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For dielectric multilayered metamaterials, the effective-parameter representation is known to be insensitive to
geometrical features occurring at deeply subwavelength scales. However, recent studies on periodic and aperiod-
ically ordered geometries have shown the existence of certain critical parameter regimes where this conventional
wisdom is upended, as the optical response of finite-size samples may depart considerably from the predictions
of standard effective-medium theory. In these regimes, characterized by a mixed evanescent/propagating light
transport, different classes of spatial (dis)order have been shown to induce distinctive effects in the optical
response, in terms of anomalous transmission, localization, enhancement, absorption, and lasing. Here we further
expand these examples by considering a quasiperiodic scenario based on a modified-Fibonacci geometry. Among
the intriguing features of this model there is the presence of a scale parameter that controls the transition from
perfectly periodic to quasiperiodic scenarios of different shades. Via an extensive parametric study, this allows
us to identify the quasiperiodicity-induced anomalous effects, and to elucidate certain distinctive mechanisms
and footprints. Our results hold potentially interesting implications for the optical probing of structural features
at a resolution much smaller than the wavelength, and could also be leveraged to design novel types of absorbers
and low-threshold lasers.
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I. INTRODUCTION

Dielectric multilayers constitute one of the simplest and
most common classes of optical metamaterials [1,2], and
can be fabricated with high precision via well-established
deposition processes. In the regime of deeply subwavelength
layers, spatial-dispersion (nonlocal) effects tend to be negligi-
bly weak, so that these materials can be accurately modeled
via macroscopic effective parameters that do not depend on
the specific geometrical order and thickness of the layers, but
only on their constitutive properties and filling fractions. This
effective-medium-theory (EMT) model [3] is known to capture
the macroscopic optical response quite accurately. However,
recent theoretical [4] and experimental studies [5] on periodic
arrangements have pointed out that nonlocal effects may be
counterintuitively amplified within certain critical parameter
regimes mixing evanescent and propagating light transport,
thereby leading to the breakdown of the EMT approximation.
Follow-up studies [6–11] have provided alternative interpreta-
tions of these effects, and have suggested possible corrections
to the conventional EMT model in order to capture them.
These corrections typically include frequency- and wave-
number-dependent terms to account for nonlocality, and pos-
sibly magnetoelectric coupling to ensure self-consistency. In
essence, the above results indicate that the optical response
of finite-size, fully dielectric multilayered metamaterials may
exhibit an anomalous sensitivity to geometrical features at
deeply subwavelength scales, which may find intriguing
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applications in numerous fields, ranging from optical sensing
to switching and lasing.

A fascinating and substantially uncharted implication of
the above outcomes is that spatial order (or disorder) may play
a key role not only in the diffractive regime of wavelength-
sized layers (typical, e.g, of photonic crystals [12]), but
also at much smaller scales. For instance, theoretical [13]
and experimental [14] studies in randomly disordered di-
electric multilayers have demonstrated the occurrence of
anomalous Anderson-type localization effects in stark con-
trast with the EMT prediction of an essentially transparent
behavior. Within this framework, we have recently initiated
a systematic exploration of aperiodically ordered geometries
[15,16], which constitute the middle ground between per-
fect periodicity and random disorder. These geometries have
been extensively studied in the diffractive regime of pho-
tonic “quasicrystals” [17–19], but their interplay with mixed
evanescent/propagating light transport at deeply subwave-
length scales remains largely unexplored. In particular, we
have studied the Thue-Morse [20] and Golay-Rudin-Shapiro
[21] geometries, characterized by singular-continuous and
absolutely continuous spatial spectra, respectively [22]; from
a measure-theoretic viewpoint (Lebesgue decomposition the-
orem), these represent two of the three distinctive spectral
traits of aperiodic order [22]. For these geometries, we have
explored the critical parameter regimes leading to the occur-
rence of the EMT-breakdown phenomenon, highlighting some
similarities and fundamental differences from what observed
in the periodic and random scenarios.

To close the loop, here we focus on quasiperiodic geome-
tries characterized by discrete spatial spectra, representing the
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FIG. 1. Problem schematic: A dielectric multilayered metamate-
rial with modified-Fibonacci geometry (details in the text), embed-
ded in a homogeneous dielectric background with relative permittiv-
ity εe, is obliquely illuminated by a plane wave with TE polarization.

remaining of the aforementioned distinctive traits [22], which
has never been explored in connection with deeply subwave-
length dielectric multilayers. In this context, the quintessen-
tial representative geometries are based on Fibonacci-type
sequences [23]. Specifically, here we consider a modified-
Fibonacci geometry [24] characterized by a scale-ratio pa-
rameter that can be exploited to study the transition from
periodic to quasiperiodic order, so as to identify and elucidate
the anomalous light-transport effects genuinely induced by
quasiperiodic order.

