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Photoinduced dynamics of excitonic order and Rabi oscillations in the two-orbital Hubbard model

Yasuhiro Tanaka 1,* and Kenji Yonemitsu2

1Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
2Department of Physics, Chuo University, Bunkyo, Tokyo 112-8551, Japan

(Received 18 November 2018; revised 28 July 2020; accepted 28 July 2020; published 13 August 2020)

We investigate the condition for the photoinduced enhancement of an excitonic order in a two-orbital Hubbard
model, which has been theoretically proposed in our previous work [Phys. Rev. B 97, 115105 (2018)], and
analyze it from the viewpoint of the Rabi oscillation. Within the mean-field approximation, we simulate real-time
dynamics of an excitonic insulator with a direct gap, where the pair condensation in the initial state is of BEC
nature and the photoexcitation is introduced by electric dipole transitions. We first discuss that in the atomic limit
our model is reduced to a two-level system that undergoes the Rabi oscillation, so that for single cycle pulses
physical quantities after the photoirradiation are essentially determined by the ratio of the Rabi frequency to
the pump-light frequency. Then, it is shown that this picture holds even in the case of nonzero transfer integrals
where each one-particle state exhibits the Rabi oscillation leading to the enhancement of the excitonic order. We
demonstrate that effects of electron-phonon interactions do not alter the results qualitatively. We also examine
many-body dynamics by the exact diagonalization method on small clusters, which strongly suggests that our
mechanism for the enhancement of the excitonic order survives even when quantum fluctuations are taken into
account.
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I. INTRODUCTION

Photoirradiation to correlated electron systems has opened
a novel playground to manipulate various electronic phases.
In particular, recent experimental studies have reported that
electronic orders are transiently reinforced or even created
by laser light [1–10], which indicates a clear distinction from
typical photoinduced phase transitions in which they are usu-
ally suppressed. These phenomena have been observed, for
instance, in materials which exhibit charge ordering [1,3,10],
charge density wave [6,8], superconductivity [2,4,5,7], and
excitonic condensation [9]. Simultaneously, theoretical efforts
to understand their mechanisms as well as to pursue a way of
controlling electronic phases have been made recently, where
roles of electron-electron (e-e) and/or electron-phonon (e-ph)
interactions on laser-induced dynamics have been intensively
studied [11–22]. For excitonic insulators (EIs), a transient
gap enhancement by photoexcitation has been observed in a
candidate material Ta2NiSe5 [9]. The EI is a state in which
electrons in the conduction band and holes in the valence
band form bound pairs called excitons by the Coulomb inter-
action, and they become a condensate. Theories of EIs have
been developed in semimetals and semiconductors [23–27].
Ta2NiSe5 is a layered semiconductor with a direct gap above
TC = 326 K where a second-order transition accompanied by
a structural distortion occurs [28,29]. Although the identifica-
tion of an EI is a difficult task, recent experimental [30,31]
and theoretical [32–35] studies have offered evidences that an
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EI is realized in the low temperature phase. With regards to
its photoinduced phenomena, e-ph coupled systems have been
investigated by mean-field theories [19,22] and the origin of
the gap enhancement has been discussed.

In purely electronic systems without phonon degrees of
freedom, we have studied [21] photoinduced dynamics of a
direct-gap EI using a two-orbital Hubbard model in which ex-
citonic condensation in thermal equilibrium shows BCS-BEC
crossover depending on the value of the interorbital Coulomb
interaction U ′. By incorporating the effects of photoexcitation
through electric dipole transitions, we have shown that the
enhancement of the excitonic gap occurs when the initial
state is an EI in the BEC regime or a nearby band insulating
state, and the pump-light frequency is close to the excitonic
gap. There is an optimal value of the amplitude of the light
field for inducing the gap enhancement, although its physical
origin has not been clarified yet. Our study has also shown
that the time evolutions of the phases of excitonic pairs in
momentum space are crucially important for understanding
the photoinduced behavior of the excitonic gap [21]: They
evolve basically in phase when the gap is enhanced by the
laser irradiation, whereas they strongly depend on momentum
when the initial EI is in the BCS regime for which the gap is
suppressed.

In this paper, we elucidate the physical origin of the gap en-
hancement through laser-induced dipole transitions in a two-
orbital Hubbard model mainly by using the time-dependent
Hartree-Fock (HF) approximation. For this purpose, we con-
sider the atomic limit in which our system is equivalent to a
two-level system that exhibits the Rabi oscillation, where the
dynamics of physical quantities are understood from changes
in the occupation probability of the two levels. Even when
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we introduce nonzero transfer integrals, its photoresponse is
qualitatively unaltered as far as the initial state is near the
boundary between the EI and the band insulator (BI) phases.
There the EI belongs to the BEC regime and the excitonic
pairs are formed locally. In momentum space, the photoin-
duced gap enhancement is interpreted as a consequence of
a cooperative Rabi oscillation of the one-particle states. We
confirm that the e-ph coupling considered in the previous
theories [19,22] has little effects on our mechanism for the
gap enhancement. Moreover, we examine effects of quantum
fluctuations on the dynamics by using the exact diagonaliza-
tion (ED) method, which corroborates the results obtained by
the HF approximation. This paper is organized as follows. In
Sec. II, the two-orbital Hubbard model and the calculation
method for photoinduced dynamics are introduced. The model
in the atomic limit is also described. In Sec. III, the results
without the phonon degrees of freedom are presented and
we discuss the photoinduced dynamics in terms of the Rabi
oscillation. The effects of the e-ph coupling are elucidated in
Sec. IV, whereas those of quantum fluctuations are discussed
in Sec. V where we give the results with the ED method. The
discussion and summary are devoted to Sec. VI.

II. MODEL AND METHOD

A. Two-orbital Hubbard model

We consider a two-orbital Hubbard model in one dimen-
sion, which is defined as

Ĥ = tc
∑

iσ

(c†
iσ ci+1σ + H.c.) + μC

∑
iσ

nc
iσ

+ t f

∑
iσ

( f †
iσ fi+1σ + H.c.)

+U
∑

i

nc
i↑nc

i↓ + U
∑

i

n f
i↑n f

i↓ + U ′ ∑
i

nc
i n f

i , (1)

where α
†
iσ and αiσ (α = c, f ) are creation and annihilation

operators for an electron with spin σ (=↑,↓) at the ith
site on the α orbital, respectively. The number operators are
defined by nα

iσ = α
†
iσ αiσ and nα

i = nα
i↑ + nα

i↓. The intraorbital
(interorbital) Coulomb interaction is denoted by U (U ′). For
the transfer integral tα , we set t f = 1 and tc = −1 as in
the previous study [21]. The parameter μC (> 0) controls
the overlap between the c and f bands. When μC > 4, the
system with U = U ′ = 0 has a band structure of a direct-gap
semiconductor, whereas it becomes a semimetal for μC < 4.
The electron density per site is fixed at n = 2.

Photoexcitation is introduced by electric dipole-allowed
transitions [19,36] that are described by the time (τ )-
dependent term

ĤD(τ ) = F (τ )
∑

iσ

(c†
iσ fiσ + H.c.), (2)

which is added to Eq. (1). We define F (τ ) as

F (τ ) = F0 sin(ωτ )e−(τ−τp)2/τ 2
w , (3)

where ω is the light frequency and we set τp = τw = π/ω.
Although we mainly use the gaussian envelope for F (τ ),
we also consider a rectangular envelope with which F (τ ) is

defined as

F (τ ) = F0 sin(ωτ )θ (τ )θ (Tirr − τ ), (4)

where θ (τ ) and Tirr are the Heaviside step function and the
pulse width, respectively. This form of F (τ ) enables us to
interpret our results directly from the viewpoint of the Rabi
oscillation. We note that the pulse shape does not qualitatively
affect our results. Unless otherwise noted, we use single cycle
pulses (Tirr = 2π/ω).

We apply the HF approximation to Eq. (1) where the
excitonic order parameter and the electron density on the α

orbital per site are defined as �0 = 〈c†
iσ fiσ 〉 and nα = 2〈nα

iσ 〉,
respectively. We have assumed that 〈c†

iσ fiσ 〉 and 〈nα
iσ 〉 are

independent of i and σ [21,37]. The total Hamiltonian in
momentum representation is given as

ĤHF
tot (τ ) =

∑
kσ

Ĥkσ (τ ) =
∑
kσ

	
†
kσ

hk (τ )	kσ , (5)

where 	
†
kσ

= (c†
kσ

, f †
kσ

) and hk (τ ) is defined by

hk (τ ) =
(

ε̃c
k −U ′�∗

0 + F (τ )

−U ′�0 + F (τ ) ε̃
f
k

)
. (6)

In Eq. (6), ε̃c
k = εc

k + U
2 nc + U ′n f and ε̃

f
k = ε

f
k + U

2 n f + U ′nc

where εc
k = 2tc cos k + μC and ε

f
k = 2t f cos k are the non-

interacting energy dispersions for the c and f bands, re-
spectively. In the ground state, nc (= 2 − n f ) and �0 are
determined self-consistently.

