrum. The spin waves of skyrmion lattices
(or liquids) will have Dirac line nodes that extend through
momentum space in the same direction as skyrmions do in
real space.

This argument only serves to prove the principle and
provide a unified picture of spin-wave spectra. Detailed and
typically numerical calculations [79,81,83,85,88,90,91] are
necessary to obtain the correct spin-wave spectrum in a broad
range of energies.

C. Chiral nonequilibrium response

When external perturbations drive a magnet out of equi-
librium, the induced currents can exhibit various forms of
“chiral” behavior similar to Hall effect. In a spin-Hall effect,
for example, a steady flow of spin current comes with a spin
order-parameter gradient in the direction perpendicular to the
flow. If the induced currents carry excess heat, the chiral
response exhibits thermal Hall effect which may be easier to
observe than the actual currents and order parameters. Here
we derive a universal description of these phenomena in the
language of classical field equations.

We begin by analyzing the non-Abelian Lorentz force
from the spin-orbit gauge fields, which produces the spin-Hall
effect. The essential Lagrangian density for the dynamics of
spin currents is the rank-1 part of (141):

L = K1

2

(
εabcsb(∂μsc) + Aa

μ

)2
. (165)

Treating sa as canonical coordinates, we obtain the naive field
equation

δL
δsa

− ∂μ

δL
δ∂μsa

= 0 ⇒ ∂μπa
μ + πab

μ (∂μsb) = 0 (166)

from the stationary action condition, with

πa
μ = δL

δ∂μsa
= πab

μ sb (167)

and

πab
μ = −K1

(
sa∂μsb − sb∂μsa + εabcAc

μ

)
. (168)

The field equation (166) is naive by the virtue of not restrict-
ing the spin variations to |s| = 1, but it is simpler than the
“transverse” one. The accurate field equation is simply the
projection of (166) onto “transverse” spin modes. We will use
|s| = 1 in various derivation steps and accordingly project out
the “longitudinal” parts of the final formula for the Lorentz
force.

Noting that the Lagrangian density can be written as

L = 1

4K1
πab

μ πab
μ , (169)
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its space-time gradient for the fields that satisfy the field
equation is

∂νL = ∂μδμνL = ∂μ

(
πa

μ∂ν sa
)− 1

2πab
μ εabc∂ν Ac

μ. (170)

In the absence of gauge fields, we would define the energy-
momentum tensor as Tμν = πa

μ∂ν sa − δμνL and prove from
(170) that it is conserved, ∂μTμν = 0, by Noether’s theorem.
In the presence of gauge fields, we should define a gauge-
invariant energy-momentum tensor:

Tμν = 1

2K
πab

μ πab
ν − δμνL

= −1

2
πab

μ εabc
(
εcpqsp∂ν sq + Ac

ν

)− δμνL. (171)

The generalized Noether’s theorem for this tensor, with field
equations satisfied, reads as

∂μTμν = Ja
μF a

μν + Rν, (172)

where

Jc
μ = − 1

2εabcπab
μ = K1

(
εabcsa∂μsb + Ac

μ

)
(173)

is the physical (gauged) spin current, and

F a
μν = ∂μAa

ν − ∂ν Aa
μ − 2εabcAb

μAc
ν (174)

is the field tensor of the spin-orbit gauge field. Apart from the
residue

Rν = −2πab
μ Aa

μAb
ν − 1

2εabc
(
∂μπab

μ

)
Ac

ν, (175)

the formula (172) captures the Lorentz force. The residue is an
artifact of the naive treatment of field variations without fully
restricting to |s| = 1. If we separate the “transverse” Aa

⊥μ and
“longitudinal” Aa

‖μ parts of the gauge field

Aa
⊥μ = sa

(
sbAb

μ

)
, Aa

⊥μ = Aa
μ − Aa

‖μ, (176)

it is immediately clear that only the transverse component
couples to the spin currents in (165). The longitudinal com-
ponent cannot produce any force on the excitations that carry
spin currents. It can be shown that projecting out the longi-
tudinal gauge field makes the residue vanish and reduces the
energy/momentum conservation law to the pure Lorentz form

∂μTμν = Ja
μF a

μν. (177)

The Lorentz force is revealed by integrating this equation for
the density of physical momentum T0i. The force exerted on
all excitations in the fields is

dPi

dt
=
∫

d3x ∂0T0i = −
∫

d3x ∂ jTji +
∫

d3x Ja
μF a

μi

=
∫

d3x Ja
μF a

μi. (178)

We assumed that the energy-momentum tensor vanishes on
the space boundary. In analogy to U(1) electrodynamics, we
can identify “electric” Ea

i and “magnetic Ba
i fields within the

field tensor:

F a
0i = ∂0 Aa

i − ∂i Aa
0 − 2εabcAb

0Ac
i = Ea

i ,

F a
i j = εi jk

(
εkpq∂pAa

q − εkpqε
abcAb

pAc
q

) = −εi jkBa
k . (179)

Then,

dPi

dt
=
∫

d3x
(
Ja

0 Ea
i + εi jkJa

j Ba
k

)
. (180)

The obtained non-Abelian Lorentz force gives rise to a
spin-Hall effect when the spin-orbit gauge field has a uniaxial
“magnetic” Yang-Mills flux Ba

k ∝ bkba 
= 0 (recall that this
flux stimulates skyrmions and aligns them with the axis bi).
A flow of spin current generates an “electromotive” force in
the spatial direction perpendicular both to the current flow and
gauge flux. This force acts on the spin-carrying excitations
and must be balanced in a steady state by some means that
generate an “electric” field Ea

i , for example, a gradient of
the spin order parameter. A hedgehoglike flux Ba

k ∝ δa
k builds

an “electromotive” force εi jkJk
j from the helical transport Jk

j
of a spin projection k perpendicular to the flow direction j.
This will produce a steady-state spin density gradient and
spin accumulation near system boundaries regardless of the
current direction and transported (helical) spin projection: the
spin-Hall effect will be isotropic. Nernst and thermal Hall
effect can serve as an indirect evidence for spin-Hall effect
[77,82,84,88,89,92–95,103].

A similar transverse “electromotive” force on spin currents
obtains from the flow of topological defects, due to a non-
Abelian Faraday law. We will reveal it by neglecting the
intrinsic gauge fields and treating instead the spin current
ja
μ = εabcsb∂μsc ≡ −Aa

μ as an effective gauge field. Then, the
equations of non-Abelian “electrodynamics” that we construct
will actually describe the sought kinematics and dynamics
of spins. We previously derived the flux (140) carried by
topological defects using this approach. Now we generalize
the gauge flux (140) to include the time degree of freedom:

�a
μν = εμναβ

(
∂αAa

β − εabcAb
αAc

β

)
, �a

i ≡ �a
0i. (181)

In regard to this notation, we will relate the spatial εi jk

and space-time εμναβ Levi-Civita tensors by εi jk = ε0i jk . The
Faraday law is a statement on the conservation of flux:

∂ν�
a
μν = εμναβεabcAb

νF c
αβ. (182)

Abelian gauge fields have strictly conserved flux (∂ν�μν =
0), but non-Abelian ones admit flux sources governed by the
field tensor (174). The flux and field tensors are generally
related as

�a
μν = 1

2εμναβF a
αβ, F a

μν = 1
2εμναβ�a

αβ. (183)

So, the Faraday law (182) implies

∂ν�
a
iν = 1

2εiναβ∂ν F a
αβ = εi jk∂ j Ea

k + ∂0 Ba
i

= 2εabc
(
Ab

0Bc
i + εi jkAb

jE
c
k

)
. (184)

We used (179) to emphasize the “electric” Ea
i and “mag-

netic” Ba
i fields. Recalling ja

μ = −Aa
μ, we can deduce that

the final right-hand side is not important in a steady state.
The spatial average of spin currents vanishes in equilibrium,
and the steady currents out of equilibrium will be induced
only by the non-Abelian “electromagnetic” field. The induced
spin current always has the same spin orientation as the
“electromagnetic” field according to (180). Such currents will
annihilate the flux nonconservation residue in the last equation
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and lead to the plain Faraday law for the steady state:

∂0 Ba
i = −εi jk∂ j Ea

k . (185)

The flux of skyrmions aligned with direction i is directly
represented by the “magnetic” field Ba

i . Their stream generates
a perpendicular “electromotive” force Ea

i on spin currents, in
the manner equivalent to charge-current “phase slips” caused
by passing vortices in superconductors.

