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Vacancies in graphene: Dirac physics and fractional vacuum charges
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The study of vacancies in graphene is a topic of growing interest. A single vacancy induces a localized stable
charge of order unity interacting with other charges of the conductor through an unscreened Coulomb potential.
It also breaks the symmetry between the two triangular graphene sublattices hence inducing zero energy states
at the Dirac points. Here we show the fractional and pseudoscalar nature of this vacancy charge. A continuous
Dirac model is presented which relates zero modes to vacuum fractional charge and to a parity anomaly. This
relation constitutes an index theorem and is achieved by using particular chiral boundary conditions, which map
the vacancy problem onto edge state physics. Vacancies in graphene thus allow us to realize prominent features
of 2 + 1 quantum electrodynamics but without coupling to a gauge field. This essential difference makes vacancy
physics relatively easy to implement and an interesting playground for topological state switching.
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I. INTRODUCTION AND STATEMENT OF RESULTS

Graphene has a remarkable low energy spectrum described
by an effective Dirac model, whose interest resides in its
ability to account for a wealth of fundamental aspects specific
to massless Dirac fermions. Vacancies [1–18], obtained by
removing neutral carbon atoms, have important consequences
for the physics of graphene: (i) Zero energy modes. In the
presence of NA + NB vacancies, where NA (NB) is the number
of vacancies corresponding to sublattice TA (TB), the tight-
binding Hamiltonian has |NA − NB| zero energy eigenvalues
with vanishing wave function on the minority sublattice [1–6].
(ii) Charge. Density functional theory calculations [7] show
that when a carbon atom is removed, the induced electronic
rearrangement leads to a lower energy configuration and to an
overall local electric charge in the ground state. In addition,
tunneling and Landau level spectroscopy [6] provide experi-
mental support for the existence of this local charge and show,
with very good agreement, an energy spectrum corresponding
to an unscreened V ∼ −1/r Coulomb potential (see Fig. 1).
(iii) Symmetry breaking. For NA �= NB, sublattice symmetry
is broken and so is parity in the continuum limit. For a
single vacancy, the degeneracy lifting between the two lowest
angular momentum channels j = ±1/2, a clear indication
of parity symmetry breaking, has been indeed observed (see
Fig. 1).

In this paper, we present a continuous Dirac model of
graphene, valid at low energy and applicable to an arbitrary
configuration of isolated vacancies, which accounts for the
above features and shows their direct relation. The localized,
fractional, and pseudoscalar nature of the vacancy charge
is a consequence of the asymmetry between positive and
negative parts of the spectrum as expressed by the occurrence
of zero energy modes. This fractional charge does not dis-
play Friedel-like density oscillations and essentially differs
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from the screening resulting from the insertion of external
charge defects [19–25]. The vacuum charge density and its
corresponding charge are obtained by solving the scattering
problem of massless Dirac fermions by one vacancy while
imposing on their wave function a new type of ‘chiral’ bound-
ary conditions. This choice unveils the topological nature of
the charge and its relation to zero modes under the form
of an index theorem. We emphasize how the phenomena of
a charged vacancy presented here, realizes the physics of
fermion number fractionalization [26–42] with the topological
content of the magnetic flux � now replaced by vacancies
with properly chosen boundary conditions such that

NA − NB ↔ �. (1)

II. DIRAC MODEL

In graphene, carbon atoms condense into a planar hon-
eycomb bipartite lattice built from two triangular sublattices
TA and TB. The Bravais lattice with a two-atom unit cell
and its reciprocal are triangular and the hexagonal Brillouin
zone has two inequivalent crystallographic Dirac points K
and K ′. Around each of them, the low energy excitation
spectrum is conveniently described by noninteracting and in-
plane massless Dirac fermions with the effective continuous
Hamiltonian,

H = −i σ · ∇ =
(

0 D
D† 0

)
(2)

