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We theoretically propose a mechanism for the anomalous Hall effect (AHE) in an antiferromagnetic (AFM)
state of κ-type organic conductors. We incorporate the spin-orbit coupling in the effective Hubbard model on
the κ-type lattice structure, taking into account the orientation of the molecules and their arrangement with
dimerization. Treating this model by means of the Hartree-Fock approximation and the linear response theory, we
find that an intrinsic contribution to the Hall conductivity becomes nonzero in the electron-doped AFM metallic
phase with a small canted ferromagnetic moment. We show that, contrary to the conventional wisdom, the spin
canting is irrelevant to the Hall response; the nonzero Hall conductivity originates from the collinear component
of the AFM order in the presence of the spin-orbit coupling. These features are well explained analytically in the
limit of strong dimerization on the anisotropic triangular lattice. Furthermore, we present an intuitive picture for
the present AHE by considering the real-space configuration of emergent magnetic fluxes. We also find that the
Hall response appears even in the undoped AFM insulating phase at nonzero frequency as the magneto-optical
Kerr effect, which is enhanced around the charge-transfer excitations. We discuss possible detections of the AHE
in ET based compounds.
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I. INTRODUCTION

The anomalous Hall effect (AHE) is one of the long-
standing issues in condensed-matter physics, studied for over
a century [1,2]. The AHE originates from an effective internal
magnetic field emerging from the spin-orbit coupling (SOC)
and magnetic spin structures breaking time-reversal symmetry
[3]. In light of the guiding principle, not only ferromagnets
but also antiferromagnets with noncollinear spin textures
giving rise to an effective (or fictitious) magnetic field have
been extensively studied for the past decades [4–9]. More
recently, even antiferromagnets with collinear spin structures
are proposed to show an AHE [10–12]. In such systems, the
crystal lattice symmetry under the antiferromagnetic (AFM)
spin ordering is essential for the AHE, while its microscopic
mechanism is not fully elucidated. For example, it is unclear
how we can achieve an intuitive picture of the electrons
feeling the Lorentz force by the effective magnetic field as
discussed in the ferromagnetic (FM) and noncollinear AFM
cases.

Recently, the authors revealed that, in an organic
antiferromagnet κ-(ET)2X (ET stands for BEDT-TTF,
bis(ethylenedithio)tetrathia-fulvalene molecule), a collinear
AFM order yields a spin-dependent band splitting and a spin
current generation even in the absence of the SOC [13].
This unconventional phenomenon comes from the breaking
of glide symmetry in the molecular arrangement by the AFM

order [14–16]. In fact, when taking into account the SOC,
such a molecular degree of freedom can potentially provide
another platform for the AHE. Here we present a theory
of the AHE in κ-(ET)2X , which requires neither a net FM
moment nor a noncollinear magnetic spin structure. We will
show that, in contrast to the conventional mechanisms, the
AFM ordering and the SOC, both under influence of the
underlying molecular arrangement, are the key ingredients for
the appearance of the AHE.

The crystal structure of κ-(ET)2X consists of an
anisotropic triangular lattice of dimers of ET molecules with
two kinds of orientations, termed A and B, as shown in
Fig. 1(a) [17]. We call this the κ-type molecular arrangement
in the following. The ET layers are stacked alternately with
the insulating anion X layers. The frontier molecular orbitals
in each ET dimer become hybridized by the intradimer trans-
fer integral and constitute bonding and antibonding orbitals.
In these two orbitals, there are three electrons per dimer on
average, and then the energy bands originating from them are
three-quarter filled. When the dimerization is large one can
regard the system as effectively half-filled of the antibonding
orbital bands [18]. Therefore, owing to the electron-electron
interaction, κ-(ET)2X locates on the verge of the Mott metal-
insulator transition [17,19–21].

In the Mott insulating phase, an AFM spin ordering takes
place in several representative compounds, for example in
κ-(ET)2[N(CN)2]Cl (abbreviated as κ-Cl) and in deutrated
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FIG. 1. (a) Schematic two-dimensional molecular arrangement in κ-(ET)2X . The circles and ellipses represent the ET molecules and
dimers, respectively. A and B stand for the two dimers in the unit cell with different orientations. The thick solid, thin solid, broken, and dotted
lines, denoted by a, p, q, and b, respectively, are the intermolecular bonds, on which the transfer integrals in the model [Eq. (1)] are defined.
(b) Schematic illustration of the canted AFM spin structure. The green arrows and circled dots show the directions of the local spin moments
on the dimers by their components parallel and perpendicular to the zx plane, respectively. (c) Spatial distribution of the ASOC vector λi j . The
red solid arrows together with their y components indicate the directions of λi j on the q bonds associated with the electron hopping along the
directions of the black broken arrows. The green line denotes the glide plane perpendicular to the zx plane. λi j on the q bonds, q1 and q2, are
connected by the glide symmetry.

samples of κ-(ET)2[N(CN)2]Br (κ-Br), which are the main
targets in this paper. In these systems, the spins on the A and
B dimers form an almost collinear AFM order with small cant-
ing [22]. The canting originates from the fact that there is no
inversion center on the bonds connecting the A and B dimers
because of their molecular orientations [see Fig. 1(a)]; the
SOC generates the Dzyaloshinskii-Moriya (DM) interaction
that twists the spins [23,24].