The Faraday “electromotive” force can produce several
manifestations of thermal Hall effect. A temperature gradient
in the system generally yields a heat current, which is dom-
inated by the lowest-energy excitations at low temperatures.
Such excitations are spin currents in magnetically ordered
phases, and possibly topological defect currents in disordered
phases. The Faraday law implies that spin acceleration and
defect currents shall be orthogonal to each other. Furthermore,
spin acceleration can translate into a steady spin flow due
to dissipation, or a spin accumulation that neutralizes the
“electromotive” force. The spin projection bias for thermal
transport is introduced by spin-momentum locking, Zeeman
coupling to external magnetic field, or a ferromagnetic com-
ponent of the order parameter. The analogous bias for defects
is provided by the gauge fluxes, assuming that the chiral
coupling (154) survives in the continuum limit. In the end,
a thermally driven flow of one current type will induce a
Hall-type response of the other one.

One such physical effect is a spin-Nernst effect [78].
Applying a thermal gradient in the system sets skyrmions in
directed motion, and the ensuing drift pushes a spin current
in the direction k perpendicular both to their drift direction j
and the skyrmion-line direction i; the spin projection carried
by the induced current is a ‖ i. The effect is proportional to
the equilibrium concentration of skyrmions, which in turn is
controlled either by the external magnetic field φi or spin-
orbit flux �a

i . Analogous but isotropic effect will be generated
by the motion of hedgehogs across a temperature gradient.
Note that these effects do not require a long-range magnetic
order: skyrmions and hedgehogs should be in a quantum or
thermal fluid state in order to drift in response to external
perturbations. Hence, this effect can be used as a diagnostic
tool for chiral spin liquids [103,107].

We can also apply the field-theory approach to study the
dynamics of line defects in response to external perturbations.
Chiral currents jμν = εabcsa(∂μsb)(∂νsc) are governed by the
rank-2 part of the Lagrangian density (141):

L = K2

2
(εabcsa(∂μsb)(∂νsc) + Aμν )2. (186)

Substituting the chiral interaction for the rank-2 gauge field
(143)

Aμν = ε0μνλ

(
φλ + sa�a

λ

)
, (187)

we obtain the field equation

Jμν

(
εabc(∂μsb)(∂ν sc) + ε0μνλ�

a
λ

)− ∂μπ̃a
μ = 0 (188)

from the stationary action condition, with

π̃a
μ = δL

δ∂μsa
= −2Jμνε

abcsb(∂ν sc) (189)

and

Jμν = K2 (εabcsa(∂μsb)(∂ν sc) + Aμν ). (190)

The space-time gradient of the Lagrangian density

∂βL = ∂αδαβL = ∂μ(π̃a
μ∂βsa) + Jμνε0μνλ

(
∂βφλ + sa∂β�a

λ

)
(191)

suggests the following definition of the gauge-invariant
energy-momentum tensor

Tμν = − 2

K
JμλJλν − δμνL = π̃a

μ∂ν sa − 2JμλAλν − δμνL,

(192)
which is conserved by Noether’s theorem ∂μTμν = 0 when the
gauge field is zero and translation symmetry is intact. In the
presence of gauge fields, we find

∂μTμν = −JαβFαβν − 2(∂μJμλ)Aλν

− Jαβε0αβγ

(
∂νφγ + sa∂ν�

a
γ

)
, (193)

where

Fμνλ = ∂μAνλ − ∂νAμλ (194)

is the field tensor of the rank-2 gauge fields. Since T0i is mo-
mentum density, integrating out (193) over all space reveals
the total force dPi/dt exerted on all excitations that carry
chiral currents. The part of this force arising from JαβFαβν

is the generalization of the Lorentz force to rank 2. We are
particularly interested in the case of uniform and static fluxes
of the external magnetic field and spin-orbit coupling:

dPi

dt
= d

dt

∫
d3x 2εi jkJ0 j

(
φk + sa�a

k

)
. (195)

Here we used the antisymmetric properties of Jμν and Gauss’
theorem. The result is made more transparent (and somewhat
trivial) by identifying the correct density ρ0i of skyrmions
aligned with the direction i, and the corresponding skyrmion
current ρi j :

ραβ = 1
2εαβμνJμν, Jμν = 1

2εμναβραβ. (196)

The formula (195) integrated over time reads as

Pi =
∫

d3x 2
(
φ j + sa�a

j

)
ρ ji (197)

and implies that the j-aligned skyrmions moving in the direc-
tion i carry the total amount of momentum Pi proportional to
the underlying flux. This is formally analogous to the current
and momentum shift caused by a constant gauge field in
a rank-1 theory L ∼ ( jμ + aμ)2. Since Ti0 = T0i is also the
energy current density (when the proper relativistic velocity
scale is inserted to convert the units from momentum density),
the last equation also describes the heat flow carried by defects
in an external thermal gradient. Combining (197) with the
formulas for Faraday and Lorentz force can be used to calcu-
late various thermodynamic responses shaped by the external
magnetic field and spin-orbit flux. It should be possible to
observe additional interesting transport effects in experiments
using inhomogeneous magnetic fields, and perhaps even using
mechanical strain to introduce inhomogeneity in the spin-orbit
flux.
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D. Topological Hall effect

Building on the insights from Sec. III D, we can construct
a rather simple d = 3 model that qualitatively explains the
temperature dependence of the topological Hall effect mea-
sured in most experiments. Consider an arbitrary spatial ar-
rangement of local moments’ topological defects (skyrmions
or hedgehogs) and associate the “sites” of the model with
locations of these defects. If we neglect interactions between
defects, then an electronic spin-defect with winding number
N ∈ Z on a given “site” costs energy

EN = N2
m − J̄KMδN0,N + J̄KMδ−N0,N . (198)

N0 → 1 is the winding number of local moments on the “site,”
M = |〈n〉| is the local average magnetization of local mo-
ments at temperature T (averaged over time, not position), J̄K

calculated from (116) captures the energy gain of aligning the
electron and local moment spin textures, and 
m calculated
from (96) is the energy cost of a unit electronic defect. The
thermal average of the electronic defect density is

ne(T ) = S nh(T )

∑∞
N=−∞ Ne−EN /T∑∞

N=−∞ e−EN /T

N0=1−−→ S nh(T ) × 2e−
m/T sinh(J̄KM/T )

θ3(0, e−
m/T ) + 2e−
m/T [cosh(J̄KM/T ) − 1]
,

(199)

where nh is the density of local moment defects and θ3(u, q)
is an elliptic theta function. The local moment magnetization
M is also temperature dependent below the Curie temper-
ature T < TC , and we expect M ∝ (1 − T/TC )β near the
second-order magnetic phase transition. If J̄K > 
m, then
the resulting ne(T ) saturates at lowest temperatures T 	 J̄K

in the adiabatic regime, and decreases monotonically above
T > J̄K toward zero at T = TC . Otherwise, J̄K < 
m yields a
reentrant nonadiabatic regime, i.e., anomalous Hall response
showing up only in a finite range of intermediate temperatures

m − J̄K � T < TC . Depending on the critical exponent β,
there is either a small steep fall from a finite value ne(T )
down to ne(TC ) = 0 (β < 1), or a gradual decrease with a
small finite slope (β > 1). Note that β = 1

2 in the mean-field
approximation, and β ≈ 0.36 + O(ε2) in the ε = 4 − d ex-
pansion of the classical O(3) ferromagnetic model. Behaviors
of this kind, plotted in Fig. 2, are seen in most measurements
[7,14,19,21] of the Hall resistivity ρH = Ey/ jx = RH Bz ∝ ne,
where RH is the Hall coefficient. In some cases, however, it
appears that the onset of the topological Hall effect might be at
a lower temperature [7,8,62] T = Tt < TC than the magnetic
transition T = TC . This could indicate a separate topological
phase transition instead of a plain thermal crossover modeled
above.

The field-theory formulation enables the calculation of
fluctuation corrections to the anomalous Hall effect beyond
earlier mean-field approaches [49–55], as well as the study
of the topological Hall effect without magnetic order. The
formulas such as (129) and (130) are sensitive to the pres-
ence of topological defects, not long-range order. Hall effect
without an external magnetic field and magnetic ordering has
been experimentally observed [9] in the spin-liquid candidate
material Pr2Ir2O7.

FIG. 2. The temperature dependence of the topological
Hall/magnetoelectric effect (Hall resistivity) obtained from (199)
for a few characteristic values of x = J̄K/
m and the magnetization
critical exponent β. The low-temperature regime is either adiabatic
x > 1 or reentrant x < 1.