(h̄ = vF = 1), D = −i∂x − ∂y = e−iθ (−i∂r − 1
r ∂θ ) and σ =

(σx, σy). This description was shown to be valid at low en-
ergies even in the presence of electron-electron interactions
up to logarithmic corrections to the Fermi velocity [43,44]
(see Supplemental Material [45]). The operators D and D†

are defined on the direct sum HA ⊕ HB of Hilbert spaces
associated to TA and TB and the corresponding quantum states
are two-component spinors ψ (r) = (ψA ψB)

T
, with ψA,B

being quantum amplitudes on TA and TB, respectively, at
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FIG. 1. Experimental observation of the massless Dirac-
Coulomb spectrum in graphene with broken sublattice/parity sym-
metry (see Ref. [8] for more details). The continuous lines above
are derived from the exact solution of the massless Dirac-Coulomb
system where β is the Coulomb strength and ED is the Dirac point.
The curves E1, E ′

1, E2 describe quasibound states extracted from the
total density of states of the j = 1/2 (E1, E2) and j = −1/2 (E ′

1)
total angular momentum channels. E1, E2, and E ′

1 are also the lowest
quasibound states appearing for the corresponding β > 1/2 values
in the plot. The black and magenta dots correspond to experimental
points obtained at a charged vacancy in graphene. These are obtained
from tunneling conductance data measured as a function of tunneling
voltage at the vacancy site. The existence of the middle branch is a
clear signal for the degeneracy lifting between the two lowest angular
momentum channels j = ±1/2 and thereby an indication of parity
symmetry breaking.

a coarse grained position r. The spectrum of H spans the
continuum, but positive and negative parts can be mapped one
onto the other, a symmetry expressed by

{H, σz} = 0 , (3)

and hereafter called chiral, which is a consequence of the
bipartite structure of the lattice. Moreover, the honeycomb
lattice is invariant under spatial inversion r �→ −r which
decomposes into two mirror symmetries where parity,

x �→ x, y �→ −y, H �→ σxHσx, (4)

exchanges the two sublattices TA and TB.
The vacuum charge density,

ρ(r) = −e
∑

n,En<0

ψ†
n (r)ψn(r)

+ e
∑

n,En<0

ψ†
n (r)ψn(r)

∣∣∣
free

, (5)

corresponds to the particle density associated with electrons
filling all the negative energy states relative to the same quan-
tity in absence of any potentials. Utilizing the completeness
relation ρ(r) takes the symmetric form [46,47],

ρ(r) = e

2

∑
n

sgn (En)ψ†
n (r)ψn(r). (6)

For an infinite system, the charge density ρ(r) is a total di-
vergence (see Refs. [47,48] and Supplemental Material [45]),

ρ(r) = e

2
sgn (M )∇ · �(r), (7)

where the regularizing mass parameter M → 0 removes the
sign ambiguity in (6) in the presence of zero modes. The am-
biguity associated with E = 0 results from the necessity to de-
termine whether or not E = EF = 0 states are occupied. The
introduction of a small mass term is one way to regularize this
ambiguity. The mass term shifts the zero modes to ±M which,
depending on the sign, discriminates between occupying
the zero modes or not. The matrix element

�(r) ≡ 1

2
〈r| tr

(
σσz

1

H − i0

)
|r〉 (8)

is a two-dimensional vector and “tr” is over spinor indices.
Despite being defined over the entire energy spectrum, ρ(r)

turns out to be related to a quantity evaluated at the Fermi
energy, a noteworthy result since (2) is merely valid close to
E = 0. Furthermore, (7) is directly related to features of the
zero-energy subspace. Its dimension, dim ker D + dim ker D†,
obtained by counting all solutions of DψB = D†ψA = 0, can-
not generally be determined, but the relation,

index H = − sgn (M )
∫

dr ∇ · �(r), (9)

holds for index H ≡ dim ker D − dim ker D† [46,47]. Com-
bining (7) and (9) leads to

Q ≡
∫

drρ(r) = − e

2
index H . (10)

In the absence of vacancies, there are no zero modes thus
index H vanishes and so does the charge Q and ρ(r). However,
this may not be the case in the presence of vacancies.