The canted AFM spin structure and the arrangement of
the DM vectors in this system have been controversial for
a long time because of the difficulty of neutron diffraction
experiments in organic compounds [25–28]. The DM vectors
were determined by Smith et al. from the measurements of
ESR and NMR [29]. Recently, Ishikawa et al. and Oinuma
et al. determined the AFM structure in κ-Cl and κ-Br, respec-
tively, by combining detailed magnetization measurements
and calculations for the classical Heisenberg model with the
DM interaction [30,31]. The proposed AFM structure in the
ET layer, common in the two compounds, is schematically
shown in Fig. 1(b). The AFM moment is almost parallel to
the z axis and the weak FM moment is in the xy plane. Here
we take the coordinate axes referring to the crystal axes; the
x and z axes are set along the intralayer a and c axes, and the
stacking direction is the y direction [32]. Also, the SOC in
this system has recently been investigated from the theoretical
side. Winter et al. estimated the SOC and DM vectors in
a series of κ-type ET compounds by means of ab initio
quantum chemical calculations [33], whose results agree with
an estimation based on ESR and NMR by Smith et al. [29].

In this paper, we theoretically study the AHE under the
combination of the AFM ordering and the SOC in κ-(ET)2X .
Considering a Hubbard-type tight-binding model with the
SOC, we obtain the ground-state phase diagram by the
Hartree-Fock (HF) approximation, and calculate the Hall
conductivity and optical responses by the linear response
theory. At three-quarter filling, the canted AFM insulating
phase with a small FM moment is realized as the ground state,
reproducing the recent experiment. Although the DC Hall

conductivity is zero in the AFM insulating phase, we find that
it becomes nonzero, i.e., the AHE appears, when the electrons
are doped, leading to the AFM metallic phase. To pin down the
mechanism of the AHE, we construct an effective model in the
strong dimerization limit and derive the analytic expression
of the Hall conductivity. The formula clearly shows that the
AHE relies on not the small FM moment associated with
the spin canting but a cooperative effect of the collinear
AFM ordering and a fictitious magnetic field emerging from
the SOC. On the other hand, in the AFM insulating phase
the AHE appears in the transverse optical response, i.e.,
as the magneto-optical Kerr effect, which shows a nonzero
oscillator strength and rotation angle for the midinfrared light
in the frequency range between the interdimer and intradimer
charge transfer excitations. Finally, we propose how to verify
our proposal in the κ-type ET compounds.

II. MODEL AND METHOD

The Hubbard model based on the frontier molecular or-
bitals in the κ-type ET system is given by [18]

HHubb =
∑

i j

∑
σ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓, (1)

where ciσ (c†
iσ ) and niσ (= c†

iσ ciσ ) are the annihilation (cre-
ation) and number operators of an electron at ith ET molecule
with spin σ , respectively. ti j represents the intermolecular
transfer integrals (ta, tp, tq, tb) on the bonds shown in Fig. 1(a)
and U is the intramolecular Coulomb interaction. The SOC
Hamiltonian of this system is described by complex electron
transfer integrals depending on the spins as

HSOC =
∑

i j

∑
σσ ′

i

2
(λi j · σ )σσ ′c†

iσ c jσ ′ , (2)

where σ is the vector of Pauli matrices and the vector λi j (=
−λ ji ) is the antisymmetric SOC (ASOC) vector arising from
the second-order perturbation in terms of the multiorbital
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intermolecular hoppings and the atomic SOC of ET molecules
[24,33]. Among the four kinds of intermolecular bonds in
Fig. 1(a), λi j is nonzero only on the p and q bonds on which
the local inversion center is absent. The spatial distribution of
λi j on the q bonds is illustrated in Fig. 1(c), which are much
larger than those on the p bonds according to Ref. [33]. There
are two λi j on the q bonds, which we denote as λq1 and λq2.
They are connected by the glide symmetry with respect to the
xy plane, namely, (λx

q2, λ
y
q2, λ

z
q2) = (λx

q1, λ
y
q1,−λz

q1); the same
holds for the p bonds.

We analyze the total Hamiltonian H = HHubb + HSOC

within the HF approximation, where the interaction term
is decoupled as ni↑ni↓ → ni↑〈ni↓〉 + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉 −
c†

i↑ci↓〈c†
i↓ci↑〉 − 〈c†

i↑ci↓〉c†
i↓ci↑ + 〈c†

i↑ci↓〉〈c†
i↓ci↑〉. We take the

unit cell including the two neighboring dimers A and B and
determine the mean fields self-consistently in the ground state.