V. CONCLUSIONS AND DISCUSSION

We derived in Sec. II an effective continuum-limit theory
of general quantum magnets, starting from a lattice model
with spin-exchange, Zeeman, Dzyaloshinskii-Moriya (DM),
and other spin interactions. This effective theory describes
dynamics with spin coherence at short length scales: the order
parameter is a set of smooth vector fields that represent ferro-
magnetic spins, or staggered spins with generally noncollinear
correlations. The quantum spin Berry’s phase introduces the
temporal component of a vector gauge field coupled to the
coarse-grained magnetization. Incommensurate correlations
and the DM interaction translate into spatial components of
this gauge field. Chiral spin interactions that exist due to the
spin-orbit coupling become tensor gauge fields in the contin-
uum limit, which is capable of producing higher-dimensional
nontrivial Berry fluxes and topological magnetic states.

We also constructed a theory of local magnetic moments
coupled to mobile electrons in Sec. III, and showed that
Kondo-type interactions exchange the fluxes of electronic and
magnetic spin-current gauge fields. This tends to correlate the
topological properties of electrons and local moments because
their gauge fields control the spin-momentum locking of exci-
tations, boundary modes, and other spectral features related
to the momentum-space Berry flux. We elucidated generic
mechanisms that bind the topological defects of charge cur-
rents to the equivalent magnetic topological defects in any
spinor field. This is not only the origin of the “topological”
Hall effect, but also the driving force behind the “topological”
magnetoelectric effect that we predict in 3D materials prone
to the formation of magnetic “hedgehog” point defects. We
explained how microscopic sources of the Berry flux are to
be captured by topological terms in the effective continuum-
limit theory. The same topological terms are also used to de-
scribe topologically ordered quantum liquids with fractional
excitations. The theory we developed anticipates the possible
existence of novel chiral spin liquids in certain quantum para-
magnets, which exhibit a fractional magnetoelectric effect [1].

Lastly, we presented several applications of the field theory
in Sec. IV, pointing toward the universal understanding of
chiral magnets. Some of these applications are predictions of
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new phenomena, while others are a physical unification of
the previously anticipated effects. We showed that the gauge
fields coupled to spins stimulate lattices of topological defects
in equilibrium spin textures. The nature of the defect lattice
is determined by the flux of the gauge fields. In addition to
observing the conditions for skyrmion lattices, we discovered
that hedgehog lattices can arise from the same type of the mi-
croscopic spin-orbit interaction that gives rise to Weyl nodes
in the spectra of itinerant particles. However, the hedgehog
lattice is unusual as it must combine both hedgehogs and
antihedgehogs. The lattices of topological defects are found
to be the parent states of chiral spin liquids. We furthermore
characterized the spectra of spin-wave excitations shaped by
the spin-orbit gauge fields and chiral spin textures, showing
that they exhibit topological bands of the same kind as elec-
trons. Using the classical field equation approach, with non-
Abelian and tensor “electromagnetism,” we revealed a variety
transport phenomena shaped by magnetic fields and spin-orbit
interaction: spin-Hall, spin-Nernst, and thermal Hall effects
involving spin currents, skyrmions, and hedgehogs. In the
context of itinerant electrons coupled to local moments, we
presented a simple physical picture of the adiabatic and nona-
diabatic topological Hall and magnetoelectric effects, with a
calculation of their temperature dependence.

At this point, there are still many directions for further
research, especially when it comes to explaining the observ-
able properties of materials. Most materials will not have the
idealized symmetries of the theory presented here, and will
need to be studied by other methods in detail. In those con-
texts, the developed theory provides valuable physical insight,
particularly through its universal real-space representation of
the spin-orbit coupling based on non-Abelian gauge fields. We
show in Appendix D how such gauge fields appear in lattice
models and find their way from the microscopic Hamiltonian
of electrons to the effective field theory of spins.

One of the materials that motivated this work is Mn3Sn.
The anomalous Hall effect measured in the manganese
kagome planes of Mn3Sn at T < 50 K stems from the copla-
nar magnetic order and the manner in which it breaks the
lattice symmetry [6]. One can interpret it as either “intrinsic”
or “topological” depending on the point of view. In either
case, the observed Hall effect at T < 50 K (the magnetic
transition is at TC ∼ 420 K) seems to be related to the canting
of the coplanar spin order. The canted order carries spin
chirality, and hence may be seen as an array of skyrmions.
The density of these skyrmions is microscopically large,
so that the corresponding gauge field is in the Hofstadter
limit with a large flux per lattice plaquette. This flux gets
transferred to electrons via a Kondo-type coupling. Electrons
then exhibit a large charge-Hall effect due to the nature of
their spinor representation, and the model (199) qualitatively
captures its measured temperature dependence. The effect of
flux transfer on electronic spin currents was also (indirectly)
detected [46] in Mn3Sn. The simplest explanation of the
experiment is that the magnetic background of Mn atoms
polarizes the spins of electrons that carry the charge cur-
rent through the sample, by the mechanism described with
Eqs. (120) and (122). It was observed that reorienting the
moments of Mn atoms changes the sense of this polarization
when the charge current direction is kept the same. This

was described as “anomalous sign change of the spin-Hall
effect.” However, the spin-Hall conductivity, i.e., the ratio
of the spin-current density and the transverse electric field,
is fundamentally invariant under time reversal. The exper-
iment is consistent with this expectation. The spin current
of polarized moving electrons ja

i = Sa ji is simply the spin
polarization Sa times the charge current ji. The full time
reversal that retains the same spin current must include the
reversal of charge current flow with the reorientation of the
Mn moments.

An important future application of the theory developed
here is the study of correlation physics in magnetic Weyl
semimetals. Interactions between Weyl electrons induced by
local moment fluctuations, together with Coulomb forces,
may lead to spin or charge density wave instabilities on the
Weyl Fermi pockets. In practice, a pocket nesting or flatness
of the bands may be needed to support these instabilities when
the interactions are not competitively strong. Nevertheless,
the anticipated ordered states arising from these instabilities
have many special properties. Should the Weyl spectrum
become completely gapped, the outcome would be a strongly
correlated topological insulator because the Weyl bands are
equipped with a nonzero Berry flux defined with respect to
the chiral current Jμ = ∑

n qn jn;μ (n labels the Weyl nodes, qn

is the chirality of the node n, and jn;μ is an appropriate charge
or spin current of electrons on the node n). If this insulator
grows out of a Fermi-liquid state with a finite density of
electrons on each Weyl node, then it might end up having a ra-
tionally quantized number of electrons per Berry flux quanta,
and become a candidate for an incompressible quantum liq-
uid with topological order and fractional quasiparticles [1].
Of course, such an exotic state has many conventional com-
petitors and may be very hard to find in nature, but its genuine
possibility and potential utility for quantum computing should
be noted. More conventional instabilities include exciton and
Cooper pair condensates with a monopole-harmonic pairing
symmetry, anticipated when the pairing occurs between the
Weyl nodes of opposite chirality [110]. The quasiparticle
spectrum remains nodal in these states (the nodes are found
in the relative-motion wave function of the pair). Probably the
most stable and least exotic instabilities involve pairing on
the nodes of the same chirality, including intranode pairing,
which leave behind fully gapped quasiparticles and a density
wave (the nodes are found in real space, in the center-of-mass
wave function of the pair). Depending on the nature of nesting
conditions, the Weyl Fermi surfaces may end up being only
partially gapped.

Weyl electrons should similarly affect the excitation spec-
trum of local moments. One may expect induced spin-
momentum locking in the dispersion and damping of the spin
waves coupled to Weyl nodes. Spin-wave damping is a par-
ticularly interesting feature that could be probed by inelastic
neutron scattering and used to characterize the underlying
Weyl spectrum. Should the Fermi energy sit exactly at the
nodes, one might anticipate some nonlocal effective RKKY-
type interactions between the local moments. More intricate
correlation phenomena could include unconventional phase
transitions. These interesting possibilities will be analyzed in
the forthcoming studies.
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Note added in proof. Recently, I became aware of addi-
tional recent works related to the discussions in this paper:
(a) Zhang et al. [111] take a similar perspective on the “intrin-
sic” and “topological” anomalous Hall effects as Sec. III E;
(b) Zhu, Li, and. Batista [112] derive the Dzyaloshinskii-
Moriya interaction from the Hubbard model with spin-orbit
coupling in a manner analogous to Appendix D.
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APPENDIX A: SPIN GROUP

Here, we review the generalization of spin to higher dimen-
sions and derive a few basic formulas used in the main text.