Photoinduced dynamics are obtained by numerically solv-
ing the time-dependent Schrödinger equation [38–41]

|ψkσ (τ + dτ )〉 = T exp

[
− i

∫ τ+dτ

τ

dτ ′Ĥkσ (τ ′)
]
|ψkσ (τ )〉,

(7)

where |ψkσ (τ )〉 denotes a one-particle state with wave vector
k and spin σ at time τ , and T is the time-ordering operator.
We use the time slice dτ = 0.01 with t f as the unit of energy
(and 1/t f as that of time). For a physical quantity X (τ ), its
time average is denoted by X that is calculated as

X = 1

τ f − τi

∫ τ f

τi

X (τ )dτ. (8)

If X (τ ) is conserved after the photoexcitation, its value is
written as X̃ .

B. Atomic limit

In the atomic limit (tc = t f = 0), our system is reduced to
a two-level system described by the Hamiltonian

ĤAL(τ ) =
∑

σ

	†
σ hAL(τ )	σ , (9)

where 	†
σ = (c†

σ , f †
σ ) and hAL(τ ) is defined as

hAL(τ ) =
(

εc −U ′�∗
0 + F (τ )

−U ′�0 + F (τ ) ε f

)
, (10)

with εc = μC + U
2 nc + U ′n f and ε f = U

2 n f + U ′nc. In the
ground state [F (τ ) = 0], the self-consistent equations for nc
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and �0 are written as

nc = 1 − εc − ε f√
(εc − ε f )2 + 4U ′2|�0|2

, (11)

and

�0 = 1

2

[
1 − (εc − ε f )2

(εc − ε f )2 + 4U ′2|�0|2
]1/2

, (12)

respectively, which leads to

�0 = 1
2

√
nc(2 − nc). (13)

With this relation, the expectation value for the energy EAL

can be written as

EAL = 1
2 (U − U ′)n2

c + (μC − U + U ′)nc + U . (14)

We take U (1/U ) as the unit of energy (time) in the atomic
limit.

III. RESULTS WITHOUT PHONONS

In this section, we show the results obtained by the HF
approximation for the two-orbital Hubbard model without
e-ph couplings. We first consider the case of the atomic limit
and then discuss the case of nonzero transfer integrals (t f =
−tc = 1).

A. Atomic limit

1. Ground state

Before the laser irradiation, we consider two phases in
the ground state: an excitonic phase (EP) with �0 �= 0 and
a decoupled phase (DP) with �0 = 0 and nc = 0. They
correspond to EI and BI phases, respectively, when tc and
t f are nonzero [21,42]. We use U = 1 and μC = 0.5 and
vary U ′ (� 0) as a parameter. Since ∂EAL/∂nc = 0 gives
nc = 1 − μC/(U − U ′), we have a mean-field solution with
�0 �= 0 for 0 � U ′ < U ′

cr = U − μC . In Fig. 1(a), we show
the ground-state energies for the EP and the DP, the latter of
which is independent of U ′. With increasing U ′, a transition
from the EP to the DP occurs at U ′ = U ′

cr. In fact, a magnetic
phase (MP) with 〈nc

σ 〉 = 1 and 〈n f
−σ 〉 = 1 has the ground-

state energy U ′ + μC , which becomes the lowest energy state
for 0 � U ′ < U ′

cr. However, we consider only nonmagnetic
initial states for the photoexcitation. The reason is that for
nonzero tc and t f , the photoinduced gap enhancement reported
previously occurs in the vicinity of the boundary between the
EI and BI phases [21] (U ′ ∼ U ′

cr) where magnetic ordered
states do not appear as the ground state [43]. In this paper,
we focus on the dynamics near U ′ = U ′

cr.
In Fig. 1(b), the U ′ dependence of �0 is shown, indicating

that �0 is nonzero at U ′ = 0 and exhibits a steep decrease
toward U ′ = U ′

cr at which it vanishes. For U ′ ∼ U ′
cr, this result

is similar to that obtained with nonzero tc and t f (Fig. 10 in
Sec. III B), whereas they are qualitatively different for U ′ ∼ 0.
The similarity near U ′ = U ′

cr comes from the local character
of excitonic pairs: The EI is in the BEC regime of the BCS-
BEC crossover [42,44,45]. On the other hand, for U ′ ∼ 0, the
EI is in the BCS regime, which cannot be described by the
atomic limit.
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y

FIG. 1. (a) Ground-state energies for EP and DP and (b) �0 as
functions of U ′ with U = 1 and μC = 0.5. In (a), the energy of the
magnetic phase (MP) is also shown by the dashed line.

2. Photoinduced dynamics

In Fig. 2, we show the time evolutions of nc and |�0| for
different values of F0 with U ′ = 0.45 (<U ′

cr). For the time
evolutions of the real and imaginary parts of �0, see Appendix
A. We use F (τ ) with the gaussian envelope [Eq. (3)] and
choose F0 < 0, although the sign of F0 does not affect the

 0
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(a)

n c F0= -0.1
F0= -0.2
F0= -0.3
F0= -0.6

 0

 0.2

 0.4

 0  20  40

(b)

|Δ
0|

τ

FIG. 2. Time evolutions of (a) nc and (b) |�0| for different
values of F0 with U = 1, μC = 0.5, U ′ = 0.45, and ω = 0.45. The
double-headed arrow indicates the range 0 < τ < 2τw = 2π/ω of
application of an electric field. The horizontal dashed line in each
panel indicates the corresponding equilibrium value.
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FIG. 3. (a) ñc, (b) |̃�0|, and (c) �E and α̃ as functions of |F0|/ω
for U = 1 and μC = 0.5. We use F (τ ) with the gaussian envelope
defined in Eq. (3). In (a) and (b), the results with U ′ = 0.45 and
0.55 are shown, where the pump-light frequencies are ω = 0.45
and ω = 0.6, respectively. The dashed horizontal lines indicate the
corresponding equilibrium values for U ′ = 0.45. For U ′ = 0.55, nc

and |�0| are zero in equilibrium. In (c), only the results with U ′ =
0.45 are shown.

results qualitatively [21]. The pump-light frequency is tuned
to the difference between the two eigenvalues of Eq. (10)
with F (τ ) = 0. Since nc and |�0| are conserved after the
photoexcitation, they are denoted by ñc and |̃�0|, respectively.
As we increase |F0|, ñc and |̃�0| become larger than those
in the ground state. When |F0| is increased further (|F0| =
0.6), they are smaller than those at τ = 0. This behavior is
qualitatively the same as that obtained in the previous study
for the two-dimensional model near the EI-BI phase boundary
[21].

In Figs. 3(a) and 3(b), we show ñc and |̃�0| as functions of
|F0|/ω for U ′ = 0.45 and 0.55, where the ground states are in
the EP and the DP, respectively. At time τ , the wave function
of the two-level system is written as

|ψ (τ )〉 = u(τ )c†|0〉 + v(τ ) f †|0〉, (15)

with |u(τ )|2 + |v(τ )|2 = 1 where we have omitted the spin
index for brevity. By using the relations nc = 2|u(τ )|2 and
�0 = u∗(τ )v(τ ), we have

|�0| = 1
2

√
nc(2 − nc), (16)

which holds at any τ indicating that |̃�0| has its maximum
value of 0.5 when ñc = 1. In order to examine changes in
the occupation probability of the two levels, we compute the
overlap between the wave function in the ground state and that
after the photoexcitation. The overlap α is given by

α = |〈ψ (τ = 0)|ψ (τ )〉|2
= 1 − 1

2

(
nc + nG

c

) + 1
2 ncnG

c + �G
0

∗
�0 + �G

0 �0
∗, (17)

where nG
c and �G

0 are nc and �0 in the ground state, re-
spectively. In evaluating α, we adjust the phase of �0 in
|ψ (τ = 0)〉 to coincide with that of �0(τ �= 0). In this case,
we have

α = 1 − 1
2

(
nc + nG

c

) + 1
2 ncnG

c + 2
∣∣�G

0

∣∣|�0|, (18)

which is conserved after the photoexcitation. In Fig. 3(c),
we show α̃ and the increment in the total energy �E per
site for U ′ = 0.45. For the quantities ñc, �E , and α̃, an
oscillatory behavior with respect to |F0|/ω is evident, although
the period of oscillation is not constant. The behavior of |̃�0|
appears to be more complex than that of ñc because of the
relation Eq. (13). The oscillation in α̃ and �E indicates a
manifestation of the Rabi oscillation [46,47] in the present
two-level system, which we will discuss in detail below.