We calculate the transport properties by the linear response
theory. Within the HF approximation, the total electric current
operator is defined by

J = 1

ih̄
[P,HHF], (3)

where HHF represents the HF Hamiltonian and P is the elec-
tric polarization operator defined by P = −e

∑
i niri, where ri

is the position vector of the ith ET molecular site. Using the
Kubo formula, the electric conductivity along the μ axis with
respect to an electric field parallel to the ν axis (μ, ν = x, z)
is given by

σμν (ω) = h̄

iNazax

∑
klm

f (εkl ) − f (εkm)

εkl − εkm

× [Jμ(k)]ml [Jν (k)]lm

h̄ω + εkm − εkl + iγ
, (4)

where f (εkl ) is the Fermi distribution function for the Bloch
eigenstate of HHF with wave vector k and band index l .
[Jμ(k)]ml is the matrix element of the μ component of the total
electric current operator between these Bloch eigenstates, ω

is the frequency of the external electric field, and γ is the
damping constant; az and ax are the lattice constants for the
z and x directions, respectively, and N is the total number of
unit cells. We define the real and imaginary parts of the Hall
conductivity as σμν (ω) = σ ′

μν (ω) + iσ ′′
μν (ω).

We adopt the values of the transfer integrals from a
first-principles band calculation for κ-Cl without SOC [34]
as (ta, tp, tq, tb) = (−0.207,−0.102, 0.043,−0.067) eV, and
the ASOC vectors from the quantum chemical calculation
[33] as λp1 = (λx

p1, λ
y
p1, λ

z
p1) = (−0.3, 0.12, 0.1) meV, λp2 =

(−0.3, 0.12,−0.1) meV, λq1 = (−0.88,−0.99,−0.18) meV,
λq2 = (−0.88,−0.99, 0.18) meV. We take the damping
constant as γ = 1 meV unless otherwise noted. We calculate
the ground-state properties changing the intramolecular
Coulomb interaction U and the number of electrons per unit
cell, n, as the parameters. Note that n = 6 corresponds to
three-quarter filling, which we call the undoped case in the
following. The k-space mesh (= N) is chosen as 200 × 200
and 1000 × 1000 for evaluating the order parameters and the
Hall conductivity, respectively. Since the Hall conductivity is
antisymmetric as σzx(ω) = −σxz(ω), we present only σzx(ω)
in the following.
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FIG. 2. (a) U dependence of each component of the expectation
value of the spin moments 〈SX 〉 on the X (= A, B) dimers at n = 6.
(b) n dependence of 〈SX 〉 at U = 1 eV.

III. RESULTS

A. AFM order and band structure

First, we examine the spin structure in the ground state.
When the ASOC is absent, previous studies show that a
collinear AFM order with opposite spin directions on the
A and B dimers is stabilized when U is increased [13,18].
Our results show that the ASOC induces spin canting from
this, whose AFM structure is consistent with the experiments.
Figure 2(a) shows the spin moments 〈SX 〉 (X = A, B) on each
dimer in the unit cell at three-quarter filling (n = 6) as a
function of the intramolecular Coulomb interaction U . With
increasing U , the system undergoes a phase transition from
the paramagnetic (PM) metallic phase to the AFM insulating
phase at around U = 0.68 eV. In the latter, the AFM moment
is almost parallel to the z axis and a small FM moment appears
in the xy plane as in Fig. 1(b); namely, an almost collinear
AFM is stabilized. Note that the canting is very small due to
the small ASOC: The transverse spin component is about 102

times smaller than the longitudinal one. The directions of the
AFM easy axis and the FM moment well reproduce the results
of the recent magnetization measurements on κ-Cl and κ-Br
[30,31].

On the other hand, when n is increased from the three-
quarter filling, the AFM insulating state immediately turns
metallic [35]. The electron-doped state retains the canted
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FIG. 3. (a) Energy band structure in the AFM insulating state at
(U, n) = (1 eV, 6). The colors of the bands indicate the magnitude
of the expectation value of Sz for their Bloch states. The gray lines
represent the spin degenerate bands on the zone boundaries (X-M and
M-Z) where 〈Sz〉 is not uniquely determined. (b) The trajectory of the
symmetric lines in the first BZ for the energy bands in (a). (c) The
dispersions of the top two bands in (a) along the green broken line in
(b). The solid and broken lines are the energy dispersions with and
without the ASOC, respectively. kz and kx stand for the coefficients
of the reciprocal vectors bz and bx , respectively.

AFM spin structure, whose AFM and FM moments, however,
decrease monotonically and vanish simultaneously at a critical
value of n that depends on U [see also Fig. 4(a)]. The behavior
is exemplified for U = 1 eV in Fig. 2(b).

Figure 3(a) shows the energy band structure in the AFM
insulating phase at (U, n) = (1 eV, 6). The symmetric lines in
the first Brillouin zone (BZ) are indicated in Fig. 3(b). As there
are four independent ET molecules in the unit cell, the number
of the energy bands in the first BZ is 8 = 4 × 2, taking into
account of the spin degree of freedom. The lower and upper
four bands correspond to the bonding and antibonding bands,
respectively. Both of them are further separated into two each
by energy gaps due to the AFM ordering. The Fermi energy is
located in the AFM gap of the antibonding band around 1 eV.
The degeneracy with respect to the spin degree of freedom is
lifted in the whole BZ except for the zone boundaries. Then,
the direction of the spin for each Bloch state is locked at each
k point (spin-momentum locking); the k-space variation of
the Sz component is illustrated as the color of each band in
Fig. 3(a). The large spin splitting emerging on the 	-M lines is

caused by the mechanism found in our previous work which is
present even without the SOC [13], i.e., the cooperative effect
of the AFM ordering and the ET molecular orientations. On
the other hand, the small spin splitting on the kz and kx axes
is attributable to the presence of the SOC. Figure 3(c) shows
the energy dispersions of the top bands in Fig. 3(a) with and
without the SOC along the path denoted by the broken line in
the BZ shown in Fig. 3(b). The degenerate Sz-up and Sz-down
bands on the kz axis are hybridized by the SOC, resulting in
the spin splitting of the order of |λi j |.

