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Quantitative and qualitative performance of density functional theory rationalized by reduced
density gradient distributions
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We evaluate the qualitative and quantitative accuracy of various flavors of density functionals with and without
accounting for dispersion corrections. Our test system is nickel in the form of bulk, surfaces, and nanoparticles
for which we compute structural properties, bulk cohesive energies, surface energies, and work functions and
compare to experimental data. We find that the inclusion of any dispersion, either by an a posteriori correction or
by a self-consistent treatment by explicitly computing the nonlocal correlation contribution to the total energy,
has a significant effect on the calculated properties and improves the quantitative comparison to experiments.
Besides the quantitative agreement, we also investigate qualitative features by comparing Wulff shapes of metal
nanoparticles as obtained using the different density functionals. We find that all tested functionals predict similar
Wulff shapes for nickel nanoparticles but still have some small differences. These results show that the relative
energies calculated using the semilocal GGA and meta-GGA functionals, with and without dispersion, are quite
similar. Our findings can also be generalized to other systems when rationalized in terms of the computed reduced
density gradients. We find that the distribution of reduced density gradients in a material is correlated to the
steepness of the exchange enhancement factor and propose that this information can be used as a quantitative
guide when it comes to picking the most appropriate density functional for specific target systems as well as
when it comes to extrapolating DFT data to predict experiments.
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I. INTRODUCTION

The power of electronic structure calculations based on
the density functional theory (DFT) to guide scientists by
capturing and explaining trends in classes of materials, e.g.,
metals, oxides, or even molecular materials, cannot be under-
estimated. DFT has, therefore, become an invaluable tool in
modern materials science. However, quantitative agreement
with experiments is often difficult to reach, and the predictive
power of DFT can, therefore, be questioned, in particular for
complex materials when combinations of different chemical
bonding occur in the same material [1]. As a result, a plethora
of various density functionals have been proposed in the liter-
ature, see, e.g., the review by Mardirossian and Head-Gordon
[2], where about 200 density functionals were benchmarked
towards a set of nearly 5000 data points. Still, however, when
it comes to choosing the right one, it is most often up to the
experience of the modeler to identify the functional which
best captures the particularities of the target system or target
properties. As a consequence, the optimal choice of density
functional often varies between different research areas.
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One area where DFT have been extensively used is het-
erogeneous catalysis [3]. Here, the search for better and more
efficient catalysts has been a long, and still ongoing, enduring
quest. A good catalyst in this context has both high reactivity,
and high selectivity, with both targets preferably reached at
a low cost. Metallic nanoparticles have been shown to serve
as excellent catalysts for many chemical reactions, partly
because their properties can be tailored by varying their size,
shape, and composition, by alloying or doping [4]. Most often,
the metals of choice are the noble metals palladium or plat-
inum, but also nickel and other late transition metals are used.
Given the high cost of these metals (especially the former),
the trend in the field is to make “every atom count,” either
by reducing particle sizes further, or, by embedding active
catalytic centers in a cheaper material. This has increased the
interest when it comes to understanding, and predicting, the
atomic-scale structure of active catalysts [4,5]. If we want to
understand the relationship between surface structure and the
property of a material, experiments alone are often too obtuse,
and here theory could play a vital role, given that sufficient
accuracy can be reached.

From a theoretical point of view, freestanding and sup-
ported nanoparticles are difficult to treat, not least due to their
inhomogeneous electron density [4]. For example, in the core
of the nanoparticle, there is a metallic bulklike structure with
a slowly varying electron density. Close to the surface, the
charge density changes abruptly. Ideally, these different chem-
ical environments should be described with the same accuracy.
However, this turns out to be quite challenging. In the context
of DFT, many such variations in electron density can be
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conveniently characterized using the reduced electron density
gradient [6,7]. From experience, it is known that the so-called
local density approximation LDA [8] behaves quite well
for systems where the electron density varies slowly (small
reduced density gradients), such as for metals. In LDA, the
exchange-correlation energy is calculated solely from the be-
havior of a homogeneous electron gas. However, for systems
showing abrupt changes in electron density, i.e., systems with
high reduced electron density gradients, such as in the case for
many molecules, more complex descriptions are needed. For
such systems, the inclusion of density gradients, as done in
the various generalized gradient approximations to the LDA
(the so-called GGA functionals), improves the description. In
the materials science community, the semilocal GGA func-
tional as proposed by Perdew-Burke-Ernzerhof, the so-called
PBE functional [9,10], has become very popular, as it gives
a satisfactorily description of both matters in the condensed
phase, as well as for molecules. Using the PBE functional
form as a starting point, there have been further developments
to increase the quantitative accuracy for solids (PBEsol [11])
and molecules (revised PBE, RPBE [12]). By adding further
flexibility when treating the exchange contribution of the
system, new functional forms can be reached. For example,
adding the kinetic energy density as an additional semilocal
information besides the electron density gradient leads to the
so-called meta-GGAs. These functionals are often constructed
with some specific system or material class in mind. Some
examples that target condensed matter systems are the func-
tional proposed by Tao-Perdew-Staroverov-Scuseria (TPSS)
[13] and the strongly constrained and appropriately normed
(SCAN) density functional [14].

Despite the success of DFT, especially in terms of accuracy
versus computational efficiency, as found for the semilocal
GGA functionals, it does not account for dispersion interac-
tions. This shortcoming can, however, be rectified either by
adding an a posteriori correction to the total energy or by
self-consistently accounting for nonlocal correlation already
in the density functional. Here, for the a posteriori methods,
the DFT-Dn methods by Grimme, with n = 1–3, have become
very popular [15–17]. However, there exist also other methods
to correct the DFT total energy for lacking dispersion, such
as the Tkatchenko and Scheffler method [18], the uMBD
[19] and the XDM [20]. Examples of the self-consistent
approaches are the so-called vdW-DF [21] class of density
functionals, the rVV10 method [22], and the self-consistent
implementation of the Tkatchenko and Scheffler method [23].
While these corrections are modular and can be added to in
principle any density functional, it is important to note that
from a theoretical point of view, the inclusion of nonlocal
correlation has to be compensated by a physically correct
treatment of the exchange energy.