Accordingly, the rest of the paper is organized as follows.
In Sec. II we outline the problem and describe its geometry
and main observables. In Sec. III we illustrate some rep-
resentative results from a comprehensive parametric study,
indicating the occurrence of anomalous light-transport effects
(in terms of transmittance, field enhancement, absorption, and
lasing) that are in striking contrast with the predictions from
conventional EMT and with what is observable in periodic
counterparts. We also address the development of nonlocal
corrections that can capture some of these effects. Finally, in
Sec. IV we draw some conclusions and outline some possible
directions for further research.

II. PROBLEM FORMULATION

A. Geometry

The geometry of interest is schematically illustrated in
Fig. 1. Our multilayered metamaterial is composed of dielec-
tric layers with alternating high and low relative permittivity
(εH and εL, respectively), and generally different thicknesses
da and db distributed according to the Fibonacci sequence.
The structure is assumed of infinite extent along the x and
y directions, and is embedded in a homogeneous background
with relative permittivity εe. We assume that all materials are

nonmagnetic (relative permeability μ = 1) and, for now, we
neglect optical losses.

The quasiperiodic Fibonacci geometry can be equivalently
generated in several ways. One possibility is to iterate the
well-known inflation rules [23]

a → ab, b → a, (1)

associating the thicknesses da and db to the symbols a and b,
respectively, in the obtained sequence. Equivalently, one can
exploit a cut-and-project approach, and calculate directly the
positions of the layer interfaces as [24]

zn = da

∥∥∥∥ n

ϕ

∥∥∥∥ + db

(
n −

∥∥∥∥ n

ϕ

∥∥∥∥
)

, (2)

where ϕ ≡ (1 + √
5)/2 ≈ 1.618 is the Golden Mean and

‖x‖ =
{

n, n � x < n + 1
2 ,

n + 1, n + 1
2 � x � n + 1.

(3)

It can be shown that, in the asymptotic limit of an infinite
sequence, the ratio between the number of symbols a and b
approaches the Golden Mean [24], viz.,

lim
N→∞

Na

Nb
= ϕ, Na + Nb = N. (4)

It is important to note that, at variance with typical Fibonacci-
type multilayer geometries in the literature [25], here we
only assume the layer thicknesses distributed according to
the Fibonacci sequence, whereas the relative permittivities are
simply alternated; this implies that, for each layer, there are
four possible combinations of thickness and relative permit-
tivity. This modified scheme facilitates the comparison with
the EMT predictions as well as with a periodic reference
structure. Accordingly, we generally assume da � db, and
define the scale-ratio parameter

ν = db

da
, 0 < ν � 1. (5)

By changing ν, we can study the transition between perfect
periodicity (ν = 1) and variable shades of quasiperiodic order
(ν < 1). Within this framework, it is expedient to define the
average layer thickness d̄ = L/N , with L denoting the total
thickness of the multilayer (see Fig. 1). By exploiting the
result in (4), it can be readily shown that, in the asymptotic
limit of an infinite sequence,

d̄ = ϕda + db

1 + ϕ
. (6)

As previously mentioned, the spatial spectrum associ-
ated with our modified-Fibonacci geometry is discrete [23].
Specifically, it can be shown that, in the asymptotic limit of an
infinite sequence, there is a double infinity of spectral peaks
localized at wave numbers [24]

kzpq = 2π

d̄

(p + qϕ)

(ϕ + 1)
, (7)

with amplitudes

Spq = sin Wpq

Wpq
, (8)
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FIG. 2. Representative spatial spectra (magnitude) pertaining to a geometry with N = 512 elements, for representative values of the scale-
ratio parameter. (a) ν = 1, (b) ν = 0.9, (c) ν = 0.8, (d) ν = 1/ϕ, (e) ν = 0.4, and (f) ν = 0.2. The spectra are normalized with respect to the
value at kz = 0.

where

Wpq = π

d̄
(pda − qdb) = π (1 + ϕ)(p − qν)

ν + ϕ
. (9)

As typical of quasiperiodicity, the above spectrum is generally
characterized by pairwise-incommensurate harmonics [24].
Quite interestingly, it can be shown [24] (see also Appendix A
for details) that, for commensurate scales (i.e., rational values
of the scale ratio), the spatial spectrum is periodic, even
though the geometry remains aperiodic in space. Moreover, it
can be verified that for the periodic case (ν = 1, i.e., da = db),
the conventional periodic spatial spectrum is recovered (see
Appendix A for details).

For illustration, Fig. 2 shows some representative spatial
spectra pertaining to a finite-size (N = 1024) structure, for ra-
tional and irrational values of ν. By focusing on the dominant
spectral peaks, as ν decreases we observe a progressive weak-
ening of the harmonics at integer values of 2π/d̄ (typical of
periodicity) and the appearance of new dominant harmonics
at intermediate positions.

The above modified-Fibonacci geometry has been studied
in connection with antenna arrays [26,27] but, to the best of
our knowledge, has never been applied to optical multilayers.