III. SCATTERING DESCRIPTION OF SINGLE VACANCY

The removal of one carbon atom creates a vacancy, here
arbitrarily assigned to be an A vacancy [49]. The correspond-
ing excitation spectrum in the continuum limit is obtained by
considering scattering solutions of the Dirac Hamiltonian (2)
on a plane with a puncture of radius R. Since ρ(r) depends
on the behavior at zero energy, we look for zero modes, i.e.,
solutions of DψB = D†ψA = 0. The general solution is

ψ (r, θ ) ≡
∑
m∈Z

eimθ

(
ψA

m(r)

iψB
m(r)eiθ

)
(11)

with ψA
m(r) = Amrm, ψB

m(r) = Bmr−m−1 and (Am, Bm) con-
stants. Requiring ψ (r → ∞, θ ) = 0, we keep harmonics m <

0 for ψA
m(r) and m � 0 for ψB

m(r).

A. Chiral boundary conditions

We choose appropriate boundary conditions on the scat-
tering potential. Local boundary conditions, e.g., Dirich-
let, ψ (r)|vac = 0 lead either to an over determination or to
particle-hole pair creation (Neumann) [50]. We propose in-
stead a new set of chiral boundary conditions,

ψA
m(r = R) = 0, m � 0,

ψB
m(r = R) = 0, m > 0,

(12)

a close relative of nonlocal boundary conditions introduced in
the study of index theorems for Dirac operators [51–53]. This
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TABLE I. Boundary condition. Boundary conditions for an A/B
vacancy imposed on the radial components ψA,B

m . The conditions
differ only for m = 0, −1 ( j = ±1/2).

A vacancy B vacancy

m ψA
m(R) ψB

m (R) ψA
m(R) ψB

m (R)

� −2 0 0
−1 0 0
0 0 0
� 1 0 0

choice (12) preserves the chiral symmetry (3), a necessary
condition to use expressions (7)–(10) and represent a perfectly
reflecting barrier of probability density (Supplemental Mate-
rial [45]). Implemented on the power law wave function (11),
conditions (12) uniquely lead to a single zero mode

ψ (r) ≡
(

0
iB0eiθ /r

)
(13)

by projecting onto the m = 0 subspace for ψB
m(r) and having

ψA
m ≡ 0. It is worth noting that this eigenfunction reproduces

the tight binding result [3] justified by the absence of any
characteristic scale. This zero mode is quasibound, that is,
decaying but non-normalizable and thus appears as a pro-
nounced peak in the density of states at the Fermi energy.
An analogous choice of boundary conditions for a B vacancy,
presented in Table I, leads to the single zero mode ψ (r) ≡
(A−1/r 0)T [54].

B. Parity symmetry breaking

As required by sublattice symmetry breaking, chiral
boundary conditions (12) do not preserve parity which in
the continuous limit, corresponds to m ↔ −m − 1, ψA

m ↔
−ψB

−m−1 and ψB
m ↔ ψA

−m−1. Indeed, unlike the parity preserv-
ing choice,

ψA
m(r = R) = 0, m > 0,

ψB
m(r = R) = 0, m � 0,

(14)

under conditions (12), the m = 0 solution ψB
0 (r) = ieiθ /r

does not transform into the vanishing m = −1 solution
ψA

−1(r). We thus conclude that the presence of a vacancy nec-
essarily breaks parity and removes the j = ±1/2 degeneracy,
where j ≡ m + 1/2. This point is particularly relevant in light
of recent observation of j = ±1/2 degeneracy breaking by
STM spectroscopy at a vacancy site [8] (Fig. 1).