The current development in density functionals has in-
spired us to investigate their performance for different systems
with the aim to obtain a general understanding of when to use
which functional based on the behavior of the electron density.
In this study, we have focused on a single element system
(nickel, Ni) but in various forms. We start with different
bulk phases and thereafter increase the complexity of the
charge density by also looking at atoms and surfaces. Thus,
the low reduced density gradient domain is investigated by

studying the fcc and bcc bulk phases of Ni. The medium
range is investigated by studying surface properties, which
indeed are essential features of metallic nanoparticles. High
reduced density gradients are covered by computations on the
Ni atom. For the bulk and surfaces, we evaluate structural
and energetic properties, as well as the accuracy given by
the functionals, both from a quantitative and a qualitative
point of view. In our comparisons, we use the PBE density
functional as a base line and discuss our results in the light of
changes from this functional form. More specifically, our tests
comprise to commonly used functionals in materials science
starting from LDA, three semilocal GGAs (PBE, PBEsol,
and RPBE) and one meta-GGA (SCAN). We account for
dispersion interactions through the use of the Grimme’s D3
method and three variations of vdW-DF functionals (vdW-
DF-cx, optPBE-vdW, and revPBE-vdW). Additionally, we
investigate the inclusion of dispersion interactions for SCAN
through the rVV10 method (SCAN-rVV10 functional).

This paper is outlined as follows: First, in Sec. II, we give a
short theoretical background of the different density function-
als tested in this study motivating our choice of functionals
and approach of analysis. Thereafter, in Sec. III, we give the
details concerning the methods and models. In the following
Sec. IV, we evaluate the selected functionals by comparing the
results with well defined experimental observables and rank
them according to their overall performance, both concerning
their quantitative as well as qualitative performance. Later
on, in Sec. IV, we go one step further and perform a density
functional analysis in terms of the reduced density gradient as
an attempt to rationalize and generalize our results. Section V
concludes the paper.

II. THEORETICAL BACKGROUND

In this section, we recapitulate some theory behind the
different functionals considered in this study necessary to
motivate our approach of analysis. We focus on the functional
form and the exchange enhancement factor Fx(s) for the
different GGAs. We discuss how Fx(s) needs to be modified
to increase the accuracy of different classes of materials (and
molecules). In addition to the so-called semilocal density
functionals, we also discuss the role of the exchange enhance-
ment factor Fx(s) in dispersion corrected density functionals,
either by the use of an a posteriori correction using a pair-wise
force-field description (see, e.g., Ref. [17]) or explicitly by
accounting self-consistently for the nonlocal correlation (see,
e.g., Ref. [24]).

The core of density functional theory, and what in the end
determines the accuracy after all technical details have been
solved, is how to calculate the exchange-correlation energy
contribution EXC. One useful concept when classifying differ-
ent functionals is the so-called Perdew’s Jacob’s ladder [25].
Each rung corresponds to an improved description towards the
goal of reaching chemical accuracy. The simplest approach to
DFT, which is also the first rung in Perdew’s Jacob’s ladder,
is to calculate EXC through a local description of the electron
density, also known as LDA [8].

GGA density functionals correspond to step 2 on Jacob’s
ladder and are referred to as semilocal when it comes to
its density dependence. GGAs are the most commonly used
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FIG. 1. (a) Fx (s) for various density functionals. Typical s values
calculated using PBE for (b) an fcc metal, (c) a metal surface, and
(d) an atom.

functionals in DFT, and they have the following general form:

EGGA
XC =

∫
drρ(r) f [ρ(r),∇ρ(r)] . (1)

The function f [ρ(r),∇ρ(r)] is called the exchange en-
hancement factor, often written as Fx(s), i.e., expressed as a
function of the reduced density gradient s[ρ(r)] defined as:

s[ρ(r)] = 1

2(3π2)1/3

∇ρ(r)

ρ
4
3 (r)

. (2)

Fx(s) comes in many forms, each corresponding to a spe-
cific GGA density functional. In this work, we have chosen
a limited set of these and focused on functionals that are
commonly used in the field of materials science. These are,
with a few exceptions, all based on the nonempirical class of
functionals proposed by Perdew, Burke, and Ernzerhof, the
so-called PBE density functional [9,10]. Given the importance
and vast experience gained from DFT calculations utilizing
the PBE density functional, the behavior of PBE will serve as
a baseline in the discussion below when it comes to possible
modifications of Fx(s) to improve the accuracy of certain
computed properties for specific classes of systems.

The exchange enhancement factor of the PBE functional is
expressed as

F PBE
x (s) = 1 + κ − κ/(1 + μs2/κ ) , (3)

where κ and μ are obtained from physical constraints and
ensures a continuous function between the limits of s = 0
(LDA) and the high s values (the so-called Lieb-Oxford limit
[26]). Figure 1(a) shows a plot of F PBE

x (s) in the range of 0 �
s � 5. Typical s values for a bulk metal, a metal surface, and
a metal atom are given in Fig. 1(b), Fig. 1(c), and Fig. 1(d),
respectively.

For the condensed matter, Perdew et al. continued work-
ing with the same expression as for PBE, but used other
constraints when it comes to the fitting of the parameter
μ in Eq. (3), still keeping κ the same. This functional is
called PBEsol [11], and the F PBEsol

x (s) is shown and compared
to F PBE

x (s) in Fig. 1(a). The s dependence in F PBEsol
x (s) is

weaker, which is shown to greatly improve many computed
properties of systems with low to medium ranges of s values.
The calculated properties related to atoms and molecules
are worse, making, for example, atomization energies highly
inaccurate, as are energies related to molecular adsorption on
solid surfaces [11].

For molecules and atoms, which commonly display higher
s values [cf., Figs. 1(c) and 1(d)], Hammer et al. proposed
a new functional form to improve adsorption energies on
metal surfaces. As can be seen in Fig. 1(a), the F RPBE

x (s) now
displays a faster increase in comparison to F PBE

x (s) at smaller
s values, which has been shown to improve the description of,
for example, atomization energies and molecular adsorption
energies with the cost of a less accurate description of the
condensed matter [12].