In all examples considered in our study below, the Fi-
bonacci sequence is generated via (2), and the relative per-
mittivity distribution starts with εH .

B. Statement and observables

As shown in Fig. 1, the structure under study is obliquely
illuminated by a plane wave with transverse-electric (TE)
polarization. Specifically, we assume an implicit exp (−iωt )
time-harmonic dependence, and a y-directed, unit-amplitude
electric field

E (i)
y (x, z) = exp [ike(x sin θi + z cos θi )], (10)

where θi is the angle of incidence, ke = k
√

εe is the ambient
wave number in the exterior medium, and k = ω/c = 2π/λ

is the vacuum wave number (with c and λ denoting the
corresponding speed of light and wavelength, respectively).

Starting from some pioneering experimental [28] and theo-
retical [29] studies in the 1980s, prior works on quasiperiodic
Fibonacci-type multilayers have essentially focused on the
diffractive regime of photonic quasicrystals (da,b � λ), and
have elucidated the physical mechanisms underpinning the
localization [30], photonic dispersion [31], perfect transmis-
sion [32–34], band gap [35], and field-enhancement [36]
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properties, as well as the multifractal [37], critical [38], and
band-edge states [39]. Besides the aforementioned differences
in the geometrical model, a key aspect of our investigation
is the focus on the deeply subwavelength regime da,b � λ.
In this regime, for the assumed TE polarization, the opti-
cal response of the multilayer tends to be accurately mod-
eled via conventional EMT in terms of an effective relative
permittivity [3]

ε̄‖ = L−1
N∑

n=1

ε(n)d (n), (11)

where ε(n) and d (n) represent the relative permittivity (εH,L)
and thickness (da,b), respectively, of the nth layer. For the
modified-Fibonacci geometry under study, it can be shown
(see Appendix B for details) that the following approximation
holds with good accuracy:

ε̄‖ ≈ εH + εL

2
, (12)

irrespective of the scale-ratio parameter. By virtue of this re-
markable property, we can explore the transition from perfect
periodicity to quasiperiodicity maintaining the same effective
properties; in other words, by varying the scale ratio ν, the
multilayer maintains the same proportions of high- and low-
permittivity constituents, so that the only difference is their
spatial arrangement.

As we will show hereafter, contrary to conventional
wisdom, the spatial order may play a key role also
at deep subwavelength scales in co-action with mixed
evanescent/propagating light transport. To elucidate this
mechanism, we rely on a rigorous solution of the boundary-
value problem based on the well-established transfer-matrix
formalism [40] (see Appendix C for details). Specifically, we
calculate the transmission coefficient

τN = E (t )
y

∣∣
z=L

E (i)
y

∣∣
z=0

= 2

χN + iυN
, (13)

where χN and υN denote the trace and antitrace, respectively,
of the transfer matrix associated to a N-layer structure (see
Appendix C for details). Other meaningful observables of
interest are the reflection (and absorption, in the presence
of losses) coefficient, as well as the field distribution in the
multilayer.

III. REPRESENTATIVE RESULTS

A. Parametric study

To gain a comprehensive view of the phenomenology
and identify the critical parameters, we carry out a paramet-
ric study of the transmission response of the multilayered
metamaterial by varying the incidence direction, electrical
thickness and number the layers, and scale ratio. In what
follows we assume the same constitutive parameters for the
layers (εL = 1, εH = 5) and exterior medium (εe = 4) utilized
in previous studies on periodic and aperiodic (either orderly
or random) geometries [4,10,13,14,20,21], so as to facilitate
direct comparison of the results. Recalling the approximation
in (12), this corresponds to an effective medium with ε̄‖ ≈ 3;

we stress that this value is essentially independent of the scale
ratio, and therefore holds for all examples considered in our
study. In the same spirit, although we are not bound with
specific sequence lengths, we assume power-of-two values for
the number of layers N , similar to our previous studies on
Thue-Morse [20] and Golay-Rudin-Shapiro [21] geometries.
Moreover, to ensure meaningful comparisons among different
geometries, we parametrize the electrical thickness in terms
of the average thickness d̄ in (6), so that structures with same
number of layers have the same electrical size. In order to
maintain the average thickness for different values of the
scale ratio, it readily follows from (5) and (6) that the layer
thicknesses need to be adjusted as

da = (1 + ϕ)

(ν + ϕ)
d̄, db = νda. (14)

Our study below is focused on the deeply subwavelength
regime 0.01λ < d̄ < 0.05λ, with incidence angles 30◦ < θi �
60◦. This last condition implies that, for the assumed constitu-
tive parameters, the field is evanescent in the low-permittivity
layers and propagating in high-permittivity ones. Prior studies
on periodic and aperiodic configurations [4,10,13,14,20,21]
have shown that the anomalous phase-accumulation mecha-
nism underlying this mixed light-transport regime can induce
a large amplification of the nonlocal effects, so that the optical
response exhibits a strongly enhanced sensitivity to geometri-
cal variations at deeply subwavelength scales. The maximum
angle of incidence is chosen nearby the critical angle θ̄c =
arcsin (