3. Rabi oscillations and enhancement of excitonic order

Here we consider F (τ ) with the rectangular envelope
defined by Eq. (4). In Fig. 4, we show ñc, |̃�0|, �E , and α̃ as
functions of |F0|/ω where the parameters are the same as those
in Fig. 3. The oscillatory behavior of these quantities is more
prominent than that in Fig. 3 where the gaussian envelope is
employed for F (τ ). In particular, the period of the oscillation
is almost constant. By using Eqs. (13) and (18), we obtain
the α dependence of nc shown in Fig. 5. Along its curve, the
position (̃α, ñc) moves depending on the value of |F0|/ω. For
U ′ = 0.45, we have (α, nc) = (1, 0.091) in the ground state.
With increasing |F0|/ω, the position (̃α, ñc) first moves to
the upper-left direction in Fig. 5 until |F0|/ω ∼ 0.4 where ñc

exhibits the first peak as shown in Fig. 4(a). Reflecting the
periodic behavior of α̃, the point (̃α, ñc) goes back to the initial
position at |F0|/ω ∼ 0.8. The value of ñc becomes smaller
than nG

c for 0.8 � |F0|/ω � 1.2 [Fig. 4(a)] where α̃ is slightly
smaller than 1 [Fig. 4(c)]. Then, (̃α, ñc) moves to the upper-
left direction again until |F0|/ω = 2.0 at which ñc shows the
second peak. For U ′ = 0.55, Eq. (18) gives α = 1 − 1

2 nc since
nG

c = �G
0 = 0. The behavior of (̃α, ñc) depending on |F0|/ω

is similar to that for U ′ = 0.45. These results show that the
oscillatory behavior of physical quantities originates from that
of α̃. In order to interpret our results as the Rabi oscillation
more quantitatively, we consider the case of continuous-wave
(CW) lasers in the following.

In Fig. 6, we show the time profile of nc under CW
excitations for U ′ = 0.45 and ω = 0.45. When |F0| is small
(F0 = −0.05), nc shows a small oscillation around the value of
nG

c . As we increase |F0|, a large-amplitude oscillation appears,
the period of which gets shorter for larger |F0|. In Fig. 7, we
show the Fourier transform of nc for large |F0| (F0 � −0.1)
(see Appendix A for the details of the dynamics for small
|F0|). There is a sharp peak in each spectrum and its position
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FIG. 4. Same plots as Fig. 3 except that we use F (τ ) with the
rectangular envelope defined by Eq. (4).

denoted by 
 is nearly proportional to |F0| as shown in Fig. 8.
In a two-level system driven by a CW laser, the rotating wave
approximation (RWA) gives the Rabi frequency 
R as


R =
√

(ω − EG)2 + F0
2, (19)

where EG is the difference between the two energy levels.
At the resonance (ω = EG), we have 
R = |F0|. In fact, the

0.4

0
1

2

U’=0.45

U’=0.55

0 0.2 0.4 0.6 0.8 1

α
0

0.5

1

1.5

2

nc

FIG. 5. Relation between α and nc for U ′ = 0.45 and 0.55.
For U ′ = 0.45, the position (α, nc ) at |F0|/ω = 0 and (̃α, ñc ) with
|F0|/ω = 0.4, 1, and 2 are depicted by the arrows.

0 50 100 150 200
τ

0

0.5

1

1.5

2

nc

F0 =-0.05 F0 =-0.1 F0 =-0.2

FIG. 6. Time evolution of nc under CW excitations for different
values of F0. We use U = 1, μC = 0.5, U ′ = 0.45, and ω = 0.45.

Hamiltonian in Eq. (10) contains nc and �0 that are τ depen-
dent, which is different from the conventional Rabi oscillation
[46,47]. The effects of the τ dependence of nc and �0 in the
Hamiltonian on the dynamics are discussed in Appendix B.
Considering this difference, here we will replace 
R at the
resonance [ω = EG(τ = 0)] by 
′

R = p|F0| with a coefficient

p [48]. This leads us to u(τ ) ∝ sin( 
′
R

2 τ + φ) so that nc is
written as

nc = A sin2

(

′

R

2
τ + φ

)
, (20)

where A and φ are constants. We fit a linear function 
 =
p|F0| to the results of 
 in Fig. 8. The fitting works well with
p slightly larger than 1 for both U ′ = 0.45 (p = 1.24) and
0.55 (p = 1.14). In Eq. (20), we have φ ∼ 0 (φ = 0) when
U ′ is slightly smaller (larger) than U ′

cr because of nG
c ∼ 0

(nG
c = 0), indicating that for single cycle pulses the values of

nc and |�0| after the photoexcitation are governed by 
′
R/ω.

In particular, nc becomes maximum at 
′
R/ω ∼ 1/2. This

relation gives |F0|/ω = 0.40 for U ′ = 0.45 and |F0|/ω = 0.44
for U ′ = 0.55, which are consistent with the results shown
in Fig. 4(a). In Fig. 9, we show the |F0|/ω dependence of
nc calculated by Eq. (20) at τ = 2π/ω and compare the
result with ñc shown in Fig. 4(a). The quantities A and φ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3 F0 =-0.1
F0 =-0.15
F0 =-0.2

F0 =-0.25

F0 =-0.3

Frequency

FIG. 7. Fourier transform of nc. In each spectrum, the position
of its largest peak is indicated by the arrow. The parameters are the
same as those in Fig. 6.
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0 0.1 0.2 0.3 0.4 0.5
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Ω

U’ = 0.45

U’ = 0.55

F0

FIG. 8. Peak frequency 
 in Fourier transform of nc as a function
of |F0| for U ′ = 0.45 and 0.55. The solid lines are fitting results.

are determined from the height of the first peak in ñc and the
value of nG

c . For |F0|/ω � 0.8, the results obtained by Eq. (20)
reproduce those for ñc fairly well, although they deviate from
each other for larger |F0|/ω, which is due to the limitation of
the RWA [49].

B. One-dimensional model

Next, we show results for the one-dimensional model with
t f = 1 and tc = −1 in Eq. (1), for which the initial EI and BI
have a direct gap [21].

1. Ground state

In Fig. 10, we show �0 and nc as functions of U ′ in the
ground state with U = 4 and μC = 2.5. As in the previous
studies where the Fermi surface is perfectly nested [21,42], an
infinitesimal U ′ produces an EI with �0 �= 0. The order pa-
rameter �0 exhibits a maximum at U ′ = 2.70 and a transition
from the EI to BI phases occurs at U ′ = U ′

cr = 3.37 where
�0 vanishes. Toward U ′ = U ′

cr, nc monotonically decreases.
In the BI phase, the c and f bands are completely decoupled
so that we have �0 = 0 and nc = 0 (n f = 2).
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~

FIG. 9. |F0|/ω dependence of nc obtained by Eq. (20) at τ =
2π/ω. We show ñc in Fig. 4(a) by the dashed lines for comparison.
We use U ′ = 0.45 and 0.55.
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FIG. 10. �0 and nc as functions of U ′ with U = 4 and μC = 2.5.

2. Photoinduced dynamics

In the calculations of photoinduced dynamics, we use two
sets of parameters, both of which give EIs that are located
near the EI-BI phase boundary of the ground states. One is
U = 4, μC = 2.5, and U ′ = 3.3. The other is U = 8, μC = 5,
and U ′ = 4.3 where U ′

cr = 4.5. We use F (τ ) with the gaussian
envelope [Eq. (3)] and the pump-light frequency is tuned to
the initial gap of the EI: ω = 1.25 for U = 4 and ω = 1.99
for U = 8. We note that as far as U ′ ∼ U ′

cr, our results are
qualitatively unaltered even when we choose a BI as the initial
state. The system size is N = 200. In analogy with the case of
the atomic limit, we define a k-dependent quantity αk as fol-
lows. First, we consider the overlap between the one-particle
state at time τ and that in the ground state. If we write the
one-particle state as |ψkσ (τ )〉 = ukσ (τ )c†

kσ
|0〉 + vkσ (τ ) f †

kσ
|0〉

with |ukσ |2 + |vkσ |2 = 1, the overlap is written as

|〈ψkσ (τ = 0)|ψkσ (τ )〉|2
= nG

c (k)nc(k) + [
1 − nG

c (k)
]
[1 − nc(k)]

+�G∗
(k)�(k) + �G(k)�∗(k), (21)

where nc(k) and �(k) are the momentum distribution function
for c electrons and the pair amplitude in k space, which are
written as

nc(k) = 〈c†
kσ

ckσ 〉 = |ukσ |2, (22)

and

�(k) = 〈c†
kσ

fkσ 〉 = ukσ
∗vkσ , (23)

respectively, and nG
c (k) [�G(k)] is nc(k) [�(k)] in the ground

state. Then, as in Eq. (18), we define αk as

αk = nG
c (k)nc(k) + [

1 − nG
c (k)

]
[1 − nc(k)]

+ 2|�G(k)||�(k)|, (24)

which is the upper limit of the overlap in Eq. (21).
After the photoexcitation, nc is conserved and it is denoted

by ñc, whereas the time profile of |�0| exhibits an oscillation
corresponding to the Higgs amplitude mode [21]. The time
average of |�0| is denoted by |�0|, which is defined in Eq. (8).
In Fig. 11, we show ñc, |�0|, �E , and αk=0 (denoting the
time average of αk=0) as functions of |F0|/ω, where k = 0
is the location of the gap in the ground state. The time
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FIG. 11. (a) ñc and (b) |�0| as functions of |F0|/ω for U = 4 and
U = 8. We use F (τ ) with the gaussian envelope. For U = 4 (U = 8),
we set U ′ = 3.3 and μc = 2.5 (U ′ = 4.3 and μc = 5). The dashed
(dotted) horizontal lines indicate the corresponding equilibrium val-
ues for U = 4 (U = 8). (c) �E and αk=0 as functions of |F0|/ω for
U = 4.

average is taken with τi = 20 and τ f = 50. For |F0|/ω � 1,
the |F0|/ω dependence of these quantities is similar to that in
the atomic limit shown in Fig. 3, indicating that the dynamics
are qualitatively described by the Rabi oscillation even when
the bands are formed. As shown in Fig. 11(a), ñc has a peak
at |F0|/ω � 0.5 which is comparable to the case of the atomic
limit [Fig. 3(a)]. For large |F0| (|F0|/ω � 1), a cyclic behavior
of physical quantities that characterizes the Rabi oscillation
becomes less clear. When we employ the rectangular envelope
for F (τ ), the cyclic behavior appears even in the region of
large |F0|/ω (Fig. 13).