Local and semilocal functionals do not account for long-
range dispersion interactions. To properly account for them,
we need to compute the nonlocal correlation, which requires
many-body theory and is found in much more computation-
ally expensive methods, such as the random phase approxi-
mations (RPA, last rung in Jacob’s ladder) [27]. In practice,
however, dispersion interactions can be added to the DFT
energy and be effectively accounted for with an a posteriori
correction, using a force-field approach, or in a self-consistent
manner. One common semiempirical formalism proposed and
developed by Grimme and co-workers is called DFT-Dn
method [15–17], where n = 1–3 represents different versions
of dispersion corrections. In this work, we have focused on the
D3 version, which uses a force-field accounting for two- and
three-body interactions, added directly to the semilocal GGAs
total energies [17].

When adding nonlocal correlation effects explicitly into the
density functional, a common way is to use a kernel approach,
as done in either the Rutgers-Chalmers family (vdW-DF [21])
or that of the VV10 [28] and the rVV10 methods [22]. These
approaches are appealing as they aim at solving the core of
the problem by building a model that allows for the direct
computation of the nonlocal correlation energy based on the
ground state density. While many approaches here uses the
same kernel, i.e., dispersion description, they differ in the
exchange part, i.e., the form of the exchange enhancement
factor. The effort lead by the Rutgers-Chalmers team fol-
lows the principles of Perdew and co-workers of having an
exchange functional that fulfill certain physical constraints,
e.g., vdW-DF [21], and the later developed vdW-DF-cx [29],
where cx stands for consistent exchange. Other routes use an
empirical approach by fitting the exchange functional Fx(s)
to best reproduce a test set of different hydrogen-bonded
and vdW-bonded molecular systems (the S22 dataset [30])
and is referred to the “opt” family of vdW-DF functionals
[31,32]. The optPBE-vdW functional shows promising be-
havior for many types of systems, and resembles the F PBE

x (s)
to 94.4%, with the remaining part resembling F RPBE

x (s), cf.,
Fig. 1(a) [32].
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The third rung of Jacob’s ladder comprises the meta-GGA
formalism, which allows for further flexibility in the enhance-
ment factor when computing the exchange contribution to
the total energy of the system [13]. In the current work, we
have tested the SCAN density functional [14], which has
been constructed to satisfy all known exact constraints that
a meta-GGA can have. To account for nonlocal correlation ef-
fects, SCAN can be used together with a self-consistent vdW
model to improve the description, in particular for long-range
interactions as the inclusion of the kinetic energy density
in principle should handle mid-range dispersion interactions.
Here, the most common implementation used in conjunction
with SCAN is the rVV10 dispersion correction, the so-called
SCAN-rVV10 density functional [33].

III. COMPUTATIONAL METHODS

A. Electronic structure method

The electronic structure calculations presented in this work
were performed within the framework of spin-polarized den-
sity functional theory in the implementation with plane waves
and pseudopotentials using the Vienna ab initio simulation
package (VASP) [34–37]. Pseudopotentials of the projected
augmented wave (PAW) type, as proposed by Blöchl, were
used in all calculations [38,39]. In the calculations, we explic-
itly treated Ni 4s23d8 as valence electrons. The pseudopoten-
tials were obtained from the VASP library and are generated
using the semilocal PBE density functional, except for the
LDA calculations, where LDA generated PAW potentials were
used. For consistency, we used the same pseudopotentials in
all calculations at the semilocal and meta-GGA density func-
tional level of theory, which may affect the results when com-
pared to all-electron calculations. We believe that changing
the pseudopotential would hamper the comparison between
the different functionals made in this study. Nonspherical
contributions from the gradient corrections inside the PAW
spheres were included in all calculations.

Structural optimizations of both unit cells (for bulk sys-
tems) and ionic positions (for all systems) were performed
using the conjugate gradient algorithm [40], where the cell
and ionic relaxation were continued until all components of
the stress tensor were less than 0.01 kBar, and the force
on each atom was less than 0.01 eV/Å. To speed up elec-
tronic convergence during our geometry optimizations, we
allowed smearing of the electronic states of 0.2 eV using
the Methfessel-Paxton method [41]. All geometry optimiza-
tions were followed by single-point calculations, where the
electronic states instead were smeared (0.2 eV) using the
tetrahedron method with Blöchl corrections [42] for the partial
occupancies of the wave function to improve the accuracy of
the final electronic structure. The Brillouin zone was sampled
using a 16 × 16 × 16 k-points mesh for the bulk system. For
the slabs, we used a mesh of 16 × 16 × 1 k-points, with the c
direction being normal to the surface. In all calculations, we
used a plane wave energy cutoff of 600 eV.

We validated our choices by performing tests on selected
properties using the vdW-DF-cx functional. Lately, it has been
noted that for many systems, hard pseudopotentials and high
cutoff energies are needed to converge properties calculated

FIG. 2. Calculated properties for different energy cutoffs and
different pseudopotentials. (a) shows the lattice constant for fcc Ni,
and (b) shows the cohesive energy for fcc Ni. The orange and green
lines are obtained using recommended pseudopotentials for GW
calculations in VASP, which generally are harder than the standard
ones.

using the vdW-DF type of functionals, see, e.g., Kebede et al.
studying crystalline hydrates [43], Granhed et al. studying
BaZrO3 [44], and Vlaisavljevich et al. studying metal-organic
frameworks [45]. In these studies, cutoff energies up to
1600 eV were used and were deemed necessary to converge
certain properties. We tested cutoff energies in the range of
300–1000 eV and verified that 600 eV is sufficient. It is also
known that a tighter FFT grid is necessary in order to converge
certain properties with the SCAN functional [46]. For all func-
tionals we employed an augmented grid for the representation
of the pseudo-orbitals. Our tests revealed that no significant
changes are expected in computed properties studied herein
for higher cutoff energies and/or harder pseudopotentials (cf.,
Fig. 2) or tighter FFT grid.