√
ε̄‖/εe) ≈ 60o, which defines the effective-medium

total-internal-reflection condition.
Figures 3, 4, and 5 show the transmittance response (|τN |2)

as a function of the average electrical thickness of the layers
and angle of incidence, for N = 128, 256, and 512 layers,
respectively. Each figure is organized in six panels, per-
taining to representative values of the scale ratio transition-
ing from perfect periodicity (ν = 1) to different degrees of
quasiperiodicity, with both rational (ν = 0.8, 0.4, 0.2) and
irrational (ν = 1/ϕ ≈ 0.618) values; also shown is the ref-
erence EMT response pertaining to the effective relative
permittivity in (12).

At a qualitative glance, we observe a generally good
agreement between the EMT and periodic configurations. As
intuitively expected, both cases exhibit a regime of substantial
transmission (with Fabry-Pérot-type fringes) within most of
the observation range, with an abrupt transition to opaqueness
in the vicinity of the critical angle θ̄c ≈ 60◦. Although it is
somehow hidden by the graph scale, a closer look around the
transition region would in fact reveal significant differences
between the EMT and periodic responses, as extensively
studied in [4,6–11]. The quasiperiodic configurations display
instead visible differences with the EMT and periodic coun-
terparts, also away from the critical-incidence condition, man-
ifested as the appearance of medium- and low-transmission
regions whose extent and complex interleaving increases with
increasing size and decreasing values of the scale-ratio param-
eter. In what follows, we carry out a systematic, quantitative
analysis of these differences and investigate the underlying
mechanisms.
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FIG. 3. Comparison among the transmittance responses (|τN |2, in false-color scale) of multilayered dielectric metamaterials with modified-
Fibonacci geometry, for N = 128 layers, εL = 1, εH = 5, εe = 4, as a function of the layer electrical thickness d̄/λ and angle of incidence θi,
and for varying degrees of quasiperiodicity. (a) EMT prediction. (b)–(f) Responses for ν = 1 (perfect periodicity), ν = 0.8, ν = 1/ϕ, ν = 0.4,
and ν = 0.2, respectively.

FIG. 4. Comparison among the transmittance responses (|τN |2, in false-color scale) of multilayered dielectric metamaterials with modified-
Fibonacci geometry, for N = 256 layers, εL = 1, εH = 5, εe = 4, as a function of the layer electrical thickness d̄/λ and angle of incidence θi,
and for varying degrees of quasiperiodicity. (a) EMT prediction. (b)–(f) Responses for ν = 1 (perfect periodicity), ν = 0.8, ν = 1/ϕ, ν = 0.4,
and ν = 0.2, respectively.
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FIG. 5. Comparison among the transmittance responses (|τN |2, in false-color scale) of multilayered dielectric metamaterials with modified-
Fibonacci geometry, for N = 512 layers, εL = 1, εH = 5, εe = 4, as a function of the layer electrical thickness d̄/λ and angle of incidence θi,
and for varying degrees of quasiperiodicity. (a) EMT prediction. (b)–(f) Responses for ν = 1 (perfect periodicity), ν = 0.8, ν = 1/ϕ, ν = 0.4,
and ν = 0.2, respectively.

B. Near-critical incidence

As previously highlighted, nearby the critical angle θi ≈
60◦, substantial departures of the optical response from the
EMT predictions can be observed also in the case of periodic
geometries [4,6–11]. However, the geometry under study
exhibits different types of anomalies that are distinctive of
quasiperiodic order. As an illustrative example, Fig. 6 com-
pares the transmittance cuts at θi = 60.6◦, for varying sizes
and scale ratios. For these parameters, the field in the EMT
and periodic cases is evanescent and, although some differ-
ences are visible between the two responses, the transmission
is consistently very low. Conversely, for increasing departures
from periodicity, we start observing a general increase in
the transmittance, with the occasional appearance of near-
unit transmission peaks. As a general trend, for decreasing
values of the scale-ratio parameter and increasing size, these
peaks tend to narrow down, increase in number, and move
toward smaller values of the electrical layer thickness. Perfect
transmission peaks have been observed in previous studies on
Fibonacci multilayers in the diffractive (quasicrystal) regime
[32–34]. From the theoretical viewpoint, they are a manifes-
tation of extended optical states that can exist in quasiperiodic
geometries as a consequence of enforced or hidden sym-
metries [34]. From the mathematical viewpoint, these peaks
correspond to conditions where the trace of the transfer matrix
is equal to two and the antitrace vanishes [see (13)]. Quite
remarkably, in our case, these peaks may be observed even
for electrical thicknesses as small as d̄ ∼ 0.01λ, and rela-
tively small (N = 128) sizes. For basic illustration, Figs. 6(d)

