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Microscopic magnetic Hamiltonian for exotic spin textures in metals
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We derive and study a microscopic spin Hamiltonian on a lattice for Rashba-coupled double exchange metals.
The Hamiltonian consists of anisotropic interactions of the Dzyaloshinskii-Moriya and pseudodipolar form,
in addition to the standard isotropic term. We validate the spin Hamiltonian by comparing results with those
on the exact spin-fermion model, and present its phase diagram using large-scale Monte Carlo simulations. In
addition to ferromagnetic, planar spiral, and flux states, the model hosts skyrmion crystal and classical spin-liquid
states characterized, respectively, by multiple peaks and a diffuse ring pattern in the spin-structure factor. The
filamentary domain-wall structures in the spin-liquid state are in remarkable agreement with experimental data
on thin films of MnSi-type B20 metals and transition metals and their alloys.
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I. INTRODUCTION

The search for magnetic materials supporting unusual spin
textures has become an important theme of research in re-
cent years [1–7]. Presence of such textures in insulators and
metals holds promise for technological applications [8–10].
In particular, topologically protected magnetic textures such
as skyrmions are considered building blocks of racetrack
memory devices [11–14]. Presence of such spin textures in
metals allows for their control using ultralow currents. Fur-
thermore, noncoplanar magnetic states in metals are known to
dramatically influence the spin-polarized charge transport—a
feature that can be utilized in spintronics applications [15–21].
There are various metallic magnets, e.g., MnSi, FeGe, Co-Zn-
Mn alloys, etc., that support exotic spin textures not only in
the ground state but also at higher temperatures [5,22–25].
Similar spin textures are also observed in thin films as well
as multilayers involving transition metals [26–31].

The key step toward designing or discovering materials
with unconventional spin textures is to understand the physics
of minimal microscopic models incorporating essential ele-
mentary mechanisms [32–34]. Spin Hamiltonians naturally
emerge in insulators as the charge degrees of freedom become
inactive and the low-energy physics is determined by the
spin degrees of freedom. In contrast, spin Hamiltonians in
metals are phenomenologically motivated. Exceptions exist
in metals that consist of a subsystem of localized magnetic
moments interacting with conduction band. The RKKY model
is a famous example in this category [35–39]. Explanation
of skyrmionlike spin textures relies on the presence of DM
interactions [40–44]. While such anisotropic terms have been
motivated by invoking the effect of spin-orbit coupling (SOC)
in a two-site setting, a derivation on lattice for the metallic
case does not exist [32,45].

In this paper, we present a closed form expression for a
spin Hamiltonian for Rashba coupled double-exchange (DE)
magnets. The resulting model consists of anisotropic terms
resembling Dzyaloshinskii-Moriya (DM) and pseudodipolar

interactions on nearest-neighbor (NN) sites with inhomoge-
neous coupling parameters. After presenting the derivation,
we explicitly test the validity of the pure spin model by
comparing results against exact diagonalization-based simu-
lations on the starting electronic model. The magnetic phase
diagram of the spin model is obtained via large-scale Monte
Carlo simulations. The model supports, in addition to a fer-
romagnetic (FM) phase, (i) single-Q (SQ) spiral states, (ii)
diagonally oriented flux (d-flux) state, (iii) multiple-Q (MQ)
states with noncoplanar skyrmion crystal (SkX) patterns, and
(iv) a classical spin liquid (CSL) state characterized by diffuse
ring patterns in the spin structure factor (SSF). The CSL state
shows a filamentary domain-wall structure of remarkable sim-
ilarity to the experimental data on thin films and multilayers
of B20 compounds and transition metals [21,27,28]. The spin
model introduced here has a wide range of applicability as
it originates from the FM Kondo lattice model (FKLM)—a
generic model for metals with local moments. Some of the
well-known families of materials where FKLM is realized
are manganites, doped magnetic semiconductors, and Heusler
compounds [46–53]. The key ingredient in the model is the
Rashba SOC, which requires breaking of inversion symmetry.
Such inversion symmetry breaking is naturally achieved for
the emergent conduction layers at interfaces or in thin films of
magnetic metals [54].