B. AHE

Next, we investigate the Hall conductivity in the ground
state. Figure 4(a) shows the real part of the DC Hall conduc-
tivity, σ ′

zx(ω = 0), as a function of U and n. The broken line in
the basal plane denotes the phase boundary between the PM
and AFM phases; the critical value of U for the appearance
of the AFM order increases as n deviates from 6. The Hall
conductivity is zero in both the AFM insulating phase at n = 6
and the PM metallic phase for all n, while it turns finite in
the AFM metallic phase in the electron-doped region. One
can see that the magnitude of σ ′

zx increases with the decrease
(increase) of U (n), corresponding to decrease in the AFM
order parameter (see Fig. 2).

To understand the reason why the AHE appears in the
electron-doped AFM metallic region, we decompose the Hall
conductivity in k space. Figure 4(b) shows the k-resolved Hall
conductivity defined by σ ′

zx ≡ e2/(Nh̄)
∑

k σ ′
zx(k) in the AFM

insulating phase. We note that σ ′
zx(k) is connected to the y

component of the Berry curvature of the mth band, by
m(k),

as σ ′
zx(k) = −∑

m f (εkm)by
m(k) [2]. σ ′

zx(k) exhibits a d-wave-
like sign change centered at the 	 point, whose k dependence
can be approximated as sin[π (kz − kx )] sin[π (kz + kx )]. In
this case, in the AFM insulating phase where the Fermi sur-
face is absent, σ ′

zx given by the summation over the whole BZ
is zero by the cancellation between the positive and negative
contributions. On the other hand, in the AFM metallic phase,
this cancellation becomes incomplete since the contributions
from outside of the Fermi surfaces in k space, where all
the Bloch states are fully occupied, vanish due to the Fermi
distribution functions in Eq. (4); see Fig. 4(c). This leads to
the nonzero Hall conductivity in the AFM metallic phase.

The present AHE originates from an intrinsic mechanism
independent of the damping factor γ . In fact, we find that the
value of σ ′

zx becomes nearly constant for γ � 0.1 eV, which
is the order of the AFM gap.

To figure out the relevant elements for the AHE, we first
artificially tune the ASOC and investigate how σ ′

zx varies.
Figure 4(d) shows the ASOC dependence of σ ′

zx at (U, n) =
(1 eV, 6.2), where the original values of λi j are multiplied
by a parameter α. In addition to the HF solutions, to ex-
amine the role of the small FM moment, we plot the re-
sults without the FM moment from canting that are obtained
self-consistently under the constraint of 〈Sx〉 = 〈Sy〉 = 0 for
comparison. In both cases, σ ′

zx increases in proportion to
α, and surprisingly, the difference between them is small,
only a few percent. This result indicates that the canted
FM moment is irrelevant to the AHE, while the SOC is
indispensable.
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FIG. 4. (a) Real part of the DC Hall conductivity, σ ′
zx , in the ground state as a function of the intramolecular Coulomb interaction U and

the number of electrons per unit cell, n. The broken line on the basal plane represents the phase boundary between the PM and AFM phases.
(b) and (c) Color maps of the k-resolved Hall conductivity in the BZ (b) in the AFM insulating phase at (U, n) = (1 eV, 6) and (c) in the AFM
metallic phase at (U, n) = (1 eV, 6.2). kz and kx stand for the coefficients of the reciprocal vectors bz and bx , respectively. The solid lines in
(c) represent the Fermi surfaces of the spin-split bands. The damping constant is fixed at γ = 0.001 meV. (d) Variation of σ ′

zx with respect
to an artificially tuned ASOC multiplying the original λi j by α. The circle and square symbols show the results in the canted AFM state and
the collinear AFM state, respectively. (e) Variation of σ ′

zx when the z or xy components of αλi j are set to zero. The parameters are fixed at
(U, n) = (1 eV, 6.2) in (d) and (e).

Then, we examine which component of the ASOC is
crucial. Figure 4(e) shows the behavior of σ ′

zx, when the z
or xy components of all λi j are set to zero by hand and the
others are scaled by α. When λx

i j = λ
y
i j = 0, the ground state

reduces to the collinear AFM structure without the canted FM
moment and σ ′

zx shows almost the same linear dependence as
in Fig. 4(b). In contrast, when λz

i j = 0, σ ′
zx becomes constantly

zero for any magnitude of α, although the ground state is the
canted AFM structure. The result indicates that the z compo-
nent of λi j is crucial for the AHE, while the xy components
are irrelevant.