Here we mention the choice of the values of τi and τ f

in Eq. (8). After the photoexcitations, physical quantities
generally show oscillations in time. In the time-dependent HF
method, the center of such an oscillation is almost constant
because dephasing processes via electron correlations are not
taken into account. In Fig. 12, we show the time profile of |�0|
where we use the U = 4, U ′ = 3.3, μC = 2.5, ω = 1.25, and
F0 = −0.5, which gives a large enhancement of |�0|. After
the photoexcitation, |�0| exhibits the Higgs amplitude mode
with a period of about 4.0, whereas the center of its oscillation
is almost constant. In order to show explicitly how the values
of τi and τ f affect the time average, we define the time average
of a physical quantity X (τ ) taken in the range from τ − τm/2

 0.1

 0.15

 0.2

 0.25

 0.3

-20  0  20  40  60

|Δ
0|

, |
Δ 0

| a
v(

τ)

τ

|Δ0|
|Δ0|av(τ), τm=10
|Δ0|av(τ), τm=30

FIG. 12. Time profiles of |�0| and |�0|av(τ ). We use τm = 10
and 30 for |�0|av(τ ). The other parameters are U = 4, U ′ = 3.3,
μC = 2.5, ω = 1.25, and F0 = −0.5. The double-headed arrow in-
dicates the range 0 < τ < 2τw of application of an electric field.

to τ + τm/2 as

Xav(τ ) = 1

τm

∫ τ+τm/2

τ−τm/2
X (τ ′)dτ ′. (25)

The time profiles of |�0|av(τ ) with τm = 10 and 30 are shown
in Fig. 12, which indicates that their difference is very small
for τ > 20. We note that |�0| with τi = 20 and τ f = 50
presented in Fig. 11(b) corresponds to |�0|av(τ ) with τm = 30
at τ = 35. From these results, we confirm that, when τm =
τ f − τi is larger than the oscillation period of |�0| and τi is
taken sufficiently after the photoexcitation, the value of τm

has little effects on the results. For the relevance to experi-
ments, if we use t f = 0.4 eV for Ta2NiSe5 [32], τ f − τi = 30
corresponds to 50 fs, which is comparable to time resolution
of recent pump-probe measurements [9]. When |�0| is small
after the photoexcitation, the period of the Higgs mode may
become long. However, in such cases the amplitude of the
Higgs mode becomes small and thus the choice of τi and τ f

does not largely affect the results.

3. Signature of Rabi oscillations in one-particle states

Here we consider F (τ ) with the rectangular envelope
[Eq. (4)]. As in the case of the atomic limit, we discuss our
results from the viewpoint of the Rabi oscillation. In Fig. 13,
we show ñc, |�0|, �E , and αk=0 as functions of |F0|/ω. The
oscillatory behavior in these quantities is more evident than
that in Fig. 11 where the gaussian envelope is employed for
F (τ ). General tendencies of Figs. 13(a)–13(c) are similar to
those of Figs. 4(a)–4(c), respectively. This means that if we
apply Eq. (20) to the case of nonzero transfer integrals, the
value of p is almost unchanged from that in the atomic limit.
Compared to the results with U = 4, the oscillatory behavior
is more prominent for those with U = 8 where the system is
closer to the atomic limit.

In Fig. 14, the time averages of the transient energy levels,
Ekγ σ , with γ being the band index, are shown for U = 4. The
transient energy levels Ekγ σ (τ ) are obtained by diagonalizing
Eq. (6). We use |F0|/ω = 0.3, 1.2, and 1.9, for which the
values of |�0| are indicated by the arrows in Fig. 13(b). For
|F0|/ω = 0.3 and 1.9, the gap in Ekγ σ is larger than that in the
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FIG. 13. Same plots as Fig. 11 except that we use F (τ ) with the
rectangular envelope. In (b), the positions of |�0| with |F0|/ω = 0.3,
1.2, and 1.9 for U = 4 are indicated by the arrows.

ground state because of the enhancement of |�0|, whereas it
becomes smaller for |F0|/ω = 1.2 where |�0| is suppressed.

Since the one-particle Hamiltonian is described by a 2 × 2
matrix, we can expect that the Rabi oscillation occurs for each
k. In order to confirm this, in Fig. 15(a) we show αk on the
(|F0|/ω, k) plane for U = 4. It is apparent that αk exhibits an
oscillation with respect to |F0|/ω. The oscillation amplitude
depends on k and is large around k = 0 that is the location

F   /ω = 0.3
= 1.2
= 1.9

4

12

8

0 π 2π
k

0

F   /ω0

F   /ω0

FIG. 14. Ekγ σ for different values of |F0|/ω. The dashed lines
show the energy levels in the ground state. The parameters are U =
4, μC = 2.5, and U ′ = 3.3.
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FIG. 15. (a) αk on (|F0|/ω, k) plane. (b) Relation between αk=0

and nc(0). The position (αk=0, nc(0)) in the ground state and
(αk=0, nc(0)) with |F0|/ω = 0.3, 1.2, and 1.9 are indicated by the
arrows. We use U = 4, μC = 2.5, and U ′ = 3.3.

of the initial gap, whereas the period of oscillation is nearly
independent of k. As shown in Fig. 13, the periodic behavior
of αk=0 with respect to |F0|/ω corresponds to those in ñc, |�0|,
and �E . By using Eqs. (22) and (23), we have

|�(k)| =
√

nc(k)(1 − nc(k)), (26)

from which the relation between αk and nc(k) is obtained, as
shown in Fig. 15(b) for the case of k = 0. A similar relation
is obtained even if we choose another k (not shown). In
the figure, we depict (αk=0, nc(0)) in the ground state and
(αk=0, nc(0)) for |F0|/ω = 0.3, 1.2, and 1.9. The periodic
change in the position as a function of |F0|/ω is similar to
that in the atomic limit discussed in Sec. III A. These results
show that the periodic behavior of αk brings about that of
nc(k). Thus, the |F0|/ω dependence of physical quantities is
essentially caused by the Rabi oscillation of each one-particle
state.

In order to understand the |F0|/ω dependence of |�0| in
Fig. 13(b) more accurately, it is necessary to discuss the phase
of �(k) as well as the k dependence of nc(k) and �(k). They
have been shown to have an important role in determining
whether the photoinduced enhancement of the excitonic gap
occurs [21]. The order parameter �0 is related with �(k) by

�0 = 1

N

∑
k

�(k), (27)

and we define their phases as

�(k) = |�(k)|eiθk , (28)

and

�0 = |�0|eiθ . (29)
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FIG. 16. (a) nc(k), (b) |�(k)|, and (c) δθ k for different values of
|F0|/ω. The dashed lines are the corresponding equilibrium values.
The parameters are U = 4, μC = 2.5, and U ′ = 3.3.

In Fig. 16, we show nc(k), |�(k)|, and δθ k for |F0|/ω = 0.3,
1.2, and 1.9, where δθk is defined as

δθk =
{|θk − θ | (|θk − θ | < π )
|θk − θ | − π (otherwise). (30)

In the ground state, nc(k) and �(k) have a broad k de-
pendence because of the BEC nature of the excitonic con-
densation. After the photoexcitation, nc(k) and |�(k)| are
basically increased compared to their ground-state values.
From Eq. (26), |�(k)| has its maximum value of 0.5 when
nc(k) = 0.5. When ñc is increased by the increase in nc(k), the
mixing between the upper and lower bands is promoted and
|�(k)| is enhanced [21]. However, this does not necessarily
bring about the enhancement of |�0|. When |F0|/ω = 1.2, for

instance, |�0| is smaller than �G
0 [Fig. 13(b)] although ñc is

larger than nG
c [Fig. 13(a)]. As shown in Fig. 16(c), δθ k is

large in a wide region of the Brillouin zone, indicating that
the enhancement of |�0| is hindered by the large deviation of
θk from θ . On the other hand, for |F0|/ω = 0.3, θk is in phase
with θ in a large area in k space. For |F0|/ω = 1.9, although
δθ k becomes large near k = ±0.6π , it is small for |k| � 0.4π

where |�(k)| has its maximum. Therefore, the increase in
|�(k)| leads to the enhancement of |�0|. In short, when |�0|
is enhanced by photoexcitation, θk is in phase with θ in a
region where |�(k)| is largely increased, whereas θk behaves
differently from θ when |�0| is suppressed. In the former, the
Rabi oscillations of one-particle states with different k values
work cooperatively to induce the gap enhancement.