II. DERIVATION OF THE SPIN HAMILTONIAN

Our starting point is the FKLM in the presence of Rashba
SOC on a square lattice, described by the Hamiltonian:

H = −t
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.) + λ

∑
i

[(c†
i↓ci+x↑ − c†

i↑ci+x↓)

+ i(c†
i↓ci+y↑ + c†

i↑ci+y↓) + H.c.] − JH

∑
i

Si · si. (1)

Here, ciσ (c†
iσ ) annihilates (creates) an electron at site i

with spin σ , 〈i j〉 implies that i and j are NN sites. λ and
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JH denote the strengths of Rashba coupling and FM Kondo
(or Hund’s) coupling, respectively. si is the electronic spin
operator at site i, and Si, with |Si| = 1, denotes the localized
spin at that site. We parametrize t = (1 − α)t0 and λ = αt0 to
connect the weak and strong Rashba limits, α = 0 and α = 1,
respectively. t0 = 1 sets the reference energy scale.

Note that coupling between localized spins Si is mediated
via the conduction electrons. In the limit of weak Kondo
coupling, this leads to a modified RKKY Hamiltonian which
is discussed in a recent work [55]. To clarify the physics of
the above Hamiltonian in the JH → ∞ limit, also known as
the DE limit, we rewrite the Hamiltonian in a basis where
the spin-quantization axes are site dependent and align with
the direction of the local magnetic moment [56]. Since an-
tiparallel orientations are strongly suppressed for large JH ,
the low-energy physics is determined by effectively spinless
fermions with the spin quantization axis parallel to the local
moments. Projecting onto the parallel subspace, we obtain the
Rashba DE (RDE) Hamiltonian,

HRDE =
∑
〈i j〉,γ

[
gγ

i jd
†
ipd j p + H.c.

]
, (2)

where, dip(d†
ip) annihilates (creates) an electron at site i with

spin parallel to the localized spin. Site j = i + γ is the NN of
site i along spatial direction γ = x, y. The projected hopping
gγ

i j = tγ

i j + λ
γ

i j have contributions from the standard hopping
integral t and the Rashba coupling λ, and depend on the
orientations of the local moments. The two contributions to
gγ

i j are given by

tγ
i j = −t

[
cos

(
θi

2

)
cos

(
θ j

2

)
+sin

(
θi

2

)
sin

(
θ j

2

)
e−i(φi−φ j )

]
,

λx
i j = λ

[
sin

(
θi

2

)
cos

(
θ j

2

)
e−iφi − cos

(
θi

2

)
sin

(
θ j

2

)
eiφ j

]
,

λ
y
i j = iλ

[
sin

(
θi

2

)
cos

(
θ j

2

)
e−iφi + cos

(
θi

2

)
sin

(
θ j

2

)
eiφ j

]
.

(3)

Writing gγ
i j in the polar form, gγ

i j = f γ
i j e

ihγ
i j , and defining the

ground-state expectation values Dγ
i j = 〈[eihγ

i j d†
ipd j p + H. c.]〉gs

as coupling constants, we obtain the low-energy approximate
spin Hamiltonian,

HS = −
∑
〈i j〉,γ

Dγ

i j f γ

i j ,

√
2 f γ

i j = [t2(1 + Si · S j ) + 2tλγ̂ ′ · (Si × S j )

+λ2(1 − Si · S j + 2(γ̂ ′ · Si )(γ̂ ′ · S j ))]
1/2, (4)

with γ̂ ′ = ẑ × γ̂ . We note that the functional form f γ
i j

was motivated in an earlier paper by considering a two-site
problem [45]. However, the key argument of performing link-
dependent SU(2) rotations to gauge away the Rashba term
works only for two isolated sites and cannot be generalized
to a lattice. Our derivation is free from such limitations, and
provides a model where Dγ

i j in Eq. (4) need not be uniform
[56].

(a) (b)

FIG. 1. (a), (b) Temperature dependence of energy per site ob-
tained via EDMC simulations of HRDE (open symbols) and that
obtained via classical Monte Carlo on HS (filled symbols) for the
values of α indicated in the panels. Simulations are carried out on
8 × 8 lattices.