A spinor ψ in our formalism needs to represent the unit
vector n̂ = (n̂1, . . . n̂d ) in d spatial dimensions, whose physi-
cal meaning is tied to its transformations under rotations. The
group of rotations SO(d ) is generated by matrices Mab, where
two indices 1 � a, b � d are needed to identify the oriented
plane of rotation. The matrix elements of these generators are

(Mab)i j = −i(δaiδb j − δa jδbi ) (A1)

in the minimal representation 1 � i, j � d . It is readily shown
that Mba = −Mab and

[Mab, Mcd ] = i(δacMbd + δbd Mac − δad Mbc − δbcMad ). (A2)

The eigenvalues of Mab are +1, −1 and a (d − 2)-fold de-
generate 0. The unit vector n̂ represented with spherical
coordinates θ1, . . . , θd−2 ∈ [0, π ] and θd−1 ∈ [0, 2π ) can be
obtained as

n̂(θ1, . . . , θd−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ1

sin θ1 cos θ2

sin θ1 sin θ2 cos θ3

...
sin θ1 . . . sin θd−2 cos θd−1

sin θ1 . . . sin θd−2 sin θd−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Rd−1,d (θd−1) . . .R2,3(θ2)R1,2(θ1)

⎛⎜⎜⎜⎜⎜⎜⎝

1
0
0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎠,

(A3)

where Rab(θ ) = e−iMabθ .
The Spin(d ) group is a double covering (and universal

covering for d > 2) of SO(d ), whose generators satisfy the
same algebra as those of SO(d ). The group elements of

Spin(d ) are

g = exp

(
−i

∑
ab

Jabθab

)
, (A4)

where the generators can be written as

Jab = − i

4
[γ a, γ b] (A5)

in terms of the operators γi that obey Clifford algebra:

{γ a, γ b} = 2δab (A6)

Note that (γ a)† = γ a and (Jab)† = Jab. It can be shown that
the Spin(d ) generators satisfy the same commutation algebra
as the SO(d ) generators:

[Jab, Jcd ] = i(δacJbd + δbd Jac − δad Jbc − δbcJad ). (A7)

The relationship

[Jab, γ c] = i(δacγ
b − δbcγ

a) (A8)

implies tr(γ a) = 0 and establishes Jab as rotation generators:

e−iJabθγ aeiJabθ = γ a cos θ + γ b sin θ. (A9)

Consequently,

na ∝ ψ†γ aψ (A10)

transform as components of a d-dimensional vector n̂ under
rotations. Note that a 2π rotation exp(−2π iJab) applied on
ψ can change neither |ψ | nor n, so that exp(−2π iJab)ψ =
e−iφψ is equal to ψ up to a U(1) phase, regardless of the
choice of ψ . If the eigenvalue spectrum of Jab is given by
the set of real numbers { j}, then we may expand ψ as a super-
position of Jab eigenstates | j〉 and require exp(−2π iJab)| j〉 =
exp(−2π i j)| j〉 = e−iφ| j〉 for every j. This condition can be
satisfied only if the values of j differ by integers. Furthermore,
the operator Jba = −Jab must have the same spectrum as Jab

because the above requirements are in no way biased toward
the ordering of a, b. Therefore, the spectrum { j} is identical to
{− j}. There are only two possible eigenvalue sequences j ∈
{0,±1,±2, . . . } and j ∈ {± 1

2 ,± 3
2 , . . . }. Note that all Clifford

algebra generators γ a have the same spectrum of eigenvalues
because they are mixed and converted into one another by
unitary operators e−iJabθ .

It is also useful to define the Hermitian operator

γ d+1 = ξd γ 1 . . . γ d , (A11)

where

ξd = id (d−1)/2 (A12)

is imaginary only when the γ product is anti-Hermitian. One
finds γ d+1γ d+1 = 1. If d is even, then γ d+1 anticommutes
with all γ a (1 � a � d) and hence cannot be identity. We can
use these γ 1, . . . , γ d and ξ 2

d γ d+1 as generators of the Clifford
algebra in any odd number d ′ = d + 1 of dimensions, and get
γ d ′+1 = 1. For all-different b1, . . . , bn,

γ bn . . . γ b1γ d+1 = ξd

(d − n)!
εb1...bnan+1...ad γ

an+1 . . . γ ad ,

(A13)
where εa1...ad is the Levi-Civita antisymmetric tensor.
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APPENDIX B: SPIN-COHERENT STATES

A spin-coherent state |n̂〉 in d dimensions is a normalized
eigenstate of

γ (n̂) =
d∑

a=1

n̂aγ a (B1)

that represents a unit vector n̂. The expectation value

〈n̂|γ (n̂)|n̂〉 =
d∑

a=1

n̂a〈n̂|γ a|n̂〉 = γ (B2)

is a fixed scalar, so that ma(n̂) = 〈n̂|γ a|n̂〉 must transform as
components of a vector m under rotations of n̂. No infor-
mation (bias) other than n̂ is available for constructing m,
so we must conclude ma ∝ na. Matching to γ , together with
normalization, then implies

〈n̂|γ a|n̂〉 = γ n̂a. (B3)

Coherent states are overcomplete. Let us represent n̂ using
spherical coordinates (A3), and consider the integral

I =
∮

Sd−1
d� |n̂〉〈n̂| (B4)

over a d − 1 sphere. The integral measure is

d� =
d−1∏
k=1

[
(sin θk )d−1−kdθk

]
, (B5)

with ∮
Sd−1

d� = Sd−1 = 2πd/2

�
(

d
2

) (B6)

being the “area” of a unit-radius d − 1 sphere. The integral
I is completely isotropic, no rotation can change its value
because all directions n̂ are equally sampled. Hence, I cannot
be a linear combination of γ a or their products that transform
nontrivially under rotations. I could be a linear combination
of the identity 1 and any nontrivial operators Oi that commute
with all γ a. We can rule out the presence of the operators Oi

in the makeup of I by the following argument. The projection
P(n̂) = |n̂〉〈n̂| can be transformed into any other P(n̂′) =
|n̂′〉〈n̂′| by some rotation, so all projections P(n̂) must contain
the same linear combination of the operators Oi:

P(n̂) = Pn̂ +
∑

i

ciOi. (B7)

Here, Pn̂ transforms under rotations and
∑

ciOi does not.
As a consequence, Pn̂ and

∑
ciOi operate on nonoverlapping

subspaces of the Hilbert space. Being a projection, P(n̂) has
only one nonzero eigenvalue, and its corresponding eigenvec-
tor |n̂〉 transforms under rotations. That eigenvector cannot
originate from the Hilbert subspace that

∑
ciOi operates on

because then it would not transform under rotations. We
conclude that all eigenvalues of

∑
ciOi must be zero, and this

is possible only for the null operator. Consequently, I must
be proportional to the identity operator 1 through an ordinary
number. From the trace of I = x · 1,

tr(I ) = x tr(1) =
∮

Sd−1
d� tr(|n̂〉〈n̂|) =

∮
Sd−1

d� = Sd−1

we find

x = Sd−1

tr(1)
. (B8)

Coherent states are overcomplete, but still can be used to
resolve identity

tr(1)

Sd−1

∮
Sd−1

d� |n̂〉〈n̂| = 1. (B9)

Note that tr(1) depends on the representation. In the minimal
representation of Spin(3)=SU(2), tr(1) = 2, and S2 = 4π .

APPENDIX C: BERRY’S PHASE OF A SINGLE SPIN

In setting up a real-time path integral, the action acquires a
Berry’s phase

SB =
∫

dt i〈n̂(t )| d

dt
|n̂(t )〉 (C1)

for each localized spin:

eiSB =
∏

t

〈n̂(t + dt )|n̂(t )〉

=
∏

t

[
〈n̂(t )| + dt

(
d

dt
〈n̂(t )|

)
|n̂(t )〉

]

= exp

[
i
∫

dt i〈n̂(t )| d

dt
|n̂(t )〉

]
. (C2)

We applied the periodic boundary condition in time for the
integration by parts. Note that S∗

B = SB. Since one may carry
out an arbitrary gauge transformation |n̂(t )〉 → eiλ(t )|n̂(t )〉,
the Berry’s phase is gauge invariant only on closed paths n̂(t ).
We can define a Berry connection

At = i〈n̂(t )| d

dt
|n̂(t )〉, (C3)

which transforms as a gauge field

|n̂(t )〉 → eiλ(t )|n̂(t )〉 ⇒ At → At − ∂tλ, (C4)

and then

SB =
∮

dt At (C5)

is invariant under gauge transformations. It is useful to expose
|n̂(t )〉 = |n̂1(t ), . . . , n̂d (t )〉 as a function of the unit-vector
components n̂a:

d

dt
|n̂(t )〉 = dn̂a

dt

∂

∂ n̂a
|n̂(t )〉, Aa(n̂) = i〈n̂| ∂

∂ n̂a
|n̂〉. (C6)

