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Majorana molecules and their spectral fingerprints

J. E. Sanches ,1 L. S. Ricco,1 Y. Marques,2 W. N. Mizobata ,1 M. de Souza,3 I. A. Shelykh,2,4 and A. C. Seridonio 1,3,*

1Department of Physics and Chemistry, São Paulo State University (Unesp), School of Engineering, 15385-000, Ilha Solteira-SP, Brazil
2Department of Physics, ITMO University, St. Petersburg 197101, Russia

3Department of Physics, São Paulo State University (Unesp), IGCE, 13506-970, Rio Claro-SP, Brazil
4Science Institute, University of Iceland, Dunhagi-3, IS-107, Reykjavik, Iceland

(Received 1 April 2020; accepted 3 August 2020; published 19 August 2020)

We introduce the concept of a Majorana molecule, a topological bound state appearing in the geometry of
a double quantum dot structure flanking a topological superconducting nanowire. We demonstrate that, if the
Majorana bound states at opposite edges are probed nonlocally in a two-probe experiment, the spectral density of
the system reveals the so-called half-bowtie profiles, while Andreev bound states become resolved into bonding
and antibonding molecular configurations. We reveal that this effect is due to the Fano interference between
pseudospin superconducting pairing channels, and we propose that it can be captured by a pseudospin resolved
scanning tunneling microscope tip.
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I. INTRODUCTION

The recent decade witnessed the increasing interest of
the condensed-matter community in Majorana physics. In
particular, the concept of Majorana bound states (MBSs) as
promising building blocks for topologically protected and
fault-tolerant quantum computing received special attention
[1–6]. MBSs are zero-modes appearing at topological bound-
aries of condensed-matter systems with spinless p-wave su-
perconductivity, as was first predicted by Kitaev in his seminal
work [7]. They manifest themselves via zero-bias peak (ZBP)
signature in local conductance measurements [8]. As can-
didates for hosting nonlocal MBSs, such material platforms
as ferromagnetic atomic chains [9–19] and semiconductor
hybrid nanowires [8,20–23] were proposed. Isolated MBSs
are also supposed to be attached to cores of superconducting
vortices [24,25].

Interestingly enough, the Majorana quasiparticle detection
can be done by determining transport quantities through a
single quantum dot (QD) [26–36]. As examples, we highlight
the electrical shot-noise [30–33] and the thermoelectric prop-
erties [34–36]. Although the former cannot fully trace the QD
density of states (DOS), it is especially helpful in introducing
a full counting statistics of charge tunneling events, which
is unique for Majorana systems [30]. Further, the shot-noise
enables us to distinguish a nontopological ZBP from the
corresponding topological ZPB [31]. It also reveals that the
fractional value of the effective charge, by means of current
fluctuations, thus depends on the system bias-voltage [32].
Additionally, the differential quantum noise shows that the
photon absorbed spectra by a MBS show a universal be-
havior, being frequency- and bias-voltage-independent [33].
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Similarly, the zero-bias limit of the thermoelectric properties
presents striking features. The thermopower enhancement
[34,35], and according to some of us the possibility of a tuner
of heat and charge assisted by MBSs [36], are just a few
examples of such features.

Astonishingly, upon attaching an extra QD, the control of
the MBS leakage [27] into QDs becomes feasible [37,38].
According to Cifuentes et al. [37], in several geometric
arrangements of QDs, known as “parallel,” “in-series,” and
“T-shaped,” the spatial manipulation of an MBS is allowed.
On the grounds of the pseudospin, this switching is revealed as
the cornerstone for the Majorana fermion qubit cryptography,
as proposed in Ref. [38] by some of us. This cryptography
arises from the delicate interplay between Fano interference
[39,40] and topological superconductivity.