FIG. 6. (a)–(c) Representative transmittance cuts from Figs. 3–5
at near-critical-incidence (θi = 60.6◦), for N = 128, 256, and 512,
respectively. Note the semi-log scale; in (c) the curves pertaining to
the EMT and periodic cases are not visible since the transmittance
level is below 10−4. (d) and (e) Representative geometries for N =
128 layers, with ν = 0.8 and ν = 0.4, respectively; total lengths are
not to scale.
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FIG. 7. Representative electric-field (normalized-magnitude) distributions for near-critical-incidence states exhibiting high transmission
and/or field enhancement. (a) N = 128, ν = 0.2, d̄/λ = 0.0157, θi = 60.6◦. (b) N = 256, ν = 0.4, d̄/λ = 0.017, θi = 60.6◦. (c) N = 512,
ν = 0.2, d̄/λ = 0.0104, θi = 60.6◦. (d) N = 128, ν = 1/ϕ, d̄/λ = 0.046, θi = 61.6◦. (e) N = 256, ν = 0.4, d̄/λ = 0.0366, θi = 60.85◦. (f)
N = 512, ν = 0.2, d̄/λ = 0.0478, θi = 59.35◦.

and 6(e) show two representative geometries associated with
near-unit transmission peaks.

Figures 7(a)–7(c) show the field distributions (inside
the multilayer) pertaining to three representative high-
transmission peaks. Typical common features that can be
observed include self-similarity and field enhancement; these
characteristics have also been observed in the diffractive
(photonic-quasicrystal) regime [36,37]. In fact, for larger
(but still deeply subwavelength) electrical thicknesses, field-
enhancement factors up to ∼300 can be observed for near-
critical incidence, as exemplified in Figs. 7(d)–7(f).

C. Noncritical incidence

Away from critical-incidence conditions, the differences
between the quasiperiodic and periodic/EMT configuration
become even more pronounced. Figures 8 and 9 shows some
representative transmittance cuts at θi = 50.1◦ and 40.1◦,
respectively. For these parameter configurations, the EMT and
periodic responses are near unit and hardly distinguishable.
As the scale ratio decreases, we observe the appearance of
a rather wide band gap at the upper edge of the electric-
thickness range, and the progressive formation of secondary
band gaps at increasingly smaller values of the electrical
thickness. For increasing sizes, these band gaps tend to

become denser and more pronounced. Quite interestingly, the
position of certain band gaps at particularly small values of
the electrical thickness (d̄ ∼ 0.01λ) seems to be rather robust
with respect to the scale ratio.

To gain some insight in the effect of the structure size,
Fig. 10 shows the transmittance cuts for a fixed value of the
scale ratio (ν = 1/ϕ) for the number of layers N ranging from
128 to 1024. As the size grows, we observe an increasing
complexity with fractal-type structure. This is not surprising,
as the fractal nature of the band structure is a well-known dis-
tinctive trait of Fibonacci-type photonic quasicrystals [29,35],
but it is still noteworthy that such complex behavior is visible
at the deeply subwavelength scales of interest here.

To elucidate the role played by the scale ratio, Fig. 11 com-
pares the field distributions for fixed size (N = 128), noncrit-
ical incidence conditions (θi = 54◦), and electrical thickness
d̄ = 0.024λ, and various values of ν. As can be observed,
the field gradually transitions from a standing-wave, high-
transmission character for the periodic case (in fair agreement
with the EMT prediction), to a progressively decaying, low-
transmission behavior as the scale ratio decreases. It is quite
astounding that these marked differences emerge for layers as
thin as d̄ = 0.024λ and a relatively small (∼3λ) structure.

For the periodic [10] and Thue-Morse [20] geometries,
it was shown that the EMT breakdown could be effectively
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FIG. 8. (a)–(c) Representative transmittance cuts from Figs. 3–
5 away from critical incidence (θi = 50.1◦), for N = 128, 256, and
512, respectively. Note the semi-log scale.

interpreted and parametrized in terms of error propagation
in the evolution of the trace and antitrace of the multilayer
transfer matrix, which is directly related to the transmission
coefficient via (13). Interestingly, for the periodic case, it is
possible to calculate analytically some closed-form bounds
for the error propagation so as to identify the critical parame-
ter regimes. Although for standard Fibonacci-type geometries
(with both permittivity and thickness distributed according to
the Fibonacci sequence) the trace and antitrace evolution can
be studied via simple iterated maps [29,41], these unfortu-
nately cannot be applied to our modified geometry. Neverthe-
less, they can be studied numerically from the transfer-matrix
cascading (see Appendix C for details). For θi = 50◦ and d̄ =
0.015λ, Fig. 12 illustrates the evolution of the trace, antitrace,
and transmission-coefficient errors