Since we maintain |n̂| = 1, only d − 1 components n̂a of the
d-dimensional vector n̂ are independent variables, but the
component that cannot vary (the projection of n̂ onto itself) is
always excluded from the Berry’s phase due to its vanishing
time derivative. Therefore, we can safely exploit rotational
symmetry and use any d-dimensional coordinate system in the
above decomposition of ∂t |n̂〉. The Berry’s phase for a closed
trajectory C of n̂(t ) on the unit sphere can be expressed as a
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contour integral of the Berry connection A(n̂):

SB =
∮
C

dt i〈n̂(t )| d

dt
|n̂(t )〉

=
∮
C

dt
dn̂a

dt
i〈n̂(t )| ∂

∂ n̂a
|n̂(t )〉 =

∮
C

dn̂aAa(n̂). (C7)

This shows that SB is the flux of A(n̂) through the loop C,
which is a simple sum of fluxes dSB through infinitesimal
loops that add up to C. Note that a global (uniform) rotation of
n̂ does not affect SB on any loop. It is also important to appre-
ciate that any part of the Berry’s phase quantized as 
SB =
2πk, k ∈ Z, has no physical effect because exp(i
SB) = 1.
We will also use

∂

∂ n̂a
|n̂〉 = lim

dθ→0

|n̂ + x̂adθ〉 − |n̂〉 + O(dθ2)

dθ

= lim
dθ→0

e−in̂bJbadθe−iλan̂bγ bdθ |n̂〉 − |n̂〉 + O(dθ2)

dθ

= i n̂b(Jab − λaγ
b)|n̂〉. (C8)

This is derived from the fact that |n̂(t + dt )〉 in any par-
ticular representation can be obtained from |n̂(t )〉 by com-
bining a Spin(d ) rotation e−in̂bJbadθ with a U(1) transforma-
tion e−iλan̂bγ bdθ . The rotation n̂ → n̂ + x̂adθ , involving the
infinitesimal vector dn̂ = x̂adθ orthogonal to n̂, is carried out
in the plane spanned by n̂ and dn̂ and accordingly generated
by the projection n̂bJba of the angular momentum operator.
The U(1) transformation must be generated by γ (n̂) = n̂bγ b

because |n̂〉 is its eigenstate and will transform trivially by
acquiring just a phase. The representation-dependent scalar
function λa(n̂) cannot vanish, but is necessarily real because
the Berry’s connection is real. Note also that the restriction to
|n̂| = 1 allows us to discard the gradient projections

n̂a ∂

∂ n̂a
= i n̂an̂b(Jab − λaγ

b) → 0,

and obtain

n̂aλa = 0 (C9)

from Jab = −Jba. In principle, if d > 3 then we can supple-
ment the U(1) transformation with transformations generated
by other operators Ki(n̂) that commute with γ (n̂) = n̂bγ b and
have |n̂〉 as an eigenstate. However, this is not necessary. We
will set to zero all transformation-specifying functions associ-
ated with Ki and keep only λa 
= 0 as required. In other words,
we generate the coherent states in a minimalistic way, by
starting from some reference state |ẑ〉 and rotating it into any
desired |n̂〉, with an additional U(1) transformation to preserve
the predefined form of the coherent-state representation.

We proceed by applying Stokes-Cartan theorem on a two-
dimensional manifold S(C) embedded in Sd−1 whose bound-
ary is C. There are two possible choices for S(C) in d =
3, and infinitely many in d > 3 dimensions. Since S(C) is
two dimensional and lives on the unit d − 1 sphere, it is
locally perpendicular to n̂ and additional d − 3 unit vectors
ŝi that define the shape of S(C). The vectors ŝi are mutually
orthogonal and orthogonal to n̂, but generally vary by rotation
from a point to point on S(C). The Berry’s phase (C7) treated

by Stokes-Cartan theorem becomes

SB =
∫

S(C)
d2S εi1...id−3abc

(
d−3∏
k=1

ŝik
k

)
n̂a ∂

∂ n̂b
Ac(n̂)

=
∫

S(C)
d2S εi1...id−3abc

(
d−3∏
k=1

ŝik
k

)
n̂a i

∂〈n̂|
∂ n̂b

∂|n̂〉
∂ n̂c

+
∫

S(C)
d2S εi1...id−3abc

(
d−3∏
k=1

ŝik
k

)
n̂ai 〈n̂| ∂

∂ n̂b

∂

∂ n̂c
|n̂〉.

(C10)

The second term in the final expression involves an antisym-
metric combination of derivatives and hence vanishes except
at positions of singularities in |n̂〉. The surviving singularities
can only be quantized flux tubes of A(n̂), which contribute
2πk, k ∈ Z, to the Berry’s phase and have no physical conse-
quence. The remaining first term can be evaluated locally on
S(C), starting with (C8):

iε...abcn̂a ∂〈n̂|
∂ n̂b

∂|n̂〉
∂ n̂c

= iε...abcn̂an̂in̂ j〈n̂|(Jb j − λbγ j )(Jci − λcγi )|n̂〉
= X1 + X2 + X3. (C11)

We can use the Levi-Civita tensor to antisymmetrize terms
with respect to indices b, c, and we may also exchange i, j at
will. Expanding the brackets yields

X1 = i

2
ε...abcn̂an̂in̂ jλbλc〈n̂|[γ j, γi]|n̂〉 = 0,

and also

X2 = −iε...abcn̂an̂in̂ j (λb〈n̂|γ jJci|n̂〉 + λc〈n̂|Jb jγi|n̂〉)

= −iε...abcn̂an̂in̂ j (λb〈n̂|γ jJci|n̂〉 − λb〈n̂|Jciγ j |n̂〉)

= −ε...abcn̂an̂in̂ jλb〈n̂|(δc jγi − δi jγ
c)|n̂〉

= 0

due to (A8), (B3), and antisymmetrization with respect to b, c.
Lastly, we find

X3 = i

2
ε...abcn̂an̂in̂ j〈n̂|[Jb j, Jci]|n̂〉

= −1

2
ε...abcn̂a〈n̂|Jbc|n̂〉

with the help of (A7). It will be convenient to define

J ab(n̂) = 〈n̂|Jab|n̂〉. (C12)

and write the final conclusion as

iε...abcn̂a ∂〈n̂|
∂ n̂b

∂|n̂〉
∂ n̂c

= −1

2
ε...abcn̂aJbc(n̂). (C13)

Then,

SB = −1

2

∫
S(C)

d2S εi1...id−3abc

(
d−3∏
k=1

ŝik
k

)
n̂aJ bc

≡ −1

2

∫
S(C)

dn̂a ∧ dn̂b J ab. (C14)
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The last two-form notation has the conventional integral in-
terpretation dn̂a ∧ dn̂b = εabdn̂adn̂b, where dn̂a and dn̂b are
orthogonal vectors on the unit sphere locally tangential on
S(C). This is the simplest and most general expression we can
construct. The Berry’s phase on the loop C is the total spin
angular momentum of all coherent states on an arbitrary two-
dimensional surface bounded by C. The total spin depends
only on the boundary C and not on the shape of the surface.
Formally, the Berry’s phase on the loop C equals the Berry’s
flux (integrated curl of the Berry’s connection) through C.

1. Action variations

Classical equations of motion obtain from the stationary
action condition δS = 0. Infinitesimal variations δn change
the Berry phase action (C7) by

δSB =
∮

dt
∂na

∂t

(
∂Aa

∂nb
− ∂Ab

∂na

)
→

∮
dt

∂na

∂t
J ab δnb.

(C15)
We expanded the Berry phase term using

δ

(
∂na

∂t
Aa

)
=

(
δ
∂na

∂t

)
Aa + ∂na

∂t
δAa

→ −δna ∂Aa

∂t
+ ∂na

∂t
δAa

= −δna ∂nb

∂t

∂Aa

∂nb
+ ∂na

∂t

∂Aa

∂nb
δnb

= ∂na

∂t
J abδnb, (C16)

where the arrow stands for integration by parts. In the final
step, the directions a, b are both orthogonal to n̂ (due to |n̂| =
1), so that J ab emerges from (C10) and (C13), i.e.,

ε...abcn̂a ∂

∂ n̂b
Ac = −1

2
ε...abcn̂aJbc(n̂) + 〈singular〉. (C17)

Note that the singular part does not change in smooth varia-
tions of δn̂.