B. Structural models

To investigate how DFT describes bulk metals, we studied
the fcc and bcc phases of Ni. These were modelled using prim-
itive unit cells. Low Miller index fcc Ni surfaces, described
using a slab model in the supercell approach, were chosen to
test surface properties. For each functional, the slab models
were built from the corresponding optimized bulk fcc Ni
structures at the various levels of theory. The slabs are seven
atomic layers thick and have one atom per layer in conjunction
with a vacuum gap perpendicular to the surface normal of at
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least 20 Å to ensure negligible interactions between repeated
images in neighboring cells. All the inputs and calculations
were generated and performed within the Atomic Simulation
Environment version 3.19.0 [47].

C. Calculated properties

In this section, we will describe how we have computed
the different properties used in our comparison of the different
density functionals. In all cases, total energies and structures
are consistently used, i.e., energies are always taken from
optimized geometries at the same level of theory.

1. Bulk cohesive energy

The bulk cohesive energy is calculated as the energy dif-
ference per atom:

Ecoh = Eat − Ebulk

N
, (4)

where Eat is the total energy of an isolated atom in a 12 Å
× 13 Å × 14 Å cell, Ebulk is the total energy of the bulk
crystal, and N is the number of atoms in the bulk crystal.
With this definition, the stronger the chemical bond in bulk
is, the larger the positive value of the cohesive energy Ecoh.
One known problem in the calculation of cohesive energies
is the difficulty for local and semilocal density functionals
describing atomic energies. Atoms are typically open-shell
systems, which are often very difficult to converge within the
used computational setup. To circumvent this problem, we
also compare energy differences and evaluate the capability
of each functional to predict different crystal structures of
the same material accurately. For Ni, the cohesive energy
for the fcc phase was compared against the cohesive energy
of the more rarely occurring bcc phase.

2. Surface energy

We calculated the surface energies for the various gener-
ated slab models according to

Esurf = Eslab − nE fcc
bulk

2A
, (5)

where Eslab is the total energy of the slab model representing
the low Miller index surface structure of interest within the
supercell approach, E fcc

bulk is the total energy of the fcc Ni bulk
in units of eV/atom, and n is the number of atoms in the
slab model, and A is the area of the slab model. Since the
slab model contains two equivalent surfaces, the considered
surface area is doubled [factor 2 in Eq. (5)].

3. Work function

The work function is defined as the energy needed to
extract one electron from the Fermi level of a material to
vacuum. In the supercell approach, the absolute value of the
vacuum energy is not known, as the electrostatic potential by
definition is averaged to be zero in the plane wave formalism
of DFT. In this work, we used the macroscopic average
approach, where the difference in the planar averaged elec-
trostatic potential in the middle of the vacuum gap, Vvac, and
in the middle of the slab, Vslab, are used to define a potential

offset, �V = Vvac − Vslab. This quantity is then referenced to
the bulk potential, V macro

bulk , and allows using the Fermi energy
εF

bulk from a bulk calculation. By doing that, the calculated
work function does not suffer from quantum size effects
[48,49]. The work function is then:

φ = �V + V macro
bulk − εF

bulk . (6)

4. Wulff construction/shape

To quantify the effect that the choice of functional will
have on predicted nanoparticle shapes, we have determined
the expected nanoparticle shapes using the Wulff construction
scheme [50] as implemented in the Python library Wulffpack
version 0.3 [51]. The input in this scheme is the calculated
surface energies at various levels of theory.

IV. RESULTS AND DISCUSSION

In this section, we discuss the impact that the choice
of exchange-correlation energy description has on the in-
vestigated properties. We start with the results for the bulk
structures and continue with results for the low Miller index
Ni surfaces and end with the functional effect of the predicted
nanoparticle shapes. After that, we turn to an analysis based
on the reduced density gradient where we rationalize the
results in order to extend and generalize our understandings.

A. Bulk metals: fcc and bcc Ni

We investigate how different density functionals treat
metallic fcc and bcc Ni when it comes to structural and
energetic properties. Before presenting our results, we first
comment on the distribution of computed reduced density
gradients s in the two bulk systems. The calculated s values
at the PBE level of theory are given in the histogram plot in
Fig. 3(a) for both fcc and bcc Ni. As expected, only low s
values (close to 0) are found for these metallic compounds.
Given the fact that the exchange enhancement factor Fx(s)
approaches one as s goes to 0 in all functionals, we expect
that they should all behave similarly for many of the bulk
properties [cf., Fig. 1(a)]. So, let us see if this is the case.

It stands clear that one property that will differ is the cohe-
sive energy (see Sec. IIIC1) because it involves the total en-
ergy of the atom, which shows higher s values [cf., Fig. 1(d)].
Cohesive energies Ecoh for fcc Ni computed with the 11 dif-
ferent density functionals are given in Table SI of the Supple-
mental Material [52], which also includes Refs. [53–58]. The
error calculated versus the experimental result extrapolated
to 0 K (4.48 eV/atom) are shown in Fig. 3(b). As expected,
we see large differences in calculated cohesive energies, with
errors as large as 30% for some functionals. However, if we
instead look at energy differences for the different bulk phases
of Ni, all functionals predict similar values [cf., Table SI and
Fig. 3(c)]. This supports the hypothesis that the problem lies
in the computation of the total energy of the Ni atom. Here,
we further note that all functionals correctly predict that fcc is
more stable than the bcc phase of Ni.

Let us have a closer look at the results and start with
the standard semilocal functionals without any explicit or
a posteriori treatment of dispersion. In Sec. II, we divided the
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FIG. 3. (a) s values found in fcc and bcc bulk Ni, respectively.
(b) fcc bulk Ni cohesive energies percentage error (PE), (c) fcc-bcc
energy difference �Ecoh = E fcc

coh − E bcc
coh , and (d) the error in estimated

fcc bulk Ni lattice parameter with respect to experiment.

different functionals into subsets relative to the PBE density
functional. We note that the functional that has been made to
improve on molecular properties, i.e., the RPBE functional,
underestimates the Ecoh value while the functional with a
focus on improved bulk properties (i.e., PBEsol) strongly
overestimates Ecoh when compared to the value obtained at
the PBE level of theory. Based on the discussion in Sec. II,
and comparing the Fx(s) for PBE, RPBE, and PBEsol shown
in Fig. 1, we can now trace a trend in cohesive energy to the
steepness of Fx(s) as s goes from 0 to larger values.