�χN = |χN − χ̄N |, �υN = |υN − ῡN |, �τN = |τN − τ̄N |,
(15)

where the overbar indicates the EMT prediction; the evo-
lution is shown as a function of the number of layers N ,
for representative values of the scale-ratio parameter. As a
general trend, we observe fast, oscillatory behaviors with
envelopes that grow with the multilayer size. For these

FIG. 9. (a)–(c) Representative transmittance cuts from Figs. 3–
5 away from critical incidence (θi = 40.1◦), for N = 128, 256, and
512, respectively. Note the semi-log scale.

parameters, the periodic case exhibits the slowest increase,
with errors that remain below ∼0.1; the reader is referred
to Ref. [10] for a detailed analytical study. As the geometry
transitions to quasiperiodicity (ν < 1), we observe that the
errors tend to grow increasingly faster with the number of
layers, reaching values ∼10 for the trace and antitrace, and
approaching the maximum value of 2 for the transmission
coefficient. These results quantitatively summarize at a glance
the effects of quasiperiodicity in the EMT breakdown or,
in other words, its visibility at deep subwavelength scales.
Moreover, they also illustrate the important differences with
respect to metallodielectric structures, which also feature a
mixed (evanescent/propagating) light transport. In fact, for
metallodielectric structures such as hyperbolic metamaterials,
the errors in the trace and antitrace can be significant even
for a very small number of deeply subwavelength layers,
thereby leading to visible “bulk effects,” such as additional
extraordinary waves [42]. Conversely, in the fully dielectric
case, the mechanism is essentially based on boundary effects,
with errors that tend to be negligibly small for few layers, but,
under certain critical conditions, may accumulate and grow
(though nonmonotonically) as the structure size increases.
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FIG. 10. (a) and (b) Representative transmittance cuts from
Figs. 3–5 away from critical incidence (θi = 50.1◦ and 40.1◦, respec-
tively), for ν = 1/ϕ and various values of the number of layers N .
(a) Note the semi-log scale and the addition of the case N = 1024.

Strong field enhancement can also be observed for noncriti-
cal incidence. In this case, the most sensible enhancements are
exhibited by edge modes around the band gap appearing for
d̄ ∼ 0.04λ, still well within the deep subwavelength regime.

FIG. 11. Comparison among electric-field (normalized-
magnitude) distributions for N = 128, d̄/λ = 0.024, and θi = 54◦,
and various values of the scale-ratio parameter. Also shown, as a
reference, is the EMT prediction.

Figure 13 illustrates three representative modes, for different
sizes, scale ratio, and incidence conditions. For increasing
size, we observe that the field distributions tend to exhibit
self-similar, fractal-like structures, with enhancements of over
two orders of magnitudes. Such levels of enhancement are

FIG. 12. (a)–(e) Evolution of the trace error in (15) as a function of the number of layers, for d̄/λ = 0.015 and θi = 50◦, and ν = 1, 0.8,
1/ϕ, 0.4, 0.2, respectively. (f)–(j) Corresponding antitrace errors. (k)–(o) Corresponding transmission-coefficient errors. Note the semi-log
scale in (a)–(j).
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FIG. 13. Representative electric-field (normalized-magnitude) distributions of states exhibiting high field enhancement. (a) N = 128, ν =
0.2, d̄/λ = 0.0498, θi = 52.35◦. (b) N = 256, ν = 0.2, d̄/λ = 0.0443, θi = 46.1◦. (c) N = 512, ν = 0.2, d̄/λ = 0.048, θi = 48.6◦.

in line with what is observed in prior studies on aperiodic
geometries [20,21], and in substantial contrast with the EMT
prediction (see [20] for details):

γ̄ =
√

εe cos θi√
ε̄‖ − εe sin2 θi

, (16)

which, for the parameters in Fig. 13, is �2.

D. Nonlocal corrections

For the periodic case (ν = 1), it was shown [10] that the
error-propagation phenomenon illustrated in Fig. 12 could
be significantly mitigated by resorting to suitable nonlocal
corrections (and possibly magnetoelectric coupling [7]) in
the effective-medium model, which could be computed an-
alytically in closed form. In principle, such strategy could
be applied to the quasiperiodic scenario (ν < 1) of interest
here, but there is no simple analytical expression for the
nonlocal corrections. For a basic illustration, we resort to
a fully numerical approach, by parametrizing the effective
relative permittivity as

ε̂‖(kx ) = a0
(
1 + a2k2

x + a4k4
x

)
1 + b2k2

x + b4k4
x

, (17)

where the wave number dependence implies the nonlocal
character (with only even powers of kx in view of the inherent
symmetry), and the coefficients a0, a2, a4, b2, b4 generally
depend on the frequency and on the multilayer geometrical
and constitutive parameters. These coefficients are computed
numerically by minimizing the mismatch with the exact
transmission response at selected wave number values (or,
equivalently, incidence directions). Specifically, for a given
multilayer and electrical thickness, we compute the coefficient
a0 by minimizing the mismatch for normal incidence (kx = 0),
and the remaining four coefficients by minimizing the root-
mean-square error for incidence angle θi varying from 1◦ to
60◦ (with step of 1◦, and kx = ke sin θi). For the numerical
optimization, we utilize a Python-based implementation of
the Nelder-Mead method available in the SciPy optimization
library [43].