2. Imaginary time

The imaginary-time path integral obtains from (C1)
through the replacements it → τ and iSB → −SB:

e−SB = exp

[
−
∫

dτ 〈n̂(τ )| d

dτ
|n̂(τ )〉

]
. (C18)

The imaginary-time Berry phase can be written as

SB = −i
∮

dτ Aτ = −i
∮

dn̂aAa, (C19)

in terms of the real-valued Berry connections that have the
same form as in real time:

Aτ (n̂) = i〈n̂| d

dτ
|n̂〉, Aa(n̂) = i〈n̂| ∂

∂ n̂a
|n̂〉. (C20)

This allows us to use the same formulas for Berry connections
as in real time.

3. d = 3 dimensions

In d = 3 dimensions, we can make further simplifications by
defining the usual pseudovector spin angular momentum

Jc = 1
2εabcJab = 1

2γ c ⇔ Jab = εabcJc. (C21)

The formula (C8) can be written as

∂

∂ n̂a
|n̂〉 = iεabcn̂bJc|n̂〉 − 2iλa(n̂) n̂bJb|n̂〉. (C22)

The first term is a rotation of the vector n̂, and the second (un-
avoidable) term is a pure U(1) transformation of the coherent-
state spinor involving a representation-dependent function
λa(n̂) ∈ R. The Stokes’ theorem takes a simpler familiar form

SB =
∮
C

dn̂ A(n̂) =
∫

S(C)
d2S n̂[∇n̂ × A(n̂)]

= −
∫

S(C)
d2S 〈n̂|n̂iJi|n̂〉 = −S

∫
S(C)

d2S = −S �C,

(C23)

where S is the spin operator eigenvalue (in the given rep-
resentation) and �C is the solid angle spanned by C. The
Berry connection that produces this action is a gauge field
of a monopole. Different representations of coherent states
produce different gauges for the Berry connection

Aa(n̂) = −εabcn̂b〈n̂|Jc|n̂〉 − λan̂b〈n̂|Jb|n̂〉 = −Sλa(n̂).

In the minimal S = 1
2 representation and rotationally gener-

ated gauge, we find directly from (C3) and (C6)

|n̂〉 = e−iJzφe−iJyθ |ẑ〉 =
(

cos
(

θ
2

)
e−iφ/2

sin
(

θ
2

)
eiφ/2

)

⇒ A = 1

2

(ẑn̂)(ẑ × n̂)

(ẑ × n̂)2
, (C24)

while in the “standard” gauge which keeps the coherent-state
spinor continuous as a function of θ, φ:

|n̂〉 =
(

cos
(

θ
2

)
sin

(
θ
2

)
eiφ

)
⇒ A = −1

2

ẑ × n̂
1 + ẑn̂

. (C25)

This readily generalizes to an arbitrary spin S representation
of SU(2):

|n̂〉 = e−iJzφe−iJyθ |ẑ〉 ⇒ A = S
(ẑn̂)(ẑ × n̂)

(ẑ × n̂)2
,

|n̂′〉 = eiSφ |n̂〉 ⇒ A′ = −S
ẑ × n̂
1 + ẑn̂

. (C26)

APPENDIX D: HUBBARD MODEL AT HALF-FILLING
WITH SPIN-ORBIT COUPLING

Here we derive a Heisenberg spin model that describes
the low-energy dynamics of electrons localized on a two-
dimensional or three-dimensional lattice. We will review
known results [104–108] and extend the previous studies by
including an arbitrary spin-orbit coupling. The starting point
is the Hubbard model

H = −t
∑

i j

c†
i eiAi j c j + U

2

∑
i

ni (ni − 1) (D1)
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at half-filling in the U � t limit, modified by the presence of
a U(1)×SU(2) gauge field matrix

Ai j = −A ji = ai j + Aa
i jγ

a ≡ ai j + Ai jγ (D2)

that lives on the lattice links. The Abelian component ai j cap-
tures the usual electromagnetism, while the static non-Abelian
components Aa

i j , combined with Spin(3) generators (Pauli
matrices) γ a, describe a microscopic spin-orbit coupling. The
Hamiltonian (D1) is constructed from the fermionic spinor
creation and annihilation operators c†

i , ci respectively, and
ni = c†

i ci is the number of electrons on the lattice site i. We
will find that the effective spin dynamics of localized electrons
is captured by a Heisenberg model in which the spin currents
are coupled to the spin-orbit gauge field via Dzyaloshinskii-
Moriya interaction, and the spin chirality is coupled to both
U(1) and SU(2) gauge fluxes.

At half-filling, ni = 1 on every lattice site and electrons
cannot move without paying the large energy cost U of
double-occupied sites. The residual low-energy spin dynamics
can be deduced using a degenerate perturbation theory. The
“unperturbed” part H0 of the Hamiltonian is just the interac-
tion U term, while the hopping term t is a small perturbation
H ′. All massively degenerate eigenstates |βn〉 of H0, with
n � 0 double-occupied sites, are simultaneous eigenstates of
all site-occupation number operators ni that satisfy H0|βn〉 =
nU |βn〉. Writing H = H0 + H ′ and

H |ψ〉 = E |ψ〉 ⇒ |ψ〉 = 1

E − H0
H ′|ψ〉, (D3)

for the exact Hamiltonian eigenstates |ψ〉 and their energy
eigenvalues E , we find

aβm ≡ 〈βm|ψ〉 = 1

E − mU

∑
n

∑
βn

aβn〈βm|H ′|βn〉 (D4)

(an operator in the denominator indicates the inverse opera-
tor). Let

Pn =
∑
βn

|βn〉〈βn| (D5)

be the projection operator to the Hilbert subspace with n
double-occupied sites. We wish to construct the effective
Hamiltonian Heff that operates only within the low-energy
Hilbert subspace with no double-occupied sites, but repro-
duces the exact low-energy spectrum HeffP0|ψ〉 = EP0|ψ〉.
Noting that P0|ψ〉 keeps only the amplitudes aβ0 from the
full eigenstate expansion of |ψ〉, we recursively use (D4) to
separate the processes in the low-energy subspace from those
involving high-energy final states:

Eaβ0 =
∑

n

∑
βn

aβn〈β0|H ′|βn〉 =
∑
β1

aβ1〈β0|H ′|β1〉

= 1

E − U

∑
β1

∑
n

∑
βn

aβn〈β0|H ′|β1〉〈β1|H ′|βn〉

= 1

E − U

∑
γ0

aγ0〈β0|H ′P1H ′|γ0〉

+ 1

E − U

∞∑
m=1

∑
βm

aβm〈β0|H ′P1H ′|βm〉 = · · · . (D6)

Ultimately, we find that

Eaβ0 =
∑
γ0,Pk

aγ0〈β0|H ′ Pn1

E − n1U
H ′ . . . H ′ Pnk

E − nkU
H ′|γ0〉

(D7)
is the sum over all possible hopping paths Pk from the initial
|γ0〉 to the final |β0〉 low-energy state through k interme-
diate high-energy states with ni > 0, i = 1, . . . , k, double-
occupied sites. Each path consists of one or more loops on
the lattice on which an electron hops, and only connected
loops eventually survive. Using (D7) recursively to eliminate
E from the expansion of the right-hand side in powers of
E/U 	 1 gives us

Eaβ0 =
∑
γ0

aγ0

{
− 1

U

∑
P1

〈β0|H ′P1H ′|γ0〉

+ 1

U 2

∑
P2

〈β0|H ′P1H ′P1H ′|γ0〉 + · · ·
}

(D8)

up to the third order of perturbation theory.
Now we can focus on the calculation of the matrix element

〈β0|H ′Pn1 H ′ . . . H ′Pnk H ′|γ0〉|Pk = 〈β0|M(Pk )|γ0〉 (D9)

on a single connected loop Pk . The operator M(Pk ) ∼ t k+1 can
affect only the spins Si on the loop sites 1, 2, . . . , k + 1. The
number of double-occupied sites in all intermediate states is
n1 = · · · = nk = 1. Let

|γ0〉 = |n̂1〉1|n̂2〉2 . . . |n̂k+1〉k+1,

|β0〉 = |n̂′
1〉1|n̂′

2〉2 . . . |n̂′
k+1〉k+1 (D10)

be direct products of spin-coherent states |n̂i〉 j at loop sites j,
and let us represent a coherent state |n̂〉 by the two-component
spinor ψ (n̂) written in (C24). We will use a basis of spin states
|↑〉i = |n̂i〉i, |↓〉i = | − n̂i〉i for each site, i.e.,

n̂′
i = σi n̂i , σi = ±1, (D11)

and choose the directions ni that conveniently play along with
the effects of spin-orbit coupling. Since the electron creation
and annihilation operators are spinors, we find that c†ψ (n̂)
creates an electron of spin S = 1

2 n̂ at the given lattice site. We
also find

c|0〉 = 0, c|n̂〉 = ψ (n̂)|0〉, ψ†(n̂)c|2〉 = |−n̂〉,
c†ψ (n̂)|0〉 = |n̂〉, c†ψ (n̂′)|n̂〉 = λn̂′,n̂|2〉, c†|2〉 = 0,

(D12)

where |0〉 and |2〉 are the states of an unoccupied and double-
occupied site, respectively, and

λn̂′,n̂ = ψ†(−n̂)ψ (n̂′)
n̂=±n̂′−−−→ δn̂+n̂′,0 (D13)

with δx,0 being nonzero and equal to 1 only when x = 0.