It is noteworthy that the pseudospin has been guided by the
interpretation of the transport through spinless two-level QD
and double-QD systems [41–43]. Especially in the latter, the
Kondo effect is induced by an interdot Coulomb correlation
[43]. It is worth mentioning that the pseudospin consists of
mapping the system orbital degrees of freedom into those
equivalent to the z-components of its spin 1

2 counterpart, i.e.,
by projecting them along the quantization of the pseudospin
axis [41]. We highlight the fact that these peculiar degrees
of freedom are experimentally detectable by pseudospin-
resolved transport spectroscopy [44].

Concerning the Fano interference in the presence of MBSs
and QDs with a plethora of intriguing characteristics [45–54],
special attention should be paid to the findings of Ref. [47]
by Xia et al. Their results reveal that the conductance through
two QDs obeys in an elegant manner, and within the low-bias-
voltage limit, a Fano-like expression [39,40]. Surprisingly,
this expression is characterized by QD-wire couplings and
a Fano parameter of interference, which is dependent upon
the MBSs overlapping. Therefore, such an analysis offers
an attractive experimental strategy, clearly supported by the
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FIG. 1. (a) The sketch of the considered system with a pseu-
dospin resolved STM-tip acting as a probe of the one-dimensional
topological superconductor (1D-TSC) and nonlocal Majorana bound
states (MBSs) � j = �†

j ( j = 1, 2) at the edges and flanked by a
pair of QDs, with energies ε̃L and ε̃R coupled to metallic leads, via
the hybridization V . The nonlocal MBSs couple to the QDs via the
amplitudes λα j (α = L, R) and to each other by the overlap term εM .

The system is characterized by spinless and p-wave superconductiv-
ity, due to the large Zeeman splitting. (b) Mapping of the original
system into equivalent geometry with a single QD with pseudospin
degrees of freedom. The amplitudes V+

σ refer to the pseudospin
pairing channels of the formation of Cooper pairs spatially split into
the orbitals (dσ f ) with energies εdσ and εM . The terms V−

σ stand for
pseudospin ballistic transport processes through such orbitals. The
nonlocal orbital f is formed by a pair of the MBSs.

Fano effect, in recognizing MBSs far apart in superconducting
wires, as well as in estimating how topological are these
MBSs.

In this work, distinct from Refs. [37,38,47], by including
the nonlocality degree of MBSs [28] we propose the concept
of a Majorana molecule within the pseudospin framework
[41–43]. It is worth noting that such a nonlocality feature is
a key ingredient for reproducing experimental results [23,28].
Then, this molecule appears in a configuration similar to those
considered at the end of Ref. [23], but with spectral finger-
prints probed by a pseudospin-resolved scanning tunneling
microscope (STM) tip, similarly to Ref. [29] and schemat-
ically shown in Fig. 1(a) of the current paper. It consists
of a one-dimensional (1D) topological superconductor (TSC)
hosting MBSs at the edges, which hybridize with normal
fermionic states of a pair of QDs flanking the TSC wire,
placed in the strong longitudinal magnetic field. If the latter
is strong enough, so that Zeeman splitting becomes much
larger than all other characteristic energies of the system,
the spinless condition is fulfilled. In this case, the tuning of
the parameters of the system leads to a crossover between
the well-known regime of individual Andreev bound states
(ABSs) [23] (the Majorana molecule turned off), and the

regime in which one witnesses the splitting of the ABS
into bonding and antibonding molecular configurations (the
Majorana molecule turned on). The formation of these states
can be described in terms of the so-called pseudospins (↑
,↓), which determine the structure of the QDs orbitals by
means of superconducting parings in these channels. Note
that, contrary to the single QD geometry considered before
[23,28], in our setup the QDs act as a nonlocal two-probe
detector that captures the Fano interference effects between
various tunneling paths, including those involving the MBSs.

We demonstrate that, similar to what happens in the system
of a pair of QDs placed within a semiconductor [55] or a
Dirac-Weyl semimetal host [56,57], the Fano effect in the
considered system defines the novel type of molecular binding
of QD orbitals, and leads to the formation of a Majorana
molecule, characterized by the so-called half-bowtie profiles
in the spectral density of states.