C. Effective model in the strong dimerization limit

In the following, we investigate the microscopic origin of
the AHE found above by constructing an effective model.
For this purpose, we examine how the Hall conductivity
changes with the intradimer transfer integral ta. As mentioned
in Sec. I, when ta is large enough, the bonding and anti-
bonding orbitals of the dimer are energetically well sepa-
rated and the fully occupied bonding band can be neglected.
Accordingly, the system is regarded as an effective half-
filled system. Figure 5(a) shows the variation of σ ′

zx with
respect to ta at (U, n) = (1 eV, 6.2). By increasing ta, the
Hall conductivity decreases but converges to a nonzero value
in the limit of ta → ∞. This implies that the essence of
the AHE can be captured even in the strong dimerization
limit.

In this limit, one can construct an effective single-band
model based on the antibonding orbitals of the dimers. The

transfer integrals for these orbitals are reduced to those on the
anisotropic triangular lattice as shown in Fig. 5(b). As for the
ASOC, considering the numerical results above, we only take
into account the z component of the ASOC vectors, i.e., the
Zeeman-type ASOC is considered. In this case, the collinear
AFM state without canting is stabilized, where the AFM
moments are parallel to the z axis as shown in Fig. 5(c). We
note that despite these simplifications the difference between
the A and B dimers remains in the effective model included
by the stripe-like pattern of the ASOC vectors as shown in
Fig. 5(b).

Now the effective Hamiltonian is given by

Heff =
∑

i j

∑
σ

t̃i j c̃
†
iσ c̃ jσ +

∑
iσ

�iσ ñiσ

+
∑

i j

∑
σσ ′

i

2
(λ̃i jσ

z )σσ ′ c̃†
iσ c̃ jσ ′ , (5)

where c̃iσ (c̃†
iσ ) and ñiσ (= c̃†

iσ c̃iσ ) are the annihilation (cre-
ation) and number operators of an electron on the antibonding
orbital of ith dimer, t̃i j is the electron transfer integral between
ith and jth dimers, �i is the molecular field describing the
collinear AFM order parallel to the z axis shown in Fig. 5(c),
and λ̃i j is the z component of the effective ASOC vector.
The coefficient of the molecular field, σ , in the second term
takes +1 and −1 for up and down spins, respectively. These
parameters are given by those in the original HF Hamiltonian
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zx at (U, n) = (1 eV, 6.2). The broken line shows the Hall conductivity calculated by the analytic formula

[Eq. (13)] for the effective model in the strong dimerization limit (ta → ∞). (b) Lattice structure of the effective model. The circles represent
the A and B dimers that are the lattice sites on the anisotropic triangular lattice. The solid and broken lines represent the transfer integrals t̃ and
t̃ ′, respectively. The red arrows represent the Zeeman-type ASOC vectors λ̃i j , which is nonzero only in the z component, associated with the
electron hoppings denoted by the black arrows. (c) The collinear AFM spin structure on the anisotropic triangular lattice. The green arrows
represent the directions of the spin moments.

HHF as

t̃ = −1

2
(tp − tq), t̃ ′ = − tb

2
, (6)

λ̃i j = ±λ̃ = ±1

2
(λz

q1 − λz
p1), (7)

[see Fig. 5(b)] and

�i = ∓� = ∓δU

4
, (8)

for the A (−) and B (+) dimer sites where δ = 〈ñi∈A↑〉 −
〈ñi∈A↓〉 = 〈ñi∈B↓〉 − 〈ñi∈B↑〉 determined self-consistently for
each value of U [36].

The band structure of the effective model at (U, ñ) =
(1 eV, 2.2) is shown in Fig. 6(a), where ñ (=n − 4) is the
number of electrons per unit cell containing two dimer sites;
ñ = 2 corresponds to the undoped case. These correspond
to the upper four antibonding bands in the original eight
bands in Fig. 3(a), separated by the energy gap due to the
strong dimerization from the lower four bonding bands. These

four bands are separated into spin-degenerate two bands each
by the AFM gap. Note the fact that in our model the unit
cell has two sites owing to the ASOC is in contrast with
the single-band Hubbard model investigated in the previous
studies [18,37–41]. Another point to notice is that the spin
splitting is now absent and the bands are doubly degenerate
in the whole BZ. We can understand this from the following
two viewpoints. One is that, in the strong dimerization limit,
the information is lost that the A and B dimers are connected
by the glide symmetry leading to the spin splitting by the
AFM ordering, as discussed in our previous work [13]. The
other is because of the Zeeman-type ASOC between the A and
B dimers only keeping the z component, making the model
diagonal in the spin space.

As a consequence, the effective Hamiltonian is spin diag-
onal and block diagonalized into two 2 × 2 matrices. Then
we can easily diagonalize Heff resulting in the energies of the
upper and lower bands shown in Fig. 6(a) given as

εu,l
k = Ak ±

√
B2

k + C2
k + �2, (9)
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FIG. 6. (a) Energy band structure of the effective model [Eq. (5)] in the AFM metallic state at (U, ñ) = (1 eV, 2.2). ε f represents the
Fermi energy. The arrows connecting the upper and lower bands shows schematically the interband transition processes contributing to the
Hall conductivity. (b) U dependences of σ̃ ′

zx by the effective model for ñ = 2.2 (upper panel) and 2.4 (lower panel). The broken lines represent
σ ′

zx in the original model for the same U and n = ñ + 4. (c) Color map of the k-resolved Hall conductivity σ ′
zx (k) in the first BZ at (U, ñ) =

(1 eV, 2.2). The red curves show the Fermi surface.
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where + and − correspond to the upper and lower branches,
εu

k and εl
k, respectively. The functions Ak, Bk, and Ck are given

by

Ak = 2t̃ ′ cos(2πkz ), (10)

Bk = 2t̃[cos(π (kz − kx )) + cos(π (kz + kx ))], (11)

Ck = −λ̃[cos(π (kz − kx )) − cos(π (kz + kx ))], (12)

respectively.