Figure 14 illustrates some representative results, for N =
128 layers, ν = 0.4 and d̄ = 0.015λ. Specifically, we com-
pare the transmission coefficient error �τN in (15) for the

conventional EMT and the nonlocal effective model in (17)
as a function of the incidence angle. As can be observed, a
significant reduction is attained. Qualitatively similar results
(not shown for brevity) are obtained for different lengths,
frequencies, and scale-ratio parameters. Stronger error reduc-
tions can be in principle obtained by resorting to higher-
order and/or more sophisticated models that also account for
magnetoelectric coupling [7].

E. Anomalous absorption and lasing

Our previous studies on the Thue-Morse [20] and Golay-
Rudin-Shapiro [21] geometries have shown that, in the pres-
ence of small losses or gain, field-enhancement levels like
those illustrated above can lead to anomalous absorption or
lasing effects, respectively. To illustrate these phenomena, we
assume a complex-valued relative permittivity εH = 5 + iδ,
where the imaginary part δ parametrizes the presence of loss

Nonlocal
EMT

Δτ
N

0.01

0.1

1

θi (deg)
30 35 40 45 50 55 60

FIG. 14. Transmission-coefficient error �τN in (15) as a function
of the incidence angle, for N = 128, d̄ = 0.015λ, considering the
EMT prediction and the nonlocal effective model in (17) with param-
eters a0 = 3.043, a2 = 0.242k−2

e , a4 = −0.270k−4
e , b2 = 0.235k−2

e ,
b4 = −0.267k−4

e . Note the semi-log scale.
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FIG. 15. Representative absorbance responses, in the presence
of small losses (εH = 5 + i10−4), as a function of electrical thick-
ness. (a) N = 128, ν = 0.2, θi = 67.1◦. (b) N = 256, ν = 0.4, θi =
60.85◦. (c) N = 512, ν = 0.4, θi = 60.35◦. Note the semi-log scale.

or gain (for δ > 0 and δ < 0, respectively, due to the assumed
time-harmonic convention).

For a very low level of losses (δ = 10−4), Fig. 15 shows
some representative absorbance responses, for different pa-
rameter configurations, from which we observe the presence
of sharp peaks of significant (sometimes near-unit) amplitude.
The corresponding field distributions (not shown for brevity)
are qualitatively similar to those in Figs. 7 and 13. As a
benchmark, for these parameters, the EMT prediction for
the absorbance is �0.3, whereas the result for the periodic
reference configuration is �0.5.

Finally, we consider the presence of small gain (δ =
−10−3), and study the possible onset of lasing conditions.
Figure 16 shows some representative reflectance responses for
different parameter configurations, which display sharp peaks
with amplitude exceeding ∼1000. This indicates the presence
of pole-type singularities that are distinctive of lasing, in spite
of the quite low level of gain considered. To give an idea, by
considering as a reference the lasing peak at d̄/λ = 0.036 in
Fig. 16(a), in order to obtain comparable results in the EMT
scenario we would need an increase of a factor ∼12 in the gain
coefficient or, equivalently, in the structure size (see [20] for
details).

FIG. 16. Representative reflectance responses, in the presence of
small gain (εH = 5 − i10−3), as a function of electrical thickness.
(a) N = 128, ν = 0.2, θi = 64.35◦. (b) N = 256, ν = 0.4, θi =
62.3◦. (c) N = 512, ν = 1/ϕ, θi = 59.6◦. Note the semi-log scale.

These results provide further evidence of the potentially
useful applications of aperiodic order to the design of innova-
tive absorbers and low-threshold lasers.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have studied the effects of quasiperiodic
order at deeply subwavelength scales in multilayered dielec-
tric metamaterials. With specific reference to a modified-
Fibonacci geometry, we have shown that the interplay with
mixed evanescent/propagating light transport may induce
anomalous optical responses (in terms of transmission, field-
enhancement, absorption, and lasing) that deviate substan-
tially from the conventional EMT predictions. Moreover, by
varying the scale-ratio parameter available in our model,
we have explored and elucidated the transition from perfect
periodicity to different shades of quasiperiodicity, identifying
the critical parameter regimes and possible nonlocal correc-
tions that can capture some of the effects. We highlight that,
although our results here are restricted to TE polarization and
a relatively high-contrast scenario, previous studies on the
periodic case have shown that the EMT breakdown can also
be observed for transverse-magnetic and/or lower-contrast
configurations [5], but their visibility may be reduced.
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This investigation closes the loop with our previous studies
on aperiodically (dis)ordered geometries, by adding to the al-
ready studied singular-continuous [20] and absolutely contin-
uous [21] scenarios a representative geometry with discrete-
spectrum characteristics which had not been previously ex-
plored. These three characteristic spectra are fully represen-
tative of the generic aspects of aperiodic order. Overall, these
results indicate that deterministic spatial (dis)order may play a
significant role even at deeply subwavelength scales. Besides
providing a new geometrical degree of freedom in the design
of optical devices (such as absorbers or lasers), this also
opens up intriguing possibilities in the optical probing of
the microstructure of a (meta)material and the sensing of its
variations at scales much smaller than a wavelength.

