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Thermal Hall effect in the pseudogap phase of cuprates

Chandra M. Varma*

University of California, Berkeley, California 94704, USA

(Received 26 March 2020; accepted 27 July 2020; published 11 August 2020)

The conjecture made recently by the group at Sherbrooke, that their observed anomalous thermal Hall effect
in the pseudogap phase in the cuprates is due to phonons, is supported on the basis of an earlier result that the
observed loop-current order in this phase must induce lattice distortions which are linear in the order parameter
and an applied magnetic field. The lowered symmetry of the crystal depends on the direction of the field. A
consequence is that the elastic constants change proportional to the field and are shown to induce axial thermal
transport with the same symmetries as the Lorentz force enforces for the normal electronic Hall effect. Direct
measurements of elastic constants in a magnetic field are suggested to verify the quantitative aspects of the
results.
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I. INTRODUCTION

The recent thermal Hall effect measurements in the pseu-
dogap phase of several cuprates [1,2] extending to the insulat-
ing phase join the impressive list of qualitatively new effects
observed in the cuprates. The authors have concluded that
the heat current is most likely carried by phonons. This is
based on two observations: (1) The temperature dependence
is quite unlike the usual relation (Wiedemann-Franz law) to
the electrical Hall effect, and (2) the thermal Hall conductivity
for a heat current normal to the CuO2 planes (magnetic field
parallel to the planes), κzy, is comparable in magnitude to the
thermal Hall conductivity for a heat current parallel to the
CuO2 planes (magnetic field normal to the planes), κxy, as
are the phonon-dominated longitudinal thermal conductivities
κxx and κzz. Neither electrons nor any propagating collective
modes specific to the layered structure of the cuprates are
therefore implicated. The earlier observation of κxy led to a
great deal of interest and imaginative theoretical speculations
(see Ref. [3] for references), which the new measurements
have rendered moot. The aim of this paper is to support the
conjecture made [2] that the effects are due to phonons—they
are really a corollary to the result [4] derived a decade ago that
the order parameter predicted for the pseudogap phase ending
at a quantum-critical point [5,6] must induce a crystalline
distortion linear in the magnetic field.

The anomalous thermal Hall effect in cuprates is found
only for temperature T below the pseudogap temperature
T ∗(p), the line marking the transition to the pseudogap
phase, and increases rapidly below T ∗(p). The only observed
symmetry change at T ∗(p) is the one that was predicted
to be to a phase of orbital currents which is odd in time
reversal, inversion, and some reflections. The order parameter
is exhibited in Fig. 1. One or the other or several of the
aspects of altered symmetry are in evidence in a variety
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of different experiments [7–17] in many different cuprates,
most completely by polarized neutron diffraction [18]. It is
therefore natural to ask if the observed thermal Hall effect
follows from the same symmetries. I show here that it does
and indeed is one of the strongest indicators of the symmetry
of the pseudogap phase as it can only occur if the pseudogap
phase is time-reversal and inversion odd, as specified by a
toroidal and magnetoelectric order parameter.

Elementary symmetry considerations lead to the prediction
that certain inversion odd lattice symmetry changes must
occur with a magnetic field applied in the pseudogap phase
if it has the predicted order parameter. A phonon thermal Hall
requires that phonons propagating in the erstwhile symmetry
directions acquire asymmetric birefringence related to the
direction of the magnetic field so that the thermal current
propagated by them flows also in the direction orthogonal to
that without the distortion. In other words, an off-diagonal
component, clockwise or anticlockwise, of the energy-current
tensor must develop linearly in a field and with the proper
antisymmetric Onsager property. With the changes in the
lattice symmetry induced (which must change direction for
change in direction of the magnetic field), the elastic constants
acquire additional anisotropic elastic constants which lead to
the required birefringence in propagation of sound and of
energy transport by phonons.

II. LATTICE DISTORTIONS WITH LOOP-CURRENT
ORDER AND MAGNETIC FIELD

I will first recollect the conclusions of Sec. IV of Ref. [4]
about distortions linear in an applied field. I will use the
notation � for the order parameter parameter rather than L
used in Ref. [4]. Consider for simplicity a tetragonal crystal,
i.e., belonging to the class D4h; lower symmetry crystals
retain the distortions enumerated below together with smaller
additional distortions. The magnetic field B is applied in either
the ẑ direction or the x̂′ ≡ (x̂ + ŷ)/

√
2 or ŷ′ ≡ (x̂ − ŷ)/

√
2
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FIG. 1. Order parameter � for one its four possible orientations
in the pseudogap phase of the cuprates. Each unit cell has two current
loops in opposite directions so that there is no average moment in the
unit cell. � is called a toroidal vector or an anapole and describes a
magnetoelectric order.

directions. The order parameter � is either in the x̂′ or ŷ′
directions.