D. Origin of the AHE

From our effective model above, we obtain the analytic
form of the real part of the Hall conductivity as

σ̃ ′
zx = −2e2t̃ λ̃�

Nh̄

∑
k

[
f
(
εu

k

) − f
(
εl

k

)]

× sin[π (kz − kx )] sin[π (kz + kx )]
(
B2

k + C2
k + �2

) 3
2

. (13)

Note that the damping constant is omitted in Eq. (13) since
we are interested in the intrinsic contribution coming from the
interband transitions as discussed above. Figure 6(b) shows
the variations of σ̃ ′

zx as a function of U at ñ = 2.2 and 2.4
compared to σ ′

zx in the original model at n = 6.2 and 6.4, re-
spectively, both of which show similar U and n dependences.
In addition, the value of σ̃ ′

zx well reproduces σ ′
zx in the strong

dimerization limit obtained by the HF calculation as shown in
Fig. 5(a).

The analytic expression in Eq. (13) enables us to sort
out the relevant parameters in the AHE. By neglecting the k
dependence in Eq. (13), we find

σ̃ ′
zx ∝ t̃ λ̃�

(4t̃2 + λ̃2 + �2)
3
2

. (14)

For κ-type ET compounds, |�| > |t̃ |  |λ̃|; these parameters
are typically |�| ∼ 0.2 eV, |t̃ | ∼ 0.1 eV, and |λ̃| ∼ 0.1 meV
[33,34]. Applying this relation to Eq. (14), the Hall conduc-
tivity is expected to increase proportional to λ̃ and decrease
with increasing �. This explains the U , n, and λ dependences
of σ ′

zx in the original model, as was shown in Figs. 4(a), 4(d),
and 4(e). These results indicate that the essence of the present
AHE is well captured by the effective model. Our analytic
formula shows that it is attributed to the electron transfer
integral t̃ , the z component of the ASOC, λ̃, and the collinear
AFM ordering, whose energy scale is determined by the order
parameter δ multiplied by the interaction U .

In addition, similar to the case for the original model, we
can obtain insight into the origin of the AHE by considering
its k-resolved form as σ̃ ′

zx ≡ e2/(Nh̄)
∑

k σ̃ ′
zx(k), representing

the interband electron transition processes between the lower
occupied and the upper unoccupied Bloch states illustrated
in Fig. 6(a). As shown in Fig. 6(c), the d-wave symmetry
in σ̃ ′

zx(k), characterized by sin[π (kz − kx )] sin[π (kz + kx )] in
Eq. (13), is clearly seen. Then, as discussed for the original
model, in the AFM metallic phase the interband processes
on the k points outside the Fermi surface are excluded from
the summation in Eq. (13) by the Fermi distribution function
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(b)
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z
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FIG. 7. Real-space distribution of the fictitious magnetic fluxes
acting on the conduction electrons with up spin (left panel) and down
spin (right panel) in the PM metallic phase (a) and the AFM metallic
phase (b). The solid and broken arrows represent the directions of the
line integral defining the magnetic flux inside the loop for the elec-
tron hoppings t̃ and t̃ ′, respectively. The shaded triangles represent
the upward (ABA and BAB) triangles with counterclockwise direction
of the loop integrals. They are equivalent in the PM phase (a) but
inequivalent by the spin-dependent charge imbalance in the AFM
phase (b), as shown by the different shading. The large and small
circles in the left (right) panel in (b) represent the up(down)-spin-rich
and poor dimer sites in the AFM phase, respectively.

f (εu
k ) − f (εl

k), which leads to the nonzero Hall conductivity
in the AFM metallic phase.

E. Real-space picture

Here, we provide an intuitive picture of the AHE in terms
of the real-space fictitious magnetic fields acting on the con-
duction electrons [4,42]. They are given through the ASOC
term in the effective model on the anisotropic triangular lattice
composed of the dimer sites. We define the magnetic flux
ψ penetrating each basic triangle in the lattice as exp(iψ ) =
exp(i

∮
C A · dc), where A represents the vector potential asso-

ciated with the path C along the three sides of the triangles
in the counterclockwise direction as shown in Fig. 7 (only
the paths for the upward triangles are shown). The complex
transfer integrals between the A and B dimers on these paths
are written as t̃ ∓ iλ̃σ/2 = r exp(±iθσ ), where σ represents
the z component of the spin and the upper and lower signs
corresponds to the ABA and BAB triangles, respectively. Note
that paths along t̃ ′ do not contribute due to the absence of
ASOC. The magnetic fluxes acting on the up-spin electron
rotating the upward ABA and BAB triangles are given by
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ψ = ±φ = ±2θ , while those for the down-spin electron are
given by ψ = ∓φ = ∓2θ . Thus, the real-space distributions
of the fluxes for the up- and down-spin electrons are given
by the staggered arrangements with opposite signs both in the
PM and AFM metallic states as shown in Fig. 7.