Of particular interest for future studies it appears the ex-
ploration of similar effects in non-Hermitian [44] and time-
varying [45] scenarios, as well as the extension to 2D geome-
tries such as rod-type dielectric metamaterials.

APPENDIX A: DETAILS ON SPATIAL SPECTRUM

Assuming two commensurate thicknesses da and db, i.e., a
rational scale ratio,

ν = db

da
= pa

pb
, pa, pb ∈ N, (A1)

it readily follows from (7) [24] that

kz(qa+mpa )(qb+mpb) = kzqaqb + m

(
2π

da
pb

)
, m ∈ Z, (A2)

with N and Z denoting the sets of natural and integer num-
bers, respectively. It then follows from (9) that

W(qa+mpa )(qb+mpb) = Wqaqb, (A3)

i.e., that the spatial spectrum is periodic with period 2π pb/da.
For the special case of a periodic structure (da = db = d ,

i.e., ν = 1), we obtain

d̄ = d, Wqaqb = (p − q)π, Spq = δpq, (A4)

with δpq denoting the Kronecker delta, thereby recovering the
conventional spatial spectrum with peaks at 2π p/d .

APPENDIX B: DETAILS ON EQ. (12)

The result in (12) can be intuitively explained by recalling
a well-know property of the Fibonacci sequences. It can be
easily verified that, starting from the second iteration order of
the inflation rules in (1), with the exception of the last two
symbols, the Fibonacci sequence is palindrome [46], i.e., it
reads the same backward or forward. For instance, initializing
the sequence with the symbol a, at the fifth iteration order we
obtain abaababaabaab, which, omitting the last two symbols,
yields abaababaaba, i.e., a palindrome. It then readily follows
that, for palindrome distributions of the thicknesses da and
db, and alternating distribution of the relative permittivities
εH and εL, the result in (12) holds exactly. In our case,
we numerically verified that, for the assumed values of the
sequence lengths and scale ratios, it provides a quite accurate
approximation, with errors on the second decimal figure.

APPENDIX C: TRANSFER-MATRIX FORMALISM

The tangential components of the electromagnetic field at
the input and output interfaces of the generic nth dielectric
layer can be expressed as [40][

E (in)
y

iZeH (in)
x

]
= M

n
·
[

E (out)
y

iZeH (out)
x

]
, (C1)

where

Ze = ωμ0

kze
(C2)

is the wave impedance of the exterior medium for TE polar-
ization, with kze = ke cos θi denoting the corresponding lon-
gitudinal wave number, and μ0 is the vacuum permeability.
Moreover,

M
n

=

⎡
⎢⎢⎣

cos
[
k(n)

z d (n)
] kze

k(n)
z

sin
[
k(n)

z d (n)]
−k(n)

z

kze
sin

[
k(n)

z d (n)] cos
[
k(n)

z d (n)
]

⎤
⎥⎥⎦ (C3)

is a unimodular transfer matrix [40]. In (C3),

k(n)
z = k

√
ε(n) − εe sin2 θi (C4)

is the local longitudinal wave number, and ε(n) and d (n)

are the local relative permittivity (εH,L) and thickness (da,b),
respectively. Via chain multiplication of the transfer matrices
of each layer, we can therefore obtain the transfer matrix of
the entire multilayer [40]

M =
N∏

n=1

M
n

=
[
M11 M12

M21 M22

]
. (C5)

By expressing the input and output electric fields (for unit-
amplitude incidence) in terms of the reflection and transmis-
sion coefficients (ρN and τN , respectively),

Ey(x, z = 0) = (1 + ρN ) exp (ikx sin θi ), (C6)

Ey(x, z = L) = τN exp (ikx sin θi ), (C7)

and calculating the magnetic-field from the relevant
Maxwell’s curl equation, we obtain the linear system[

1 + ρN

−i(1 − ρN )

]
=

[
M11 M12

M21 M22

]
·
[

τN

−iτN

]
. (C8)

From (C8), the expression in (13) follows straightforwardly
by recalling the definitions of trace

χN = M11 + M22, (C9)

and antitrace

υN = M21 − M12 (C10)

of a matrix.
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