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A defining feature of topologically ordered states of matter is the existence of locally indistinguishable states
on spaces with nontrivial topology. These degenerate states form a representation of the mapping class group
(MCG) of the space, which is generated by braids of defects or anyons, and by Dehn twists along noncontractible
cycles. These operations can be viewed as fault-tolerant logical gates in the context of topological quantum error
correcting codes and topological quantum computation. Here, we show that braids and Dehn twists can in general
be implemented by a constant depth quantum circuit, with a depth that is independent of code distance d and
system size. The circuit consists of a constant depth local quantum circuit (LQC) implementing a local geometry
deformation of the quantum state, followed by a permutation on (relabeling of) the qubits. The permutation
requires permuting qubits that are separated by a distance of order d; it can be implemented by collective classical
motion of mobile qubits or as a constant depth circuit using long-range SWAP operations (with a range set by d)
on immobile qubits. We further show that (i) applying a given braid or Dehn twist k times can be achieved with
O(log k) time overhead, independent of code distance and system size, which implies an exponential speedup
for certain logical gate sequences by trading space for time, and (ii) an arbitrary element of the MCG can be
implemented by a constant depth (independent of d) LQC followed by a permutation, where in this case the
range of interactions of the LQC grows with the number of generators in the presentation of the group element.
Applying these results to certain non-Abelian quantum error correcting codes demonstrates how universal logical
gate sets can be implemented on encoded qubits using only constant depth unitary circuits.

DOI: 10.1103/PhysRevB.102.075105

I. INTRODUCTION

A profound property of topologically ordered states of
matter is the possibility of topologically degenerate ground
states, which arise when the system exists on a topologically
nontrivial space [1–3]. The degeneracy is protected by the fact
that the states are indistinguishable by any local operators, up
to exponentially small corrections in system size.

This local indistinguishability of topological states is the
key feature underlying quantum error correction and the pos-
sibility of creating a fault-tolerant quantum memory [2–4].
Many well-known quantum error correcting codes (QECCs),
such as Shor’s nine-qubit code, the Steane code, and the
Reed-Muller code, can all be interpreted in terms of the
ground-state subspace of a topologically ordered state defined
on a cellulation of a topologically nontrivial manifold [5,6].
More generally, a large class of QECCs, known as topological
QECCs, are associated with a particular class of topologically
ordered states of matter. These include the surface and toric
codes and their generalizations: the Kitaev quantum dou-
ble models [4] and Turaev-Viro-Levin-Wen models [7–11].
Topological QECCs play an important role in the theory of
quantum error correction, as they provide the only approach
to decrease the logical error rate arbitrarily while maintaining
local interactions among the microscopic degrees of freedom.

In general, topologically ordered states can be realized in
two distinct ways. In the “passive” approach, they can be
realized in equilibrium as ground states of an appropriate
many-body Hamiltonian. The topological protection derives

from T/� � 1, where T is the temperature and � is the en-
ergy gap. In the “active” approach to quantum error correction
(QEC), the topologically ordered states arise as eigenstates of
commuting local operators [12,13]. The state can be main-
tained actively by continuously measuring these local opera-
tors. In the language of QECCs, the topologically degenerate
ground-state subspace is known as the code subspace, and the
minimum length of a string operator that acts nontrivially in
the code subspace is known as the code distance d .

An important question is to understand how to perform
robust, nontrivial operations on the code subspace. It is well
known that nontrivial operations can be obtained by braiding
non-Abelian anyons [2], twist defects [14], and holes with
gapped boundaries [12,15]. Alternatively, when topological
degeneracies arise in a closed genus-g surface, nontrivial oper-
ations can be obtained by performing Dehn twists [16,17]. In
other words, the code subspace forms a representation of the
mapping class group (MCG) of the space; the braid group on
n strands corresponds to the MCG of a disk with n punctures,
while the MCG of a closed genus g surface is generated by
Dehn twists along noncontractible cyles.

In the passive approach, elements of the mapping class
group have been proposed to be implemented through adia-
batic evolution with a local Hamiltonian, leading to a non-
Abelian Berry phase [2,18–20]. To be adiabatic, the time to
implement such transformations must be large compared with
1/�, and increases at least linearly with the code distance
(or system size) d . In the active approach, known methods
to implement braids (of holes, twist defects, or non-Abelian
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anyons) through unitary circuits also increase at least linearly
with the code distance d . Alternatively, mapping class group
elements can be effectively achieved through measurement-
based approaches [21–24], which also take a time that di-
verges as d → ∞. For example, in active approaches, fault-
tolerant readout of a measurement requires either (i) d rounds
of measurements [12], or (ii) a single round of measurement
with classical processing time that diverges as d → ∞, and
an extra factor of O(d ) in space overhead [25,26]. Therefore,
in all approaches proposed to date, there is a fundamental
tradeoff between space-time overhead and accuracy of a fault-
tolerant quantum computation; in the limit where the logical
error rate goes to zero, d → ∞, and therefore the time to
implement logical gates by braiding or Dehn twists also goes
to infinity.

Ideally, it is of interest to implement logical gates in a time
that is independent of the code distance, and without increas-
ing the asymptotic scaling of the space overhead. A certain
class of such logical gates are known as transversal logical
gates [27]. Transversal gates consist of nontrivial unitary
operations on the code subspace that decompose as a tensor
product of local unitary transformations that do not couple
different sites within the same code block. Transversal gates
are special cases of local constant depth quantum circuits,
which are intrinsically fault tolerant as the code distance d →
∞ due to the locality of error propagation. The Eastin-Knill
theorem establishes that a universal encoded gate set cannot
be implemented transversally [28]. Related theorems impose
strong restrictions on logical gates implemented with local,
finite depth quantum circuits [29,30].

Recently, it was discovered that certain elements of the
MCG of a generic topological state can be effectively im-
plemented in one shot as a transversal gate [31]. These el-
ements correspond to certain finite-order (torsion) elements
of the MCG, which correspond to specific combinations of
braids or Dehn twists. While these results do not violate the
Eastin-Knill theorem, they do circumvent the assumptions of
Ref. [29] for implementing nontrivial logical gates in topo-
logical QECCs using constant depth local quantum circuits,
and hence the corresponding no-go theorem for non-Abelian
codes.

In this paper, we demonstrate that braids and Dehn twists
in a wide class of topological states can always be achieved
by a quantum circuit of constant depth, independent of the
code distance d . Specifically, we demonstrate that elementary
braids and Dehn twists can be implemented by (i) a local
constant depth quantum circuit (LQC), followed by (ii) a
permutation on the qubits. The permutation requires qubits
that have a separation of order d to be permuted. If the qubits
of the system are mobile, the permutation can be physically
implemented by shuttling the qubits around, as has been done
experimentally in ion trap systems [32–34]. If the qubits are
immobile, the permutation can be achieved in one step by
utilizing long-range SWAP operations and ancilla qubits.

Our results imply that by utilizing non-Abelian topological
QECCs together with our braiding and Dehn twist protocols,
a universal logical gate set can be implemented on encoded
qubits through a constant depth unitary quantum circuit,
without increasing the scaling of the space overhead. We
note that the implementation of these quantum circuits does

not require any additional classical computational resources
nor does it depend on the result of measurement outcomes
at intermediate steps in the computation. Furthermore, our
protocols for topological codes with local syndromes require
O(d2) space overhead per logical qubit.

Our constant depth circuits maps a local operator with
support in a region R to another local operator with support
in a region R′, such that the areas of R and R′ are related by a
constant factor, independent of code distance. Consequently,
our logical gates are naturally topologically protected and
can be made fault tolerant since they only change the length
of an error string by an O(1) constant factor independent
of code distance. The extra time overhead for decoding and
error correction after applying these constant depth circuits
depends on the detailed properties of the logical circuits, i.e.,
the logical gate sequence. In the presence of noisy syndrome
measurements, in the worst-case scenario of the logical circuit
(logical gate sequence) we expect a sublinear time overhead
where at least O(d/ log d ) rounds of syndrome measurements
need to be performed for each application of the logical gate
in order to successfully decode error strings. Therefore, our
estimated average space-time overhead per logical qubit per
logical gate for the most general logical circuits is lower
bounded by O(d3/ log d ) in the presence of noisy syndrome
measurements.

This result demonstrates that universal logical gate sets
can be implemented on encoded qubits with constant depth
circuits, and without increasing the scaling of the space
overhead. Other proposals for implementing universal logical
gate sets, such as those which utilize magic state distillation
or code switching, all require O(d3) space-time overhead
per logical qubit, per logical gate, in the presence of noisy
syndrome measurements. This space-time overhead can come
from either (1) a time overhead that diverges at least linearly
with the code distance d and O(d2) space overhead per logical
qubit, or (2) polylog time overhead (including classical com-
putational resources) and O(d3) space overhead per logical
qubit [25,26,35–42].1

We note that some of the results discussed in this paper
with respect to braiding with constant depth circuits have also
been summarized by us in a short paper [43].

A. Summary of results

Our specific technical results are summarized below. Let
us consider N + Na physical qubits arranged on a lattice. We
further consider a state

|�〉 = |�〉 ⊗ |�〉a. (1)

Here, |�〉a = ⊗ j |ψ j〉a is an arbitrary product state for the Na

ancilla qubits. |�〉 is a topologically ordered state on N qubits
on a genus g surface with p punctures �g,p. The punctures
could correspond to holes with gapped boundaries or anyons.

1Note that the proposed code switching protocols have intermediate
steps that depend on outcomes of measurements during the protocol.
For the measurements to be fault tolerant, they must either be
performed d times or require a factor of d increase in space overhead
[12,25,26].

075105-2



INSTANTANEOUS BRAIDS AND DEHN TWISTS … PHYSICAL REVIEW B 102, 075105 (2020)

FIG. 1. Noncontractible cycles and braid operations on a genus
g = 3 surface with p = 4 punctures.

|�〉 is an arbitrary (Abelian or non-Abelian), nonchiral topo-
logically ordered state. Such states are always related, by a
constant depth local quantum circuit (alternatively, by adi-
abatic evolution), to an exact ground state of a commuting
projector Hamiltonian, such as the Kitaev quantum double
or Levin-Wen models [4,10,11]. Alternatively, such nonchiral
topological orders can be described within a path-integral
state-sum construction, as described in Refs. [7–9,17,44].

|�〉 belongs to a representation of MCG(�g,p), the map-
ping class group of �g,p. It is well known that MCG(�g,p)
can be generated by 3g − 1 Dehn twists along the simple
curves αi, βi, γ j , where i = 1, . . . , g and j = 1, . . . , g − 1,
together with elementary (half-) braids between neighboring
punctures [45]. See Sec. II and Fig. 1 for detailed discussions
and illustration.

Let us denote σ to be a permutation on the N + Na qubits
and Pσ the unitary representation of that permutation. Further-
more, let LU denote a local, constant depth quantum circuit.
In particular, LU is local in the sense that the range r of
interactions is independent of system size and code distance.
Similarly, constant depth means that the depth of the circuit is
also independent of system size and code distance.

We first demonstrate the following result:
Theorem 1. Let κ ∈ MCG(�g,p) denote either a Dehn

twist along a simple curve αi, βi, γ j , where i = 1, . . . , g and
j = 1, . . . , g − 1, or an elementary braid between neighbor-
ing punctures. We let Vκ be the unitary representation of
κ on the topological ground-state subspace (i.e., the code
subspace). Then,

Vκ ⊗ I|�〉 = (Vκ |�〉) ⊗ |�〉a = PσLUκ (|�〉 ⊗ |�〉a). (2)

I is the identity operator on the ancilla qubits and LUκ

is a constant depth local unitary that depends on κ . The
permutation Pσ (which depends on κ) can be implemented
in constant time by utilizing ancilla qubits. For example, one
first performs a SWAP operation between each qubit and an
ancilla qubit, followed by a second SWAP operation between
the ancilla qubit and the target location of the SWAPs. (The
second SWAP is actually unnecessary, as explained in more
detail in Sec. VII). It is crucial to note that these SWAP
operations are long-range operations. In general, the range of
the SWAPs is set by the code distance d .

It is useful to note that, depending on the physical im-
plementation, the permutation Pσ can also be performed by
physically moving the location of the qubits in physical space.
For example, if the qubits are associated with ions in an
ion-trap quantum computer, the ions can be physically moved
to their target locations [32–34,46–48].

A corollary of the above theorem is with respect to
the space-time overhead for universal fault-tolerant quantum
computation. It is well known that mapping class group
elements, such as braiding of anyons, in the Fibonacci topo-
logical state is universal for topological quantum computation
[3,49,50]. We can thus consider the Turaev-Viro code [11,13]
(and associated Levin-Wen model [10]) based on the Fi-
bonacci fusion category, whose topological order corresponds
to two time-reversed copies of the Fibonacci state. Applying
Theorem 1 to such a code thus implies that a universal fault-
tolerant gate set can be achieved through constant time braid-
ing of Fibonacci anyons, without changing the asymptotic
scaling of the space overhead.

More specifically, in a two-dimensional topological code
with local interactions (alternatively, in an active error correc-
tion approach, with local syndrome measurements), the space
overhead is O(d2) per logical qubit. The result of Theorem
1 thus implies that universal fault-tolerant gate sets can be
achieved with time overhead that is independent of code
distance d , while keeping the space overhead at O(d2) per
logical qubit.

Theorem 2. Let κ ∈ MCG(�g,p) denote either a Dehn
twist along a simple curve αi, βi, γ j , where i = 1, . . . , g and
j = 1, . . . , g − 1, or an elementary braid between neighbor-
ing punctures. Furthermore, let Vκn = Vn

κ be the unitary repre-
sentation of κn on the topological ground-state subspace (i.e.,
the code subspace), where n is an arbitrary integer. Then,

Vn
κ ⊗ I|�〉 = (

Vn
κ |�〉) ⊗ |�〉a =

k∏
i=1

LU i,κPσi (|�〉 ⊗ |�〉a).

(3)

Here, k = O(log n), Pσi is a qubit permutation, which per-
mutes qubits over a range of O(d ), and LU i,κ are local, finite
depth quantum circuits, where the range r of the gates and
depth are independent of n, code distance d , and system size.
In the case of the ZN toric code, we also have

Vn
κ ⊗ I|�〉 = (

Vn
κ |�〉) ⊗ |�〉a = PσLUκ (|�〉 ⊗ |�〉a), (4)

where now LUκ is a local quantum circuit with maximum
range r = O(n) and fixed depth independent of n, code dis-
tance d , and system size.

Theorem 3. Let ζ ∈ MCG(�g,p) be an arbitrary group ele-
ment, and Vζ its representation on the quantum state. ζ has a
presentation in terms of a string of k Dehn twists and braids,
for some integer k. Then,

Vζ ⊗ I|�〉 = (Vζ |�〉) ⊗ |�〉a = Pσ LU ζ |φ〉 ⊗ |�〉a. (5)

Here, LU ζ is a constant (independent of code distance and
system size) depth local quantum circuit. The range r of gates
in LU ζ increases with k, such that r = O(ck ) where c is a
constant independent of ζ and code distance and system size.

We note that in all the above theorems, the order of LU
and Pσ can in principle be switched (with the concrete circuits
being modified), and does not affect the final results.

We provide proofs of these statements by explicit construc-
tion for ground states of exactly solvable commuting projector
models. As noted above, any nonchiral topologically ordered
state can be transformed to the ground state of an exactly
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solvable commuting projector model by a finite depth local
quantum circuit.

An important by-product of our analysis is to demonstrate
how non-Abelian anyons and holes can be moved by distances
of order the code distance by a constant depth local circuit
followed by a permutation on the qubits. This overturns the
general belief that moving non-Abelian anyons by a distance
� always requires a quantum circuit of depth ∝�. While this
belief is correct when restricted to purely local interactions,
we see that the use of long-range permutations allows us to
implement the motion by a constant depth circuit. Interest-
ingly, however, our protocols can only move anyons by a
distance � that is a constant factor of the minimum separation
between anyons. We therefore arrive at an interesting version
of Zeno’s paradox in the context of non-Abelian topological
quantum order: the time it takes to create two non-Abelian
anyons out of the vacuum and separate them a distance of
order � requires O(log �) steps (ignoring the presence of any
other anyons). However, if the anyons are already a distance
� apart, they can be moved by a distance of order � in a time
that is independent of �.