Adding an a posteriori dispersion correction via the
Grimme D3 correction results in a larger Ecoh compared to
the parent method without dispersion due to a stabilization

of the bulk phase, since the atom energy remains the same.
Hence, for all semilocal density functionals, the inclusion
of an a posteriori dispersion correction worsens the Ecoh in
comparison to the experimental value, except for RPBE. The
functionals with a self-consistent treatment of the nonlocal
correlation follow the very same trend as the standard semilo-
cal functional, i.e., the steepness of Fx(s) is strongly correlated
to the relative differences found in computed Ecoh values.

The meta-GGA functional, SCAN, performs very well
for the cohesive energy with the smallest error compared to
experiments of all tested functionals. The inclusion of self-
consistent dispersion in the form of the rVV10 model makes
it slightly worse.

The results presented here are in line with what has been
found previously in the literature. Jana et al. [59] compared
bulk properties using two semilocal GGA functionals (PBE
and PBEsol) and many meta-GGA functionals for various
bulk systems, including SCAN. They observed the same trend
for GGA functionals that PBE and PBEsol overestimate the Ni
cohesive energy. However, for the meta-GGA SCAN density
functional, they computed a much higher Ni cohesive energy
(5.25 eV/atom compared to our value of 4.44 eV/atom). We
do not know the reason for this discrepancy at this point,
but we note that it is occasionally hard to reach electronic
convergence in the SCAN calculations. For this functional,
our results are in better agreement with those of Zhang et al.
[60], who compared six different functionals (PBE, PBEsol,
SCAN, M06-L, and HSE06) for 64 bulk solids and found
that both PBE and SCAN have a mean error of only −0.08%.
Furthermore, Tran, Stelzl, and Blaha [61] found in their study
of bulk solids that data obtained using a meta-GGA functional
are more accurate than data obtained using semilocal GGA,
and thereby concluded that the inclusion of the electronic
kinetic energy density is an essential ingredient to reach
chemical accuracy for energy-related properties.

When it comes to structural properties, we compare the
calculated lattice constants with the experimentally measured
value extrapolated to 0 K. The computed data is given in Table
SI, and the calculated percentage error with respect to the
experimental value is shown in Fig. 3(d). Here we note that
the errors are much smaller than for cohesive energies. This
is consistent with the hypothesis that the poor prediction of
cohesive energies seen for many of the functionals primarily
stems from an inadequate description of the atom. As for
the cohesive energy, we see a strong correlation between the
steepness of Fx(s) and the computed lattice constant. Among
the semilocal functionals, PBE reproduces the experimentally
measured lattice constant. Introducing an a posteriori disper-
sion correction leads to a contraction of the solids compared
to the parent method without the correction. None of the
tested functionals that belong to the Rutgers-Chalmers family
are as good as PBE when it comes to the lattice parameter.
However, optPBE-vdW comes close. For the meta-GGA func-
tional SCAN, we note that it does not perform as well as
for the cohesive energy, and the inclusion of self-consistent
dispersion based on the rVV10 model again makes the per-
formance slightly worse. In Table SI we additionally provide
the computed lattice constants for the bcc phase of Ni, which
follows the same trend as found for the fcc phase. For the bcc
phase, which is a metastable phase for Ni, there is, however,
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FIG. 4. (a) shows the computed surface energy of Ni(111) and
(b) the percentage error for the computed surface energy with respect
to experiment for LDA, various semilocal GGA functionals, and
the meta-GGA functional SCAN with and without accounting for
dispersion interactions.

a larger spread when it comes to the experimentally measured
values [56–58]. This makes the comparison to experiments
hard in this case. We address this issue later in Sec. IV F.

For the structural properties, our results for the fcc phase
agree to what has been reported in the literature. Zhang et al.
[60] found similar results for the lattice parameter of Ni,
with PBE being the most accurate among the investigated
functionals. PBEsol and SCAN were found to underestimate
the lattice parameters. Similar findings have also been seen by
Jana et al. [59].

B. Ni metal surfaces

1. Surface energy

We start with the absolute values of the surface energies
calculated for Ni(111), as shown in Fig. 4(a) and given in
Table SII in the Supplemental Material [52], which also
includes experimental results from Refs. [62,63]. We first
note that despite the largely overestimated cohesive energy,
the LDA functional only slightly overestimates the surface
energy. All tested GGA functionals underestimate the surface
energy. The PBEsol functional, which is the semilocal GGA
functional constructed to be accurate for the condensed phase,
is here the GGA functional that performs best, however
worse than LDA. PBE underestimates the absolute value by
more than 10%, and the more “molecularly tuned” functional
(RPBE) severely underestimates the surface energy, with an
error in the order of 30%.

The inclusion of a posteriori dispersion corrections using
the D3-Grimme approach always increases the surface en-

ergy, making all functionals overestimating the absolute value
with around 20% for PBEsol-D3 and 10% for PBE-D3 and
RPBE-D3.