As we have shown in the previous paper [21], when U ′ is
small and the initial EI is of BCS type, the time evolution of
θk induces a destructive interference to hinder the enhance-
ment of |�0|, which is also the case for U ′ = 0. Since the
excitonic order for small U ′ has a long correlation length, its
photoinduced dynamics cannot be understood in terms of the
Rabi oscillation in the atomic limit. However, when the initial
state is of BEC type, the phases θk are nearly in phase and the
Rabi oscillations for different k values work cooperatively to
enhance |�0|.

IV. EFFECTS OF ELECTRON-PHONON COUPLING

We investigate effects of phonons on the photoinduced
dynamics within the HF approximation. We consider the
additional terms to Eq. (1), which are used in Ref. [19],

Ĥeph = g
∑

iσ

(bi + b†
i )(c†

iσ fiσ + f †
iσ ciσ ), (31)

Ĥp = ωp

∑
i

b†
i bi, (32)

where bi (b†
i ) is the annihilation (creation) operator for the

phonon at the ith site. The e-ph coupling constant and the
phonon frequency are denoted by g and ωp, respectively.
We define the expectation value of the lattice displacement,
yp = 〈bi〉 + 〈b†

i 〉, which is assumed to be independent of i. The
time evolution of the system is computed as follows [40]. For
phonons, we treat them as classical variables and numerically
solve the equation of motion for yp that is written as

d2yp

dt2
= −ω2

pyp − 8gωpRe�0, (33)

from which we have

yp = − 8g

ωp
Re�0 (34)

in the ground state. For the electronic part, we employ Eq. (7).
In this section, we use F (τ ) with the gaussian envelope
[Eq. (3)]. The results obtained by the rectangular envelope are
given in Appendix C.

A. Atomic limit

First, we discuss the case of the atomic limit (t f = tc = 0).
In the ground state, we can show that Eq. (13) holds even in
the presence of the e-ph interaction. From Eqs. (13) and (34),
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FIG. 17. nc as a function of |F0|/ω for different values of g
with U = 1, U ′ = 0.45, and μC = 0.5 in the atomic limit. We use
ω = 0.45, 0.458, and 0.482 for g = 0, 0.01, and 0.02, respectively.
The horizontal dashed lines indicate the corresponding equilibrium
values.

the ground-state energy EAL
g is written as

EAL
g = 1

2 (U − U ′
g)n2

c + (μC − U + U ′
g)nc + U, (35)

where U ′
g = U ′ − 8g2/ωp. This leads to nc = 1 − μC/(U −

U ′
g) and the critical value of U ′ for the EP-DP phase boundary

is given by U ′
cr = U − μC + 8g2/ωp. In Fig. 17, we show the

time average of nc, which is denoted by nc, as a function
of |F0|/ω for g = 0.01 and g = 0.02 with U = 1, U ′ = 0.45,
μC = 0.5, and ωp = 0.1. For g = 0.01 (g = 0.02), we have
U ′

cr = 0.508 (U ′
cr = 0.532). The value of ω is so chosen that it

corresponds to the energy difference between the two levels.
The time average is taken with τi = 100 and τ f = 400 con-
sidering the long timescale of phonons, 2π/ωp. It is apparent
that the Rabi oscillation appears even with nonzero g. We
note that this is also the case when we use the rectangular
envelope for F (τ ) (Appendix C). For g = 0.02, we depict
the time profiles of |�0| and yp in Figs. 18(a) and 18(b),
respectively. When |F0| is small (|F0|/ω = 0.1), |�0| and yp

oscillate around their ground-state values. However, for large
|F0| (|F0|/ω = 0.4), |�0| is enhanced and yp oscillates around
zero indicating that the effect of the lattice displacement
basically disappears. In Fig. 18(c), we show the trajectory of
(Sx, Sy) where we define Sx = Re�0 and Sy = Im�0 in the
pseudospin representation. The description of the pseudospin
representation and the trajectory of (Sx, Sy) for g = 0 are given
in Appendix A. For small |F0|, θ that is defined in Eq. (29) is
confined near zero. This is because the phase mode is massive
in the presence of the lattice displacement [19]. On the other
hand, θ rotates for large |F0|, which is qualitatively the same
as that for g = 0 (Fig. 28 in Appendix A).

B. One-dimensional model

Next, we show results with nonzero transfer integrals (t f =
−tc = 1). We compute nc as a function of |F0|/ω for g = 0.02
and 0.04 where the lattice displacements in the ground state
are yp = −0.217 and yp = −0.527, respectively. Here we use
U = 4, U ′ = 3.3, and μC = 2.5. The used value of ω corre-
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FIG. 18. Time evolutions of (a) |�0| and (b) yp, and (c) trajectory
of (Sx, Sy ) for |F0|/ω = 0.1 and 0.4. We use g = 0.02 and the other
parameters are the same as those in Fig. 17. In (a) and (b), the
horizontal lines indicate the corresponding equilibrium values. In
(c), we depict the time domain −20 � τ � 300 (−20 � τ � 50) for
|F0|/ω = 0.1 (|F0|/ω = 0.4), and the solid square indicates the initial
position of (Sx, Sy ).

sponds to the initial gap. As shown in Fig. 19, the introduction
of the e-ph coupling does not largely affect the |F0|/ω depen-
dence of nc as in the case of the atomic limit. For g = 0.04,
we show the time profiles of |�0| and yp in Figs. 20(a) and
20(b), respectively, whereas the trajectory of (Sx, Sy) is shown
in Fig. 20(c). We use |F0|/ω = 0.1 (|�0|/�0(τ = 0) = 0.97)
and |F0|/ω = 0.4 (|�0|/�0(τ = 0) = 1.53). The results are
qualitatively the same as those in the atomic limit shown in
Fig. 18. These results indicate that the e-ph coupling does not
have a significant role on the photoinduced gap enhancement
based on the Rabi oscillation.

V. CORRELATION EFFECTS

In this section, we examine effects of the electron corre-
lation that are ignored in the HF approximation. By using
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FIG. 19. nc as a function of |F0|/ω for different values of g with
U = 4, U ′ = 3.3, and μC = 2.5 for the case of nonzero transfer
integrals (t f = −tc = 1). We use ω = 1.25, 1.30, and 1.42 for g = 0,
0.02, and 0.04, respectively. The horizontal dashed lines indicate the
corresponding equilibrium values.

the ED method, we calculate ground-state properties and
photoinduced dynamics of the two-orbital Hubbard model.
We do not consider the e-ph coupling for simplicity. When we
use single cycle pulses for photoexcitations, we adopt F (τ )
with the gaussian envelope and the results obtained with the
rectangular envelope are given in Appendix D.

A. Ground state

In the ground state, we compute the U ′ dependence of nc

where we use U = 4, μC = 2.5, and the system size N =
6. As shown in Fig. 21, nc monotonically decreases with
increasing U ′ and it becomes zero at U ′

cr = 3.5. This behavior
is consistent with the HF results shown in Fig. 10 where
we have U ′

cr = 3.37. The qualitative difference between the
HF and ED results is that for U ′ < U ′

cr the excitonic order
parameter �0 is nonzero in the former whereas it is zero
in the latter. We note that by the ED method we inevitably
have a ground state with �0 = 0 because of the finiteness
of the system. For U ′ > U ′

cr, both methods give the BI phase
with �0 = nc = 0 as the ground state. In this phase, the gap
E1 − E0 increases almost linearly with U ′ as shown in Fig. 21,
where E0 and E1 are the energies of the ground and first
excited states, respectively. This behavior is also consistent
with the HF results [21]. In the following, we consider the BI
phase (U ′ > U ′

cr) as the initial state before photoexcitation for
comparison.

B. Photoinduced dynamics

The time evolution of the system is obtained by numeri-
cally solving the time-dependent Schrödinger equation for the
exact many-electron wave function |	(τ )〉 as

|	(τ + dτ )〉 = exp
[
−idτ Ĥtot

(
τ + dτ

2

)]
|	(τ )〉, (36)

where Ĥtot (τ ) = Ĥ + ĤD(τ ) and we use dτ = 0.01. We use
U = 4, μC = 2.5, and U ′ = 3.9 > U ′

cr. The light frequency
is set at ω = 0.7 that is near the gap E1 − E0 = 0.68. In the
following, we first show results with single cycle pulses and
then discuss the case of CW excitations.
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FIG. 20. Time evolutions of (a) |�0| and (b) yp, and (c) trajectory
of (Sx, Sy ) for |F0|/ω0 = 0.1 and 0.4. We use g = 0.04 and the other
parameters are the same as those in Fig. 19. In (a) and (b), the
horizontal lines indicate the corresponding equilibrium values. In
(c), we depict the time domain −20 � τ � 300 (−20 � τ � 50) for
|F0|/ω = 0.1 (|F0|/ω = 0.4), and the solid square indicates the initial
position of (Sx, Sy ).