B. Structure of the paper

This paper is structured as follows. We begin in Sec. II by
providing a brief review of the mapping class group of sur-
faces, Dehn twists, and their relation to braiding. In Sec. III,
we focus on the case of ZN topological order, proving Theo-
rems 1 and 2 by explicitly constructing the quantum circuits
with the desired properties. In Sec. IV, we then generalize
this discussion to encompass arbitrary nonchiral topological
orders, which include both arbitrary Abelian and non-Abelian
topological orders. We prove Theorem 3 separately in Sec. V.
We further show the fault-tolerance aspects of our schemes
in Sec. VI, and conclude our paper with a discussion of the
central results in Sec. VII.

II. BASIC CONCEPTS: DEHN TWISTS, BRAIDS,
AND MAPPING CLASS GROUPS

A. Mapping class group and its representation

We start with the definition of the mapping class group of
a surface, which includes all the central concepts discussed in
this paper such as Dehn twists and braids. Consider a surface
of genus g with p punctures, denoted �g,p. The mapping class
group of �g,p, denoted MCG(�g,p), is defined to be the group
of orientation-preserving diffeomorphisms of �g,p modulo
those which can be continuously connected to identity:

MCG(�g,p) = Diff+(�g,p, ∂�g,p)/Diff0(�g,p, ∂�g,p), (6)

with the diffeomorphisms being restricted to the identity
on the boundary ∂�g,p [45]. Here, Diff0(�g,p, ∂�g,p) is the
subgroup of Diff+(�g,p, ∂�g,p) which consists of elements
that are isotopic (continuously connected) to the identity. As
a consequence of this definition, any element of the mapping
class group, [ζ ] ∈ MCG(�g,p), is an equivalence class of a
diffeomorphism of manifold �g,p which maps the manifold
back to itself, i.e., ζ : �g,p 
−→ �g,p.

As illustrated in Fig. 1, MCG(�g,p) can be generated by
3g − 1 Dehn twists along the noncontractible cycles denoted

α, β, and γ (see Fig. 1), together with braids between neigh-
boring punctures B1,2, B2,3,..., and Bp−1,p. In the following
subsections, we will provide more background on Dehn twists
and their relation to braids.

In the context of topological states or codes supported on a
manifold �, the unitary representations of MCG(�) are topo-
logically protected (i.e., fault tolerant) unitary transformations
acting on the ground-state subspace or equivalently the code
space H� . We denote the representation of a mapping class
group element ζ by the unitary operator Vζ , which performs
an automorphism that maps the code space back to itself,
i.e., Vζ : H� 
−→ H� . Therefore, Vζ is an element of the
automorphism group of the code space Vζ ∈ Aut(H� ), and
is hence a logical gate.

B. Dehn twists

Here, we review a specific type of self-diffeomorphism
called a Dehn twist. We first consider an annulus A =
S1×[0,1], which can be embedded in the (θ, r) plane as shown
in Fig. 2(a). We define the twist map D : A 
−→ A by the
following formula:

D (θ, t ) = (θ + 2πt, t ). (7)

Note that D is an orientation-preserving diffeomorphism fix-
ing ∂A pointwise, and hence satisfies the definition of a
mapping class. Thus, we call D (and the class of maps up to
an additional diffeomorphism continuously connected to the
identity) a left Dehn twist. The right Dehn twist is its inverse,
i.e.,

D−1 (θ, t ) = (θ − 2πt, t ). (8)

In order to visualize the transformation on the surface,
we show two directed noncontractible lines/loops on the
surface. The first one is a (blue) line connecting the inner
and outer boundary, denoted by α, where the arrow represents
the direction. The second one is a (red) noncontractible loop
circulating the inner boundary, denoted by β. We can see the
left Dehn twist performs the following map:

D : (α, β ) 
−→ (α + β, β ), (9)

where α + β is the twisted line shown in the right panel in
Fig. 2(a). The above map can also be used as an alternative
definition of the Dehn twist. One can also see that the left
Dehn twist is equivalent to a continuous counterclockwise 2π

rotation of the outer boundary or a clockwise 2π rotation of
the inner boundary. Similarly, the right Dehn twist performs
the map

D−1 : (α, β ) 
−→ (α − β, β ), (10)

where the α − β is twisted in the opposite direction. Since
the annulus is equivalent (homotopic) to a cylinder, we hence
have also defined the Dehn twist on a cylinder, as shown in
Fig. 2(b).

For subsequent discussions, we also introduce the notion
of a half-twist on an annulus as illustrated in Fig. 2(c). By
itself, the half-twist is not an element of the mapping class
group because it does not leave the boundary fixed. The left
half-twist is defined as√

D (θ, t ) = (θ + π + πt, t ). (11)

075105-4



INSTANTANEOUS BRAIDS AND DEHN TWISTS … PHYSICAL REVIEW B 102, 075105 (2020)

(a) (b)

(c)

(d)

(e)

(h) (i) (j)

(f) (g)

FIG. 2. Definition of Dehn twists, half-twists, and braids, as well as their relations.

Note that in our convention, the half-twist fixes the outer
boundary and makes a clockwise π rotation on the inner
boundary. Similarly, the right half-twist is defined as

√
D

−1
(θ, t ) = (θ + π − πt, t ), (12)

which makes a counterclockwise π rotation on the inner
boundary.

Now consider the generic surface �g,p. One can perform
a Dehn twist along the noncontractible loop β in �g,p, as
illustrated in Fig. 2(d). Note that the direction of the β loop
(indicated by the arrow) determines whether it is a left or
right Dehn twist. Let N be a regular neighborhood [shown

as a green belt in Fig. 2(d)] of β and f be an orientation-
preserving diffeomorphism that maps the previously defined
annulus to such a neighborhood: f : A 
−→ N . We can hence
define a self-diffeomorphism Dβ : �g,p 
−→ �g,p as a Dehn
twist about the β loop as follows:

Dβ (x) =
{

f D f −1 if x ∈ N,

x otherwise.
(13)

This definition says that Dβ performs a Dehn twist D on
the annulus N and fixes every point outside the annulus
N . To visualize the change of the surface, we again use
the noncontractible (blue) line α going across the inner and
outer boundary of the neighborhood N , and the (red) loop
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cut twist glue

shear

local
geometry
deformation

(a)

(e)

(f) (g) (h)

(b) (c) (d)

FIG. 3. The mathematical definition and implementation of Dehn twists T and U on a torus via Dehn surgery. The coordinate web
represents the metric of the manifold in the continuous case or underlying lattice structure in the discrete case. The shear deformation (green
arrows) in (b) implements a Dehn twist and is equivalent to Dehn surgery in (e): cut, twist, and glue. The local geometric deformation returns
the metric/lattice to the original configuration.

β circulating around N for illustration. The Dehn twist Dβ

performs the following map on these two loops:

Dβ : α 
−→ α + β, Dβ : β 
−→ β, (14)

where the part of the twisted line α + β outside the annulus
N remains fixed as illustrated by the right panel of Fig. 2(d).
This map can also be used as the alternative definition of
Dβ . Similarly, one can also define the half-twist

√
Dβ on an

arbitrary surface.
The representation of the Dehn twists on the topological

ground-state subspace (i.e., the code subspace) is denoted by
Dβ . Note that we have used different fonts to distinguish an
MCG element and its representation. It induces the following
transformations on the Wilson line/loop operators:

DβW a
α D†

β = W a
α+β, DβW a

β D†
β = W a

β , (15)

where W a
α and W a

β are Wilson line/loop on the α line and β

cycle with topological charge a. The operator W a
α+β represents

the twisted Wilson loop.

C. Braids and braid group

Although braiding is often discussed in its own context
(especially in physics), it is actually just a special type of
mapping class. A particular example is the case of the braid
group on p strands, which is equivalent to the mapping class
group of a disk with p punctures: Bp = MCG(D2

p), where here
D2

p denotes a disk with p punctures.
Braids between punctures can also be expressed in terms of

Dehn twists, as follows. As shown in Figs. 2(e)–2(g), a right

half-twist along the β loop enclosing two punctures [Figs. 2(e)
and 2(f)] is equivalent to braiding the two punctures, with
additional half–self-twists around both punctures [Fig. 2(g)].
That is,

B1,2 =
√

Dβ

√
D−1

ω1

√
D−1

ω2
, (16)

where
√

Dβ,
√

Dω1 ,
√

Dω2 represent the half-twists around
β, ω1, and ω2.

For a full braid, we thus have B2
1,2 = DβD−1

ω1
D−1

ω2
, as illus-

trated in Figs. 2(h)–2(j).

D. Mapping class group, Dehn surgery, and local geometry
deformation on a torus

We now consider in more detail the case of the mapping
class group of a torus T 2. This will help provide the underly-
ing mathematical intuition that forms the basis of our results.

The points of a torus can be specified by points z in
the complex plane, modulo equivalences z ∼ z + ω1 ∼ z +
ω2, for complex numbers ω1 and ω2. The torus is thus
parametrized by (ω1, ω2) or equivalently (1, τ ) as shown in
Fig. 3(a), where the modular parameter is defined to be τ =
ω1/ω2. The coordinate web indicates the local metric of a con-
tinuous manifold, or represents a lattice in the discrete case.

Arbitrary modular transformations belonging to the MCG
of a torus can be achieved by the following transformation:(

ω1

ω2

)

→

(
ω′

1
ω′

2

)
=

(
a b
c d

)(
ω1

ω2

)
, τ 
→ τ ′ = aτ + b

cτ + d
,

(17)
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satisfying a, b, c, d ∈ Z and ad − bc = 1. Therefore, the
mapping class group of a torus is isomorphic to a special
linear group, namely, MCG(T 2) = SL(2,Z). The MCG(T 2)
is generated by two transformations T : τ 
→ τ + 1 and U :
τ 
→ τ

τ+1 . Their matrix representations are

T =
(

1 1
0 1

)
, U =

(
1 0
1 1

)
. (18)

As shown in Fig. 3(b), a shear deformation induces a large
diffeomorphism of the manifold and hence maps it back to
a torus in Fig. 3(c), with an additional local metric/lattice de-
formation compared to the original torus in Fig. 3(a) indicated
by the slanted coordinate web. Note that the original vertical
geometric lines get stretched to diagonal lines. The above op-
eration is equivalent to a Dehn surgery illustrated in Fig. 3(e),
which cuts the torus along the β cycle into a cylinder, twist the
cyclinder by 2π along the β cycle (equivalent to the shearing)
and then reglue the two edges of the cylinder back to a torus.

One can apply an additional local geometry deformation to
transform the configuration in Fig. 3(c) to the one in Fig. 3(d)
with the same metric/lattice structure as the original torus in
Fig. 3(a). This local geometry deformation is a diffeomor-
phism isotopic to an identity MCG element I, i.e., a trivial
mapping class. In Sec. IV, we will see that this local geometry
deformation can be interpreted as a retriangulation of the
manifold.

Denoting the two noncontractible cycles of the torus as α

(vertical) and β (horizontal), the combination of shear defor-
mation (Dehn surgery) and local metric deformation achieves
a self-diffeomorphism generating the following transforma-
tions on these two loops, respectively:

T : (α, β ) 
−→ (α + β, β ). (19)

Similarly, one applies a combination of shear deformation
(Dehn surgery) along the α loop and a local geometry defor-
mation [Figs. 3(f)–3(h)] to induce the following transforma-
tion on the loops:

U : (α, β ) 
−→ (α, α + β ). (20)

Therefore, the two generators are Dehn twists along the two
cycles, i.e., T = Dβ and U = Dα .

The representation of the above two generators in the topo-
logically ordered ground-state subspace (code subspace) are
denoted by T = Dβ and U = Dα . They induce the following
transformations on the Wilson loop operators:

T W a
α T † = W a

α+β, UW a
β U† = W a

α+β, (21)

where W a
α and W a

β are Wilson loops on the α cycle and β

cycle with topological charge a. The operator W a
α+β denotes

the twisted Wilson loop.
We emphasize that, from the point of view of the mapping

class group, the Dehn surgery (shear deformation) already
performs a self-diffeomorphism which maps the topological
manifold back to itself, i.e., � 
→ �. However, such a map
changes the local geometry, and in the discrete case the lattice
structure, i.e., � 
→ �′. For a topological state or code defined
on the lattice �, the code space depends on the lattice structure
and can be denoted by H�. Therefore, the Dehn surgery
(shear deformation) itself changes the Hilbert space, i.e.,

H� → H�′ . Note that although H� and H�′ are isomorphic,
they are distinct subspaces of the full Hilbert space of the
microscopic (physical) degrees of freedom (qubits). In order
to realize a logical gate, which is an automorphism of the
code space, one has to apply the additional trivial mapping
class, i.e., the local geometry deformation in order to map
the Hilbert space back to the original code space H�. Such a
local geometry deformation can be implemented by a constant
depth local quantum circuit as will be discussed in the later
sections. As we will see in Sec. IV, this geometry dependence
is related to the fact that the Hilbert space and wave function
of a topological quantum field theory are not topological
invariants and depend on the local geometry, in particular the
triangulation.

Finally, we note that in this paper we focus on the situation
that the topological states and codes are defined on discrete
lattices. However, the notion of local geometry deformation
also applies to the continuum case, and thus our results should
be generalizable to topologically ordered states defined in the
continuum.

III. THEORY FOR ZN TORIC CODE

A. Local geometry deformation

We begin by defining the ZN toric code and describing
local quantum circuits that can be used to change the lattice
geometry. We will subsequently use these geometrical trans-
formations of the lattice structure to help implement our Dehn
twist and braiding protocols.

1. N = 2

Let us begin with the Z2 toric code model with qubits
located on the edges of a square lattice. We consider the
case of periodic boundary conditions, so that the space is
topologically a torus. The Z2 toric code has the following
Hamiltonian:

HZ2 = −
∑

ν

Xν,1Xν,2Xν,3Xν,4 −
∑

p

Zp,1Zp,2Zp,3Zp,4, (22)

where ν and p specify the vertices and plaquettes of the lattice,
X and Z are Pauli-X and Pauli-Z operators, and the numbers
1, . . . , 4 index the four qubits associated with each vertex or
plaquette. Violations of the vertex stabilizers are referred to
as e particles, while plaquette violations are referred to as m
particles.

Let us denote |0〉 and |1〉 to be the states associated with +1
and −1 eigenvalues for the Z operator, respectively. By taking
the state |0〉 for each qubit to define the absence of a string
and |1〉 to define the presence of a string, it is straightforward
to see that the ground states of HZ2 are associated with an
equal weight superposition of all possible closed strings. On
a torus, there are four topologically degenerate ground states,
depending on whether there are an even or odd number of
closed strings wrapping the two noncontractible cycles. In this
basis, the ground state is a superposition of closed m strings.
Alternatively, by working in the X basis, we can view the
ground state to be a superposition of closed e strings.

The toric code model can in general be defined on any
cellulation of a two-dimensional surface; a square lattice is
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FIG. 4. The elementary move of adding (removing) a diagonal
edge in the center of the plaquette, which splits (merges) the plaque-
tte(s). The quantum circuit implementing such a move is composed
of two CNOTs (blue arrows) targeting the qubits on the diagonal edge
e, controlled by the other two qubits a and b on the same triangular
plaquette �abe.

just one particular simple choice. Given a toric code ground
state on one cellulation, it is possible to convert it to a ground
state on a different cellulation with a simple quantum circuit
that effectively adds or removes extra qubits. This can be
achieved with the basic moves shown in Fig. 4 [51,52]. We
note that these moves have a close connection with notions
of entanglement renormalization [52], as they can be used to
rescale the wave function to coarser lattices.