A free-energy scalar is constructed from the tensor product
of the distortion u, the magnetic field B, and the order pa-
rameter �. This is possible because B and � are odd in time
inversion and � is also odd in inversion. Then an odd in inver-
sion distortion u is mandated. The symmetry of the distortion
can be read from generating the irreducible representation in
the D4h group of the product of the representations of � and
of B. Or else, by simple physical argument as follows: We
note that the axial vector Bz transforms as A2g or algebraically
as i(x∂/∂y − y∂/∂x) or equivalently as ixy(x2 − y2), �x′,y′

transforms as (ix′), (iy′). Therefore for this orientation of the
field u must transform as a polar vector x′ or y′, i.e., as Eu.
A distortion of this form changes the rotation symmetry about
the c axis from fourfold to twofold with a mirror plane going
through the c axis and the x′ or y′ axis. The point group
representation is then C2v . This is listed in the last column
and first row of Table I.

We can similarly consider magnetic fields in the plane.
Now there are many possible induced distortions including
the triclinic. With similar reasoning as above, the results are

presented in the last four rows in Table I, with the symmetry
of the distorted crystal listed in the last column.

III. THERMAL HALL EFFECT

To deduce the thermal conductivity tensor due to the distor-
tions, one must consider the elastic constants in the distorted
phase. The elastic constants change corresponding to the dis-
tortions. The elastic constants cμ,σ,ν,τ are fourth-rank tensors,
defined by the equation of motion (2) below. There are only
six independent elastic constants in the D4h symmetry and
the resulting phonon eigenvectors in the symmetry directions
preserve the direction of propagation. In a monoclinic crystal,
there are 13 independent elastic constants, and as we will see
below they are effectively birefringent for the heat-current
direction relevant to the experiments. In the triclinic crystal,
all 21 possible elastic constants are nonzero and principal axes
for propagation cannot even be defined.

The elastic displacements u(r, t ) in a crystal

u(r, t ) = ε ei(q·r−ωt ) (1)

follow equations of motion

ρω2εμ,σ =
∑

τ

∑
σ,ν

cμ,σ,ν,τ qσ qν ετ,ν . (2)

ρ is the mass density, q the momenta, and ε—the polariza-
tion vectors specify the direction and relative magnitude of
the displacements. The eigenvalues ω2 are functions of the
momenta and the polarizations. Thermal conductivity is given
by the energy-current correlation function in the limit of long
wavelength and zero frequency [19]:

κμσ = kBβ

3V

∫ ∞

0
dt

∫ β

0
dλ 〈jE ,μ(0)jE ,σ (t + iλ)〉; (3)

jE ,μ =
∑
q,τ

1

2

∂ω2
q,τ

∂qμ

n(ωq,τ /T ). (4)

jE ,μ is the energy current due to the group velocity in the μ

direction of any thermally excited phonons; n(ω/T ) is the
occupation number of phonon of energy ω at temperature T .

Assuming that the scattering is isotropic, Eqs. (3), (4),
and (2) state that the anisotropy of the thermal conductivity
tensor depends on the sum over polarization of the appropriate
contractions of the product of two elasticity tensors. To linear
order in B, the off-diagonal component of κ may be calculated
by taking for one of the energy currents the elastic tensors for
the undistorted tetragonal crystal and for the other the elastic
constants proportional to B of the distorted crystal symmetry.

TABLE I. Table of arguments and conclusions for the distortion induced by a magnetic field in the ẑ direction in the loop-ordered phase
and in the plane in specified directions of a tetragonal crystal.

Mag. field × order parameter Algebraic form of u Irred. rep. Symmetry of distorted lattice

�x′,y′ Bz (x′), (y′) Eu Monoclinic (C2v)
�y′ By′ + �x′ Bx′ xyz(x2 − y2) A1u Triclinic (S2)
�y′ By′ − �x′ Bx′ xyz B1u Triclinic (C1)
�y′ Bx′ − �x′ By′ z A2u Tetragonal (C4v)
�y′ Bx′ + �x′ By′ z(x2 − y2) B2u Orthorhombic (D2)
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In general, the modes mixed in their propagation direction
by the off-diagonal terms in the lowered symmetry also have
different polarizations, as in the examples given below. The
unperturbed elastic constants and their differences are as-
sumed to be much larger than the field induced mixing terms.
So the change in energies of the modes (and their attenuation)
are negligible. The directions of propagation is determined by
the perturbed eigenvectors which are linearly proportional to
the magnetic field, except for accidental degeneracy among
the unperturbed modes (of different polarizations) which will
hardly affect the thermal conductivity tensor. The movement
of current for given direction of magnetic field is either clock-
wise or anticlockwise depending on the sign of the distortion.
All this is shown by specific calculations below.