1. Excitations with single cycle pulse

In Fig. 22, we show the time profiles of nc and |�0| for
different values of F0 with 0 < F0/ω � 1. After the pho-
toexcitation, nc is conserved, whereas |�0| keeps oscillating.
The value of ñc increases with increasing F0, and then it
decreases when we increase F0 further (F0 = 0.6). As shown
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FIG. 21. nc as a function of U ′ with U = 4, μC = 2.5, and N =
6. We also show the gap E1 − E0 for U ′ > U ′

cr .

in Fig. 22(b), there is no clear indication of a strong dephasing
in the order parameter that should suppress |�0| after the
photoexcitation with 0 < F0/ω � 1. Moreover, we do not find
rapid thermalization: The oscillation in |�0| persists long
after the photoexcitation with 0 < F0/ω � 1. Although the
finite size effects may play a role, our results at this stage
do not indicate that the correlation effects seriously hinder
the enhancement of |�0|. We depict ñc, |�0|, �E , and α̃ as
functions of F0/ω in Fig. 23 where the time average of |�0|
is taken with τi = 50 and τ f = 100. Here the overlap α is
defined by α = |〈	(τ )|	(0)〉|2. After the photoexcitation, α

is conserved and its value is denoted by α̃. Notably, our results
indicate that for F0/ω � 1, the F0/ω dependence of these
quantities is consistent with that obtained by the HF method
shown in Fig. 11. This strongly suggests that the enhancement
of |�0| as well as its interpretation with the help of the Rabi
oscillation are robust against the correlation effects. We note
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FIG. 22. Time evolutions of (a) nc and (b) |�0| for different
values of F0 obtained by the ED method with U = 4, μC = 2.5, U ′ =
3.9, ω = 0.7, and N = 6. The double-headed arrow in (a) indicates
the range 0 < τ < 2τw = 2π/ω of application of an electric field.
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FIG. 23. (a) ñc, (b) |�0|, (c) �E , and (d) α̃ as functions of F0/ω

obtained by the ED method. We use F (τ ) with the gaussian envelope.
The parameters other than F0 are the same as those in Fig. 22. In
each panel, we show the results with N = 4 by the dashed line for
comparison, where E1 − E0 = 0.56 and we use ω = 0.6.

that although the ED calculations are limited to small system
sizes, the results with N = 4 and 6 are consistent with each
other. For F0/ω � 1, the feature of the Rabi oscillation is
unclear, which is also consistent with the HF results. However,
|�0| obtained with N = 6 is suppressed for F0/ω � 2 where
�E (̃α) is large (small), which is qualitatively different from
the behavior in Fig. 11. In Fig. 24, we show the time profile
of |�0| for F0 = 1.4 (F0/ω = 2.0) and F0 = 2.1 (F0/ω =
3.0). The value of |�0| is abruptly increased by the pump
light, and then it is rapidly suppressed within the duration of
photoexcitation. It behaves as if several oscillation modes with
different frequencies and phases are excited. These features
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FIG. 24. Time evolution of |�0| for F0 = 1.4 and 2.1 obtained by
the ED method. The other parameters are the same as those in Fig. 22.
The double-headed arrow indicates the range 0 < τ < 2τw = 2π/ω

of application of an electric field.

indicate that the dephasing occurs within the duration of
photoexcitation, and it brings about the fast decay of |�0|.
Although the finite size effects are expected to be substantial
for large F0/ω, our results with N = 6 suggest that in this
region the dephasing has an important role in determining the
value of |�0|. This is in contrast to the case with F0/ω �
1 where |�0| can be largely enhanced. When we use the
rectangular envelope for F (τ ) [Eq. (4)], the cyclic behavior
in physical quantities becomes more evident, which we show
in Appendix D.

When U ′ < U ′
cr, our ED results do not show a clear evi-

dence of the Rabi oscillation. Specifically, for U ′ = 3.2 < U ′
cr,

the oscillatory dependence of α̃ and �E on F0/ω that appears
in Fig. 23 for the case of U ′ = 3.9 > U ′

cr (F0/ω � 1) is less
pronounced. Although the F0/ω dependence of |�0| is similar
to that in Fig. 23, for ñc the finite size effect is more severe
than that with U ′ > U ′

cr and the result with N = 4 is qualita-
tively different from that with N = 6 even for F0/ω < 1. We
speculate that these results are due to the metallic ground state
with �0 = 0 in the ED method. When the system is metallic
(�0 = 0), it has basically gapless excitations and thus it is far
from a two-level system.

2. Excitations with continuous-wave laser

Next, we consider the case of CW excitations and examine
time evolutions of physical quantities from the viewpoint of
the Rabi oscillation. In Fig. 25, we show the time profiles of nc

and α for different values of F0 with U ′ = 3.9 > U ′
cr for which

the ground state before the photoexcitation is the BI. They
exhibit an oscillation, the period of which becomes shorter
with increasing F0. For small F0 (F0 � 0.1), the time profile
of nc is well described by a single sinusoidal function of the
form Eq. (20) as shown in Fig. 25(a), and the minimum value
in the oscillation is close to the ground-state value of nc (= 0).
Correspondingly, a nearly sinusoidal oscillation appears in
α. It is notable that we have α ∼ 1 when nc ∼ 0, whereas
α ∼ 0 when nc exhibits its maximum. These behaviors are
consistent with the Rabi oscillation as we have discussed in
Sec. III. With increasing F0, the oscillatory profiles in nc and
α gradually become more complex. For F0 � 0.15, a single
sinusoidal function does not fit well to the data. Also, the

α

τ
FIG. 25. Time evolutions of nc and α under CW excitations for

different values of F0 obtained by the ED method. We use U = 4,
μC = 2.5, U ′ = 3.9, and ω = 0.7. In (a), the dashed lines indicate
the fitting results by a single sinusoidal function.

minimum (maximum) in the oscillation of nc (α) departs from
its ground-state value, which is in contrast to the case with
F0 � 0.1.

In Fig. 26(a), we show the Fourier transform of nc that is
calculated from the data for 50 � τ � 400. There is a sharp
peak in each spectrum and its position that is denoted by

 becomes larger for larger F0. In Fig. 26(b), we plot the
F0 dependence of 
. For F0 � 0.1, 
 is nearly proportional
to F0: A function 
 = pF0 with p = 2.70 fits well to the
data. This result, in conjunction with the time profiles of
nc and α shown in Fig. 25, indicates that for small F0 the
many-body dynamics under CW excitations is consistently
interpreted from the viewpoint of the Rabi oscillation. At
F0 ∼ 0.15, 
 starts to deviate from the linear dependence on
F0. At this value of F0, the appearance of complex oscillatory
profiles in nc and α as well as the departure of these quantities
from their ground-state values (Fig. 25) are observed. These
properties are different from those in the atomic limit with
the HF approximation where the linearity characterizing the
Rabi oscillation basically appears for large |F0| as we have
discussed in Sec. III A and Appendix A. The deviation of
the ED results with F0 � 0.15 from the relation 
 = pF0 that
is expected in two-level systems may come from effects of
photoexcited electrons away from the gap, which should be
increasingly important with increasing F0. We note, however,
that some oscillatory behavior reminiscent of the Rabi oscil-
lation appears even for F0 > 0.15, especially within the first
few cycles of the CW excitations (Fig. 25). Therefore, in
the case of single cycle pulses we can expect that the F0/ω

dependences of physical quantities after the photoexcitation
for F0 > 0.15 are qualitatively understood with the help of
the Rabi oscillation. In fact, Fig. 23 obtained with single
cycle pulses indicates the signature of the Rabi oscillation for
F0/ω � 1 (F0 � 0.5).

Finally, we examine the correspondence between the re-
sults with CW excitations and those with single cycle pulses
in the same way as we have done in Sec. III A. We apply
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Ω

FIG. 26. (a) Fourier transform of nc. In each spectrum, the po-
sition of its largest peak is indicated by the arrow. The parameters
are the same as those of Fig. 25. (b) Peak frequency 
 in Fourier
transform of nc as a function of F0. The solid line is a fitting result to
the data with F0 � 0.1.


′
R = pF0 with p = 2.70 to Eq. (20). For α, we use Eq. (17)

with nG
c = �G

0 = 0. By setting τ = 2π/ω in these equations,
we can deduce that α̃ (ñc) for single cycle pulses exhibits a
minimum (maximum) at F0/ω ∼ 0.19 unless the constant A in
Eq. (20) strongly depends on F0. For α̃, this value of F0/ω is
consistent with the results shown in Fig. 23, where it exhibits
a minimum at F0/ω = 0.21.

For ñc, its first maximum is located at F0/ω = 0.46 which
is larger than the above estimation. This discrepancy mainly
comes from an increase in the amplitude of nc with increasing
F0 [Fig. 25(a)]: The F0 dependence of A is important in
determining the maximum of nc. This is in contrast to the
time evolutions of α where it becomes almost zero in its first
oscillation irrespective of the value of F0 [Fig. 25(b)]. We note
that this argument also holds for the case with the rectangular
envelope where the maximum of ñc and the minimum of α̃

are located at F0/ω = 0.21 and 0.32, respectively, as shown
in Appendix D.