II. THE MODEL

The geometry we consider is shown in Fig. 1(a). The
system under study consists of an STM-tip perturbatively
coupled to the 1D-TSC nanowire with nonlocal MBSs formed
at its edges and flanked by a pair of QDs, where the latter
are attached to metallic leads. We suggest that the external
magnetic field applied along the direction of the wire is
large enough so that only spin-up states lie below the Fermi
energy, and spin-down states can be just totally excluded
from consideration [26,27,36]. We account for the possible
coupling between MBSs localized at the opposite edges of
the TSC wire, which can change their nonlocality degree and
lead to the crossover between highly nonlocal MBSs and more
local ABSs.

The Hamiltonian of the system reads

H =
∑
αk

εαkc̃†
αkc̃αk +

∑
α

ε̃α d̃†
α d̃α + tc(d̃†

Ld̃R + H.c.)

+V
∑
αk

(c̃†
αkd̃α + H.c.) + λL1(d̃L − d̃†

L )�1

+ iλL2(d̃L + d̃†
L )�2 + iλR1(d̃R + d̃†

R)�2

+ λR2(d̃R − d̃†
R)�1 + iεM�1�2, (1)

where the operators c̃†
αk, c̃αk correspond to electrons in the

right and left metallic leads α = L, R having momentum k and
energy εαk = εk − μα, with μα the corresponding chemical
potential. The operators d̃†

α, d̃α describe the localized orbitals
in the right and left QDs with energies ε̃α , tc is the hopping
term corresponding to the normal direct tunneling between
the QDs, which can lead to the formation of usual molecular
orbitals [55], and V describes the strength of the coupling
between the QDs and the leads (we take it to be equal for right
and left QDs). At the edges of the TSC wire, the nonlocal
MBSs described by the operators � j = �

†
j couple to the

QDs with the amplitudes λα j with j = 1, 2 (the ratio ηα =
|λα1/λα2| defines the nonlocality degree) and to each other
via the overlap term εM .
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The linear combination of the Majorana operators

f = 1√
2

(�1 + i�2) (2)

forms a regular fermionic state.
Performing the rotation in pseudospin space σ = ±1

(↑,↓), with the two leads at the same chemical potential
μL = μR = 0 [43], corresponding to R and L states, d̃L =
cos θd↑ − sin θd↓, d̃R = sin θd↑ + cos θd↓, c̃kL = cos θck↑ −
sin θck↓, and c̃kR = sin θck↑ + cos θck↓ with

θ = π

4
+ 1

2
arcsin

�ε√
4(tc)2 + (�ε)2

(3)

and �ε = ε̃L − ε̃R, the Hamiltonian of the system can be
rewritten as

H =
∑
kσ

εkc†
kσ ckσ +

∑
σ

εdσ d†
σ dσ + V

∑
kσ

(c†
kσ dσ + H.c.)

+ εM

(
f † f − 1

2

)
+

∑
σ

(V−
σ dσ f † + V+

σ dσ f + H.c.), (4)

where εdσ = (ε̃L+ε̃R )
2 − σ

2

√
4(tc)2 + (�ε)2,V∓

↑ = 1√
2
[(λR2 ∓

λR1) sin θ + (λL1 ∓ λL2) cos θ ], and V∓
↓ = 1√

2
[(λR2 ∓

λR1) cos θ − (λL1 ∓ λL2) sin θ ].
The Hamiltonian given by Eq. (4) corresponds to the

mapping of the original problem to one equivalent to a single
spinor QD coupled to fermionic state f and characterized by
the following mixture of states: the amplitudes V+

↑ (↓) corre-
spond to the formation of delocalized Cooper pairs (dσ f ),
while the terms V−

↑ (↓) give the normal couplings between the
effective QD and f (dσ f †).