IV. MAGNETIC FIELD IN THE ẑ DIRECTION

Consider field in the ẑ direction, with thermal gradient in
the x̂ direction. The magnetic field induced distortion makes
the crystal monoclinic. The monoclinic crystal has among
its nonzero elastic constants [20] cxxxy which couples a lon-
gitudinal mode traveling in the x direction of the tetragonal
crystal to the transverse mode propagating in the y direction.
There is also of course the elastic constant cyxyy which couples
the transverse mode propagating in the x direction to the
longitudinal mode in the y direction. These are the only
possibilities of turning the heat current in the x direction to
the y direction in a monoclinic crystal. (We need not concern
ourselves with change of heat current in the x direction
because that is only a small correction to that in the tetragonal
crystal.) It is important that in general cyxyy 	= cxxxy. Moreover,
in a monoclinic crystal, with appropriate choice of the axes,
one can always take one of the elastic constants to be 0 and
specify the angle between the positive x and y axes, say some
acute value. Let us choose the x axis to be along the a axis of
the monoclinic crystal and take cxxxy if it is the smaller of the
two to be zero for magnetic field in the positive z direction.
The value of cyxyy of course depends on the magnitude of the
angle, which is determined by the magnitude of the magnetic
field. The turning of the heat current in the positive x direction
then is in the positive y direction. This is made more explicit
by the following:

Let ε0(qx, T ) and ε0(qy, L) be the eigenvectors, unper-
turbed by the magnetic field, for the y-polarized transverse
modes propagating in the x direction and longitudinal modes
propagating in the y direction and ω0(qx, T ) < ω0(qy, L) be
their frequencies, respectively. The eigenvectors get mixed so
that they have additional components which may be seen from
the eigenvalue equation (2) to be

δε(qy, T ) ≈ cyxyyqxqy

ω2
0(qx, L) − ω2

0(qx, T )
ε0(qx, L), (5)

δε(qx, L) ≈ − cxxyxqxqy

ω2
0(qx, L) − ω2

0(qx, T )
ε0(qy, T ). (6)

The two contributions would turn currents in opposite direc-
tions with no net Hall effect but for the fact that cyxyy 	= cxxyx.
As mentioned above, the smaller of these can be chosen to be
0 with appropriate choice of the axes.

The ratio of κxy to κxx may be roughly estimated from (4)
and (5), keeping the most essential factor, to be

κxy(Bz )

κxx
≈ 2 cxxyx(Bz )

cxxxx − cxyxy
. (7)

If the direction of the field is reversed, so is the sense of
the monoclinic distortion—the acute angle above is now an
obtuse angle. By appropriate choice of axes and following
the calculation above the thermal current in the x direction
will turn to the negative y direction. Similarly for positive z
direction of the field, the current in the y direction will turn
clockwise or anticlockwise, keeping the same axiality as for
current in the x direction. All the symmetry properties of the
Lorentz force in the usual electronic Hall effect are therefore
preserved.

The answer to the question of the sign of the Hall effect
(clockwise or anticlockwise) depends on the sign of the
coupling constant λ in the contribution to free energy λ u �.
This is hard to determine since the reduction of free energy
is determined neither by this term nor by the harmonic term
in lattice distortion (see below) but by the anharmonic terms.
There is also the vexing question of the effect of domains
which is hard to answer for order of the form shown in
Fig. 1 if there is an equal distribution of all four domains. The
modification of this order with a periodic pattern as suggested
in Ref. [21] does not have the problem with domains because
there is a unique symmetry which is lower than in Fig. 1 and
which has all the necessary attributes necessary for the Hall
effect discussed here (as well as other effects necessary for
the experimental results mentioned earlier).

V. MAGNETIC FIELD IN THE PLANE

For magnetic field in the plane, there are triclinic distor-
tions and others as listed in Table I. For a triclinic system,
there are no principal axes for the elastic tensors. Also three
of the 21 elastic constants may be chosen to be zero by proper
choice of the axes and using instead the angles between the
three axes. Two of these are the axes in the erstwhile x to z
and y to z directions. By similar argument as above, there is
a thermal Hall current for field in the plane and temperature
gradient orthogonal to it in the plane due to coupling of the
longitudinal modes in the plane to the transverse modes in
the z direction. Also in the orthorhombic (C2v ) class also has
a nonzero cyyyz 	= cxxxz which turns current in the ŷ and x̂
directions, respectively, to the ẑ direction. The rest is similar
to the case considered above. So a thermal current in the plane
turns partially to a current in the ẑ direction. The magnitude of
the effect for field in the plane is similar to that for field in the
z direction, because the normal thermal conductivity in plane
and out of plane are similar and the requisite off-diagonal
components of the elastic tensors in a field are expected to
be similar as well.