In the PM state, as the up and down spin electrons are
uniformly distributed on the A and B dimers as shown in
Fig. 7(a), the ABA and BAB loops are equivalent and the con-
duction electrons experience the +φ and −φ fluxes equally.
This results in the cancellation of the net magnetic field and
the zero Hall conductivity in the PM phase.

On the other hand, in the AFM state, although the flux
distributions are the same as in the PM phase, the electron den-
sities are spin dependent and form stripelike patterns as shown
in Fig. 7(b); the up- and down-spin electrons accumulate more
on the A and B dimers, respectively. Owing to this imbalance,
the cancellation of the magnetic fluxes becomes incomplete
and both the up- and down-spin electrons feel more the +φ

fluxes, because in both up- and down-spin cases, all the +φ

fluxes are surrounded by the two electron-rich dimers while
the −φ fluxes are by the two electron-poor dimers as shown in
Fig. 7(b). Consequently, both up- and down-spin conduction
electrons driven by the electric field experience a net magnetic
field and drift to the same direction, which results in a nonzero
Hall conductivity. These considerations lead us to an intuitive
understanding of the origin of the AHE: the interplay of
the staggered magnetic fluxes due to the SOC and the stag-
gered spin-dependent electron densities owing to the AFM
ordering.

F. Optical AHE

Finally, we propose another route to realize the AHE which
exists even in the undoped AFM insulating phase. We examine
the optical responses with nonzero frequency ω under the
AFM ordering. First, we show the results of the longitudinal
optical conductivity spectra calculated for the original HF
Hamiltonian HHF in the AFM insulating phase at (U, n) =
(1 eV, 6) in Fig. 8(a). In the longitudinal conductivities, there
are two peak structures around h̄ω = 0.3 eV and 0.7 eV. The
origins of these peaks have been discussed in previous studies
[43–46]; the lower and higher energy peaks are identified as
the charge transfer excitations between the antibonding or-
bitals of the neighboring dimers and the intradimer charge ex-
citation from the bonding to antibonding orbital, respectively.
In the doped AFM metallic phase at (U, n) = (1 eV, 6.2), the
Drude weight appears in the optical conductivity spectra at
h̄ω = 0 as shown in Fig. 8(b).

Next, we show the results of the optical Hall conduc-
tivity in the AFM insulating phase at (U, n) = (1 eV, 6)
in Fig. 8(c). The optical Hall conductivity shows nonzero
oscillator strength between the two peak energies, while it
approaches zero toward h̄ω = 0. On the other hand, in the
AFM metallic phase at (U, n) = (1 eV, 6.2), the Hall con-
ductivity shows similar behavior, while it has a nonzero DC
component as shown in Fig. 8(d). These results suggest that
for a linearly polarized light incident perpendicularly on the
zx plane, the reflected light is ellipsoidally polarized, i.e., the
magneto-optical Kerr effect occurs.
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FIG. 8. (a) Optical conductivity spectra σ ′
zz(ω) and σ ′

xx (ω),
(c) optical Hall conductivity spectrum σ ′

zx (ω), and (e) magneto-
optical Kerr rotation angle θ ′

K(ω) in the AFM insulating phase at
(U, n) = (1 eV, 6). Corresponding data for the AFM metallic phase
at (U, n) = (1 eV, 6.2) are shown in (b), (d), and (f). The damping
constant is fixed at γ = 1 meV in (a)–(d).

The magneto-optical Kerr rotation angle is given in the
complex form

θK(ω) = θ ′
K(ω) + iθ ′′

K(ω)

= −σ 3D
zx (ω)

σ 3D
zz (ω)

√
1 + iσ 3D

zz (ω)/(ωε0)
, (15)

when the incident light is polarized parallel to the z axis and
the angle is small [47,48]. ε0 is the permittivity of vacuum.
σ 3D

μν (ω) is the bulk electrical conductivity tensor for the three-
dimensional system, which is related to the electrical con-
ductivity tensor in the two-dimensional system as σ 3D

μν (ω) =
σμν (ω)/d , where d is the distance between the neighboring
layers and typically given by ∼15 Å for the κ-ET systems
[49]. The ω dependences of the real part, θ ′

K, in the AFM
insulating and metallic phases are presented in Figs. 8(e) and
8(f), respectively. The magnitudes of the sharp peak structures
change depending on the damping constant γ , while the
overall behaviors are insensitive to γ . The absolute values
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of the rotation angles are enhanced between the interdimer
and intradimer charge excitation energies and reach about
0.04 degrees.

IV. DISCUSSION

Let us discuss experimental measurements of the present
AHE in the κ-type ET compounds, especially, the two rep-
resentative compounds showing AFM ordering, κ-Cl and
deuterated samples of κ-Br where the hydrogen atoms in
the ethylene groups on both ends of an ET molecule are
deuterated, respectively. According to recent experiments, in
both compounds, the AFM spin structure in the ET layer is
common as shown in Fig. 1(b), while the interlayer stacking
structure is different from each other [30,31]. In κ-Cl, the
neighboring A (B) dimers along the y axis has the same sign
of 〈Sz〉, i.e., an “in-phase” stacking of the AFM ordering is
realized, while it is “antiphase” in κ-Br. This difference is
crucially important for the observation of the AHE in the bulk
compounds, as follows.