By making explicit the pseudospin basis, we recognize the
symmetric d↑ = sin θ d̃R + cos θ d̃L and antisymmetric d↓ =
cos θ d̃R − sin θ d̃L superpositions as the bonding and anti-
bonding molecular states, respectively, due to the linear com-
bination of atomic orbitals (LCAO) between d̃L and d̃R.

Strictly for tc = 0, note that from Eq. (3), θ = π
2 (θ = 0) when


ε → 0+(
ε → 0−) leading to the breaking down of the
LCAO. As we are interested in the pairing dominated by the
MBSs, in the following discussion we will consider the case
of identical QDs that are weakly coupled. It corresponds to
ε̃L = ε̃R = εd and tc → 0, but finite as in Ref. [58], thus giving
rise to θ = π

4 as shown in Fig. 2(a) of Sec. III, where we
present the profile of Eq. (3) as a function of 
ε for several tc
values.

The QD states corresponding to the opposite pseudospins
are now simply symmetric and antisymmetric combinations
between the orbitals of right and left QDs:

d↑ = d̃R + d̃L√
2

and d↓ = d̃R − d̃L√
2

, (5)

which represent the bonding and antibonding molecular states
with the energies εdσ = εd − σ tc, respectively. Moreover,

V∓
↑ = λR2 + λL1 ∓ (λR1 + λL2)

2
(6)

and

V∓
↓ = λR2 − λL1 ∓ (λR1 − λL2)

2
. (7)

FIG. 2. The Majorana molecule turned-off scenario. Color maps
of the spectral density of the QDs spanned by ω and εd = ε̃L = ε̃R.
Panel (a) shows Eq. (3) for θ as a function of �ε, which points
out that for two identical weakly coupled QDs (tc → 0, but finite
as in Ref. [58]), Eq. (4) should be evaluated at θ = π

4 . Panels
(b)–(e) correspond to the case of a right QD weakly coupled to
the MBSs, λL1 = 3� and tc = λL2 = λR1 = λR2 = εM = 10−5�. In
panel (b) the density plot of τLL (ω) demonstrates a clearly visible
horizontal bright line, corresponding to the ZBP due to the coupling
with the MBS �1, which is robust against changes in εd [27]. In
panel (c) the spectral density τRR(ω) reveals solely the resonant
level of the right QD, weakly coupled to the MBSs at ω = εd .
In this regime, Fano interference between the QDs is absent, and
τRL (ω) = τLR(ω) = 0. Panels (d) and (e) show τ↑↑(ω) = τ↓↓(ω) and
τ↑↓(ω) = τ↓↑(ω), respectively, which reveal clear signatures of con-
structive and destructive Fano interference. Panel (f) accounts for the
coupling of the left QD to the overlapping MBSs (λL1 = 3�, λL2 =
0.001�, tc = λR1 = λR2 = 10−5�, and εM = 2�). In this case, the
density plot for τLL reveals the transformation of the horizontal bright
line, corresponding to the ZBP, into a bowtie profile, characteristic
for split ABSs [23].

As we will see, the communication between the QDs leads
to the splitting of the ABSs into ABS-↑ and ABS-↓, and the
formation of a Majorana molecule.

We characterize the QDs by their normalized spectral
densities

τ jl (ω) = −� Im(〈〈d j ; d†
l 〉〉), (8)

where j, l = L, R, 〈〈dj ; d†
l 〉〉 are retarded Green’s functions

(GFs) in the frequency domain, and � = πV2 ∑
k δ(ε − εk )

[59]. We highlight that Eq. (8) is temperature-independent
once in the system Hamiltonian of Eq. (1) the Coulomb
correlation Ud̃†

Ld̃Ld̃†
Rd̃R, which corresponds to Ud†

↑d↑d†
↓d↓ in
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Eq. (4), is suppressed by the superconducting wire between
the QDs, as discussed in Ref. [58]. Otherwise, the interdot
correlation would induce the Kondo effect [43]. Performing
the pseudospin rotation given by Eq. (5), we get