There is an additional effect predicted for the magnetic
field in the plane. The induced triclinic distortion includes the
distortions of the monoclinic variety in the plane produced
by field perpendicular to the plane. Therefore, for field in the
plane, there should also be a thermal Hall effect parallel to the
plane but transverse to the applied thermal gradient.
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VI. MAGNITUDE OF THE EFFECT
AND RELATED MATTERS

The magnitude of the off-diagonal component of the ther-
mal conductivity in the experiments [1,2] at about 10 Tesla
is O(10−3) of the diagonal component. This in turn requires,
from Eq. (5) that the induced elastic constants at this field
to be O(10−3) the difference of the typical longitudinal and
transverse elastic constants. One expects the relative change in
the elastic constant to be similar to the ratio of the magnitude
induced distortion to the lattice constant a. Unlike arguments
from symmetry, obtaining the magnitude of the effect is not
really possible without direct measurements of the change
in elastic constants and lattice distortions in a magnetic field
suggested below.

The magnitude of the distortion |u| is given by the change
in free energy

δF (|u|/a) = −λ

( |u|
a

)
|�| |B| + 1

2
c

( |u|
a

)2

, (8)

so that the relative distortion 〈|u|〉
a = λ|�||B|/c. Here c is a

typical elastic constant and λ is the coupling energy. From
experiments we know the magnitude of � to be about 0.1 μB

per unit cell and from this the condensation energy due
to loop-current order at low dopings can be estimated to
be several times larger than the maximum superconducting
condensation energy of about .01 eV per unit cell [22]. Using
that the zone boundary acoustic phonon energy is 300 K and
that 10 Tesla, �B ≈ 1 K, a distortion u/a of 10−3 requires
λ ≈ 0.3, which does not appear unreasonable. But there is
no simple way to independently estimate λ. It is best to have
direct experiments to observe the distortion and the change in
elastic constants in a magnetic field. At O(10−3) for fields of
10 Tesla, these are feasible experiments.

The plausibility of the ideas here is reinforced by the fact
that experimental results consistent with another prediction
about lattice distortions due to loop-current order. In Ref. [4],
it was shown that a lattice distortion proportional to the
square of the order parameter (for zero applied magnetic field)
must occur on entering the pseudogap phase if it has the
symmetries of loop-current order. For the single-layer com-

pound HgBa2CuO4+δ , this is a monoclinic distortion. Through
torque magnetometry [15], anisotropy consistent with such a
distortion has been observed starting at the pseudogap tem-
perature. For the bilayer compound, YBa2Cu3O6+δ , neutron
scattering has observed [23] that the loop-current order is
mutually rotated by π/2 in the two bilayers. Then the distor-
tion expected is orthorhombic. Indeed, torque magnetometry
[16] observes increased anisotropy consistent with such a
distortion, starting again at the pseudogap temperature.

In the experiments, the antiferromagnetic insulator
La2CuO4 also shows a thermal Hall effect with the same char-
acteristics and with magnitude continuous with that on doping
to the metallic state. It would therefore be worthwhile doing
direct experiments to look for loop-current order (which has
no linear coupling to antiferromagnetism) in this compound.
We have come across this situation in the insulating anti-
ferromagnetic compound Sr2IrO4, in which second-harmonic
experiments [24] and neutron scattering experiments [25] are
consistent with loop-current order, which is observed also on
doping it to a metal.

Yet another test of the predicted distortions is birefringence
and change of polarization in optical propagation with a
magnetic field applied. In a single crystal, it is easy enough to
predict the symmetry of the dielectric tensor expected, given
Table I. There are also effects of the order parameter in the ab-
sence of a magnetic field. Experimental results consistent with
the expectations [26] have already been observed [12,17].

It should be restated that the observed symmetry breaking,
which is the basis for the calculation presented here, cannot
be all that specifies the symmetry of the pseudogap phase,
though it appears necessary. To explain the phenomena of
“Fermi arcs” and small Fermi-surface magneto-oscillations,
a periodic modulation of the loop-current order through ar-
rangement of topological defects has been proposed [21]. This
awaits experimental verification.
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