1. Second-order perturbation theory

The lowest order of perturbation theory that contributes
to the effective spin Hamiltonian is second because a single
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hopping event cannot transform one state without double-
occupied sites to another. At the second order,

H (1)
eff = − 1

U

∑
P1

M(P1 ), (D14)

with M(P1) defined via (D9), an electron hops from a site i
to a site j and then back to i on single-bond loops P1. Using
(D12), we find the following effect of the initial hopping in
(D9):

c†
j e

−iAi j ci |n̂i 〉i |n̂ j〉 j = e−iai j λR2Ai j n̂i,n̂ j
|0〉i |2〉 j . (D15)

The notation Rθn̂ indicates the vector that obtains when n̂
rotates about the axis θ by the angle |θ|. Such rotations
are generated due to the spin-orbit gauge field Aa

i j bundled
with rotation generators Sa = γ a/2 in (D2). The effect of the
second hopping is

c†
i e−iA ji c j |0〉i |2〉 j = e−ia jiδR2A ji

n̂′
j+n̂′

i,0|n̂′
i〉i |n̂′

j〉 j . (D16)

Within the spin basis (D11), the obtained relationship
R2A ji

n̂′
j ‖ n̂′

i also implies the inverse relationship R2Ai j
n̂i ‖

n̂ j in (D15), i.e., λ → δR2Ai j n̂i+n̂ j ,0 according to (D13). The
ensuing constraints on the spins are summarized by

σiσ j = 1, n̂ j = −R2Ai j n̂i. (D17)

In the absence of spin-orbit coupling Aa
i j = 0, (D17) re-

quires that the two spins on sites i, j point in the opposite
directions, and either flip together or stay unchanged during
the second-order process. The spin operator that projects onto
the space of antiparallel spins is 1

2 − 2Sz
i Sz

j in the usual basis
n̂i, n̂ j ‖ ẑ, and the combined spin flipping is accomplished
with S+

i S−
j + S−

i S+
j . A careful analysis of the perturbative

process reveals that the fermionic statistics of electrons gives
opposite signs to the flip and nonflip events. The effective
Hamiltonian in terms of the spin operators S = (Sx, Sy, Sz ) is,
hence,

H (1)
eff = −2

t2

U

∑
〈i j〉

(
1

2
− 2Sz

i Sz
j

)
(1 − S+

i S−
j − S−

i S+
j )

= t2

U

∑
〈i j〉

(4Si S j − 1) (D18)

in the absence of spin-orbit coupling. We have included the
amplitude −(−t )2/U from (D14) and a factor of 2 corre-
sponding to the reordering of the sites i, j; 〈i, j〉 in the sum
indicates site pairs without specifying order. The constant
term will be dropped from now on. In order to include the
spin-orbit coupling, we must carry out the same spin-flipping
combinations with the spin on one site rotated relative to the
spin on the other site as required by (D17):

H (1)
eff = 4t2

U

∑
〈i j〉

e−i2Ai j Si Si ei2Ai j Si S j . (D19)

We can symmetrize the H〈i j〉 = Ui jH〈i j〉U
†
i j Hamiltonian part

on each link by exploiting its commutation with Ui j =

exp[iAi j (Si + S j )]:

H (1)
eff = 4t2

U

∑
〈i j〉

e−iA〈i j〉Si S je
iA〈i j〉 , (D20)

where

A〈i j〉 = A〈 ji〉 = Ai j (Si − S j ). (D21)

An important physical picture is obtained by linearizing
(D20) with respect to the spin-orbit gauge field:

H (1)
eff = 4t2

U

∑
〈i j〉

[
Sa

i Sa
j − 2εabcAa

i jS
b
i Sc

j + O(A2)
]
. (D22)

The term involving the gauge field is a Dzyaloshinskii-Moriya
coupling −2Ai j (Si × S j ), here clearly linked to the micro-
scopic spin-orbit coupling of localized electrons. However,
we cannot properly take the continuum limit without first
rectifying the antiferromagnetic spins of this model. Let us
assume for simplicity that our lattice is bipartite (e.g., cubic)
and couples the spins only on its nearest-neighbor links. The
rectification (in the limit of weak gauge fields) is carried
out by the transformation Si = 1

2 (−1)isi, where (−1)i takes
opposite signs on the two sublattices of the bipartite lattice.
The field si is smooth and becomes normalized as a unit vector
|s|2 = 1 upon the construction of a coherent-state path integral
from (D22). The Lagrangian density of that path integral is

L = K1

2

(
εabcsb∂μsc − 2Āa

⊥μ

)2 + · · · (D23)

with Āa
⊥μ being the local “transverse” component of the

linearized gauge field Aa
i j (Āa

x ≡ Aa
i,i+x̂, Āa

y ≡ Aa
i,i+ŷ, etc.):

Āa
‖μ = sa

(
sbĀb

‖μ
)
, Āa

⊥μ = Āa
μ − Āa

‖μ. (D24)

Note that the “longitudinal” component of the gauge field does
not couple to spins in (D22).

2. Third-order perturbation theory

Here we calculate

H (2)
eff = 1

U 2

∑
P2

M(P2) (D25)

on triangle loops P . There are two types of processes involv-
ing three lattice sites i, j, k:

(1) one electron hops: i
1−→ j

1−→ k
1−→ i,

(2) two electrons (1 and 2) hop: j
1−→ k, i

2−→ j, k
1−→ i.

Both prototype processes end with the same hopping event
and come in six varieties that correspond to the permutations
of i, j, k. The last hopping occurs under the same conditions as
(D16) and thus generates the constraint n̂′

i = −R2Aki
n̂′

k for the
final spin states. The middle hopping event of the process No.
2 moves an electron at i in the original state n̂i to the empty site
j, where its final state obtains by the rotation n̂′

j = +R2Ai j
n̂i .

In the process No. 1, we are free to choose the bases of spin
states at sites i, j and make them related by the same rotation,
i.e., n̂ j = ±R2Ai j

n̂i ; then, the effect of the entire loop hopping
in the process No. 1 is

〈n′
i|i 〈n′

j | j〈n′
k|kc†

i e−iAki ckc†
ke−iA jk c j c

†
j e

−iAi j ci |n̂i 〉i |n̂ j〉 j |n̂k〉k
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= e−iφi jk δR2Ai j n̂i +n̂ j ,0 λ−R2A jk n̂′
j ,n̂k δR2Aki

n̂′
k+n̂′

i,0. (D26)

The process No. 2 has exactly the same amplitude if we
change variables n̂ j → −n̂′

j . This amplitude picks the U(1)
flux

φi jk = ai j + a jk + aki (D27)

through the lattice plaquette formed by the sites i, j, k, as
noted in Refs. [106–108]. We will now show that the SU(2)
gauge field contributes its flux as well, through the remaining
factor λ in (D26):

λ−R2A jk n̂′
j ,n̂k = λ−σiσ jσkR2A jk R2Ai j R2Aki Sk ,Sk

= ψ†(−n̂k ) e−iA jkγe−iAi jγe−iAkiγ ψ (−σi σ j σk n̂k ).