The basic move in Fig. 4 adds an ancilla qubit (white
circle in Fig. 4), which effectively adds an edge e and a
triangular plaquette in the center of the square plaquette. The
arrows represent the two-qubit CNOT gate, where the tail
and head represent the control and target of the CNOTs. The
corresponding quantum circuit is shown in the right panel. The
Pauli operators in the Heisenberg picture are transformed by
CNOTs as

CNOT (X ⊗ I ) CNOT = X ⊗ X,

CNOT (I ⊗ X ) CNOT = I ⊗ X,

CNOT (Z ⊗ I ) CNOT = Z ⊗ I,

CNOT (I ⊗ Z ) CNOT = Z ⊗ Z. (23)

As indicated by the quantum circuit in Fig. 4, a single Ze op-
erator of the ancilla thus propagates through the two CNOTs
into a 3-local stabilizer on the triangular plaquette:

Ze 
−→ ZaZbZe. (24)

Since the ancilla qubit is initialized to |0〉e, i.e., the eigenstate
of Ze with eigenvalue +1, the grown stabilizer ZaZbZe is
also fixed at +1. According to Eq. (23), the original 4-local
stabilizer ZaZbZcZd is untouched by the quantum circuit,
therefore, its +1 eigenvalue is preserved. Since ZaZbZcZd =
(ZaZbZe)(ZcZd Ze), the other triangular stabilizer ZcZd Ze is
automatically fixed at +1. It is also straightforward to verify
that the vertex Pauli-X stabilizers will also grow to include the
new edge.

This procedure can be reversed to remove (disentangle) a
qubit from the toric code ground state by applying the inverse
of this procedure. In this case (but not for the generalization
to ZN ) the circuit is its own inverse. The above elementary
move and its reverse is enough for all the local geometric
deformation in our protocol of Dehn twist on a torus in
Sec. III B and high two types of Dehn twists on high-genus
surfaces in Sec. III E.

For other protocols discussed in the subsequent sections,
we will use a number of other simple quantum circuits, which
we refer to as gadgets, in order to implement other local
geometric changes of the lattice structure.

Consider the moves shown in Fig. 5, which will be used
for Dehn twists on an annulus in Sec. III C, and on high-genus
surfaces in Sec. III E, as well as the braiding protocols in
Sec. III D. Moves I and II achieve a fine graining (splitting
one plaquette into two) and coarse graining (merging two

FIG. 5. Gadgets of local geometry deformation of the lattice, which will be used for braiding, and Dehn twists on an annulus and high-genus
surfaces. The blue arrows represent the CNOT gates. The white (empty) circles represent the added ancilla qubits, which are initialized in |0〉
or |+〉. The yellow (filled) circles represent qubits to be removed from the code. Pink solid lines represent edges to be added to the code, while
yellow dashed lines represent edges to be removed from the code.
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(a)

(b)

(c)

FIG. 6. Creating NNN slanted plaquettes through a constant depth circuit. The gray and brown shades represent stabilizers with triangular
or parallelogram shape.

plaquettes into one), respectively, along the vertical directions.
In move I, the ancilla qubits in white circles are initialized in
the |0〉 state or the |+〉 state, depending on whether they are
on the horizontal or vertical edges, as shown.

Move III implements a coarse graining that merges a
square and a triangular plaquette together into a trapezoid,
while merging the two neighboring square plaquettes into a
single rectangular one. Finally, move IV splits a square pla-
quette into a triangular plaquette and a trapezoidal plaquette.
Note that all of the required CNOT operations (indicated
by blue arrows) commute with each other and thus can be
implemented in any order.

The next set of moves will be used for alternative single-
shot protocols for braiding, Dehn twists on an annulus, and
high-genus surfaces, as well as multiple Dehn twists in a
single shot in Sec. III F. They create slanted plaquettes with
diagonal edges that can be of some arbitrary length �. This can
be achieved with a constant depth local circuit with a range �.
The protocol for the simplest case, namely, creating a slanted
plaquette with a next-nearest-neighbor (NNN) diagonal edge
[which we can label as the vector (2,1)] on a Z2 toric code
is shown in Fig. 6. In Fig. 6(a), we apply three CNOTs
targeting an ancilla g initialized at |0〉 (the +1 eigenstate
of Zg), conditioned by the qubits a, b, and f . According to
Eq. (23), the operator Zg is transformed as

Zg 
−→ ZaZbZgZ f , (25)

which effectively introduces the NNN diagonal edge
overpassing a vertical edge and the triangular plaque-
tte (gray shadow) associated with a four-body stabilizer
ZaZbZgZ f = +1 coexisting with all the previous stabi-
lizers, as shown in Fig. 6(a). Since the initial con-
figuration in Fig. 6(a) has a two-plaquette stabilizer
ZaZbZcZd ZeZ f = +1, the stabilizer on the other triangle
(brown shadow) divided by the diagonal edge, ZgZcZd Ze,
is automatically set to +1, due to the decomposition

ZaZbZcZd ZeZ f = (ZaZbZ f Zg)(ZgZcZd Ze). One can also easily
verify the transformation of the vertex stabilizers.

One important fact is that the addition of different NNN
diagonal edges (2,1) shown in Fig. 6(b) can be done in paral-
lel. In this way, one creates the slanted plaquettes (one shown
in brown shadow) with the NNN diagonal edges overpassing
the vertical edges of the original square plaquettes. To see the
stabilizers corresponding to the slanted plaquettes are fixed at
+1, we can proceed as follows.

First, we note that from the argument above, the elongated
triangular stabilizers are all one, e.g., ZbZhZ jZi = +1 and
ZaZbZ f Zg = +1. Next, we consider the trapezoid (union of
the region in gray and brown shadow) which can be consid-
ered as a combination of a square plaquette associated with
the stabilizer ZaZiZeZ f = +1 and the triangle on the right
associated with the stabilizer ZbZhZ jZi = +1. Therefore, the
multiplication of these two stabilizers gives rise to the trape-
zoid stabilizer ZaZbZhZ jZeZ f = (ZbZhZ jZi )(ZiZaZeZ f ) = +1.
Now, the trapezoid can also be split into the triangle on the left
(gray shadow) with stabilizer ZaZbZ f Zg = +1 and the slanted
plaquette with stabilizer ZhZjZeZg, i.e., ZaZbZhZ jZeZ f =
(ZhZjZeZg)(ZaZbZ f Zg) = +1. It follows that the stabilizer
associated with the slanted plaquette ZhZjZeZg is also fixed
at +1.

Now, we can get rid of all the verticle edges [which we can
label as the vector (0,1)] and also the triangular stabilizers,
with the circuit shown in Fig. 6(c), where, for example, the
qubit f is disentangled by the three CNOTs with the controls
being the other three sites associated with the triangular
stabilizer (gray shadow). Similar to the procedure of adding
diagonal edges, the removal of the vertical edges can also be
done in parallel as shown in Fig. 6(c). One hence ends up with
a lattice with slanted plaquettes containing NNN diagonal
edges in Fig. 6(c).

This protocol for creating slanted plaquettes spanned by
the horizontal edge (1,0) and NNN diagonal edge (2,1) can
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(a)

(d)

(e)

(b) (c)

FIG. 7. Definition and elementary move for the ZN toric code. The edges of the lattice are directed (with arrows) to represent the
Hamiltonian. (a) Two types of stabilizers. (b) Two types of anyons strings with corresponding anyon pairs in the ends. (c) Two types of
logical string operators along two directions on a torus. (d) Elementary move for adding an edge. The single and double arrows represent the
CX and CX † gates, respectively. (e) Elementary move for removing an edge.

be generalized to creating more slanted plaquettes spanned by
(1,0) and (n, 1), where n is an arbitrary integer. By symme-
try, it can also be generalized to creating slanted plaquette
spanned by the vertical edge (0,1) and the diagonal edge
(1, n). Even more generally, we can create a parallelogram
plaquette spanned by the edge (m, n) and (m′, n′).

We emphasize that since the plaquettes can all be operated
on in parallel, we can convert a lattice with square plaquettes
to any type of slanted plaquettes by a constant depth circuit,
independent of the size of the lattice.

2. General N

Now, we generalize the above results to the ZN toric code.
On each edge of the lattice we now have a qudit with N states.
The Hamiltonian is

HZN = −
∑

ν

X †
ν,1X †

ν,2Xν,3Xν,4 −
∑

p

Z†
p,1Zp,2Zp,3Z†

p,4, (26)

where the vertex and plaquette operators are illustrated in
Fig. 7. Here, the shift operators (generalized Pauli operators)

for the N-level qudits are defined by

X =
N−1∑
n=0

|(n + 1) mod N〉〈n|,

X † =
N−1∑
n=0

|(n − 1) mod N〉〈n|, (27)

Z =
N−1∑
n=0

ωn|n〉〈n|,

where ω = e2π i/N . The shift operators satisfy the Weyl algebra
ZXZ†X † = ω. A useful way of representing the Hamiltonian
is to consider the edges to be directed, as the arrows on the
edges indicate in Fig. 7.

The topological charges in this model are electric charge
eh, magnetic charge mh, and the composites ehml , where
h, l = (0, 1, 2, . . . , N − 1) mod N . As shown in Fig. 7, anyon
eh and its antiparticle e−h can be created out of the vacuum by
a string operator with Zh on the horizontal edges and Zh†

on
the vertical edges. Similarly, mh and m−h can be created by a
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string involving X h and X h†
. The logical qudit shift operators

on a torus are X α, X β, Zα , and Zβ as shown in Fig. 7(c) up
to local deformation.

The generalization of CNOT is the controlled-X gate de-
fined as

CX =
N−1∑
n=0

N−1∑
m=0

|n〉〈n| ⊗ |(m + n) mod N〉〈m|, (28)

i.e., the value of the target qudit undertakes a conditional
addition of the value of the control qudit. The shift operators
in the Heisenberg picture are transformed by CX or CX †

as

CX (X ⊗ I ) CX † = X ⊗ X, CX (I ⊗ X ) CX † = I ⊗ X,

CX † (X ⊗ I ) CX = X ⊗ X †, CX (Z ⊗ I ) CX † = Z ⊗ I,

CX (I ⊗ Z ) CX † = Z† ⊗ Z, CX † (I ⊗ Z ) CX = Z ⊗ Z.

(29)

All of the gadgets described in the previous section for locally
changing the geometry of the lattice can be straightforwardly
generalized to the case of the ZN toric code by replacing
CNOT with CX or CX †.

For example, consider the splitting of a plaquette shown
in Fig. 7(d). A single Z†

e operator of the ancilla propagates
through the CX (single arrow) and CX † (double arrow) into a
3-local stabilizer on the triangular plaquette, i.e.,

Z†
e 
−→ Z†

a ZbZ†
e , (30)

according to the Hermitian conjugate of the last line in
Eqs. (29), namely,

CX (I ⊗ Z†) CX † = Z ⊗ Z†, CX † (I ⊗ Z†)CX = Z† ⊗ Z†.

(31)

Note that the tail and head of the arrows represent the control
and target of the CX and CX † gates, as in the N = 2 case for
CNOT gates.

Since the ancilla qubit is initialized in the state |0〉e,
i.e., the eigenstate of Ze and Z†

e with eigenvalue +1, the
grown stabilizer Z†

a ZbZ†
e is also fixed at +1. According to

Eqs. (29), the original 4-local plaquette stabilizer Z†
a ZbZcZ†

d is
untouched by the quantum circuit, therefore, its +1 eigenvalue
is preserved. Since Z†

a ZbZcZ†
d = (Z†

a ZbZ†
e )(ZeZcZ†

d ), the other
triangle stabilizer ZcZ†

d Ze is automatically fixed at +1.
Similarly, one can verify that the vertex stabilizer terms

are also grown appropriately. One can also add vertices to the
lattice. To split a vertex with four edges into two vertices with
three edges, we follow the procedure shown in Fig. 7(d). The
ancilla qubit e is initialized in the |+〉e state, i.e. the eigenstate
of Xe and X †

e with eigenvalue +1. A single X †
e operator of

the ancilla propagates through the CX (single arrow) and CX †

(double arrow) into a 3-local vertex stabilizer, i.e.,

X †
e 
−→ X †

a Xd X †
e , (32)

according to the Hermitian conjugate of the relations in
Eqs. (29), namely,

CX (X † ⊗ I )CX † = X † ⊗ X †,

CX †(X † ⊗ I )CX = X † ⊗ X. (33)

Since the ancilla qubit is initialized in the |+〉e state, the
eigenvalue of the grown stabilizer X †

a Xd X †
e is also fixed at

+1. Similar to the case with the plaquette stabilizers, the other
three-term vertex stabilizer X †

b XcXe is also automatically fixed
at +1.

In the following sections, we describe in detail the proto-
cols for implementing Dehn twists and braids for the ZN toric
code state. Most of our results will be presented for the case
N = 2; the generalization to arbitrary N is straightforward.

B. Dehn twist on a torus

Using the basic moves described in the previous section to
entangle/disentangle ancilla qubits in the toric code ground
state, we can then implement the protocol for applying a Dehn
twist on the torus. The complete protocol is shown in Fig. 8.
For illustration purposes, we show the transformations of both
small (contractible) loops and large (noncontractible) loops
of e (red) and m (blue) anyons, respectively. These loops are
created by applying Pauli string operators Z = ∏

j Z j and X =∏
j Xj , respectively.
We start with the lattice configuration shown in Fig. 8(a).

We then incorporate the ancilla qubits (white) in the center
of each plaquette by applying the basic moves, as shown
in Fig. 8(b). This can be done with two transversal CNOT
operations, first with the qubits on vertical edges as the control
qubits, and next with the qubits on horizontal edges as the
control qubits. Next, as depicted in Fig. 8(c), we apply two
transversal CNOT operations targeted on the vertical edges
(yellow circles). This causes the qubits on the vertical edges
to become disentangled, thus effectively removing them from
participating in the toric code ground state. This results in
the toric code ground state existing on the slanted lattice
shown in Fig. 8(d); the ground state is then a superposition
of slanted loops. The sequence of operations from Figs. 8(a)–
8(d) is therefore a local, finite depth quantum circuit, which
we label LUβ . This circuit changes the local geometry of
the topological wave function from a condensation of square-
shaped loops to a condensation of slanted loops, which exactly
corresponds to the local geometry deformation we introduced
before in Sec. II (Fig. 3).

To complete the Dehn twist protocol, we perform a shear
deformation by a qubit permutation Pσ shown in Fig. 8(e).
The qubits in each row are cyclically permuted to the right
by a number of spacings depicted by the green arrows. This
leads to the configuration shown in Fig. 8(f), which we can
see is equivalent to the starting lattice geometry. Therefore,
the shear recovers the original lattice, and at the same time
induces a Dehn twist of both the large e and m loops along β,
namely,

PσLUβ : X α −→ X α+β,

PσLUβ : Zα 
−→ Zα+β, (34)

and hence PσLUβ = T = Dβ . The small loops are deformed
but remain closed under this combined transformation. There-
fore, the ground state continues to be an equal weight superpo-
sition of closed loops, and the topological ground-state (code)
subspace is preserved under this operation.

By implementing the LU transformation to slant the lattice
in the other direction and then a permutation corresponding to
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Implementing Dehn twist Dβ on a torus for the Z2 toric code. The thick lines represent the noncontractible loops of two types Z
(red) and X (blue). The thin lines represent local contractible loops of two types. The blue arrows in (b) and (c) represent CNOTs, in order to
add qubits (white circles, initialized at |0〉) and edges (pink solid lines), or to remove qubits (yellow circles) and edges (yellow dashed lines).
The green thick arrows in (e) represent permutation of qubits in a shearing pattern.

a vertical shear, we can analogously obtain a Dehn twist along
α. It is clear that the same operation can also be performed on
a cylinder instead of a torus, where we perform a Dehn twist
along the single closed noncontractible cycle of the cylinder.

We note that a different set of protocols for implementing
a Dehn twist on a torus in the context of the Z2 toric code was
proposed recently in Ref. [53]. Either one applies a sequence
of long-range CNOTs with an O(d ) overhead, or performs
only CNOTs in parallel across the lattice with constant time
overhead. In the latter protocol, the role of the long-range
permutations was not discussed, which is crucial for consid-
eration of multiple Dehn twists.

C. Dehn twist on an annulus

In order to set up the rest of the required protocols for
arbitrary braids and Dehn twists, we now consider protocols
which implement a Dehn twist along the noncontractible cycle
β of an annulus. Again, here we restrict our attention to the
case of the Z2 toric code. We consider two distinct protocols
for implementing the Dehn twist Dβ along β.