τLL (RR)(ω) = 1
2 {(τ↑↑ + τ↓↓) ∓ (τ↑↓ + τ↓↑)} (9)

and

τRL (LR)(ω) = 1
2 {(τ↑↑ − τ↓↓) ∓ (τ↑↓ − τ↓↑)} (10)

for the local and nonlocal QD densities, respectively. The
presence of the terms τ↑↓ (τ↓↑) accounts for the Fano interfer-
ence in the pseudospin channels. Conversely, the QDs d̃L and
d̃R interfere with each other, thus forming τ↑↑(ω) (bonding)
and τ↓↓(ω) (antibonding) orbitals

τ↑↑ (↓↓)(ω) = 1
2 {(τLL + τRR) ± (τRL + τLR)} (11)

and

τ↑↓ (↓↑)(ω) = 1
2 {(τRR − τLL ) ± (τLR − τRL )}. (12)

As the left and right metallic leads should have the same
chemical potentials (μL = μR = 0 [43]) for the emergence
of the pseudospin scenario of Eq. (4), the differential con-
ductance G at a finite bias-voltage eV cannot be measured
through these leads. Thus, the experimental detection of the
spectral densities given by Eqs. (9) and (11) needs an extra
electron reservoir. To that end, the transport can be observed
by employing an STM-tip perturbatively coupled to the 1D-
TSC and QDs, as proposed in Fig. 1(a) and Ref. [29]. In
such an apparatus, by considering the temperature T → 0 K
(kBT 
 �, where kB is the Boltzmann constant and � =
40 μeV [27] as the system energy scale) and low bias-voltage
eV → 0 (eV 
 �), G ∝ ∫

dωLDOS(ω){− ∂
∂ε

nF (ω − eV )} ≈
LDOS(eV ), with nF as the Fermi-Dirac distribution and
{− ∂

∂ε
nF (ω − eV )} ≈ δ(ω − eV ). This means that the conduc-

tance becomes ruled by the local density of states (LDOS)
evaluated at the tip chemical potential μtip = eV = ω. For the
STM-tip placed over the left (right) QD, the LDOS behavior
will be determined by τLL(ω) [τRR(ω)], but upon varying the
tip position over the wire, the LDOS is expected to catch
traces of the interfering processes through the QDs, such as
those present in τ↑↑(ω) [56,57]. In this manner, the STM-
tip becomes naturally pseudospin-resolved. We clarify that
the quantitative evaluation of the LDOS spatial dependence
along the 1D-TSC is not the focus of the current work once
it requires us to adopt the Kitaev chain explicitly in the
approach.

To evaluate 〈〈dσ ; d†
σ ′ 〉〉, we apply the equation-of-motion

method [60] to Eq. (4), which gives

(ω + i0+)〈〈dσ ; d†
σ ′ 〉〉 = δσσ ′ + 〈〈[dσ ,H]; d†

σ ′ 〉〉. (13)

The last term in Eq. (13) will generate the anomalous Green
functions 〈〈d†

σ ; d†
σ ′ 〉〉. As the Hamiltonian is quadratic, the sys-

tem of equations can be closed and written in matrix form as
Aσ (ω)(〈〈dσ ; d†

σ 〉〉 〈〈dσ̄ ; d†
σ 〉〉 〈〈d†

σ ; d†
σ 〉〉 〈〈d†

σ̄ ; d†
σ 〉〉)T =

(1 0 0 0)T , with

Aσ (ω) =

⎡
⎢⎢⎢⎣

aσ (ω) −kσ σ̄
2− (ω) kσσ

1− (ω) kσ σ̄
1− (ω)

−kσ̄ σ
2− (ω) aσ̄ (ω) kσ̄ σ

1− (ω) kσ̄ σ̄
1− (ω)

kσσ
1+ (ω) kσ σ̄

1+ (ω) bσ (ω) −kσ σ̄
2+ (ω)

kσ̄ σ
1+ (ω) kσ̄ σ̄

1+ (ω) −kσ̄ σ
2+ (ω) bσ̄ (ω)