VI. DISCUSSION AND SUMMARY

Finally, we discuss possible experimental observation of
photoinduced gap enhancement as well as the relevance of our
results to Ta2NiSe5. Recent theoretical studies [32,34] have
shown that various equilibrium properties of Ta2NiSe5 such
as the ARPES spectra [32] and the temperature dependence
of magnetic susceptibility [29] can be reproduced by two-

or three-orbital Hubbard models. Effects of the structural
distortion observed at TC have been investigated using a three-
orbital Hubbard model with e-ph interactions by the HF ap-
proximation [50]. It has been shown that the values of the e-ph
interaction strengths needed to reproduce the experimentally
observed distortion are one order of magnitude smaller than
those of the transfer integrals and the e-e interaction strengths.
Then, it has been argued that the EI in Ta2NiSe5 is ascribed
to the BEC of electron-hole pairs which cooperatively induce
the instability of the lattice distortion. These studies suggest
that the photoinduced dynamics obtained in this paper based
on the two-orbital Hubbard model [Eq. (1)] would be relevant
to Ta2NiSe5.

In our mechanism, photoinduced gap enhancement occurs
purely electronically when ω is comparable to the excitonic
gap. Moreover, we have shown that e-ph couplings do not
affect our results qualitatively. When ω is much larger than the
excitonic gap, which is the case in recent experiments [9], a
theoretical study has shown that e-ph couplings are crucially
important for the appearance of the gap enhancement [19].
Thus, our mechanism is considered as an alternative route to
this phenomenon.

In this paper, we consider the case where the upper and
lower bands have the same bandwidth (tc = −t f ). However,
even when the two bandwidths are different [50], we expect
that the gap enhancement by the Rabi oscillation occurs as
long as the initial system is a BEC-type EI or a nearby BI. This
is because their dynamics should be basically understood from
the real-space picture [21] where the analysis in the atomic
limit presented in this paper is valid.

In order to examine the relevance of our results to experi-
ments, we estimate the number of absorbed photons per site
nph. When U = 4 and U ′ = 3.3 [Fig. 11(c)], we have �E =
0.398 for |F0|/ω = 0.44 at which |�0| exhibits the first peak
as a function of |F0|/ω. This corresponds to nph = �E/ω =
0.32. We note that a sizable gap enhancement appears with
much smaller values of nph. For instance, 15% enhancement
in |�0| is obtained for |F0|/ω = 0.2, where we have nph =
0.017. In Ta2NiSe5, K. Okazaki et al. have reported that when
the incident pump fluence is 1 mJ/cm2, nph ∼ 0.1 per Ni atom
whose 3d orbital hybridizes Se 4p orbital and forms a hole
band [51]. The threshold pump fluence for the appearance of
the gap enhancement reported in Ref. [9] is FC = 0.2 mJ/cm2,
which may correspond to nph ∼ 0.02. This suggests that the
pump fluence used in the current experimental studies is
enough to observe the gap enhancement based on our mecha-
nism unless nph depends largely on the value of the initial gap.
However, at present a direct comparison between theoretical
and experimental estimates is difficult by the following rea-
sons. Firstly, in our model, we assume that the incident light
induces the dipole transition whereas it does not affect the
intraorbital electron motion. In order to realize this situation
in real materials, the direction of light polarization as well as
the crystal structure of the material are crucially important.
For a material with a quasi-one-dimensional structure like
Ta2NiSe5, this indicates that the polarization of light should be
perpendicular to the chain. The value of the matrix element for
the dipole transition between the two bands is also important.
Secondly, the pump-light frequency should be nearly tuned
to the resonance condition. Note that in this case a recent
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FIG. 27. Time evolutions of (a) nc and (b) |�0| for different
values of F0 with U = 1, μC = 0.5, U ′ = 0.45, and ω = 0.45. The
arrow indicates the range where F (τ ) with the rectangular envelope
is nonzero. The horizontal dashed line in each panel indicates the
corresponding equilibrium value.

theoretical study has shown that the gap enhancement does
not appear when the incident light only affects the intraorbital
electron motion [22]. Thirdly, the estimation of nph by the
time-dependent HF method may be quantitatively inaccurate
since it ignores the correlation effects [40,52]. With regard
to this point, from our ED results on small clusters with
U = 4 and U ′ = 3.9 where the ground state is the BI, we
have nph = 0.10 for F0/ω = 0.1 at which |�0| is maximally
enhanced (Fig. 23). This value of nph is comparable to the
above-mentioned HF results.

We note that the gap enhancement with the help of the
Rabi oscillation is irrespective of the dimensionality of the
system. In fact, our results for one-dimensional systems are
qualitatively unaltered even in the two-dimensional case [21].
Moreover, our ED results suggest that the Rabi-oscillation-
assisted gap enhancement appears even when the effects of
quantum fluctuations are considered, although how the de-
phasing and thermalization affect the dynamics remains as a
future important problem.

In summary, we investigated dynamics of EIs induced
by electric dipole transitions using the two-orbital Hubbard
model. Through the HF analysis of the dynamics in the atomic
limit, we have shown that the photoinduced gap enhancement
in the EI for single cycle pulses reported previously [21] is
explained in terms of the Rabi oscillation. The signature of
the Rabi oscillation appears as a periodic behavior of physical
quantities after the photoexcitation as functions of the dipole
field strength F0. We emphasize that although the Rabi oscil-
lation is a one-site problem, it represents the essential feature
of the photoinduced dynamics in the thermodynamic limit in
the parameter range that we have considered in this paper. We
have performed the ED calculations which strongly suggest
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0

(b)
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F0 = -0.2
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FIG. 28. (a) Trajectory of (Sx, Sy) and (b) time evolution of θ for
F0 = −0.05 and −0.2 with rectangular envelope of Eq. (4). We use
U = 1, μC = 0.5, U ′ = 0.45, and ω = 0.45. For F0 = −0.05 (F0 =
−0.2), we show the time domain 0 � τ � 300 (0 � τ � 50). In (a),
the solid square indicates the initial position of (Sx, Sy).

the robustness of this phenomenon against the correlation
effects and thus corroborate our HF results. The effects of the
e-ph coupling have been examined within the HF approxima-
tion, indicating that they do not have a significant role on the
gap enhancement in the present situation. Based on the present
results and our previous work [21], the condition for inducing
the gap enhancement is summarized as follows: (i) The initial
state is an EI in the BEC regime or a BI that is located near the
EI. (ii) The pump-light frequency ω is near the initial gap. (iii)
There is an optimal value of F0 for enhancing the excitonic
gap, which satisfies the relation 
′

R/ω ∼ 1/2 with the Rabi
frequency 
′

R ≈ |F0|.
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APPENDIX A: DETAILED DYNAMICS
IN THE ATOMIC LIMIT

We show details of the real-time dynamics of mean-field
order parameters in the atomic limit. We use F (τ ) with the
rectangular envelope [Eq. (4)]. The time profiles of nc and
�0 for different values of F0 are shown in Fig. 27 where the
parameters are the same as those in Fig. 2. We introduce the
pseudospin operators as

Ŝγ ≡ 	† 1
2σγ 	, (A1)

where σγ (γ = x, y, z) are the Pauli matrices and we omit
the spin index in 	σ for brevity. With this representation, the
expectation values of the pseudospin Sγ = 〈Ŝγ 〉 components
are written as

Sx(τ ) = Re�0, (A2a)

Sy(τ ) = Im�0, (A2b)

Sz(τ ) = 1
4 (nc − n f ), (A2c)
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FIG. 30. Trajectory of (Sx, Sy) under CW excitations for F0 =
−0.05 and −0.2. We use U ′ = 0.45 and ω = 0.45. For F0 = −0.05
(F0 = −0.2), we show the time domain 0 � τ � 300 (0 � τ � 50).
The open square indicates the initial point of (Sx, Sy).
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FIG. 31. (a) Fourier transform of nc for |F0| < |F c
0 | with U ′ =

0.45 and ω = 0.45. The peaks corresponding to 
S (
± f ) are
indicated by the solid (dashed) arrows. (b) |F0| dependence of 
S .
The solid line is fit to the data with |F0| � 0.06. The fitting result in
Fig. 8 for U ′ = 0.45 is also shown by the dashed line.
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FIG. 32. Similar plot as Fig. 30 for U ′ = 0.55 and ω = 0.6. We
show the time domain of 0 � τ � 150 (0 � τ � 50) for F0 = −0.05
(F0 = −0.2).
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FIG. 33. (a) Fourier transform of nc for |F0| < |F c
0 | with U ′ =

0.55 and ω = 0.6. The peaks corresponding to 
S (
± f ) are indi-
cated by the solid (dashed) arrows. (b) |F0| dependence of 
S . The
solid curve indicates the fitting result. The fitting result in Fig. 8 for
U ′ = 0.55 is also shown by the dashed line.

which give �0 = Sx + iSy and nc = 2Sz + 1. By using the
equation of motion for the pseudospin operators, the time
evolution of S = (Sx, Sy, Sz ) is given by

∂τ S = B(τ ) × S(τ ), (A3)

where

Bx = 2[U ′Re�0 − F (τ )], (A4a)

By = 2U ′Im�0, (A4b)

Bz = −(εc − ε f ). (A4c)

In Figs. 28(a) and 28(b), we show the trajectory of (Sx, Sy)
and the time evolution of θ that has been defined in Eq. (29),
respectively, for single cycle pulses with F0 = −0.05 and
−0.2. We use μC = 0.5, U ′ = 0.45, and ω = 0.45. For F0 =
−0.05, |�0| (=

√
Sx

2 + Sy
2) is slightly increased by the pho-

toexcitation, whereas it is largely enhanced for F0 = −0.2.
After the photoexcitation, the value of |�0| is conserved and
θ rotates with almost a constant velocity. As we increase |F0|,
the velocity becomes larger as shown in Fig. 28(b).