1. Protocol 1: Twist via shearing

The right Dehn twist Dβ on a single annulus can be
implemented according to the protocol shown in Fig. 9. The
essence of this protocol is to implement a 2π rotation of the
inner boundary by a sequence of operations combining local
finite depth circuit and qubit permutation:

Dβ =
9∏

i=1

Pσ,iLU i. (35)

Since the 2π rotation of the square boundary defect can
always be decomposed into a sequence of shears, we can
just perform entangling and disentangling gates followed by
a qubit permutation to realize each shearing process.

In Fig. 9(a) we illustrate a logical string operator X α along
the α line connecting the inner and outer boundaries of the
annulus. The first step of shearing the boundary defect is
shown in Fig. 9(a), panels I–VI. In panel II, we add (entangle)
qubits (white circles) and effectively add edges (red lines) to
the code using one step of the elementary CNOT circuits from
Fig. 4. In panel III, we then remove (disentangle) qubits and
effectively remove edges (dashed yellow lines), which leads
to the deformed lattice in panel IV. The lattice in panel IV is a
deformed square lattice except the defect region. In particular,
it is coarse grained in the region above the defect and fine
grained in the region below, and is sheared on the two sides.
In panel V, we perform a permutation of qubits, where some
of them are moved to the unoccupied ancilla qubits (white
circles). After that, we recover the regular square as shown
in panel VI with the original square defect being sheared to a
parallelogram.

The second step of shearing the defect is shown in
Fig. 9(b), panels I–V. Now in panels I and II we add and
remove qubits and edges to get the deformed lattice in panel
III, where the shearing and coarse- and fine-graining proce-
dures are opposite in the top and bottom parts. Now we again
perform qubit permutation in opposite directions in the top
and bottom parts as shown in panel IV, leading to the further
sheared parallelogram defect in panel V where the vertex A is
permuted to the upper right corner. We repeat this procedure
of shearing the parallelogram defect as shown in Fig. 9(c)
and finally shear it back to the square defect in Fig. 9(d).
The square boundary defect has been rotated by a full 2π
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(a)

(b)

(c) (d)

FIG. 9. Dehn twist along the boundary of the inner defect (the β

loop) on an annulus via shearing of the defect. An overall 2π rotation
(indicated by the the letters on the four corners) is induced by nine
steps of shearing.

cycle which leads to a right Dehn twist of the string X or Z
connecting the inner and outer boundary of the annulus along
the β loop, i.e.,

Dβ : X α 
−→ X α+β, Dβ : Zα 
−→ Zα+β. (36)

The transformation of the X string is illustrated in Fig. 9(d).
Note that in total we have passed through eight configu-

rations of the parallelogram defect, and have used nine com-
posite steps of local quantum circuit and qubit permutation
in total. Finally, we note that if we start with an annulus
geometry having a parallelogram defect in the middle as
shown in Fig. 9(a), panel VI, and end up with the same shape,
the total number of composite steps can be reduced to 8.

2. Protocol 2: Single-shot twist

Here, we described another procedure for implementing
the Dehn twist around the β loop on the annulus. In contrast
to the previous protocol, this protocol can be implemented in
a single step, so Dβ = PσLUβ , rather than the nine steps used
in the previous protocol. However, the price to pay is that this
protocol requires the local quantum circuit to have two-qubit
gates with a range r ≈ 9.

Consider a hole inside a square lattice with perimeter L. As
an example, the case for L = 12 is shown in Fig. 10(a). Only
a portion of the entire lattice has been shown in the figure. By
the following procedure we can perform a Dehn twist around
this hole defect.

(1) We start by labeling the sites as shown in Fig. 10(a).
For the sake of clarity, only some of the labels are shown. We
divide the lattice into rings. The sites that lie on the hole’s
boundary compose the 0th ring (n = 0), the next ring consists
of sites that neighbor the 0th ring, and so on. In Fig. 10(a),
the rings are plotted with thicker lines to be distinguished. We
then number the sites in each ring, starting from the site on the
upper left corner [m = 0, denoted by red color in Fig. 10(a)]
and moving clockwise. Note that the nth ring has L + 8n sites,
so if (n, m) represents the mth site on the nth ring, m ranges
between 0 to L + 8n − 1.

Given the labels, one can describe the lattice by the set
of links between the sites. For example, the (0,0) site is
connected to (1,1) and (1,19) sites from the n = 1 ring, (0,1)
is connected to (1,2), and so on.

(2) Now, we shift the labels on the nth ring by 9n sites
clockwise along the ring. So, the site that was originally
labeled as (n, m) will now be labeled as (n, m − 9n). Fig-
ure 10(b) shows some of the shifted labels for the L = 12 case.

We will do this for 0 � n � L − 1. Note that the sites on
the Lth ring would have been shifted by 9L sites. But, since the
Lth ring has L + 8L = 9L sites in total, this shift is equivalent
to doing nothing. So, for n � L we leave the rest of the lattice
unchanged.

(3) Now, we implement a local, finite depth quantum
circuit to reconnect the new labels the same way that the
original labels were connected. So, for example, in the L = 12
case, the new (0,0) site should be connected to the sites that
carry the labels (1,1) and (1,19) after the shift, as is shown in
Fig. 10(c).

Note that although the sites that were connected to each
other in the original lattice were nearest neighbors, after the
shift we need to connect sites that are further apart. Neverthe-
less, the range of those links remains finite and independent
of the code distance. Since the labels on the nth and (n + 1)th
rings have been shifted by 9n and 9(n + 1) sites, respectively,
they have been moved only by nine sites relative to each other.
So, the modified links’ range would be at most 9.

The whole reconnecting procedure can be done in two
steps using the protocol in Fig. 6. Figure 10(d) shows the
resulting lattice after changing the links.

(4) Finally, we implement a permutation Pσ of qubits such
that each site label is moved back to its original position.

Figure 11 illustrates how a string operator transforms under
this procedure. Figure 11(a) shows the hole defect and a string
that terminates on the hole’s boundary. After reconnecting
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FIG. 10. (a) A hole with perimeter L = 12 in a square lattice. The qubits are on the edges but are not shown for simplicity. The sites are
divided into rings surrounding the hole and are numbered clockwise. We start with the upper left corner, shown in red numbers, and move
clockwise. (b) We shift the labels on the nth ring by 9n sites. The labels which originally corresponded to upper left corners are shown in red.
(c) After shifting labels, we reconnect the sites as they were connected originally. For example, since the (0,0) site was connected to (1,1) and
(1,19) in (a), it should be reconnected by the blue lines shown above. (d) The modified lattice after reconnecting the sites.

the sites, the lattice and the string will look as shown in
Fig. 11(b). Finally, after permuting the qubits, we recover the
original lattice with the string encircling the hole as is shown
in Fig. 11(c).

D. Braiding

1. Protocol 1: Braiding in multiple steps

In this section we demonstrate a protocol for braiding
which takes a finite number of steps: B12 = ∏

i PσiLU i. For
concreteness, we will demonstrate how to implement a full
braid between two hole defects in the Z2 toric code state. The
protocol can be straightforwardly applied to the case of half-
braids involving any type of holes, anyons, or twist defects.
Furthermore, the protocol only includes nontrivial operations

that act in a given subregion of the system. Therefore, it can
be applied to braids on any surface.

An intuitive way to understand the protocol is through the
picture of entanglement renormalization and the multiscale
entanglement renormalization ansatz (MERA). The essence
of entanglement renormalization and the MERA circuit can
be understood as a coarse-graining process that “merges”
several qubits together, effectively removing (disentangling)
several qubits, as illustrated in Fig. 12(a). In the context of
topological order, one can think of this process as shrinking
the manifold which supports the topological state. The reverse
of such a process is “fine graining” which “splits” one qubit
into several, effectively adding (entangling) qubits to the code.
One can think of this process as stretching the manifold. We
consider anyons or defects as punctures in the manifold as
illustrated in Fig. 12(b) which are distance d apart. In order to
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FIG. 11. Performing Dehn twist around the β loop in one shot. (a) A boundary defect with length L = 12 in a square lattice. A string
operator which terminates on the hole’s boundary is also shown in red color. (b) How the lattice and the string look like after reconnecting the
sites. (c) Following the permutation we recover the original lattice, but now the string operator goes around the hole defect.

separate the two punctures further, one can perform one layer
of the entanglement renormalization circuit (with constant
depth) locally to stretch (fine graining) the region between the
two punctures, which effectively adds qubits into the system.
The distance between the two punctures has effectively been
increased by a constant factor that is independent of the
initial separation of the two punctures. Now, the manifold is
effectively enlarged due to the addition of qubits. In order to
preserve the shape of the manifold away from the region of the
punctures, one can also perform one layer of the entanglement
renormalization circuit locally to squeeze (coarse grain) the
region on the top and bottom sides of the punctures, as shown
in Fig. 12(c). Thus, one ends up with the same overall shape

of the manifold, with the two punctures being separated by a
factor of 2, i.e., d → 2d . One could also stretch the manifold
only on one side as illustrated in Fig. 12(d), which effectively
moves the top puncture upward in this case and keeps the other
puncture fixed.

The concrete braiding circuit for the surface code (toric
code on a planar geometry) is shown in Fig. 13. In Fig. 13(a),
we show the setup under consideration, i.e., a pair of Z-cut
defects with smooth boundary (red) and a pair of X-cut defects
with rough boundary (blue) in a surface code. Each pair of
defects form a “double-cut” logical qubit. The braiding of a
Z-cut defect around the another X-cut defect implements a
logical CNOT gate.

(a)

(c) (d)

(b)

FIG. 12. Understanding the essence of braiding via the equivalence of local entanglement renormalization (its inverse) and manifold
stretching (squeezing). (a) The global MERA circuit performing coarse graining (downward) or fine graining (upward). (b) Locally stretch the
manifold in the region between the two punctures to enlarge their distance by a factor of 2. (c) Aside from stretching, also squeeze the upper
and lower regions to preserve the shape of the manifold. (d) Stretch the puncture only in one direction to only move one puncture upward.
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(a)

(b)

(e) (f)

(c) (d)

FIG. 13. Braiding protocol via single-shot long-distance moving of the boundary defects. (a) Two pairs of boundary defects (X cut and Z
cut). (b) Adding qubits (white circles) and edges (pink solid lines). (c) Removing qubits (yellow circles) and edges (yellow dashed lines). (d)
Permutation of qubits in a shearing pattern Pσ . (e) Effectively move the defect 1 with distance O(d ) after the permutation. (f) A full braiding
is implemented by 12 steps of LU and Pσ .

In Fig. 13(b), one adds qubits (white circles) and edges
into the code in the region below defect 1, which effectively
stretches the manifold. One also adds diagonal edges on the
two sides which creates a shearing pattern. Now, in Fig. 13(c),
one removes half of the qubits (yellow circles) and edges in
the region above defect 1, in order to compensate for the
added qubits. Thus, we preserve the total number of qubits
participating in the topological state. These operations can be
performed on different plaquettes in parallel, so we have a
local finite depth quantum circuit that implements these trans-
formations. After the transformation, one obtains a deformed
square lattice, where the top part is squeezed, the lower part is
stretched, and the side part is sheared.

We then permute the qubits as shown in Fig. 13(d), to
revert back to the regular square lattice shown in Fig. 13(f).
Note that the lattice in Figs. 13(d) and 13(e) are isomorphic
to each other, and the qubit permutation is exactly the im-
plementation of the isomorphism between the two lattices.
As a consequence, defect 1 effectively moves O(d ) sites
upward, as shown in Fig. 13(e). We see that up to the overall
permutation of qubits, this transformation occurs through a
finite number of local two-qubit operations, independent of
the code distance d . This is in sharp contrast to conventional
schemes which need O(d ) steps.

Crucially, the number of sites that a defect can move in
our scheme is bounded by the distance to the closest defect

perpendicular to the moving direction. Therefore, to imple-
ment a braid, we need to break up the braid into a finite
number of steps, where in each step the defect moves by an
amount set by the distance to the closest defect.

We see that a single full braiding operation can be always
performed with a constant number of steps, independent of
system size and code distance. As summarized in Fig. 13(f),
we have demonstrated how the full braid can be achieved with
12 steps:

B2
1,2 =

12∏
i=1

Pσ,iLU i. (37)

We note that there is freedom in our choice of steps to
implement this protocol. The precise number of steps can
be altered depending on the exact geometry and finite-size
effects, but the main point is that the number of steps is
finite and independent of code distance and system size. The
precise protocol that we illustrated has a slightly asymmetric
nature (four horizontal steps in the upper region and two
horizontal steps in the lower region). This is due to the fact that
the maximum distance a puncture can be moved is bounded by
the separation of the defects 1 and 2, various finite-size effects,
and some choices made to minimize the number of steps in the
protocol.
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(a)

(g) (h) (i) (j)

(b) (c) (d) (e) (f)

FIG. 14. Implementing braiding (full braiding) via half-twists (Dehn twists) through multiple steps of shearing operations. The parallelo-
gram (purple dashed lines) surrounding both punctures is a guide to the eye. The red and blue dashed loops in (f) indicate gauge transformations,
which shows that the half–self-twists around each puncture are trivial operations.

Note that in this example we considered a full braid be-
cause in the Z2 toric code, that is the only way to achieve
a nontrivial logical operation by braiding hole defects. How-
ever, one can also consider half-braids (single exchange)
which requires ≈six steps; a half-braid on two twist defects
also implements a nontrivial logical operation.

2. Protocol 2: Braiding via half-twist

The previous full braiding protocol in Sec. III D 1 needs
12 steps, independent of the code distance. One can consider
a different protocol to further reduce the number of steps,
by utilizing the equivalence between (half-) braiding of two
punctures and a half-twist around the two punctures. The
protocol of the latter can be readily adapted from the protocol
for implementing a Dehn twist on an annulus.

As has been discussed in Sec. II C [Figs. 2(e)–2(g)],
a half-twist along the β loop enclosing two punctures is
equivalent to (half-) braiding the two punctures, with addi-
tional half–self-twists around each puncture. That is,

√
Dβ =

B1,2

√
Dω1

√
Dω2 , where here

√
Dβ,

√
Dω1 ,

√
Dω2 represent

the half-twists around β, ω1, and ω2.
The half-twists

√
Dωi for i = 1, 2 can be implemented

entirely by a local finite depth quantum circuit. In general, the
effect of the half-twists

√
Dωi around each puncture is simply

to ensure that the punctures return to exactly their original
configuration. For example, a hole or an anyon can have some
nontrivial geometric shape, such that a half-twist changes
its orientation, so that the half-twists

√
Dωi are necessary

to recover the exact original configuration. In the case of
anyons or twist defects, where the spatial extent is O(1),

independent of the code distance, it is clear that this can be
accomplished entirely by a local finite depth quantum circuit.
In the case of holes, even though the linear size of the hole is
O(d ), we have seen how the lattice geometry can be changed
everywhere in parallel through a local finite depth quantum
circuit. Alternatively, we can just implement the half-twists√
Dωi using the same protocol for implementing

√
Dβ , except

by twisting around each puncture individually.
In the case that the two punctures are not identical, as

illustrated in Figs. 2(h)–2(j), we have to perform a full braid
to return the system to the original configuration and perform
a logical gate. In this case, we can perform a full Dehn twist
around the β loop, which is equivalent to a full braid with
additional self-Dehn-twists around the two punctures, i.e.,
Dβ = B1,2Dω1Dω2 . For anyons, the full twist Dωi simply gives
an overall phase (the topological twist of the anyon), and can
therefore be ignored; in the case of hole defects, the overall
phase is trivial. Therefore, in both cases the self-Dehn-twists
can be dropped. For twist defects, the branch cut of the twist
defect winds around by 2π locally around the twist defect, and
can be undone by a local finite depth circuit.

We show the protocol for braiding holes in a surface code
in Fig. 14, following the defect-shearing protocol for the Dehn
twist on an annulus in Fig. 9. We consider a parallelogram
with edges (dashed lines) equivalent to the β loop enclosing
the two defects, as shown in Fig. 14(a). In order to apply a
half or full Dehn twist along the β loop, we can rotate the
parallelogram by π and 2π , respectively, which can be further
decomposed into a sequence of shearing operations as dis-
cussed in Fig. 9. The sequence of shears spatially changes the
location of the defects and also shears the defects themselves.
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After four steps of shearing, we reach the configuration in
Fig. 14(e), with the parallelogram and the two defects being
rotated by π (see the labeling of the vertices). By tracking
the configuration of reference Wilson loop operators, we can
see that this procedure exactly leads to a half-twist, equivalent
to braiding and additional half–self-twists around the defects
[see Fig. 2(b)], i.e.,

√
Dβ = B1,2

√
Dω1

√
Dω2 .