⎤
⎥⎥⎥⎦,

(14)

where σ̄ = −σ , kσσ ′
1∓ (ω) = V−

σ V+
σ ′ (ω ∓ εM )−1 + V−

σ ′V+
σ (ω ±

εM )−1, kσσ ′
2∓ (ω) = V−

σ V−
σ ′ (ω ∓ εM )−1 + V+

σ V+
σ ′ (ω ± εM )−1,

aσ (ω) = ω − εdσ − kσσ
2− + i�, and bσ (ω) = ω + εdσ −

kσσ
2+ + i�.

III. RESULTS AND DISCUSSION

We assume � = 40 μeV [27] as the energy scale of the
model parameters of the system. In Fig. 2(a) we present
Eq. (3) as a function of �ε, which shows that the pseudospin
mapping is applied to θ = π

4 when tc → 0, but it is finite
for the experimental condition �ε = 0. This point defines the
scenario adopted in this work for the evaluation of the spectral
analysis.

Our aim is to investigate the spectral function of the
considered system defined by Eq. (8). To better understand
the situation qualitatively, we start from the geometry wherein
only the left QD is strongly coupled to MBSs, i.e., from the
Majorana molecule turned-off scenario. We present the results
for both the case of a highly nonlocal MBS [27] [Fig. 2(b)] and
the case of overlapping MBSs [Fig. 2(f)]. For both cases we
present the 2D plots of the spectral functions in the ω and εd

axes.
Figure 2(b) shows the spectral function corresponding to

the left QD, τLL(ω) in the situation, when it is strongly coupled
only to the closest MBS (λL1 = 3� and tc = λR1 = λR2 =
λL2 = εM = 10−5�). In perfect agreement with Ref. [27],
one can see the bright plateau at ω = 0, corresponding to
the ZBP in the conductance, which is robust against the
εd perturbations and is provided by the presence of highly
nonlocal MBSs. The upper and lower arcs correspond to the
QD states split by the coupling to the MBS �1. Naturally, as
the right QD is weakly coupled to both MBSs, its spectral
function τRR(ω), shown in Fig. 2(c), is trivial and consists of
a single peak corresponding to ω = εd . As the QDs do not
communicate through the 1D-TSC, τRL(ω) = τLR(ω) = 0.

In the pseudospin basis, the latter condition, according to
Eqs. (6), (7), (11), and (12), imposes pseudospin degeneracy,
so that τ↑↑(ω) = τ↓↓(ω) [shown in Fig. 2(d)] and τ↓↑(ω) =
τ↑↓(ω) [Fig. 2(e)], |V−

↑ | = |V−
↓ | and |V+

↑ | = |V+
↓ |, and, in

addition, |V−
σ | = |V+

σ |. Pseudospin degeneracy, in particular,
means that both Cooper pairings in the pseudospin channels
given by d↑ f and d↓ f contribute to the Hamiltonian on an
equal footing. The fact that τ↓↑ (↑↓)(ω) �= 0 means that two
pseudospin channels, corresponding to bonding and antibond-
ing states, are nonorthogonal, and thus a Majorana molecule
is not formed. Spectral functions in the pseudospin basis
are presented in Figs. 2(d) and 2(e), and they reveal clear
signatures of the Fano interference peaks and dips.