C. Results—Single vacancy

To relate the existence of the zero mode to a finite vacuum
charge density as given in (9)–(10), we must directly calculate
the index in (9). To that aim, we use the regularized expression
[48],

index H = lim
z→0

Tr

(
z

HB + z
− z

HA + z

)
, (15)

where HB ≡ D†D and HA ≡ DD†. The “Tr” operation here
is over all states. Hereafter we take sign M ≡ 1 in (9), thus

FIG. 2. Single vacancy charge density. Blue: Characteristic be-
havior of ρ(r)/ρ(R) in (18) as a function of x ≡ r

√
z with y ≡

R
√

z = 0.25. Orange: The function y2/x2. Green: The function
πy2 e−2x/x.

arbitrarily fixing the sign of the charge for an A vacancy.
Extending chiral boundary conditions (12) to nonzero energy
scattering states involved in (15) shows how the angular
momentum contributions cancel out except for j = ±1/2 ↔
m = −1, 0. A thorough calculation (Supplemental Material
[45]) yields

index H = − 1

2πR
lim
z→0

∫
dr ∇ ·

(
K0(

√
zr)K1(

√
zr)

K0(
√

zR)K1(
√

zR)
r̂

)
,

(16)

where Kn(x) are the modified Bessel functions of the second
kind. Integrating (16) in the region R < r < ∞, 0 < θ < 2π

and inserting into (10) gives

Q = − e

2
index H = − e

2
· (lim

z→0
1) = − e

2
· 1. (17)

The charge density ρ(r) can be read off the integrand [55]
in (16)

ρ(r) = − e

4πR
∇ ·

(
K0(

√
zr)K1(

√
zr)

K0(
√

zR)K1(
√

zR)
r̂

)
. (18)

In the limit of a pointlike vacancy, R → 0, ρ(r) vanishes
∀r �= 0. Since

∫
dr ρ(r) = −e/2, independent of R, ρ(r) can

be represented by the δ-function distribution

lim
R→0

ρ(r) = − 1

2π
∇ ·

(
e/2

r
r̂

)
. (19)

For finite R, ρ(r) can be approximated from (18) with an arbi-
trarily small finite value of z acting as an IR cutoff. For r

√
z �

1, ρ(r)/ρ(R) ≈ exp (−2
√

zr) and for r
√

z � 1, R
√

z � 1,
ρ(r)/ρ(R) ≈ R2/r2. Thus, the charge density decays close to
the vacancy as ∼1/r2 and decays exponentially, far from the
vacancy (see Fig. 2).

The resulting charge density ρ(r) is thus a total divergence
with a fractional vacuum charge Q = −e/2, localized at the
boundary of the vacancy (Figs. 2 and 3). In the simplest ap-
proximation the corresponding potential, induced by electron
interaction, is Coulomb-like, i.e., decays as 1/r. The same
conclusions apply to a B vacancy but with an opposite sign
of the charge (Supplemental Material [45]). This sign flip
Q → −Q in the exchange TA ↔ TB points to the pseudoscalar
nature of the vacuum charge. Hence a nonzero Q provides a
clear signal for the breaking of parity symmetry of the ground
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FIG. 3. Charge of vacancy configurations. Top: Single A vacancy
(NA = 1, NB = 0). There is one zero mode, index H = |NA − NB| =
1 and a finite fractional charge Q = e/2. Bottom: NA = NB = 1.
Adding a B vacancy, the zero mode disappears, index H = |NA −
NB| = 0, and so does the fractional charge on both vacancy locations
represented for visual aid, by the green (A-vacancy) and purple
(B-vacancy) outlines. (a) Tight-binding calculation of the spatial
charge density |ρ(r)| obtained from definition Eq. (6) and depicted
by the blue spots. The total charge in a two lattice spacing radius
is Q ≈ 10−1 (in units of e/2) for the single vacancy (top) and
Q�, Q� ≈ 10−8 for NA = NB = 1 (bottom). A small positive mass
term M ≈ +10−9 has been used together with armchair boundary
conditions which suppress charge accumulation on the boundary
(Supplemental Material [45]). (b) Continuous Dirac model calcula-
tion of the spatial charge density |ρ(r)| for the same situations as
in (a). These results are obtained using low energy scattering theory
(Supplemental Material [45]). Note the different scales displayed on
the right color code.

state and the lifting of the j = ±1/2 degeneracy. Including
spin degeneracy, the overall “fractional charge” is 2 × Q =
±e.