As we can see from Fig. 14(f), we can perform a gauge
transformation by applying a membrane of stabilizers to de-
form the Wilson loop configuration to undo the self-twist,
which is a manifestation of the trivial self-twist of the holes.
The result is a configuration that only corresponds to a single
braid B1,2 [see Fig. 2(c)].

To get a nontrivial logical gate in the Z2 surface code,
one has to consider the braiding of two different types of
hole defects, i.e., those with smooth and rough boundaries,
respectively. Therefore, we need to continue the protocol
with an additional four steps to achieve a full braid [see
Figs. 14(g)–14(j)]. In Fig. 14(j), the two defects come back
to the original configuration in Fig. 14(a), and hence achieve
a full braid B2

1,2.
The protocol described above still uses a finite number of

steps, so that B1,2 = ∏4
i=1 PσiLU i, i.e., four steps for braiding.

The full braiding needs 8 steps, which is less than the 12-step
protocol with cyclic moving of one defect shown in Fig. 13.

We note that by using non-nearest-neighbor two-qubit
gates, one can implement the Dehn twist protocol described
in Fig. 10, which needs only one step. Therefore, we can have
B1,2 = PσLU , at the expense of using a longer-range local
quantum circuit.

E. Dehn twists on high-genus surfaces

Now we consider generating the whole mapping class
group of a high-genus surface, i.e., MCG(�g). It is well
known that MCG(�g) can be generated by 3g − 1 Dehn twists
[45], which are of three types and denoted by α, β, and γ ,
respectively, as illustrated in Fig. 15(a) (the arrows indicate
the convention of the twist direction in this paper). As we can
see in Fig. 15(b), such a high-genus surface can be realized in
terms of a bilayer system with holes, where the boundaries of
holes in different layers are glued together appropriately.

The protocols we have developed so far for performing
Dehn twists on a cylinder and an annulus can easily be adapted
to performing Dehn twists along any of the α, β, and γ loops
of a high-genus surface. In the following, we provide the
details for implementing these protocols.

1. Dehn twist along α and γ loops

We first show the protocol for implementing a Dehn twist
along the α loop in Fig. 16. As in the situation of Dehn
twists on a torus as shown in Fig. 8, we perform the local
geometry deformation to get a “solenoid” region with the
slanted plaquette structure as shown in Figs. 16(a)–16(c).
Here, we choose the length of the solenoid such that each
diagonal line winds around the solenoid once. In Fig. 16(d),
we perform the shear through the long-range permutation of
the sites, similar to the situation in Fig. 8. Note that the two
ends of the solenoid are fixed and no sites at these ends are

(a)

(b)

FIG. 15. (a) Three types of noncontractible loops on a high-
genus surface: α, β, and γ . Dehn twists along these loops generate
the whole mapping class group. (b) The equivalent loops in a bilayer
topological system coupled via “wormholes.” The equivalent β loops
on the upper and lower layers have opposite orientations.

permuted. Therefore, we get the following transformation:

Pσ LUα :X β 
−→ X α+β,

Pσ LUα :Zβ 
−→ Zα+β, (38)

where only the loop X is illustrated in the figure. The trans-
formation is exactly the Dehn twist Dα .

The Dehn twist along the γ loop, illustrated in Fig. 17, is
almost identical. Here, the “solenoid” region containing the
slanted plaquettes is located at the handle between the two
pairs of punctures. We get the following transformation:

Pσ LUγ :X γ 
−→ X β+γ ,

Pσ LUγ :Zγ 
−→ Zβ+γ , (39)

which is exactly the Dehn twist Dγ .

2. Dehn twist along β loops

As indicated by Fig. 15(b), one can perform the Dehn
twist along the β loop in either of the two layers. As such, it
becomes equivalent to performing a Dehn twist on an annulus
with the inner boundary enclosed by the β loop. When both
layers are viewed from the top as in Fig. 15(b), we see that
the directionality of the Dehn twist depends on the layer, as
shown.

Now, we can directly apply the protocol of the Dehn twist
Dβ on an annulus to the Dehn twist Dβ on a high-genus
surface. By applying the protocol discussed in Sec. III C 2,
we can apply Dβ by a single step Dβ = PσLUβ . Alternatively,
we can apply the shearing protocol of Sec. III C 1. Assuming
we choose the β loop located in the upper layer, we can
just apply the nine (for square boundary defect) or eight (for
parallelogram defect) composite steps of shearing punctures
to twist the string in the upper layer as shown in Figs. 18(a)–
18(c).
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FIG. 16. Dehn twist along the α loop. (a) Adding qubits (white
circles) and edges (red solid lines). (b) Removing qubits and edges
(yellow dashed lines). (c) Obtain a lattice with a “gift-wrapping”
(slanted) pattern in the solenoid region. (d) Shear permutation (green
arrows) of the qubits in the solenoid region. (e) A Dehn twist is
achieved and the lattice is mapped to the original geometry in (a).

Note that in the high-genus surface, the boundary of the
inner hole of the top layer is “glued” to the inner hole of
the bottom layer. In the case of passive topological quan-
tum computation (TQC), during the Dehn twist protocol the
Hamiltonian along this inner boundary should be turned off;
alternatively, in the case of active QEC, the stabilizer measure-
ments along the inner boundary that glue the two layers should
be turned off. This is because during the Dehn twist protocol,
the inner boundary of the one layer is twisting relative to the

FIG. 17. Dehn twist along the γ loop.

inner boundary of the other layer, and therefore they cannot
be glued together with local interactions until the Dehn twist
protocol is completed.

This whole protocol gives the desired Dehn twist Dβ ,
which performs the map Dβ : X γ 
−→ X β+γ in the illustrated
case in Fig. 18(l). We can further reduce the number of
composite steps by a variant of the protocol, shown in Fig. 19.
Instead of doing the full twist on an annulus on one of the two
layers, we can do half-twists on both layers simultaneously,
but with opposite orientation. More concretely, we start with
the same square defects on both layers, and perform the
shearing of the defects in opposite directions on both layers,
thus effectively performing a π (−π ) rotation of the square
defect in the upper (lower) layer. The half-twist is manifested
by the fact the vertex A is permuted to the opposite (lower-
right) corner at the end of the protocol. After gluing the two
layers back, we achieve a Dehn twist along the β loop within
total five defect-shearing steps, i.e., Dβ = ∏5

i=1 Pσ,iLU i. Note
that the loop configuration of twisted Wilson loops (X or Z)
at the end of this protocol can be continuously deformed back
to the loop configuration at the end of the previous protocol,
i.e., equivalent to X β+γ or Zβ+γ .

F. Multiple Dehn twists in a single shot: Proof of Theorem 2

Here, we consider performing n Dehn twists around either
the α, β, or γ loops. That is, we consider Dnω = Dn

ω, for ω =
αi, βi, or γi. We will show that we can perform Dnω through
a quantum circuit PσLUnω, where LUnω is a local quantum
circuit with finite depth independent of code distance d and
system size.

In Protocol 1 below, we will find that LUnω has a depth that
scales as O(log n), but independent of code distance and sys-
tem size. In Protocol 2 below, LUnω has a depth independent
of n, but the range of two-qubit gates in LUnω is r = O(n).
While Protocol 1 will be generalized to non-Abelian codes in
Sec. IV, no such generalization exists for Protocol 2.

We note that for any topologically ordered phase of matter,
Dk

ω = 1 for some finite k.2 In the case of the ZN toric code,
k = N . Therefore, when considering n Dehn twists, we see
that n < k, while the code distance d can be made arbitrarily
large. Below, we will always assume we are in the limit n <

k � d .

1. Protocol 1: Expanding the lattice

The idea of the first protocol is based on the observation
that on an asymmetric torus elongated along one direction, as
shown in Fig. 20, multiple Dehn twists can be applied in par-
allel along the same cycle. For example, in Fig. 20 the β cycle
is twice the length of the α cycle. The protocol consisting of
a finite depth local quantum circuit followed by long-range
qubit permutations, as illustrated in Fig. 20, implements a
double Dehn twist D2α = U2 in “one shot” (through a constant
depth circuit), leading to the transformation on the illustrated

2This follows from Vafa’s theorem [83], which states that the
topological spins are always rational numbers.
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(a)

(b)

(c) (d)

FIG. 18. Dehn twist along the β loop on a high-genus surface via nine steps of shearing on the top layers.

logical string operator

D2αX βD†
2α = X 2α+β. (40)

In general, for a fixed code geometry with the α(β ) cycle
n times the length of the β(α) cycle, one can implement
the multi-Dehn twist Dnβ (Dnα ) in a single shot. This is a

FIG. 19. Dehn twist along the β loop implemented by two half-twists of an annulus on both layers with five puncture-shearing steps in total.
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(a)

(b)

FIG. 20. Multiple Dehn twists implemented in a single shot on a ZN toric code via changing the aspect ratio of the torus. The single and
double arrows represent the CX and CX † gates, respectively. The curved green arrows in (b) represent permutations.

remarkable result, which demonstrates that by increasing the
system size (number of qubits) by n times and with fixed code
distance d (determined by the shorter length of the torus),
the time complexity of implementing a particular logical gate
sequence can be decreased by n times, i.e., one can trade
space for time. Nevertheless, the price to pay is that in such an
asymmetric geometry, one can only implement the dual single
Dehn twist Dα (Dβ ) in n shots.

In order to exploit the above observation, we consider the
flexibility to adjust the aspect ratio of the torus during the
computation, using entanglement renormalization. As shown

in Fig. 20(b), to be able to implement a double Dehn twist
in one shot, we aim to increase the length of the torus along
the β direction by a factor of 2. We consider ancilla qubits
to the right side of the system. We next perform a qubit
permutation Pσ1 to achieve an effective dilation of the system
by increasing the horizontal size of each plaquette by a factor
of 2. Now in order to also increase the number of qubits by
a factor of 2, we add/entangle the ancilla qubits (initialized
at |0〉 or |+〉) by the elementary moves composed of CX and
CX † gates. According to Eq. (31), the ancilla initialized at |0〉
is the eigenstate of Z†

e , and transformed by the two CX and
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one CX † as

Z†
e 
−→ Z†

e Z†
f ZbZg, (41)

which introduces a new plaquette stabilizer fixed to be +1.
Meanwhile, the original plaquette stabilizer involving four
qubits is transformed by the two CX † as

Z†
a ZbZcZ†

d 
−→ Z†
a ZbZcZ†

d Z†
f Zg, (42)

according to Eqs. (29) and (31), which corresponds to a large
stabilizer (fixed to be +1) involving two plaquettes and seven
qubits. This large stabilizer can be decomposed into two
stabilizers as Z†

a ZbZcZ†
d Z†

f Zg = (Z†
a ZcZ†

d Ze)(Z†
e Z†

f ZbZg), with
the operator on e being canceled. This makes sure the other
new plaquette operator (Z†

a ZcZ†
d Ze) is automatically fixed at

+1. Therefore, we see that the original plaquette stabilizer
is split into two plaquette stabilizers. Similarly, we have the
following transformation for the X stabilizers according to
Eqs. (29) and (33), i.e.,

X †
e 
−→ X †

e XgXd X †
f ,

X †
a X †

b XcXd 
−→ X †
a X †

b XcXd X †
f Xg, (43)

which effectively splits the original vertex stabilizers into two.
This can be verified by the decomposition X †

a X †
b XcXgXd X †

f =
(X †

a X †
b XcXe)(X †

e XgXd X †
f ).

The above procedure increases the number of plaquette and
vertices by a factor of 2. The whole elongating process is
performed in one shot by a combination of a qubit permutation
and a local finite depth quantum circuit. In general, in order to
increase the length of the torus in a particular direction by a
factor of n, one needs log2 n shots of the above transforma-
tions, which is a well-known fact for state preparation with
MERA [54]. This protocol provides an exponential improve-
ment over implementing the Dehn twist sequentially n times.

It is straightforward to see that the above result can be
extended to any of the α, β, and γ loops of a high-genus
surface, or to braids. This proves the first statement [Eq. (3)]
of Theorem 2 in the context of the ZN toric code.

2. Protocol 2: Increasing the interaction range

In the previous scheme, we fixed the interaction range
(nearest neighbor) of the local unitaries (LU ) and applied
multiple Dehn twists in parallel by changing the aspect ratio
of the torus. Here, we demonstrate a second protocol, where
we apply a single step of PLU . By increasing the range of
LU to be O(n), this allows us to apply n Dehn twists, Dnω in
a single shot. This protocol shows how the interaction range
can be turned into computational power.

We consider a square lattice in Fig. 21(a). Then, we add
the NNN diagonal edge (1,−2) and the triangular stabilizer
plaquette (shadow) by applying a CX and two CX † gates
conditioned by qubits a, b, and c, and targeting qubit d . d is
initialized in state |0〉. We apply this to other triangular stabi-
lizer plaquettes in parallel as well, as illustrated in Figs. 21(b)
and 21(c). According to the last two identities in Eq. (29),
the entangling gates on the shadowed plaquette induce the
following transformation:

Zd 
−→ Z†
a ZbZcZd . (44)

Since |0〉 is the +1 eigenstate of Zd , we fix the triangular
stabilizer Z†

a ZbZcZd at +1. A similar result holds for all the
other added plaquettes.

We now remove all the horizontal edges (1,0) with the CX
gates shown in Fig. 21(d). According to Eq. (31), the entan-
gling gates on the shadowed plaquette induce the following
transformation:

Z†
a ZbZcZd 
−→ Z†

a , (45)

which disentangles the qubit a (yellow circle). We then
reach the double slanted lattice with NNN diagonal edges in
Fig. 21(e), which is in contrast to the slanted lattice with NN
diagonal edges in Fig. 20(a).

Now, we apply a qubit permutation Pσ shown by the green
arrows in Fig. 21(e). This maps the state back to the original
lattice in Fig. 20(a) with a double Dehn twist, leading to
the following transformation on the illustrated logical string
operator D2αX βD†

2α = X 2α+β.

We see that the maximal range of the finite depth local
quantum circuit LU has an increased range relative to the
case of a single Dehn twist, as now there are two-qubit gates
involving a qubit and its next-nearest diagonal neighbor. One
can straightforwardly generalize the above protocol to apply n
Dehn twists in a single shot, with the maximal range r ∼ O(n)
in the LU circuit.

It is straightforward also to adapt this protocol to the case
of Dehn twists about any of the α, β, γ loops of a high-
genus surface, or to braids. This proves the second statement
[Eq. (4)] of Theorem 2 in the context of ZN toric code.

IV. THEORY FOR GENERAL TOPOLOGICAL CODES

In this section we generalize the discussions presented in
Sec. III to the case of arbitrary nonchiral topologically ordered
states. In particular, this analysis applies to both general
Abelian and non-Abelian topological states. When applied to
certain non-Abelian codes, such as the Fibonacci surface code
[13], our results imply that a universal, fault-tolerant set of
logical gates can be performed with constant time overhead.

The class of topologically ordered states that we consider
will be referred to as Turaev-Viro codes, which are based on
Turaev-Viro-Barrett-Westbury (TVBW) topological quantum
field theories [7,8,17]. Reference [44] contains a recent re-
view aimed at physicists, and contains the conventions that
we follow. These states are associated with exactly solvable
models, such as the Levin-Wen model [10], which can realize
all topologically ordered states that admit gapped boundaries.
Topologically ordered states that can be obtained in this
way are referred to as “nonchiral” topological states. Chiral
topological states, such as fractional quantum Hall (FQH)
states, have topologically protected gapless edge modes and
cannot be obtained from such a construction, thus, they are
not included in our analysis.

References [11,13] discussed utilizing these TVBW
TQFTs as topological QECCs for quantum computation. As
such, the code space corresponds to the ground-state subspace
of the exactly solvable Levin-Wen Hamiltonians (and their
generalizations).
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(a) (b)

(c) (d)

(e) (f)

FIG. 21. Implementing multiple Dehn twists in a single shot via increasing the range of interaction on a ZN toric code. In (b)–(d), the
diagonal edges overpass the horizontal edges, i.e., equivalent to a bridge structure.