If one accounts for the coupling of the left QD to the MBS
�2 (λL2 = 0.001�), with finite overlap between the states �1
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FIG. 3. The Majorana molecule turned-on scenario. Color maps
of the spectral density of the QDs spanned by ω and εd = ε̃L =
ε̃R. The parameters of the system are tc = 10−5�, λL1 = λR1 = 3�,

λL2 = λR2 = 1.5�, and εM = 0.05�. Panel (a) shows the profiles of
τLL (ω) = τRR(ω), and reveals the splitting of the upper and lower
arcs due to the formation of the bonding (ABS-↑) and antibond-
ing (ABS-↓) Andreev molecular states. The pseudospin lifting in
τ↑↑ (↓↓)(ω) is attributed to the Fano interference between τLL (RR)(ω)
and τLR (RL)(ω), which appears in panel (b). The formation of the
aforementioned molecular states is even more clearly visible in
panels (c) and (d), corresponding to τ↑↑(ω) and τ↓↓(ω), where
the novel half-bowtie-like structures are formed. In this regime
τ↑↓(ω) = τ↓↑(ω) = 0, and Majorana molecular states are resolved
in the pseudospin basis.

and �2 (εM = 2�), but keeps the right QD weakly coupled
(tc = λR1 = λR2 = 10−5�), the spectral function τLL(ω) re-
veals a characteristic bowtie profile [23,28] (also referred to as
a double fork [36]) instead of a robust ZBP. This corresponds
to the presence in the system of a pair of trivial ABSs, as is
shown in Fig. 2(f). Other spectral functions remain qualita-
tively the same. The condition of pseudospin degeneracy still
holds, and a Majorana molecule is not formed.

Now, we can consider the symmetric case sketched in
Fig. 1(a) with tc = 10−5�, λL1 = λR1 = 3�, λL2 = λR2 =
1.5�, and εM = 0.05�, corresponding to the Majorana
molecule turned-on scenario: both QDs are coupled to both
MBSs, and thus they interfere with each other through the
1D-TSC. In this situation, a bowtie-like signature emerges in
the spectral density τLL (RR)(ω), as can be seen from Fig. 3(a).
Moreover, the features characteristic of usual molecular bind-
ing can be seen, as upper and lower arcs provided by the

coupling of the QD states, visible in Fig. 2(f), become split in
Fig. 3(a) due to the TSC-mediated overlap of the states of right
and left QDs. Naturally, this leads to τRL(ω) = τLR(ω) �= 0
[see Fig. 3(b)], which, according to Eqs. (11) and (12), means
that τ↑↑(ω) �= τ↓↓ and τ↓↑ (↑↓)(ω) = 0.

Physically, this means that spin-up and spin-down channels
become decoupled in the pseudospin basis, and a Majorana
molecule, which is a bonding or antibonding superposition
of ABSs, is formed. The latter manifest themselves in the
spectral profiles of τ↑↑(ω) and τ↓↓(ω) shown in Figs. 3(c) and
3(d), respectively, as half-bowtie signatures. They are conse-
quences of the Fano interference between τLR(ω) and τRL(ω),
shown in Fig. 3(b). Note that the latter contains both peaks
and pronounced Fano dips, which interfere constructively or
destructively depending on the sign in Eqs. (11) and (12), with
the peaks in the spectral densities of τLL(ω) and τRR(ω), which
gives in the end the mentioned half-bowtie profiles.

In terms of the effective Hamiltonian [Eq. (4)], the con-
sidered regime corresponds to the case when |V−

↓ | �= 0,

|V−
↑ | = 0, |V+

↓ | = 0, and |V+
↑ | �= 0. This means that only the

pseudospin Cooper pairing d↑ f and normal electron tunneling
d↓ f † contribute to the transport assisted by the formation of
Majorana molecules.

IV. CONCLUSIONS

In summary, we have proposed the concept of a Majorana
molecule, a bonding or antibonding state appearing in the
system of a pair of QDs flanking a 1D-TSC nanowire. The
coupling between QDs is achieved via the channel provided
by the presence of MBSs. It is demonstrated that these states
manifest themselves via half-bowtie spectral fingerprints in
the spectral density of states, which are qualitatively different
from full bowtie profiles, characteristic of the case of a single
QD. Such features can be measured by an STM-tip, which
becomes naturally pseudospin resolved, once the QDs behave
as a nonlocal two-probe detector of the Fano interference
assisted by the MBSs.
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