Next, we discuss results under CW excitations. As we have
shown in Fig. 6, nc oscillates near its ground-state value for
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FIG. 34. (a) Time profile of nc under CW excitations obtained by
the time evolution operator in which we artificially replace nc and �0

by those at τ = 0. (b) Fourier transform of (a). In each spectrum, the
position of the largest peak 
 is indicated by the arrow. In the inset,
the |F0| dependence of 
 is shown, where the fitting result is also
depicted by the dashed line.

small |F0| (F0 = −0.05), whereas it exhibits a large oscillation
for large |F0| (F0 � −0.1). Figure 29 shows nc (= 2Sz + 1) as
a function of |F0| for U ′ = 0.45 and 0.55. For both cases, there
is a threshold F c

0 at which nc abruptly increases. We obtain
F c

0 = −0.1 for U ′ = 0.45 and F c
0 = −0.16 for U ′ = 0.55.

Such a dynamical transition has been previously reported in
one-dimensional excitonic insulators within the HF theory
[19].

In the following, we examine the difference between the
dynamics for |F0| < |F c

0 | and that for |F0| > |F c
0 |. First, we

consider the case of U ′ = 0.45 where the initial state is in
the EP. We show the trajectory of (Sx, Sy) with F0 = −0.05
(|F0| < |F c

0 |) and −0.2 (|F0| > |F c
0 |) under CW excitations

with ω = 0.45 in Fig. 30. For F0 = −0.05, (Sx, Sy) is bound
near the ground-state position, whereas it is unbound for F0 =
−0.2. This corresponds to bound and unbound oscillations
in nc for F0 = −0.05 and −0.2 (Fig. 6), respectively. In
Fig. 31(a), we show the Fourier transform of nc for small |F0|
(< |F c

0 |), indicating that nc has one slow oscillation compo-
nent with frequency 
S � 0.15 and two fast components with
frequencies 
 f ± near ω, which we can write as 
 f ± = ω ±
δ
. Both 
S and δ
 increase with increasing |F0|. When |F0|
is small (|F0| < 0.06), the peak at 
S is dominant, whereas
those at 
 f ± become dominant for 0.06 < |F0| < |F c

0 |. As we
increase |F0| further (|F0| > |F c

0 |), the spectra change drasti-
cally as we have shown in Fig. 7. In Fig. 31(b), we show the
|F0| dependence of 
S . When |F0| � 0.06, 
S is proportional
to |F0| and we have 
S = p|F0| with p = 0.63 that is different
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FIG. 35. Same plot as Fig. 17 except that we use F (τ ) with the
rectangular envelope.

from the value (p = 1.24) obtained in Sec. III A for |F0| >

|F c
0 |. The region of |F0| (0.06 < |F0| < |F c

0 |) where the value
of p largely deviates coincides with that where nc exhibits
the abrupt increase in Fig. 29. These results indicate that the
dynamics for |F0| < |F c

0 | have a character different from that
for |F0| > |F c

0 |.
Next, we show results with U ′ = 0.55 where the initial

state is in the DP. The trajectory of (Sx, Sy) for F0 = −0.05
(|F0| < |F c

0 |) and F0 = −0.25 (|F0| > |F c
0 |) with ω = 0.6 is

depicted in Fig. 32. Similar to the case of U ′ = 0.45, (Sx, Sy)
is bound near its initial position for |F0| < |F c

0 |, whereas it
is unbound for |F0| > |F c

0 |. In Fig. 33(a), we show the Fourier
transform of nc for |F0| < |F c

0 |. The dominant oscillation com-
ponents in nc have frequencies 
 f ± = ω ± δ
, and there is a
slow oscillation component with 
S = 2δ
 whose amplitude
is higher order in |F0|. When |F0| is small, we can solve
Eq. (A3) in the lowest order of F0 with the initial condition
S(τ = 0) = (0, 0,−1/2) as

Sx(τ ) = F0

ω2 − a2
(a sin ωτ − ω sin aτ ), (A5a)

Sy(τ ) = ωF0

ω2 − a2
(cos aτ − cos ωτ ), (A5b)

Sz(τ ) = ωF0

ω2 − a2

[
1 − cos(ω + a)τ

ω + a

+ 1 − cos(ω − a)τ

ω − a
+ 1 − cos 2ωτ

2ω

]
, (A5c)
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FIG. 36. Same plot as Fig. 19 except that we use F (τ ) with the
rectangular envelope.
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FIG. 37. Same plots as Fig. 23 by the ED method except that we
use F (τ ) with the rectangular envelope.

where a = μC − U + U ′. From Eq. (A5c), we find that for
|F0| → 0, δ
 → a = 0.05 and there is an oscillation compo-
nent with frequency 2ω = 1.2, which are consistent with the
numerical results shown in Fig. 33(a). As we increase |F0|, 
S

increases. 
S = 0.1 + 10|F0|2 is fit well to the data as shown
in Fig. 33(b). These results indicate that the dynamics for
|F0| < |F c

0 | is essentially different from that for |F0| > |F c
0 |

as in the case of U ′ = 0.45. In fact, the spectra of nc for
|F0| > |F c

0 | (not shown) are largely different from those for
|F0| < |F c

0 |.

APPENDIX B: EFFECTS OF τ DEPENDENCE OF nc

AND �0 IN EQ. (10) ON THE DYNAMICS

As we have mentioned in Sec. III, Eq. (10) possesses
τ -dependent mean-field order parameters from which the time
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evolution operator is constructed. In order to examine how
their τ dependence affects the dynamics in the atomic limit,
we artificially replace nc and �0 in the time evolution operator
by nG

c and �G
0 , respectively, and compute the time profile of nc

under CW excitations. The parameters we used are the same
as those in Fig. 6. The results are shown in Fig. 34(a). Com-
pared with Fig. 6, a large oscillation in nc appears even when
|F0| is small. From the Fourier spectra shown in Fig. 34(b), we
obtain 
 ∼ p|F0| with p = 0.86. This result indicates that the
τ dependence of the order parameters is important in deter-
mining the dynamics for small |F0| (|F0| < 0.1). However, it
does not alter the dynamics qualitatively for larger |F0| where
the Rabi oscillation appears in Fig. 6. These facts give a reason
why the quantitative difference between the value of ñc for
single cycle pulses and that of nc at τ = 2π/ω computed from
Eq. (20) becomes large for small |F0| (|F0|/ω � 0.3), which
can be seen in Fig. 9.

APPENDIX C: HF RESULTS IN THE PRESENCE
OF PHONONS FOR THE CASE

OF RECTANGULAR-ENVELOPE PULSE

We show the |F0|/ω dependence of nc in the presence of
the e-ph coupling when we use F (τ ) with the rectangular
envelope. In Fig. 35, the results in the atomic limit are

depicted. The parameters are the same as those in Fig. 17.
For the one-dimensional model with t f = 1 and tc = −1, the
results are shown in Fig. 36 where the parameters are the same
as those in Fig. 19. From Figs. 35 and 36, we confirm that the
e-ph coupling has little effects on the |F0|/ω dependence of nc

as in the case of the gaussian-envelope pulse shown in Figs. 17
and 19.

APPENDIX D: ED RESULTS FOR THE CASE
OF RECTANGULAR-ENVELOPE PULSE

In Fig. 37, we show ñc, |�0|, �E , and α̃ as functions of
F0/ω obtained by the ED method when we use F (τ ) with
the rectangular envelope. The parameters are the same as
those in Fig. 23. For F0/ω � 1, the F0/ω dependence of these
quantities is similar to those in Fig. 23, indicating that the
pulse shape does not significantly affect our results as in the
case of the HF method. The cyclic behavior is evident even for
F0/ω > 1, although in this region the increase (decrease) in ñc

and �E (̃α) does not correspond to the large enhancement in
|�0|, which is in contrast to the results with the HF method
shown in Fig. 13. This is caused by the dephasing discussed
in Sec. V, which suppresses |�0|. In fact, for F0/ω ∼ 1.6 and
3.2 of the results with N = 6, where ñc and �E exhibit a peak
and α̃ ∼ 0, we have confirmed that the time profile of |�0| is
similar to that in Fig. 24.
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