We note that some of the results of this section, in particular
those of Secs. IV B and IV D 2, are also summarized in
Ref. [43].

A. Turaev-Viro codes

The TVBW TQFT associates to a closed surface �

a finite-dimensional Hilbert space H� . In the context of
QECC, this space can be viewed as the code subspace of

a Turaev-Viro code. We use � to denote a triangulation
of �, together with a local ordering of the vertices of the
triangulation. This local ordering is referred to as a branching
structure, and implies that each edge of � is directed. We
further use �̂ to denote the dual cellulation associated with
�, which also defines a directed graph. For concreteness, we
will first consider cases where � and �̂ define triangular and
honeycomb lattices, respectively.
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The Turaev-Viro codes (alternatively, the TVBW TQFTs)
take as input a unitary fusion category C. The data of C are
specified by the following. C contains a set of N “simple
objects” {0, 1, 2, . . . , N − 1}. Any triplet (a, b, c) of simple
objects define a vector space V c

ab. The dimension of this vector
space defines the fusion rules Nc

ab:

Nc
ab = dim V c

ab,

where Nc
ab is a non-negative integer. The fusion rules Nc

ab can
be summarized through the formal relation

a × b =
∑

c

Nc
abc. (46)

Given a vector space V abc
d ≡ ⊕

e V e
ab ⊗ V d

ec � ⊕
f V f

bc ⊗
V d

a f , C defines a unitary map F abc
d :

F abc
d :

⊕
e

V e
ab ⊗ V d

ec 
→
⊕

f

V f
bc ⊗ V d

a f . (47)

In components, the F symbols are written as
[F abc

d ](e,α,β ),( f ,μ,ν ), where α = 0, . . . , Ne
ab − 1, β =

0, . . . , Nd
ec − 1, μ = 0, . . . , N f

bc − 1, and ν = 0, . . . , Nd
a f −

1. When all Nc
ab = 0, 1, the F symbols can be written in

components as F abc
de f . The F symbols satisfy a set of nontrivial

self-consistency equations known as the pentagon equations.
In a unitary fusion category, the topological charge con-

jugate ā is determined by the unique label ā that satisfies
N0

aā = 1. Furthermore, the identity object 0 fuses trivially with
all other objects: Nb

a0 = Nb
0a = δab.

Below, for simplicity we will restrict to cases where Nc
ab =

0, 1, although this restriction is not necessary for the valid-
ity of our results. The TVBW TQFT provides an explicit
wave function as follows. Each edge of � (equivalently, of
�̂) is associated with a local N-dimensional Hilbert space
(qudit), where the states are labeled by the simple objects
{0, 1, 2, . . . , N − 1}. The wave-function amplitude for a par-
ticular state on � can be explicitly determined by evaluating
a discrete path integral (state sum) over a triangulated 3-
manifold M, whose boundary ∂M = �. The triangulation
(and corresponding branching structure) of M restricts to �

on ∂M. We will not review the state sum here; we refer the
reader to Refs. [7–9,11,17,44] for various presentations of the
state sum.

An important property of the wave functions is that, for
all states with nonzero amplitude, vertices of the dual graph
satisfy the fusion rules, and as a result

(48)

If the qudit on a particular edge is in the state |a〉, we say
that there is a string of type a passing through that edge. The
wave function can then be viewed as a superposition of closed
string-net configurations consistent with these string fusion
rules [10].

The original Turaev-Viro construction, together with the
corresponding Levin-Wen Hamiltonian, assume a certain
tetrahedral symmetry that imposes many relations among the

FIG. 22. Definition of the Levin-Wen Hamiltonian and Turaev-
Viro codes on a triangulated manifold (light gray lines indicate the
triangulation �) and the corresponding trivalent graph �̂ (blue lines).
The arrows on the lines specify the branching structure. The thin red
lines represent the string nets. The thick blue and red lines illustrate
the plaquette and vertex projectors, respectively.

F symbols; as such, not any unitary fusion category can be
taken as input. The extension due to Barrett and Westbury
relaxes the tetrahedral symmetry, at the cost of needing more
careful consideration of the branching structure; the Barrett-
Westbury generalization therefore applies to arbitrary unitary
fusion categories.3 Our protocols in the following sections do
not assume any tetrahedral symmetry, and thus apply to the
full Barrett-Westbury generalization.

In the case where the F symbols satisfy additional relations
due to tetrahedral symmetry (which we will not summarize
here), the wave functions of the TVBW TQFT are exact
ground states of a commuting projector Hamiltonian known
as the Levin-Wen Hamiltonian [10].4 The Hamiltonian is

H�̂ = −
∑

v

Qv −
∑

p

Bp, (49)

where v and p label the vertices and plaquettes of �̂. The
three-body vertex projection operator Qv depends only on the
three edges incident to the vertex v, and is defined by

. (50)

Recall for simplicity we have restricted to the case Nc
ab = 0, 1.

As an example, the Fibonacci Levin-Wen model has N = 2
and therefore each edge of the trivalent graph contains two
types of strings, corresponding to the two states ({|0〉, |1〉}) of

3Actually, the Barrett-Westbury construction applies to general
“spherical” fusion categories, but from the perspective of topological
quantum states of matter, the stricter condition of unitarity is required
of the fusion category.

4In the case of Abelian topological states, Ref. [84] provided a
generalization of the Levin-Wen models to relax the assumption of
tetrahedral symmetry.
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a qubit. The fusion rules are specified as

Nc
ab =

{
1 if abc = 000, 011, 101, 110, 111,

0 otherwise. (51)

The corresponding string-net configuration satisfying the fu-
sion rules can be illustrated on the right side of Fig. 22,
where the edges with the red string correspond to an occupied
site (|1〉) and the edges without a string correspond to an
unoccupied site (|0〉) (in the Fibonacci case the arrows on the
graph and string net can be ignored).

On a honeycomb lattice, as shown in Fig. 22, the plaquette
operator Bp is a 12-body operator that depends on the six
qudits on the hexagonal plaquette and also on the qudits on
the six legs connecting to the hexagon. The operator can
be written as Bp = ∑

s dsBs
p/D2, where ds = |F ss̄s

s00 |−1 is the

quantum dimension of the string label s, D = ∑
s

√
d2

s is the
total quantum dimension, and the operator Bs

p is defined via

′

′

′

′

′

′

(52)

where the tensor coefficients are

Bs,g′h′i′ j′k′l ′
p,ghi jkl (abcde f ) = F bḡh

s̄h′ḡ′F ch̄i
s̄sh̄′F

dī j
s̄ j′ ī′F

e j̄k
s̄k′ j̄′F

f k̄l
s̄l ′ k̄′F

al̄g
s̄g′ l̄ ′ . (53)

The plaquette term Bp flips the string-net configurations,
such as the one shown in Fig. 22, to other configurations
constrained by the fusion rules. The ground state of the
Hamiltonian (49) in a particular topological sector is an
equal-probability superposition of all the possible string-net
configurations connected by the local action of the plaquette
operators.

Just as in the case of the Z2 surface code (toric code),
the Turaev-Viro codes can be implemented through an active
error correction approach by repeated measurements of the
commuting vertex and plaquette operators. Reference [13]
presents details of the quantum circuits that can be used
to measure these operators in the context of the Fibonacci
surface code. Importantly, the quantum circuits for measur-
ing these operators need only contain single- and two-qubit
operations. Ongoing progress has been made on syndrome ex-
traction, decoding, and error correction [55–58]. In particular,
the decoder for a phenomenological Fibonacci code has been
simulated numerically in Ref. [57].

The basic building block of the whole scheme is the F op-
eration F abc

de f . The F operation can be viewed as a controlled-

FIG. 23. The building block of the quantum computation
scheme: the F operation quantum circuit for the Fibonacci surface
code.

unitary operation, where the external a, b, c, d legs are the
control qudits that determine the resulting unitary F abc

d , whose
matrix elements are [F abc

d ]e f .
In the case of the Fibonacci surface code, the only nontriv-

ial F matrix is

F 111
1 =

(
φ−1 φ− 1

2

φ− 1
2 −φ−1

)
, (54)

where φ =
√

5+1
2 is the golden ratio. All other F symbols are

either 1 or 0, depending on whether they are consistent with
the fusion rules.

A quantum circuit implementing the F operations in the
Fibonacci surface code was presented in Ref. [13] and is
shown in Fig. 23. The circuit inside the blue dashed box,
consisting of a five-qubit Toffoli gate sandwiched by two
single-qubit rotations, implements the F matrix in Eq. (54).
Here, Ry(±θ ) = e±iθσy/2 are single-qubit rotations about the y
axis with angle θ = tan−1(φ− 1

2 ). All the other maps are taken
care of by the rest of the quantum circuit.

B. Local geometry deformation

The key property of the wave functions of the TVBW
TQFT that forms the basis of our approach is that wave func-
tions associated to different graphs can be related to each other
via a series of local moves. These moves are known as Pachner
moves, and correspond to retriangulations of the manifold. In
the (2+1)-dimensional [(2+1)D] path-integral state sum, the
retriangulations of the 3-manifold can be performed by 2-3
and 1-4 Pachner moves. The 2-3 Pachner move replaces 2
tetrahedra by 3 and vice versa, while the 1-4 Pachner move
replaces 1 tetrahedra by 4 and vice versa. At the 2D surface
� = ∂M of the 3-manifold, these moves restrict to 2-2 and
1-3 Pachner moves for retriangulation of a surface, illustrated
in Figs. 24 and 25.

The path-integral state sum of the TVBW TQFT that
determines the wave function thus also determines how to
relate wave functions on different graphs that are related by
these local Pachner moves. For example, we have the relations

(55)
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(a)

(b)

FIG. 24. Definition of the 2-2 Pachner move (F move) on the
triangulation grid and the corresponding trivalent graph. The pink
edges represent the edges being switched during the moves.

(56)

.

(57)

We have defined

Gabc
de f = F bed

f ac

√
ded f

dadc
, (58)

where Gabc
d is a unitary matrix:

Gabc
d

[
Gabc

d

]† =
∑

f

Gabc
de f

(
Gabc

de′ f

)∗ = δee′ . (59)

These equations are to be interpreted as follows. We consider
two different graphs, specified by �̂ and �̂′, whose duals �

and �′ can be viewed as two different triangulations of the
same surface. �̂ and �̂′ only differ in the local patch that
is illustrated. The equations show how to relate the wave-
function amplitudes for the states associated with the different
graphs.

We have chosen to illustrate the wave functions using the
dual cellulations �̂, but of course one could also use the
triangulation �. Other similar relations exist as well; we do
not list all of them here, but they can be easily derived from

(a)

(b)

FIG. 25. Definition of the 1-3 Pachner move on the triangulation
grid and the corresponding trivalent graph.

the path-integral state sum of the TVBW TQFT by consider-
ing the 2-2 and 1-3 Pachner moves with various choices of
branching structures.

Since the external legs of the above diagrams are all
fixed, F abc

d and Gabc
d can be viewed as controlled-unitary

gates, which effectively change the lattice geometry inside
the plaquette defined by the edges a, b, c, d of the original
triangulation � (see Fig. 24). This implies that these local
moves can be performed in parallel over extensive regions
of the lattice, a property which we will exploit in subsequent
sections.

The 1-3 Pachner move, shown in Fig. 25 and Eq. (57), adds
additional edges and thus additional qudits to the lattice. We
can obtain the state on the new lattice from a state on the old
lattice by appropriately initializing new qudits and applying a
local unitary circuit shown in Fig. 26. We first consider three
extra qudits, each initialized to the |0〉 state. Next, we consider
applying a CX operation, which takes |b〉|0〉 
→ |b〉|b〉, to the
qudits shown in Fig. 26(a). At the same time, we apply S :

(a) (b)

(d) (e)

(c)

FIG. 26. Implementing the 1-3 Pachner move with a unitary
circuit by attaching/detaching a tadpole diagram in the center of an
arbitrary plaquette, followed/preceded by two 2-2 Pachner moves.
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(a)

(b)

(c) (e) (g) (i)

(d) (f) (h)

FIG. 27. Dehn twist on a torus for the Turev-Viro code. The upper rows [(b), (d), (f), (g)] show the protocol on the triangulation (light
gray), while the lower rows [(c), (e), (g), (i)] illustrate the protocol on the dual trivalent graph (blue). The pink lines indicate the edges to be
switched during the F moves. The green dashed box specifies the four external legs of the F moves on the trivalent graph. The green arrows
represent qubit permutations, with the column numbers specified before and after the permutation.

|0〉 
→ ∑
i

di
D |i〉 to the topmost qudit, which effectively builds

a “tadpole diagram” connected to the original graph through
the edge with the remaining ancilla in the |0〉 state, as shown
in Fig. 4(b). Note that the original edge labeled by b is split
into two edges with the same label b. The equivalence to the
tadpole diagram has implicitly used the concept of a smooth
string net (see Refs. [10,11] for details). Next, we apply a
sequence of two 2-2 Pachner moves by applying the unitary
operations [Gbbi

i ]† and [Ga ji
c ]†, as shown in Fig. 26(e).

Therefore, we see that the 2-2 Pachner moves and the 1-3
Pachner moves, which locally change the lattice geometry, can
be effectively implemented as unitary operations on the many-
qudit quantum state. In what follows, we will demonstrate
how to use these moves in parallel across large regions of the
lattice, in order to build up nontrivial larger-scale geometry
deformations through constant depth circuits. We will then
subsequently use these large-scale geometry deformations for
braiding and Dehn twists.

For simplicity, from now on we will call all the 2-2 Pachner
moves as F moves, with the implication that depending on the
branching structures they can correspond to different unitaries
such as those in Eqs. (55) and (56), and others. All these
unitaries will be proportional to the F symbols with additional
normalization factor such as the case in Eqs. (56) and (58).

C. Dehn twist on a torus and a cylinder

Let us now consider the case where � = T 2 is a torus.
Thus, we consider the case where the honeycomb lattice �̂

and the triangulation � have periodic boundary conditions,
as shown in Fig. 27(a). The initial lattice and triangulation
correspond to a microscopic Hilbert space H�. To help
demonstrate the resulting Dehn twist, we follow an initial
Wilson loop W a

α , i.e., a noncontractible string with string type
a passing along the α cycle.

The elementary move in this protocol is the retriangulation
obtained by the F move (2-2 Pachner move). As illustrated

in Fig. 27(b), this corresponds to flipping the edge (pink)
between two neighboring triangles, and can be achieved by
the controlled-unitary F operation discussed in the previous
section. Figure 27(c) illustrates the effect on the dual lattice
and on the string operator W a

α .
We mark all the varying edges of the triangulation by

pink lines in Fig. 27(d), with the corresponding moves in the
dual graph indicated by the dashed box and pink edges in
Fig. 27(e). The new triangulation �′ and honeycomb lattice
�̂′ are shown in Figs. 27(f) and 27(g), corresponding to a dif-
ferent microscopic Hilbert space H�′ . Since we can perform
all of these moves by controlled-unitary operations in parallel,
this retriangulation can be done via a local quantum circuit
with O(1) depth.

To recover the original triangulation � and trivalent graph
�̂, we now perform a collective permutation of the qudits Pσ ,
indicated by the arrows in Figs. 27(f) and 27(g). The qudits
in each row are cyclically permuted by a spacing indicated by
the length of the arrow in that row.

After the permutation, the column labels of the qubits are
changed into the configuration shown in Fig. 27(j), which cor-
responds to the honeycomb lattice configuration in Fig. 27(i)
where the Wilson loop now also winds around the β cycle.
In the end of the protocol, we thus come back to the original
triangulation � and honeycomb lattice �̂ with permuted sites,
and hence the same microscopic Hilbert space H�. This is
exactly a self-diffeomorphism and corresponds to a Dehn
twist Dβ : W a

α 
−→ W a
α+β . We have thus shown that the Dehn

twist Dβ can be implemented by a constant depth local unitary
quantum circuit, followed by a permutation on the qubits.