For the vdW family of functionals, we again see the
same trend as expected concerning the behavior of Fx(s),
cf., Fig. 4(a). Here, vdW-DF-cx is the most accurate among
the investigated vdW-DF functionals, with a percentage error
of −0.02%. The functional optPBE-vdW shows larger error
(−17.51%), cf., Table SII, whereas revPBE-vdW underes-
timates the surface energy by about 30%. The meta-GGA
functional SCAN performs similarly as the PBE functional,
which means that the absolute value for the surface energy
is underestimated by about 20%. Here, accounting for disper-
sion through the rVV10 model improves the results, however,
still worse than the semilocal PBEsol functional (−9.36%
vs −6.63%, respectively), cf., Fig. 4(b). These results are in
line with the ones reported by Patra et al. [64], who found
that SCAN-rVV10 provides a mean absolute percentage error
(MAPE) for a series of metal fcc surfaces of 5%. For the
semilocal functionals accounting for dispersion, Hyldgaard
and Jiao have previously reported that vdW-DF-cx was the
most accurate functional when comparing calculated prop-
erties for a series of transition metals with a MAPE of 7%
[65]. Avelar et al. [66] tested four different vdW-DF func-
tionals and found that the vdW-DF-C09x functional had the
smallest MPE for a series of transition metals surfaces (MPE
= −10.2%). For Ni(111), vdW-DF-C09x underestimated the
surface energy by 5.31% [65], which is not surprising since
the vdW-DF-C09x is a very similar functional when compared
to vdW-DF-cx. However, the different treatment in the ex-
change energy for the latter makes it better when it comes to
surface energies. Table SII also summarizes the data obtained
for the Ni(110) and Ni(100) surfaces. Even if the surface
energy is off by 20–30% on the absolute scale, all functionals
still predict the (110) and (100) surfaces to be less stable than
the (111) surface, which is in accordance with experimental
data. We observe that the computed surface energies for
(110) and (100) follow a similar dependence on the exchange
enhancement factor as the (111) surface.

2. Ni(111) work function

The work function is a property that depends strongly on
the electron density and is, therefore, an important property
to consider when evaluating the accuracy of different density
functionals. We start with the Ni(111) surface, for which the
results are given in Fig. 5(a), and Table SII. In the latter, we
additionally report the Ni(100) and Ni(110) results. However,
as the computed trend is similar, we will concentrate the
discussion on the work function computed for the Ni(111).

For LDA and semilocal GGA functionals without disper-
sion corrections, we find that the functionals behave similarly
as for the surface energies, i.e., the steeper Fx(s) is for small
s, the lower the work function, which in turn leads to that
while PBEsol slightly underestimates the target value, the
computed values using the PBE and RPBE density functionals
underestimate even more.

For the same atomic configuration, a posteriori dispersion
corrections using the Grimme D3 method do not affect the
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FIG. 5. (a) Computed work functions for Ni(111) and (b) the
percentage error for the computed surface energy concerning experi-
ment for LDA and various semilocal GGA functionals and the meta-
GGA functional SCAN with and without accounting for dispersion
interactions.

electronic structure and therefore lead to the same results
when compared to the ones obtained using its parent GGA
density functional. However the inclusion of the Grimme
D3 model tends to shrink the bulk lattice upon geometry
optimization. From the data reported in Fig. 5(a), we find that
the effect of this contraction on the computed work function
is very small.

Similarly, the vdW-DF functionals behave as they did
for the surface energies. We find that all tested functionals
perform well with an absolute percentage error below 5%, and
vdW-DF-cx is the most accurate among the tested function-
als with an error of −0.37% compared to the experimental
value for the Ni(111) surface. Concerning the meta-GGA
functional SCAN, the calculated work function is similar
to the PBE results, underestimating the experimental results
by about 7%. As for the semilocal functionals, adding a
dispersion correction, here in the form of the rVV10 model,
slightly improves the calculated work function, with an error
of −5.94% [cf., Fig. 5(b)]. Still, the vdW-DF functionals
seem on average to be more accurate in predicting the work
function.

Patra et al. [64] calculated the mean work function for eight
transition metals and reported similar MAPE for PBEsol,
SCAN, and the SCAN-rVV10 functionals. Hyldgaard and
Jiao [65] additionally reported results for vdW-DF-cx us-
ing the same metals as Patra et al. and found in agree-
ment with our results that the inclusion of dispersion cor-
rections self-consistently through the vdW-DF approach im-
proves the predictive power of work functions for transition
metals.

FIG. 6. Mean absolute percentage error chart (in %) for Ni fcc
and Ni(111) surface. (blue) Properties that account for the atom
energy and (red) properties that do not account for atom energy.

C. Summary of quantitative results

The computed MAPE for all presented results are sum-
marized in the radar chart seen in Fig. 6. Notably, PBE
comes out very well, which explains why this functional is
a popular choice for applications in materials science. PBEsol
cohesive energies are known to be inaccurate, because of the
poor performance for the atom. If we remove this property,
as has been done in the red radar chart also presented in
Fig. 6, the performance of the PBEsol functional comes out
much better, and the MAPE goes from 6.11% to 2.73%. The
effect of adding a posteriori Grimme D3 dispersion correction
to these functionals does not always lead to an improved
description and will depend on the starting point, as seen in
Fig. 6. For PBEsol, the error becomes larger, while the PBE
MAPE is roughly the same. For RPBE, however, which shows
a large error without dispersion corrections, the results are
significantly improved upon the inclusion of the Grimme D3
correction. The reason for this behavior is that the Grimme D3
term is always additive in terms of energy and at the same time
leads to an attractive interaction. This means that a functional
that without dispersion correction underestimates energetic
properties and overestimates structural properties will benefit
from the a posteriori correction, while the opposite holds for
vice versa. Similar observations have been seen for crystalline
hydrates [43]. However, it is unclear if this conclusion can
be generalized to all a posteriori methods. DFT-D3 was
originally designed for the main group elements, while some
other methods, such as uMDB [19] and XDM [20], have been
developed for the condensed phase and would need to be
assessed separately.

For the vdW-DF family of functionals, we note that vdW-
DF-cx comes out as the best if all properties are compared
(MAPE = 3.79%, Fig. 6 blue) and when removing the refer-
ence to the atom in the form of the cohesive energy (MAPE
= 0.86%, Fig. 6 red). The meta-GGA functional SCAN
combined with the rVV10 model for dispersion interactions
has a similar performance to the GGAs, with MAPE of 5.21%
and 5.67% in case of the inclusion of the atomic energies,
respectively (cf., Fig. 6).