It is interesting to further understand the origin of this finite
charge. The creation of a vacancy leads to an asymmetry
between positive and negative energy states. An ill-defined
albeit suggestive way to visualize it is offered by the spatial
integral of (6) which together with (10) gives

Q = e

2

(∑
En>0

1 −
∑
En<0

1

)
= − e

2
index H . (20)

This “spectral asymmetry,” of topological origin [51], eventu-
ally amounts to a counting of zero modes only.

All together, the fractional pseudoscalar charge, the result-
ing Coulomb-like potential [56] and the lifting of the j =
±1/2 degeneracy provide a comprehensive explanation to the
observation of a vacancy charge and parity breaking obtained
by STM measurements at a vacancy location in graphene [8].
Note that the charge density (19) does not display otherwise
expected Friedel-like oscillations for the screening of a scalar
charge. These findings thus constitute an original example of a
nonzero index in an open space, independent of the existence
of an underlying gauge field (above one spatial dimension).

IV. MULTIPLE VACANCIES

We now generalize the previous results to arbitrary con-
figurations of a finite number of isolated vacancies. As in the

single vacancy case, this description assumes noninteracting
electrons, corresponding to the Dirac and tight-binding model
of graphene. We discuss the validity of the associated multi-
vacancy features in the discussion section.

The zero mode wave functions are now difficult to obtain
primarily due to multiple scattering between vacancies and the
lack of rotational symmetry. Since the size of each vacancy
is the lattice spacing, we assume constant wave function
along the boundary of each vacancy making them pointlike
scatterers [57]. Starting from the zero mode eigenfunctions,

ψ�(z) = 1

z∗ − z∗
A

(
0
1

)
, ψ�(z) = 1

z − zB

(
1
0

)
(21)

established for a single A or B vacancy located in zA,B, z ≡
x + iy, we propose the ansatz,

ψN (z) =
(

0
1

) NA∑
k=1

qkA

z∗ − z∗
kA

+
(

1
0

) NB∑
k=1

qkB

z − zkB
(22)

for a configuration of N = NA + NB vacancies located in
zkA and zkB. This spinor wave function ψN ≡ (ψA

N ψB
N )

T

reproduces all the single vacancy features previously obtained
by means of chiral boundary conditions (12), provided we
require ψA

N (zkA) = ψB
N (zkB) = 0. The resulting constraints on

the parameters qkA,kB take the matrix form,

MqB = 0, M†qA = 0, (23)

where Mi j = (ziA − z jB)−1 is a NA × NB Cauchy matrix of full
rank ∀ziA, z jB [58]. Assuming, without loss of generality, that
NA � NB, then rank M = rank M† = NB and the solution of
MqB = 0 becomes the trivial one qB = 0, while M†qA = 0 has
NA − NB independent solutions, i.e., |NA − NB| zero modes for
arbitrary NA, NB. As required, this result coincides with the
number of zero modes proven to exist in any vacancy filled
bipartite lattice [1–5]. Moreover, for NA � NB, all the zero
modes fulfill ψA

N ≡ 0 and DψB
N = 0, thus, for a multivacancy

configuration, index = # of zero modes = NA − NB. Utilizing
scattering theory, we additionally obtained a closed form
expression for ρ(r) as given in (7) for a general multivacancy
configuration (see Supplemental Material [45]).