We note that in the illustration depicted in Fig. 27, as well
as all the illustrations for the following protocols, we have not
drawn the branching structure in order to keep the illustrations
simple. It can be verified that all the protocols can be adapted
to the case where the branching structure is taken into account,
so that the branching structure after the protocol is the same
as before the protocol.
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(c) (d)

FIG. 28. Braiding of two punctures, e.g., non-Abelian anyons (blue and red circles) in Turaev-Viro codes, with constant depth circuit on a
space with periodic boundary conditions (e.g., a genus g > 0 surface). The scheme can also be applied to punctures on a bilayer system with
holes and appropriate boundary conditions, which is a way to effectively obtain a single-layer system on a high-genus surface.

D. Braiding

Now, we consider constant depth circuits for implementing
braiding in Turaev-Viro codes. We will consider braiding
of “punctures,” with the understanding that punctures can
refer to anyons (including non-Abelian anyons), holes, or
bulk twist defects. An important ingredient in the braiding
protocols includes the ability to move the punctures by a
distance of order the code distance d , by a local finite
depth quantum circuit, followed by a permutation of qubits.
When these protocols are applied to the case of the non-
Abelian anyons of the Fibonacci surface code, they imply
the possibility of a universal fault-tolerant gate set by a
constant depth local quantum circuit, together with qubit
permutations.

1. Braiding on a space with periodic boundary conditions

We first consider the simpler situation where the punctures
are located on a space with periodic boundary conditions,
such as a torus (Fig. 28). Physically this can be realized in
a planar geometry by considering a bilayer system with holes
and appropriate boundary conditions.

We start the protocol in Fig. 28(a) with two punctures sep-
arated by d plaquettes. The code distance d = 4 in Fig. 28(a).
The upper panel of Fig. 28(a) shows the triangulation � and
the lower panel shows the corresponding trivalent graph �̂.
As above, for simplicity we do not illustrate the branching
structure.

The first step is to perform a retriangulation inside the
cylindrical strip of width d between the two punctures. The
retriangulation corresponds to the F moves (2-2 Pachner
moves) discussed above; the edges to be flipped are indicated
in pink thick lines, and the corresponding change of the dual
graph �̂ is indicated in the lower panel. The retriangulation
can be performed via the controlled F operations discussed
in the previous sections, and can be performed in parallel over

the entire strip. Therefore, this corresponds to a local quantum
circuit with depth O(1).

The resulting triangulation and trivalent graph is shown in
Fig. 28(b). We then permute the qudits in a shearing pattern
(indicated by the green arrows) to reach the configuration in
Fig. 28(c). Specifically, the qudits in each column are per-
muted cyclically, by a number of steps indicated by the length
of the arrow in each column. This sequence of moves causes
the puncture on the right (red) to be moved vertically by d
spacings via a local constant depth quantum circuit, followed
by a permutation. Note that due to the periodic boundary
conditions, some qudits on top are permuted to the bottom.

Now, the triangulation pattern is modified in the strip of
width d to the right of the (red) puncture, compared to the
original configuration in Fig. 28(a). To recover the original
triangulation, we perform another retriangulation, as shown
in Fig. 28(d).

The overall effect of this cycle, therefore, is that we have
moved the puncture vertically upward by d spacings, via a
constant depth local quantum circuit, followed by a permuta-
tion of qudits, and followed finally by another constant depth
local quantum circuit.

Another five steps complete the cycle of braiding, ex-
changing the red and blue punctures as shown in Figs. 28(e)
and 28(f). Therefore, we have seen how we can braid two
punctures in six steps, each of which contains a permutation of
qudits sandwiched between two constant depth local quantum
circuits. Note that in the above protocol, in each step the
punctures can only be moved by a distance that is bounded
by the distance to the closest puncture.

If we have n punctures, we can consider placing the
punctures along a line, with a spacing d between each
puncture. Then, neighboring punctures along the line can be
braided using the protocol described above. Therefore, this
method demonstrates how to perform elementary braids for
any number of punctures on a space with periodic boundary
conditions.
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(a)

(b)

FIG. 29. Gadgets for local geometry deformation in Turaev-Viro codes. The solid (dashed) purple lines represent added (removed) edges
during the 1-3 Pachner moves. The pink line represents the switched edges in F moves. The yellow arrow indicates the equivalence between
two triangulations by locally shifting the positions of the edges, which can be physically implemented by local SWAPs.

2. Braiding on a disk subregion

Here, we demonstrate a protocol for braiding punctures
where the whole protocol acts only within a disk subregion
of the space. As such, it can be applied to braiding punctures
on any space, and in a way which does not affect the system
outside of the disk subregion.

In the case of braiding on a disk subregion, our protocol
will require merging and splitting plaquettes in a manner
similar to the case of the toric code in Fig. 13. Two important
building blocks of our protocol are demonstrated in Fig. 29.
In Fig. 29(a), we consider a single row of arbitrary length.
By utilizing ancilla qudits, we can implement the 1-3 Pachner
moves, which increase the number of vertices of the triangu-
lation. By a finite sequence of F moves (2-2 Pachner moves)
and local SWAPs, we can effectively split a single row of
arbitrary length L into two rows, with a constant (independent
of the length) number of steps (i.e., a constant depth local
unitary circuit). In Fig. 29(b), we illustrate how two rows
can be converted into a single row by a finite number of
steps.

Note that in both of these protocols, the qudits on the outer
boundary of the rows shown are completely unaffected, acting
as control qudits for the unitary operations. This then allows
the similar transformations to be applied to a large number of
rows in parallel.

Using the above gadgets for splitting or combining rows,
we can now demonstrate our braiding protocol, shown in
Fig. 30. In the first step, in the region below the right puncture
(red), we split rows of varying lengths in two rows, while
combining rows in the region above the puncture, in a manner
illustrated in Fig. 30(b). This can be performed by a local
quantum circuit with a constant depth, independent of the
spacing between punctures. Similar to the protocol for toric
code (Fig. 13), we create a lattice with a shearing pattern
on the left and right sides of the (red) puncture; the regions
above the (red) puncture being coarse grained (effectively
compressed) while the region below the (red) puncture is fine
grained (effectively stretched).

The dual graph in the lower panel illustrates the positions
of the qudits. The white and yellow circles represent added
(entangled) and removed (disentangled) qudits, respectively.
Now, via long-range permutation of qudits (indicated by green
arrows), we reach the configuration in Fig. 30(c) where the
(red) anyon is moved up. To recover the original triangulation
and corresponding trivalent graph, we apply another step of
retriangulation in the strip on the right of the (red) anyon
(indicated by the pink thick lines), and hence map back to the
original lattice in Fig. 30(d).

The above protocol, which uses a constant depth local
unitary circuit and long-range qudit permutations, effectively
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(a) (b)

(e) (f)

(c) (d)

FIG. 30. Braiding of two non-Abelian anyons in Turaev-Viro codes with constant depth circuit on a disk subregion, keeping the boundary
fixed. The yellow dashed lines in (b) and (c) show the equivalent edges before and after the permutation.

moves one puncture vertically by a distance of the order of
the separation between the nearest puncture, which is on the
order of the code distance. To complete a braiding cycle,
we apply another five shots of a similar procedure, which
then effectively braids the two punctures around each other
as illustrated in Figs. 30(e) and 30(f).

To summarize, a single braiding operation, either in a
single patch or utilizing periodic boundary conditions, can be
performed in a constant number of steps, independent of the
system size and code distance. Note that this is in contrast
with the previous computation schemes of the Turaev-Viro
code presented in Ref. [11], where braiding or Dehn twists
are implemented by sequential F moves with circuit depth of
O(d ).

In this case we have demonstrated a six-step procedure:

B1,2 =
6∏

i=1

LU ′
iPσ,iLU i. (60)

Note that each step is composed of a constant depth local
quantum circuit LU i corresponding to a retriangulation of the
manifold, a permutation of qubits Pσ,i over a distance O(d ),
and another local circuit LU ′

i in order to retriangulate the
manifold back to the original triangulation. Here, we choose
three smaller steps in each of the six steps of the move because
of the symmetry of the intermediate retriangulation pattern
shown in Figs. 28(c) and 30(c). Alternatively, one can also
exchange the last retriangulation with the permutation and
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(a)

(b) (c) (d)

FIG. 31. Implementation of Dehn twist Dβ in Turaev-Viro codes, on an annulus along the β loop encircling the boundary defect via a
sequence of shearing operation. The red line with arrows represents Wilson-line operators connecting the inner and outer boundaries.

merge the two retriangulations into one, so that

B1,2 =
6∏

i=1

P̃σ,iL̃U i. (61)

This results in a less symmetric triangulation during interme-
diate steps of the protocol, and the local circuit L̃U i will have a
somewhat longer (but still finite, independent of d) interaction
range.

We note that, as discussed in the context of the ZN toric
code, another approach to braiding is to consider a half-
Dehn-twist along a loop that surrounds the two punctures.
In this case, the protocol to perform a Dehn twist on an
annulus can then be easily adapted to perform a half-Dehn-
twist along the loop surrounding two punctures. In the fol-
lowing section, we demonstrate protocols for a full Dehn
twist on an annulus for the Turaev-Viro codes. The adaptation
of this protocol to a half-Dehn-twist to perform braiding is
straightforward and will thus not be presented explicitly here.
Nevertheless, we note that it can be used to effectively perform
the braiding in “one shot” by a single LU followed by a
permutation.

E. Dehn twists on an annulus

In this section, we demonstrate protocols for implementing
a Dehn twist on an annulus in the Turaev-Viro codes. This
operation can then be utilized for braiding (discussed above),
or for performing Dehn twists along the β loops of a high-
genus surface, discussed in the subsequent section.

1. Protocol 1: Twist via shearing

We begin with an annulus depicted in Fig. 31(a), where we
have drawn a red string α from the inner to the outer boundary
to track its motion during the course of the protocol and to
verify when we have completed a Dehn twist. We note that the
qudits on the inner and outer boundaries are unaffected, aside
from undergoing the relevant permutations. Therefore, our
protocol can be used for any choice of boundary conditions,
or even when this annulus is viewed as a piece of a larger
surface.

As we have demonstrated in the case of the toric code, we
can perform an effective rotation of the inner boundary by
2π relative to the outer boundary through a sequence of shear
deformations. The steps in this protocol are analogous to those
used in the braiding protocol above. For the first shearing, we
start with a constant depth local quantum circuit LU , which
implements a retriangulation to reach the configuration shown
in Fig. 31(b). The corresponding geometry deformation on
the trivalent graph is shown in the lower panel. After a
permutation Pσ , one reaches the pattern in Fig. 31(c). To revert
to the original triangulation, we apply another constant depth
local circuit LU ′, to reach the configuration in Fig. 31(d). We
see that the lattice has returned to the original form, while the
inner hole has been effectively sheared upward.

Now, we continue and perform the second shear. We first
apply a constant depth local unitary to effectively induce the
retriangulation shown in Fig. 32(a), followed by a permutation
to reach the configuration in Fig. 32(b). A third constant depth
local unitary effectively returns the system to the original
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(a) (b) (c)

FIG. 32. Implementation of Dehn twist Dβ in Turaev-Viro codes on an annulus (a continuation of Fig. 31).

triangulation, with the net effect being a horizontal shear that
takes the vertex A to the upper right corner and the vertex C to
the lower left corner.

We continue this basic procedure through another seven
shears, as shown in Fig. 33. The net effect of the whole

procedure is thus to effectively rotate the inner boundary of
the annulus by 2π . The system is returned to its original
configuration. By tracking the red string α, we see that α →
α + β, as shown in Fig. 33(h), and thus we have performed a
Dehn twist along the β curve of the annulus.

(a) (b)

(e) (f) (g)

(c) (d)
(h)

FIG. 33. Implementation of Dehn twist Dβ in Turaev-Viro codes on an annulus (a continuation of Figs. 31 and 32).
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In sum, our protocol uses nine steps of shearing, each of
which is composed of three smaller steps: a constant depth
local circuit, followed by a permutation, and then another
constant depth local circuit. Thus, when acting in the code
subspace, we have

Dβ =
9∏

i=1

LU ′
iPσiLU i

=
9∏

i=1

P̃σi L̃U i. (62)

As in the braiding discussion, in the second line we have com-
muted the last permutation through the last LU and combined
neighboring local quantum circuits.

2. Protocol 2: Single-shot twist

As in the discussion for the toric code in Sec. III C 2, in
the general Turaev-Viro codes it is also possible to perform
the Dehn twist around the annulus in a “single shot,” in the
sense that we need only one constant depth local quantum
circuit LU followed by a permutation. The previous shearing
protocol, in contrast, used nine such steps. However, in this
single-shot procedure the local unitary circuit has longer
range, although the range is still independent of code distance
and system size.

The implementation of this protocol follows almost the
same steps described in Sec. III C 2 for the case of the toric
code. However, in contrast to the toric code case, the local
unitary circuit required in this case to perform the analog of
step 3 in Sec. III C 2 is somewhat more involved. To explain
the protocol, we first focus on a single ring encircling the
inner boundary and explain how one can utilize F moves (2-2
Pachner moves) to reconnect the vertices accordingly. After
we have understood the case of a single ring, we can then use
the same gadget in parallel across different rings to implement
the full protocol.

We begin by grouping the vertices of the triangulation into
rings of increasing size surrounding the inner boundary; we
thus label the vertices as (n, m) where n labels the ring and m
labels the vertices along the ring, with m increasing clockwise
starting at the top left [see Fig. 34(a)]. We first perform an
F move (2-2 Pachner move) as shown in Fig. 34(a) which
facilitates reconnection of vertices.

Next, we relabel the vertices by shifting the labels
(n, m) → (n, m − 9n) as shown in Fig. 34(c). Our goal now
is to perform a constant depth local unitary, corresponding to
a constant number of F moves, such that the edges of the final
lattice connect vertices with the same labels as at the start of
the protocol. To do this, consider first the two sequences of F
moves shown in Figs. 34(c) and 34(d). After these F moves,
we see that the number of edges coming out of each vertex
matches that of the original lattice in Fig. 34(b), up to a cyclic
permutation of the vertices.

Therefore, to get to the desired configuration, we perform
a total of six steps, each of which consists of applying F
moves in parallel around the ring, as shown in Figs. 34(e)–
34(g). The exact number of steps varies among the rings,
starting from nine for the innermost ring and decreasing as

one moves further away. After these steps, we see that the
graph consisting of the vertices and edges is the same as it
was before the relabelling (n, m) → (n, m − 9n). Finally, we
apply the F moves shown in Fig. 34(h) to account for the first
F moves done in Fig. 34(a).

Note that in the gadgets described in Fig. 34, the qudits at
the boundaries of the rings (i.e., on the horizontal and vertical
thick edges in Fig. 34) are used only as control qudits. This
allows us to perform this transformation on all of the rings in
parallel. For a hole with L qudits on its boundary, we have to
modify L rings to perform the twist. Figure 35(b) shows the
state of the whole annulus after performing the gadget on all
12 rings in parallel. We see that the configuration in Fig. 35(b)
can be achieved by a constant depth local quantum circuit.

Finally, by a permutation we can recover the original
lattice [Fig. 35(c)]. By following a red string α throughout
the protocol, we see that a Dehn twist around the β loop
has been performed. In sum, we thus see that a Dehn twist
around a loop encircling the inner boundary of an annulus can
be achieved by a constant depth local quantum circuit LUβ ,
followed by a permutation Dβ = PσLUβ .

F. Dehn twists on a high-genus surface for Turaev-Viro codes

The results of the previous sections can be straightfor-
wardly adapted to the case of braids and Dehn twists on
a genus-g surface with p punctures, i.e., the generators of
MCG(�g,p). To see this explicitly, we can think of a genus-
g surface in terms of two layers of a Turaev-Viro code,
connected via wormholes along boundaries of disconnected
holes, as shown in Figs. 36 and 37. In other words, a genus-g
surface is equivalent two a bilayer version of the state, with
g disconnected gapped boundaries. Note that we choose the
triangulation and trivalent graph patterns on the two layers
being symmetric up to a mirror reflection.

The α and γ Dehn twists, shown explicitly in Figs. 36 and
37, can be applied by straightforward generalizations of the
Dehn twist protocols on a torus. The Dehn twist along the β

loop can be applied by using the protocol for the Dehn twist on
an annulus for the top or bottom layer, as illustrated in Fig. 18.