The conclusion from these results is that dispersion cor-
rections are vital to improve the accuracy of semilocal DFT
calculations, and in that way, increases the predictive power in
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FIG. 7. Predicted nanoparticle shapes for LDA and various
semilocal GGA functionals and meta-GGA functional SCAN with
and without accounting for dispersion interactions. The experi-
mental result is taken from Ref. [67]. Reprinted with permission.
Copyrights® Elsevier 2020.

materials science. However, when including these corrections,
care must be taken when choosing a matching exchange
description.

D. Qualitative analysis: Predicting the shape of Ni nanoparticles

The crystal shape of nanoparticles can be predicted using
the Wulff construction scheme [50], which effectively takes
into account the relative surface energy for different facets.
As such, this measure does not rely on the quantitative ac-
curacy concerning absolute values of the surface energies but
rather on the ratio between them. With the calculated surface
energies of the low Miller index surfaces reported in Table
SII, we have constructed Wulff shapes for Ni with data from
all considered functionals, and the results are given in Fig. 7.
As discussed in previous sections, the energies of the various
surface facets are strongly correlated. We could, therefore,

expect that all functionals give rise to similar Wulff shapes.
However, as seen in Fig. 7, subtle differences in relative
energies of the different facets lead to notable variations in
the particle shape, seen mainly in the proportion of exposed
(110) surface, cf., Fig. 7.

For all evaluated GGA functionals (cf., Fig. 7 second
row), the estimated particle shape displays significantly less
(110) surface compared to the shape predicted using the D3
corrections (cf., Fig. 7 third row). The vdW-DF functionals
predict very similar shapes, with the fraction of exposed (110)
surface area between the GGA and GGA-D3 predictions.
Compared to the GGAs, the meta-GGA functionals SCAN
and SCAN-rVV10 predict smaller (or even nonexisting) frac-
tion of exposed (110) surface area (cf., Fig. 7 last row gray
background, and Fig. 7 last row white background). We note
that applying a dispersion correction using the self-consistent
rVV10 model has minimal effect on the predicted shape for
the SCAN functional.

Comparing the theoretical predictions for the Ni particle
shape with experiments, cf., Fig. 7, we note that both have
the (111) surface as the dominant facet, followed by the
(100) and (110) facets. It is worth mentioning that at low
oxygen pressures, there are substantial areas of exposed (110)
facets [67], which is in agreement with the theoretical results
obtained using the semilocal functional accounting for disper-
sion interactions.

E. Rationalizing the results in terms of the reduced density
gradient

In the previous sections, we have reported computed prop-
erties obtained with different levels of theory for Ni in three
different cases: bulk, surface, and atom. We will now look at
the results a little bit closer and rationalize them in terms of a
general feature, namely the reduced density gradient s. Based
on the results obtained in the quantitative analysis above, we
have noted that the accuracy is correlated to the initial steep-
ness of Fx(s), for 0 < s � 2. Therefore, our hypothesis is that
it should be possible to find a single number s0 to represent
the different distributions of s [cf., e.g., Figs. 1(b)–1(d)] that
optimizes the correlation of Fx(s0) and computed properties.
To find s0, we screened 1000 evenly spaced s values between
0 and 5 and calculated Fx(s) for each functional. Thereafter,
we used linear regression to find the optimal correlation with
respect to each considered property. Since a linear regression
requires at least three different values of Fx(s), we divided the
functionals into classes following the discussion in Sec. II.
The classes are (i) GGA: PBEsol, PBE, and RPBE, (ii) GGA-
D3: PBEsol-D3, PBE-D3, and RPBE-D3, and (iii) vdW-DF:
vdW-DF-cx, optPBE-vdW, and revPBE-vdW. Note, with this
procedure there is one s0 for each combination of functional
class and property. The optimal s0 values for each property
and functional class are given in Table I.

Let us first look at bulk properties and the surface energy
for the (111) facet. For each optimal value s0 we obtain a
correlation plot between the Fx(s0) and a certain property, as
shown in Fig. 8. For comparison, the experimental results are
also given in the figure (horizontal dashed lines). We note that
the regression obtained for GGA and vdW-DF classes cross
the horizontal experimental line without having to extrapolate
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TABLE I. s0 values (see definition in the text) for each investi-
gated property and each class of functional.

Property

Functional class E fcc
coh E bcc

coh afcc
latt abcc

latt E (111)
surf E (100)

surf E (110)
surf

GGA 1.61 1.62 1.51 1.48 1.48 1.48 1.48
GGA-D3 1.41 1.45 0.89 0.92 0.76 1.02 0.97
vdW-DF 1.34 1.35 1.32 1.27 1.11 1.10 1.11

it beyond the calculated values, while the regression for GGA-
D3 does not. We reach a similar conclusion for the bulk
properties, here in the form of cohesive energy and lattice
parameters, as for surface energies, see Fig. 8(c). Interestingly,
our regression models clearly expose the procrustean dilemma
often found in density functional development [68], here seen
in the fact that the different properties do not cross the experi-
mental reference at the same Fx(s0) value. This implies that no
semilocal GGA would be capable of an accurate description
of both total energy and structural properties.

F. Extrapolated bcc Ni lattice constant, cohesive energy, and
Wulff shape

In the previous section, we showed that there is an optimal
s value for each functional class that results in a strong cor-
relation between the obtained exchange enhancement factor
and each computed property. We further elaborate on this
observation and show that this correlation can be used to
predict properties that are difficult to measure experimentally.
A procedure to estimate the bcc Ni lattice constant is shown
in Fig. 9, which from experiments is poorly determined due
to problems of stabilizing Ni in this metastable phase. The

FIG. 8. Correlation plot between bulk properties and optimal Fx

for (a) bulk cohesive energy, (b) lattice parameter, and (c) Ni(111)
surface energy. The dashed lines represent the experimental values.

FIG. 9. Schematic representation for the predicted Ni bcc lattice
constant. The same procedure is applied for Ni(100) and Ni(110)
surface energies.

procedure is as follows: (i) find Fx(s0) that crosses the experi-
mental value for the fcc lattice constant (denoted 1 in Fig. 9),
(ii) draw a vertical line through this point, and (iii) read out
the predicted experimental value for the bcc lattice constant at
the same Fx(s0) value (depicted 2 in Fig. 9).