(D28)

We applied all of the constraints on spins in (D26) and
specialized to the spin basis (D11) for the initial and final
states. If we define

Ci j = cos(|Ai j |)
|Ai j |	1−−−−→ 1 + O(|Ai j |2),

(D29)

Si j = sin(|Ai j |)
|Ai j |

|Ai j |	1−−−−→ 1 + O(|Ai j |2),

and use the identities γ aγ b = δab + iεabcγ c and e−iAa
i jγ

a =
Ci j − iAa

i jγ
aSi j , we find

e−iA jkγe−iAi jγe−iAkiγ = ϕ̃i jk − iγ a�̃a
i jk (D30)

with

ϕ̃i jk = Ci jCjkCki + Si jS jkSkiε
abcAa

i jA
b
jkAc

ki

− (
Ci jS jkSkiA

a
jkAa

ki + cyclic
)

= 1 − 1
2

(
Ai j + A jk + Aki

)2 + O(A3) (D31)

and

�̃a
i jk = (Ci jCjkSkiA

a
ki + cyclic)

− Si jS jkSki

(
σ jkAb

kiA
b
i jA

a
jk + cyclic

)
+ εabc

(
σ jkCjkSkiSi jA

b
i jA

c
ki + cyclic

)
[0.05in] = Aa

i j + Aa
jk + Aa

ki

− εabc
(
Ab

i jA
c
jk − Ab

jkAc
ki + Ab

kiA
c
i j

)+ O(A3).(D32)

The symbol “cyclic” indicates the addition of two more terms
obtained from the first one by cyclic permutations i → j →
k → i. Note that the three sides of the triangle are not equiv-
alent (σi j = −1, σ jk = 1, σki = 1) due to the noncommuta-
tion of the spin generators γ a in (D30). The sides become
equivalent only after the symmetrization in the sum over all
triangle paths P2 in (D25). We complete the calculation of
(D28) by choosing the spin basis on the remaining site k
according to n̂k ‖ �̃i jk :

λ = ψ†(−n̂k )
(̃
ϕi jk − iγ a�̃a

i jk

)
ψ (−σi σ j σk n̂k )

= (̃
ϕi jk + i n̂a

k�̃
a
i jk

)
δσiσ jσk ,1. (D33)

This immediately generalizes to any basis, and λ presents
itself as an operator λ = ϕ̃i jk + 2iSa

k �̃
a
i jk within the constraint

σiσ jσk = 1.
In the absence of all gauge fields, the operators that carry

all spin transformations allowed by σiσ jσk = 1 and enter
(D25) are found to be

H1;i jk = − t3

U 2

(
1

2
− 2SkSi

)(
1

2
− 2SiS j

)
,

H2;i jk = − t3

U 2

(
1

2
− 2SkSi

)(
1

2
− 2SiS j

)(
1

2
− 2S jSk

)
(D34)

for the processes No. 1 and No. 2, respectively. Their sum

H1;i jk + H2;i jk = 2t3

U 2
(−S jSk + SkSi + 2iSi(S j × Sk ))

(D35)
gets symmetrized in (D25) first by cyclic permutations of
i, j, k, then by the reversal of site ordering. Performing ex-
plicitly the cyclic permutation yields

H (2)
eff = 12i

t3

U 2

∑
(i jk〉

Si(S j × Sk ) + H.c. → 0, (D36)

but the order reversal (i.e., the Hermitian conjugate) cancels
all terms at this order of perturbation theory. The above
chiral spin coupling, however, can survive if the external
gauge fields have flux that breaks the time-reversal symme-
try. Re-introducing the U(1) and SU(2) gauge fields affects
the chiral coupling and its symmetrization with respect to
triangle paths. Given the constraints n̂ j = −R2Ai j n̂i and n̂ j =
σ jR2Ai jR2Aki n̂k with which we calculated (D28), the written
(unsymmetrized) chiral coupling for the processes ending at
the site k becomes

εabcSa
i Sb

j S
c
k → e−iφi jk εabc

(
e−i2Ai j Si Sa

i ei2Ai j Si
)
Sb

j

(
e−i2Ai j Sk e−i2AkiSk 1

2 {Sc
k,�

(k)†
i jk }ei2AkiSk ei2Ai j Sk

)
= 1

2 e−iφi jk e−i2(Ai j Si−A jkSk ) �
(k)
i jk

{
εabcSa

i Sb
j S

c
k , �

(k)†
i jk

}
�

(k)†
i jk ei2(Ai j Si−A jkSk ). (D37)

In addition to (D27), we defined the operator

�
(k)
i jk ≡ e−i2A jk Sk e−i2Ai j Sk e−2AkiSk = ϕ̃i jk − 2i Sk�̃i jk (D38)

and noted that λ = �
(k)†
i jk from the process amplitude (D26)

needs to be inserted as an operator next to the Sk operator (it

can be verified that only this placement yields the proper non-
Abelian gauge invariance). Also, both λ and Sc

k in the chirality
operator need to read out the same spin nk from the initial
spin-coherent state without modifying it: for that purpose, we
antisymmetrize λ and Sc

k with the anticommutator, and hence
avoid any undesirable effects of their noncommutation. In
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order to gain more insight, let us expand the gauged chiral
coupling in powers of the gauge field and keep only the anti-
Hermitian terms which survive in the effective Hamiltonian
(after the multiplication by 12it3/U 2):

εabcSa
i Sb

j S
c
k → − i

2

{
εabcSa

i Sb
j S

c
k , φi jk − 2(Sk�̃i jk )

}
+O(A3) + 〈Hermitian〉. (D39)

Substituting this and the expansion of �̃a
i jk from (D32) yields

the effective Hamiltonian (D25):

H (2)
eff = 12t3

U 2

∑
〈i jk〉

1

2

{
εabcSa

i Sb
j S

c
k , �̂i jk

}+ H.c., (D40)

where

�̂i jk = φi jk − 2〈Sa〉i jk�
a
i jk + δ�i jk + O(A3)

combines the U(1) flux φi jk given by (D27) and the SU(2) flux
given by

�a
i jk = Aa

i j + Aa
jk + Aa

ki − 1
3εabc

(
Ab

i jA
c
jk + Ab

jkAc
ki + Ab

kiA
c
i j

)
.

(D41)

The SU(2) flux is bundled with the average spin on the loop

〈Sa〉i jk = Sa
i + Sa

j + Sa
k

3
. (D42)

The residue

δ�i jk = − 4
3εabc

[(
Sa

k − 〈Sa〉i jk
)
Ab

jkAc
ki

+ (
Sa

i − 〈Sa〉i jk
)
Ab

kiA
c
i j + (

Sa
j − 〈Sa〉i jk

)
Ab

i jA
c
jk

]
(D43)

would approximately vanish if the spins varied smoothly on
the lattice. Of course, the Hubbard model produces antiferro-
magnetic spin correlations, which together with lattice frustra-
tion and the spin-orbit coupling can generate various kinds of
spin modulations on short length scales. Generally, the above
residue and other microscopic details will renormalize the
SU(2) charge of spin excitations in the continuum limit, and
they can even make it vanish in the case of certain symmetries.

The chiral interaction (D40) has a positive coupling and
hence tends to antialign the spin chirality εabcSa

i Sb
j S

c
k to the

external magnetic field φi jk . However, the electron current
ji j = −i(c†

i c j − c†
j ci )/2 always tries to run in the direction

opposite to the U(1) gauge field ai j given the Peierls factors
exp(+iai j ) in the electron Hamiltonian (D1). The net effect is
that the spin chirality wants to be aligned with the curl of the
electron current, which goes opposite to the U(1) gauge flux.
This behavior is consistent with the topological Hall effect
discussed in Sec. III D, in which a Kondo coupling binds the
flux of charge currents to the spin chirality of local moments.
Reversing the sign in the Peierls factors does not affect the
relationship between the electron charge current and chirality;
it only alters the sign of the external magnetic field relative to
the chirality.

Neglecting the need for spin rectification due to antiferro-
magnetic correlations, the naive continuum limit of the chiral
spin interaction (D40) is given by the Lagrangian density in
the path integral

L = K2

2

[
εabcsa(∂μsb)(∂ν sc) + 4εμνλ

(
φ̄λ − sa�̄a

λ

)]2 + · · · .

(D44)
The continuum limit and rectification of the lattice chiral
interaction are discussed in Sec. II F, and φ̄λ, �̄a

λ are the
appropriate spatial averages of the U(1) and SU(2) fluxes,
respectively (with vanishing temporal λ = 0 components).
This Lagrangian density obtains transparently from (D40) in
high-spin representations when the spin operators Sa translate
directly into the classical path integral variables sa, |s| = 1.
In the spin S = 1

2 representation of the Hubbard model, the
restrictions in the spin operator algebra first yield the naive
continuum limit

H (2)
eff → K2

[
φ̄i χi + �̄

p
i εi jkε

abc{Sp, Sa}(∂ j Sb)(∂k Sc)
]

= K2

[
φ̄i χi + εi jkε

abc�̄a
i (∂ j Sb)(∂k Sc)

]
, (D45)

where χi = εi jkε
abcSa(∂ jSb)(∂kSc). The conversion to the

coherent-state path integral is now transparent since the power
of the spin operators on each lattice site is at most 1. Once in
the path integral, the integration variables sa obtained from Sa

have fixed magnitude |s| = 1 and then (D45) reduces to (D44).
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