III. COMPARISON WITH THE EXACT
ELECTRONIC MODEL

The key question is how well HS Eq. (4) describes the
low-energy magnetic states of the spin-fermion model HRDE.
We directly address this by comparing energetics of the two
models in the low-temperature regime. Hybrid simulations
combining exact diagonalization and Monte Carlo (EDMC)
are carried out for HRDE at electronic filling fraction of n =
0.3 [46,57]. Results are compared with simulations on HS

using Dγ

i j as coupling constants. Energy per site E is defined as

statistical average HS/N for the pure spin model and as quan-
tum statistical average 〈HRDE〉/N for the spin-fermion model,
where the bar denotes the averaging over Monte Carlo steps
and N is the number of lattice sites. Comparison of energy
per site with varying temperature is shown for representative
values of α [see Figs. 1(a)–1(b)]. Ground states are correctly
captured by HS for all choices of α, and the energies between
HRDE and HS match very well in the low-temperature regime.
The quantitative agreement can be further improved by using
simulation techniques already known for DE systems [58,59].
Incidentally, most of the ground states obtained in EDMC on
HRDE lead to narrow distributions of Dγ

i j [56]. This motivates
a simplified approximate spin Hamiltonian with Dγ

i j ≡ D0 in
Eq. (4).

IV. MAGNETIC PHASES OF THE NEW SPIN
HAMILTONIAN

To investigate the magnetic phase diagram of the spin
Hamiltonian Eq. (4) with Dγ

i j ≡ D0 = 1, we use classical
Monte Carlo simulations with the standard Metropolis algo-
rithm. The simulations are carried out on lattice sizes varying
from N = 402 to N = 2002, and ∼5 × 104 Monte Carlo steps
are used for equilibration and averaging at each temperature
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FIG. 2. (a)–(d) Temperature dependence of different components
of SSF for representative values of α. Results are obtained on 60 ×
60 lattice.

point. A consistency check on the stability of ground states
is performed for simulations on the exact spin Hamiltonian
Eq. (4) by recalculating Dγ

i j . We emphasize that the exact
match of ground-state energies between the electronic and the
effective spin Hamiltonian, as shown in Fig. 1, is achieved
only when inhomogeneities in Dγ

i j are retained. The differ-
ent magnetic phases are characterized with the help of a
component-resolved SSF,

Sμ

f (q) = 1

N2

∑
i j

Sμ
i Sμ

j e−iq·(ri−r j ), (5)

where, μ = x, y, z denotes the component of the spin vector
and ri is the position vector for spin Si. The total structure
factor can be computed as S f (q) = ∑

μ Sμ

f (q). Figure 2 shows
the temperature variations of characteristic features in the
SSF for different values of α. In the small α regime, the
ground state is FM [characterized by S f (q) at q = (0, 0) in
Fig. 2(a)] and the Curie temperature reduces with increasing
α. In the large α limit, the d-flux state characterized by simul-
taneous appearance of peaks at q = (π, 0) and q = (0, π ) in
SSF is stabilized [see Fig. 3(f)]. The corresponding ordering
temperature increases with increasing α [see Fig. 2(d)]. We
find two other ordered states at intermediate values of α: SQ
spiral states with SSF peaks either at q = (q, 0) or at q =
(0, q) [see Figs. 2(b) and 3(d)], and noncoplanar MQ states
with all three components, μ = x, y, z, contributing to total
SSF at different q. For 0.06 � α � 0.34, the SSF displays a
circular pattern without any prominent peaks, suggestive of a
liquidlike magnetic state [60–62]. The detailed form of SSF
for these unusual phases is discussed below.

We summarize the simulation results in the form of a phase
diagram in Fig. 3(g). The ground state changes from a FM at
small α to a d-flux at large α, via three nontrivial phases for
intermediate values of α. The evolution of the ground-state
SSF is displayed in Figs. 3(a)–3(f). As the FM state is destabi-
lized upon increasing α, we do not find any ordered phase. In-
stead, the SSF shows a diffuse circular pattern [see Fig. 3(b)]
characteristic of a disordered liquidlike state. The radius of

(a)

(d)

(g)

(e) (f)

(b) (c)

d-flux

FIG. 3. (a)–(f) Color map of SSF at T = 0.001 for different
values of α. (g) Phase diagram for the new spin Hamiltonian in
the T − α plane. The boundaries are based on the temperature
dependence of the relevant components of the SSF. Inset in (g) shows
variation in the magnitude q of the relevant wave-vector q with α.

the ring increases upon increasing α, and the intensity near
the axial points, (±q, 0) and (0,±q), becomes relatively large
[see Fig. 3(c)]. For 0.34 < α < 0.58, we find SQ spiral states
with either horizontal or vertical FM stripes [see Figs. 3(d)
and 4(c)]. In a narrow window, 0.58 < α < 0.66, MQ non-
coplanar states are stabilized. Finally, the planar d-flux state
is obtained as the ground state for α > 0.66. Inflection points
in the temperature dependence of relevant components of SSF
are used to identify the boundaries between the paramagnetic
and ordered phases. Note that, in the case of a CSL state, a
well-defined order parameter does not exist, and the dashed
line indicates the temperature at which the diffuse ring pattern
appears in the SSF. The inset in Fig. 3(g) displays the variation
of the magnitude q of characteristic wave vector q with α.
We note that the plateau in q near α = 0.5, corresponding to
q = π/2 SQ state, and that near α = 0, corresponding to the
FM phase, disappear in the thermodynamic limit [56].