The predicted lattice parameter for the Ni bcc lattice con-
stant obtained in this way becomes 2.810, 2.797, and 2.805 Å
for GGA, GGA-D3, and vdW-DF, respectively (Table II). The
predicted values for the GGA and vdW-DF classes are in good
agreement with the experimental data measured on nano-
sized bcc Ni particles ranging from 2.82–2.90 Å [56,57,61].
Applying the same scheme for predicting the bcc cohesive
energy, i.e., using the correct experimental measure for fcc to
predict the experimental cohesive energy for bcc, we obtain a
difference between the fcc experimental and the bcc predicted
values of 0.10 eV/atom for the GGA and the vdW-DF class
of functionals, while the Grimme corrected functionals give
0.00 eV/atom. Clearly, the latter is at variance with the
experimental observation that the bcc structure is difficult
to stabilize and suggest that adding a posteriori corrections
disturb the accuracy and predictive power of our procedure.

With the same prediction procedure as depicted in Fig. 9,
we can obtain extrapolated Ni(100) and (110) surface en-
ergies, for which no experimental data exist. The predicted
surface energies are given in Table II. While the GGA and
vdW-DF classes predict that E (100)

surf < E (110)
surf (see Table II

and Fig. 10), the Grimme corrected GGA functionals yield
the opposite trend. Also, the absolute values obtained with
the D3-corrected functionals are larger, while the other two
functionals yield similar results (within 0.06 J/m2).

TABLE II. Predicted experimental values for the bulk and sur-
face properties of Ni.

Predicted experimental values

Functional class E bcc
coh abcc

latt E (100)
surf E (110)

surf

GGA 4.40 2.810 2.82 2.92
GGA-D3 4.48 2.797 3.17 3.18
vdW-DF 4.40 2.805 2.76 2.86
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FIG. 10. Predicted experimental Wulff shape using surface ener-
gies obtained through the linear regression method. In the figure, data
from the vdW-DF class of density functionals are shown.

With these results, we can build a Wulff shape as done
in Sec. IV D but now with extrapolated surface energies. In
Fig. 10 we use the data obtained for the vdW-DF class as an
example. We note that the shape is qualitatively the same by
comparing the predicted experimental Wulff shape to the ones
we obtained for the individual functionals (cf., Fig. 7).

With these examples, we demonstrated standard features
of three functional classes employed in materials science.
By choosing a set of functionals that describes properties of
interest with satisfactory accuracy, we can obtain an under-
standing of their limitations by analyzing a common feature,
the reduced density gradient. We can now extend the same
methodology for even more complex systems, with a wider
reduced density gradient distribution, such as bulk and surface
alloys, and multicomponent nanoparticles.

V. CONCLUSIONS

We have evaluated the performance of different semilocal
GGA type of functionals with and without dispersion cor-
rections in describing bulk and surface properties of Ni to
provide an understanding of how different components in a
modern density functional affect their accuracy. To generalize
the obtained understandings, we additionally rationalize the
results in terms of the reduced density gradient s and the
exchange enhancement factor Fx(s). In addition, we also make
comparisons against the meta-GGA functional SCAN and
SCAN-rVV10, which claims to solve many of the deficiencies
found in standard semilocal density functional theory.

We find that for the semilocal functionals, all examined
properties show a strong correlation with the steepness of
the exchange enhancement factor, Fx(s), as s, the reduced
density gradient, goes from 0 to larger values. With increasing
steepness [in the current work characterized by the Fx(s0)],
we find the following effect on the various properties using
semilocal functionals without dispersion correction:

(i) Cohesive energies decrease.
(ii) Lattice parameters increase.
(iii) Surface energies decrease.
We observe the same trend after applying the DFT-D3 dis-

persion correction method but with systematic shifts towards

larger cohesive energies, smaller lattice constants, and larger
surface energies. Within the family of vdW-DF density func-
tionals, which contain a self-consistent treatment of the non-
local correlation, the strong correlation between the computed
properties and Fx(s0) remains, but we see systematic shifts
towards smaller cohesive energies, larger lattice constants,
while the surface energies were less affected when com-
pared to the semilocal functionals without dispersion
correction.

In comparison to experiments, we find that the most ac-
curate functionals are (with percentage error compared to
experiment in parenthesis):

(i) SCAN, for cohesive energy of fcc Ni (−0.89%).
(ii) PBE, for lattice parameter of fcc Ni (0.05%).
(iii) vdW-DF-cx, for surface energy of the Ni(111) surface

(−0.02%).
(iv) vdW-DF-cx, for work function of the Ni(111) surface

(−0.37%).
The meta-GGA functional, SCAN, without self-consistent

dispersion correction, slightly improves the calculated prop-
erties with an average percentage error of 7.14%. Moreover,
adding dispersion interactions, the average percentage error
lowers to 5.21%, showing the importance of dispersion inter-
actions in DFT.

In this work, we have evaluated these functionals qualita-
tively and quantitatively. The best overall description is given
by vdW-DF-cx, followed by optPBE-vdW and SCAN-rVV10,
in which they have an average percentage error of 3.79%,
4.00%, and 5.21%, respectively (see Fig. 6). We qualitatively
compared computed predicted particle shapes using Wulff
constructions. We note that while quantitative errors can be
very large, the relative errors are effectively canceled, result-
ing in similar particle shapes.

To generalize the obtained understanding, all obtained
results are rationalized using the reduced density gradient
s as a measure. We have found that there is a correlation
between surface and bulk properties and the steepness in the
functional exchange enhancement factor upon increasing s
values. We have found it convenient to use a value of s0 that
optimizes the correlation between Fx(s) and the property of
interest. We further propose and validate a scheme to predict
experimentally unknown properties, here exemplified by the
Ni bcc lattice constant, as well as Ni(100) and Ni(110) surface
energies. We believe that this correlation can be generalized
for more complex materials and broader reduced density
gradient distributions.
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