We now dwell on cases which illustrate the underlying
features of many-vacancy configurations. In these cases we
illustrate the correspondence of our Dirac model with tight-
binding numerics. Starting from a single A vacancy (NA = 1)
(Fig. 3). A zero mode appears associated to index H = NA =
1, together with a vacuum charge Q = −(1/2)e localized at
the vacancy site and a broken parity symmetry. Adding a B
vacancy (Fig. 3) implies index H = |NA − NB| = 0 so that the
charge vanishes at each vacancy location and parity symmetry
is restored.

Adding yet another A vacancy changes the situation since
index H = |NA − NB| = 1 and parity symmetry is again bro-
ken. Each A vacancy now holds a finite charge Q� smaller
than (1/2)e which depends on the exact spatial configuration.
The B vacancy carries no charge, Q� = 0, a direct conse-
quence of the vanishing of qB in (23). These results, displayed
in Fig. 4, have an attractive generalization. Consider a NA −
NB = 1 configuration where all the A vacancies are charged
(Q�) and the B vacancies necessarily uncharged (Q�). Adding
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FIG. 4. Configuration of three vacancies NA = 2, NB = 1. There
is one zero mode, index H = |NA − NB| = 1, so that the two A
vacancies (green upward outline) have a finite and equal charge Q�
in this symmetric configuration and the B vacancy (purple downward
outline) is not charged Q� = 0. (a) Tight-binding calculation of
the spatial charge density |ρ(r)| obtained from definition Eq. (6)
and depicted by the blue spots. The total charge is Q� ≈ 10−1 (in
units of e/2) and Q� ≈ 10−4 on each A, B vacancy, respectively. A
small positive mass term M ≈ +10−9 has been used together with
armchair boundary conditions which suppress charge accumulation
on the boundary (Supplemental Material [45]). (b) Continuous Dirac
model calculation of the spatial charge density |ρ(r)| for the same
situation as in (a). These results are obtained using low energy
scattering theory (Supplemental Material [45]). The homogeneous
purple region around the A vacancies is ≈10−5.

a B vacancy wherever in the plane markedly changes this
picture by switching off all the charges in the plane (Q�, Q�).
This feature can be viewed as a topological state switch,
where the creation of one remote vacancy of the right kind
switches off, at once, all the finite charges Q� on the graphene
lattice. This effect is independent of the relative position of the
vacancies and results only from the vanishing of the overall
index.

V. DISCUSSION

The physics of a charged vacancy presented here bears
essential similarities with 2 + 1 quantum electrodynamics
(QED), such as fermion number fractionalization and parity
anomaly [26–42]. In the latter case, a dynamical external
gauge field induces zero modes of massless planar fermions
and vacuum charge with abnormal parity. The index of
the corresponding Dirac operator follows (10) and acquires
nonzero values proportional to the strength of the gauge field.
Hence, the present results provide, for graphene, a measurable
realization of these QED effects with the topological content
of the gauge field now replaced by vacancies with properly
chosen boundary conditions. Furthermore, our findings dis-
play a coherent description of existing measurements [6,8]
and provide additional predictions that can be tested with an
appropriate experimental control on multivacancy configura-
tions. Several aspects of these features may not be realized in
an experimental setup. Due to noise and interactions vacancies
will only be correlated up to some finite screening length.
Within this regime, interactions may also result in a broaden-
ing and delocalizing of charge around the vacancies especially
if these are tightly packed. It would be interesting to study the
extent of this effect in the framework of an interacting model
such as the Hubbard model.

Including spin degrees of freedom in the Dirac picture and
connecting with Lieb’s theorem [2] may enrich the picture
presented here by associating to a vacancy the quantum dy-
namics of a localized vacuum spin which is proportional to
the Dirac index. Possible connections to recent observations
of vacancy magnetic moments [11–15] should be investigated
together with a generalization to other bipartite lattices and to
nonisolated vacancies.
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