We provide a clear understanding of the ground-state evo-
lution in terms of typical low-temperature spin configurations
in Fig. 4. Upon increasing α, the FM state is destabilized
and typical configurations consist of filamentary structures
of domain walls [see Figs. 4(a) and 4(b)]. The stability of
the filamentary structures is related to an unusual degeneracy
of spiral states that originates from the presence of mutually
orthogonal directions of the two DM vectors in our spin model
[56]. The fact that domain walls can turn in an arbitrary
direction with negligible energy costs is responsible for the
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Snapshots of spin configurations obtained at low temper-
ature for, (a) α = 0.10, (b) α = 0.34, (c) α = 0.50, (d) α = 0.60, (e)
α = 0.64, and (f) α = 0.80. The x and y components of the spins
are indicated by the arrow while the z component is color coded.
For (a) and (b), we show 60 × 60 lattice. For the ordered states, we
display for clarity only a smaller section, 16 × 16 for (c), (d), and (f)
and 24 × 24 for (e), of the full lattice. The configurations are shown
at T = 0.001.

presence of the diffuse circular pattern in the SSF [see
Fig. 3(b)]. The resulting ground-state degeneracy can be la-
beled as intermediate between microscopic and macroscopic
with the number of degenerate states scaling as e

√
N as op-

posed to the well-known eN in case of macroscopic degener-
acy [63]. For larger values of α, the width of domain walls de-
creases and a preference for horizontal or vertical orientations
of the domain walls is found [see Fig. 4(b)]. This is reflected in
the appearance of arc features in SSF near the axial points [see
Fig. 3(c)]. For α > 0.58, we obtain long-range ordered MQ
states. The MQ states can be noncoplanar [see Figs. 4(d)–4(e)]

or coplanar [see Fig. 4(f)]. The noncoplanar patterns in the
MQ states are identical to lattices of smallest skyrmions [64].

V. CONCLUSION

We have derived a spin Hamiltonian on a lattice for DE
metals in the presence of Rashba SOC. The model, in general,
has inhomogeneous coupling constants and anisotropic DM
and pseudodipolar interactions, similar to those required for
stabilizing exotic spin textures. We explicitly compare the
energetics in the low-temperature regime between the exact
Hamiltonian and our spin model in order to prove the validity
of the latter. Increasing the relative strength of Rashba term
with respect to the hopping generates CSL, SQ spiral, and
MQ SkX states, starting from the trivial FM phase. An elegant
description of this evolution emerges from the ground-state
degeneracy analysis. Our spin model provides a consistent
description of spin textures in itinerant magnets. In partic-
ular, the filamentary domain-wall structures obtained in our
simulations are in excellent agreement with the experimental
observations in thin films and multilayers of transition metals
[21,27,28,30,31,65]. Typically, one would associate such ir-
regular spin textures to impurities or defects in the samples.
However, our microscopic analysis without including any
ad hoc term in the Hamiltonian shows that these are intrinsic
features of the electronic system. While quenched disorder in
a real sample may lead to the pinning of these filamentary do-
mains, we predict that in a disorder-free sample a reorientation
dynamics of the domain walls should be observed. Interest-
ingly, similar domain patterns were noticed many years back
in FM garnet films [66].

The weak coupling approach to understand magnetism in
spin-orbit-coupled itinerant magnets is via RKKY-type effec-
tive models [55]. Such models are long ranged and strongly
depend on the filling fraction of the conduction band. In
contrast, the form of the spin Hamiltonian discussed here is
independent of the electronic filling fraction. Therefore, in our
description, the exotic magnetic states do not originate from
Fermi surface nesting features. Consequently, such states are
expected without fine-tuning of electron density. This is con-
sistent with the fact that such spin textures are experimentally
observed in a variety of thin films and multilayers of transition
metals. While the model is derived starting from the FKLM,
at the mean-field level similar physics should hold for the
Hubbard model where localized and itinerant electrons are
associated with the same band [67,68].
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