Based on the analytic form of the Hall conductivity in
Eq. (13), the sign of the AHE in a single ET layer is deter-
mined by the sign of the product t̃�λ̃. In the actual three-
dimensionally stacked ET systems, the AFM order parameter
� can take different signs between the layers, depending on
the stacking manner of the AFM ordered structure. The above
AFM structures realized in κ-Cl and κ-Br are interpreted as
the states in which � of each ET layer is arranged uniformly
and alternately along the interlayer y direction, respectively.
On the other hand, the ASOC λ̃ reflects the symmetry of the
interlayer molecular arrangement. κ-Cl and κ-Br belong to
the same space group Pnma with a mirror plane between the
neighboring ET layers perpendicular to the y axis. By this mir-
ror symmetry, the sign of λ̃ reverses between the neighboring
layers in both compounds. Therefore, considering the relative
signs of t̃�λ̃ for the ET layers, the net AHE is expected to
survive only in κ-Br while it will be canceled out in κ-Cl.
This prediction provides a good test bed for our scenario in
experiments. In addition, the energy difference between the
two kinds of the AFM structures is quite small, and therefore
they can be easily inverted by applying a magnetic field. In
fact, the AFM structure of κ-Br has been obtained also in
κ-Cl by applying the magnetic field of 5 Tesla along the y
axis [30]. Taking advantage of this property, one might be
able to not only examine the AHE without comparing the two
different compounds but also toggle on and off of the AHE by
the magnetic field in κ-Cl.

The observation of the DC AHE shown in Fig. 4(a) ba-
sically requires carrier doping to the κ-type ET systems.
Recently, carrier-doping techniques to the organic compounds
have rapidly been developed using anion substitutions and
electrical double layer devices where a doping-induced Mott
transition and superconductivity have actually been reported
[50–54]. Based on these advances in experiments, a verifi-
cation of the AHE in the doped Mott insulators is expected
to be feasible in the near future. In turn, such experiments
can provide important information about the magnetic state
in the doped organic Mott insulators, which is sometimes
difficult to identify in thin film samples by technical reasons.
Besides, the observation of the magneto-optical Kerr effect is

another promising way to investigate the present mechanism.
The above conditions for the AFM structure giving rise to
the nonzero AHE can be directly applied to the optical Hall
response. Therefore, the undoped κ-Cl in a magnetic field as
well as the undoped κ-Br are expected to be candidates for the
optical AHE.

Most recently, the ASOC λi j in κ-Cl has been also theo-
retically evaluated by Jacko et al. [55] but the z components
of λi j both on the p and q bonds are estimated to be zero,
which implies that the present AHE disappears. On the other
hand, according to the so-called Moriya rules for the DM
vectors nearly parallel to λi j , there is no reason to force the
z components of the DM vectors to vanish on the Pnma
molecular arrangement, being consistent with the estimations
by Winter et al. in Ref. [33]. We note that the two estimations
are based on the different numerical techniques, i.e., the
quantum chemical calculation and the first-principles band
calculation, and should be reconciled in the future [56].

The possibility of the AHE in collinear antiferromegnets
has recently been explored theoretically and experimentally
in inorganic compounds with the rutile structure, e.g., RuO2

and NiF2 [10–12]. However, studies for the AHE in inor-
ganic compounds often involve experimental difficulties in
isolating the intrinsic contribution purely attributed to the
electronic band structure, from the extrinsic contributions due
to impurities. Furthermore, their complicated band structures
sometimes prevent us from extracting the key ingredients
theoretically. In contrast, organic crystals generally contain
less impurities and have a simpler band structure due to the
low-symmetric molecules leading to the energetically isolated
frontier orbitals than inorganics, which provide an ideal plat-
form for studying the intrinsic AHE.

The present calculation is based on the simple Hubbard
model including only the intramolecular Coulomb interaction
U on the κ-type lattice, while it is also suggested that the inter-
molecular Coulomb interactions and/or the Hund’s coupling
often play important roles in general in this class of molecular
systems [44,57,58]. Although our scenario is expected to be
robust and qualitatively unchanged by introduction of these
additional interactions, quantitatively precise estimations of
the AHE and optical AHE, also with more elaborated treat-
ment beyond our HF calculations, are left for future issues.

V. SUMMARY

We have proposed the possibility of the AHE in organic
antiferromagnets with the κ-type molecular arrangement. The
present AHE originates not from the FM moment by spin
canting but the collinear AFM ordering, in contrast to the
conventional AHE in ferromagnets and noncollinear anti-
ferromagnets. The microscopic origin is the cooperation of
the staggered fictitious magnetic field emerging from the
SOC incorporated in the molecular arrangement and the
spin-dependent electron density owing to the collinear AFM
ordering, which results in the net Lorenz force acting on
the conduction electrons. Our scenario can be verified by
comparing the DC AHE and the optical AHE in the κ-type
ET compounds showing the different types of the AFM or-
dering structures, κ-(ET)2Cu[N(CN)2]Cl and the deutrated
κ-(ET)2Cu[N(CN)2]Br.
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