Finally, in the presence of p punctures, the additional
generators needed for MCG(�g,p) are the braids between
punctures i and i + 1, i.e., Bi,i+1. Here, we can straightfor-
wardly use the protocols shown in Figs. 28–30 to implement
these braids.

G. Multiple Dehn twists in a single shot: Proof of Theorem 2

In this section we prove Theorem 2 in the context of
Turaev-Viro codes. We demonstrate how to implement n Dehn
twists along any cycle of a genus-g surface using constant
depth local circuits and permutations. Specifically, we show
that in the code subspace, Dnω = ∏k

i=1 PσiLU i, where the LU i

are local quantum circuits with depth independent of n, code
distance d , and system size, while k = O(log2 n).

We start by considering a torus with its length in the β

cycle being n times as much as its length along the α cycle,
as illustrated in Fig. 38 (where n = 2 in this example). After
applying the F moves [Fig. 38(b)] similar to the case in Fig. 27
and permutation of qubits along the β cycle [Fig. 38(b)], we
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FIG. 34. The gadget used for the alternative protocol of Dehn twist on an annulus in Turaev-Viro codes.

achieve a Dehn twist Dnα in a single shot, corresponding to
the following transformation: Dnα : W a

β 
−→ W a
nα+β [with the

n = 2 case illustrated in Fig. 38(c)]. By changing the opposite
aspect ratio of the torus, we can also achieve the Dehn twist
Dnβ in a single shot. This again suggests that by increasing
the number of qubits participating in the topological state by
n times and with fixed code distance d , the time complexity
of implementing a particular logical gate sequence can be
decreased by n times, even in the case of the more compu-
tationally powerful non-Abelian code.

Now, to prove the theorem, we also need to be able to
freely adjust the aspect ratio of the torus, as in the case
of Abelian stabilizer codes in Sec. III F 1. To do this, we
apply a plaquette-dividing protocol to grow the torus along
a particular direction, allowing us to adjust its aspect ratio,
as shown in Fig. 39. Here, by a sequence of 1-3 Pachner
moves and F moves, we see that we can double the size of
the code by a constant depth local unitary, followed by a
permutation on the qubits. By repeating this procedure, one
is able to stretch the torus along a particular direction by n
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FIG. 35. Alternative protocol of Dehn twist on an annulus for Turaev-Viro codes.

times with log2 n steps of the above procedure. Therefore, one
gains an exponential speedup when merging n Dehn twists
together, as compared with applying them sequentially. It is
straightforward to generalize the above procedure to Dehn
twists along any of the 3g − 1 loops on the genus-g surface.

Finally, we note that, unlike the situation in Abelian sta-
bilizer codes where multiple Dehn twists can be applied in a
single shot by increasing the range of the local quantum circuit
(second part of Theorem 2) (Sec. III F 2), we have not found
such a general property for the Turaev-Viro codes. The key
difference is that, in the Abelian stabilizer codes, it is always
possible to create an arbitrarily long-range stabilizer in just a
single shot (two small steps) with long-range entangling gates
(e.g., CNOT). In contrast, in the non-Abelian codes, we create
a plaquette involving an edge with length O(n) by applying
O(n) steps of F moves.

V. ARBITRARY MCG ELEMENTS:
PROOF OF THEOREM 3

So far we have demonstrated how one can implement
all elementary Dehn twists and braids by a constant depth
local circuit followed by a permutation. Here, we consider
how to implement arbitrary elements of the MCG, proving
Theorem 3.

Specifically, let ζ ∈ MCG(�g,p) be an arbitrary element of
the mapping class group of �g,p, and Vζ be its representation
on the code subspace. ζ has a presentation in terms of k Dehn

twists and braids, as the latter generate the mapping class
group. According to Theorem 1, each Dehn twist and braid
can be implemented by a constant depth local quantum circuit
LU i followed by a permutation Pσi . Therefore,

Vζ ⊗ I|�〉 = (Vζ |�〉) ⊗ |�〉a =
k∏

i=1

PσiLU i|�〉 ⊗ |�〉a.

(63)

Recall that |�〉 is the many-qubit topological state, and |�〉a

is a product state on ancilla qubits.
Now, the idea is that since the Pσi ’s are just relabelings of

the qubits, they can be deferred until after all of the circuits
LU i. To get an intuition first, we set the general case aside
and look at the braiding protocol described in Sec. III D 1.
Note that the braiding protocol was also in the form of
B = ∏12

i=1 PσiLU i. After performing LU1, just before doing
the long-range permutations shown in Fig. 13(d), one can
see that the code is actually in square-lattice form and just
stretched in some parts and squeezed in other parts. So, one
can perform the circuit LU2 on the same lattice, skipping
the long-range permutations of Fig. 13(d). The price to pay
is that in the deformed square lattice, some plaquettes are
elongated by a factor of 2, so if the LU2 gates involve qubits
that are one lattice constant apart, now the range will increase
to 2. By using the same idea in each step, one can defer all
permutations until the end and perform all of them at once.

FIG. 36. Implementation of Dehn twist along the α loop in Turaev-Viro code. The red line with arrows represents the Wilson loop. The
pink thick lines represent the edges being switched during the F moves, with the green dashed boxes specifying the four external legs. The
dark green arrows represent qubit permutation with a shearing pattern.
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FIG. 37. Implementation of Dehn twist along the γ loop in Turaev-Viro code.

Now, we return to the general case. By inserting appro-
priate factors of PσiP−1

σi
, we can turn the right-hand side of

Eq. (63) into(
k∏

i=1

Pσi

)
k∏

i=1

(
P−1

σ1
P−1

σ2
. . .P−1

σi−1
LU iPσi−1 . . .Pσ2Pσ1

)|�〉|�〉.
(64)

Let σ̃i = ∏i−1
j=1 σ j . Then, Eq. (63) takes the simple form

Vζ ⊗ I|�〉 = (Vζ |�〉) ⊗ |�〉a

= Pσ̃k+1

k∏
i=1

P−1
σ̃i

LU iPσ̃i |�〉 ⊗ |�〉a. (65)

One can interpret L̃U i = P−1
σ̃i

LU iPσ̃i as LU i but performed
over relabeled qubits. However, locality of LU i alone does not
guarantee locality of L̃U i since the permutations are nonlocal
operations. Nevertheless, as discussed in more detail in the
subsequent section, the permutations that we use for the Dehn
twist and braid protocols have a special structure (referred
to in the subsequent section as a connectivity-preserving
isomorphism), which keep local gates local, although they
may increase the range of the gates by a constant factor. Thus,
L̃U i would still be a local quantum circuit.

Locality of each term in the product, together with the
fact that k does not depend on code distance, ensures that the
whole product in Eq. (65) is a local constant depth circuit, with
depth independent of code distance and system size, which we
denote by LU ζ . Then,

Vζ ⊗ I|�〉 = (Vζ |�〉) ⊗ |�〉a = Pσ̃k+1LU ζ |�〉 ⊗ |�〉a. (66)

Since the permutations appearing in Theorem 1 change
distance, the range of gates in LU i and L̃U i differ by a
constant factor (independent of code distance). Let us consider
a typical permutation σ which we use to implement one of
braids or Dehn twists. If D(m, n) denotes the distance between
two qubits labeled by m and n, then,

max
m,n

D(m, n)

D(σ (m), σ (n))
= cσ (67)

is independent of code distance and system size since other-
wise σ would turn a local operator into a nonlocal one.

Let c be the maximum cσ , and ρ be the maximum gate
range used in the Dehn twists and braids that compose ζ .
According to Eq. (67) the range of gates in P−1

σi
LU iPσi would

be c ρ at most. This in turn means the range of gates in L̃U i

would be at most ci ρ. And since i can be k at most, the range

(a) (b) (c)

FIG. 38. Implementing multiple Dehn twists in Turev-Viro code in a single shot by choosing a particular aspect ratio of the torus.
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(a)

(e)

(h) (i)

(f) (g)

(b) (c) (d)

FIG. 39. Double the size of the torus along one cycle with by dividing a plaquette into two and long-range permutation. The yellow arrow
in (e) indicates the equivalence of the triangulation in (e) and (f) by a local shift of the vertices. The curved green arrows in (h) represents
long-range SWAPs.

of gates in LU ζ is r = O(ck ), which completes the proof of
Theorem 3.

VI. TOPOLOGICAL PROTECTION, FAULT TOLERANCE,
AND EXPERIMENTAL PLATFORMS

In this section, we argue that logical operations consisting
of the LU and Pσ operations, which compose the Dehn twists
and braids, are topologically protected and fault-tolerant logi-
cal operations, assuming appropriate error models.

A. Intrinsic protection and error propagation

A major consideration of fault tolerance is the extent to
which logical gates propagate errors. For a given state with a
preexisting local error on site j, i.e., Ej |ψ〉, one can apply a
logical gate U to it. Even if the logical gate U is perfect, i.e., it
does not generate new errors, the preexisting error may prop-
agate under U , which can be seen from the following identity:

UEj |ψ〉 = UEjU
†(U |ψ〉). (68)

This means that the ideal target state U |ψ〉 suffers from the
propagated error UEjU †.

We first consider the constant depth local quantum circuit
LU implementing the local geometry deformation discussed
in the previous sections, which consists only of a finite se-
quence of geometrically local gates supported on a region of
radius O(1). These are also referred to as locality-preserving
unitaries [29,30]. Any logical gate that can be performed in
terms of a locality-preserving unitary is fault tolerant because
the propagation of preexisting errors is restricted by causality:

a single-site error can only spread to an error supported
within a Lieb-Robinson “light cone” [59] with radius O(1).
Therefore, constant depth LU , which composes the first part
of the Dehn twist and braid protocols presented in this paper,
also preserves the locality of errors, and are hence intrinsically
fault tolerant.

Now, we consider the second part of our proposed logi-
cal gates, the qubit permutation Pσ . While the Eastin-Knill
theorem rules out the possibility of a universal transveral
logical gate set, it was commented in Refs. [28,60] that qubit
permutation could be a possible loophole to circumvent the
theorem.5 It was also pointed out in Ref. [28] that such qubit
permutations, taken in isolation, would be fault tolerant.

Below, we analyze the topological protection and fault-
tolerance property of the long-range permutations Pσ that we
use in some detail, and also specify the experimental plat-
forms with which fault tolerance of such qubit permutations
are expected.

We note that in this paper, we use a specific class of
permutations Pσ that we can refer to as a connectivity-
preserving isomorphism (CPI). While the CPI can permute
qubits over long distances, it preserves the local connectivity
of the underlying lattice structure of the codes/Hamiltonian.
More concretely, for a pair of neighboring vertices v1 and
v2 in the original lattice (triangulation) �, and the permuted

5Qubit permutation was also extensively studied in depth by
Ref. [60] in the context of stabilizer codes, despite the fact that it
was realized that universal gate sets cannot be achieved even with
the addition of such permutations.
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(a) (b)

FIG. 40. Propagation of preexisting errors under the qubit permutation Pσ in the braiding scheme from Fig. 13. Five error strings before
and after the permutation are illustrated.

vertices σ (v1), σ (v2), the edge e[v1, v2] connecting the orig-
inal vertices v1 and v2 is exactly transformed to the edge
connecting the new vertices, i.e.,

Pσ : e[v1, v2] 
−→ e[σ (v1), σ (v2)]. (69)

Moreover, the new edge e[σ (v1), σ (v2)] also remains local,
in the sense that it has length of O(1). More specifically, Pσ

performs an isomorphism from the original lattice � to a new
deformed lattice �′ with completely the same connectivity.
Thus, we see that CPI is clearly a more general type of trans-
formation compared to a locality-preserving unitary LU . As
we will describe in more detail, a CPI is intrinsically protected
because the many-qubit quantum state remains in the ground-
state subspace of a local Hamiltonian; in other words, the
many-body quantum state remains in the code subspace of a
geometrically local topological QECC. A generic permutation
does not have this property, as it typically moves the quantum
state out of the ground-state subspace of a geometrically local
Hamiltonian and thus necessarily generates errors (anyons).
On the other hand, the qubit permutation considered in our
paper, the CPI, is still more general than the type of qubit
permutations that were considered in Ref. [60], which are
automorphisms, i.e., isomorphisms that map the code space
back to itself, namely, AUT : H� 
→ H�. In our case, Pσ

maps the code space on a triangulation � to that of a different
triangulation �′: Pσ : H� → H�′ . The LU is then needed to
map back to the original code space H�.

To analyze the topological protection of a CPI, we first
consider propagation of preexisting errors under a perfect
(error-free) CPI. Let us consider an error string (the two
end points of the string corresponding to anyons) with
a length l much smaller than the code distance l � d ,
and which has support on sites { j1, j2, j3, . . . , jn}, as il-
lustrated in Fig. 40. Our CPI permutation Pσ maps the
string onto the new sites {σ ( j1), σ ( j2), σ ( j3), . . . , σ ( jn)},
which is a deformed error string with a length of

the same order as before, i.e., O(l ) � d . One can compare
the configurations in Figs. 40(a) and 40(b), and see that the
error strings I and II get squeezed, III and IV get deformed,
and V gets stretched. Therefore, although our connectivity-
preserving isomorphism does not preserve the location of
errors, it only changes the length of the error string by a
constant factor (independent of code distance) and hence
preserves the characteristic length of the error strings. It is
also worth emphasizing that the above properties suggest that
the history of errors (anyons) can be completely tracked by the
software (with the assistance of syndrome measurement) for
the purpose of decoding in active error corrections. We note
that the decoder for our scheme will differ from the standard
ones, and thus requires further development in future works.

To summarize, the combined (LU and Pσ ) constant depth
logical gate (denoted by U ) maps a local operator O with
support in a region R to another local operator O′ = U †OU
with support in a region R′, such that the area ratio between
R′ and R is bounded by an O(1) constant factor c, similar to
the property of a locality-preserving unitary, namely,

supp(U †OU ) � c supp(O). (70)

Therefore, the constant depth logical gate is naturally topo-
logically protected and can be made fault tolerant. Note that
the difference from the definition of the locality-preserving
unitary in Ref. [29] is that here the regions R and R′ do not
have to be in the vicinity of each other.

B. Additional error generation for the qubit permutation taking
into account the hardware implementation

Now, we further consider additional errors that can be
generated during the process of the qubit permutation. Just
as with any discussion of fault tolerance, we have to as-
sume a particular reasonable noise model. In our case, the
permutations will yield fault-tolerant operations if errors in
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any site-to-site permutation process, i.e., j 
→ σ ( j) ≡ j′, are
independent. We consider two schemes and their experimental
platforms for implementing the permutations: (1) moving
qubits; (2) long-range SWAP gates utilizing ancillas.

(1) Moving qubits. For certain experimental systems, one
can directly move the qubits to desired positions. Ion traps are
currently the most promising platform for this purpose since
high-fidelity fast shuttling of individual ion qubits has been re-
alized experimentally [32–34]. Shuttling of ions has also been
proposed and demonstrated for a scalable quantum compu-
tation architecture [46–48], including fault-tolerant quantum
computation with surface codes on a 2D qubit array [47].

In practice, the shuttling process may suffer from noise, the
major one being heating of ions [34], which is independent for
individual ions. That is, there is no correlated noise between
individual shuttling processes. One can model the shuttling
process of a single qubit by the standard Pauli error channel
(for simplicity here we only consider qubits, as opposed to
qudits):

E j′ = {√
1 − px

j′ − py
j′ − pz

j′ I,
√

px
j′Xj′ ,

√
py

j′Yj′ ,
√

pz
j′Zj′

}
,

(71)

where px
j′ , py

j′ , and pz
j′ are error probabilities of the Pauli-

X, -Y , and -Z errors to occur at site j′. For uncorrelated noise,
the joint probability of a Pauli-i error (i = X,Y, Z) occurring
at site j′1 and a Pauli-k error occurring at site j′2 is pi

j1′ pk
j2′ .

Therefore, for a length-n error string of the form
⊗n

j′=1 Xj′ ,
the probability of the error is

∏n
j′=1 px

j′ . This result can also be
easily generalized to the case where the operators on each site
of the error string are of different types. For an error string of
O(d/2) length, the error becomes uncorrectable and a logical
error occurs. However, such an error string is exponentially
suppressed in this uncorrelated noise model, which implies
the existence of an error threshold.

(2) Long-range SWAP. For experimental systems with
long-range connectivity, one can implement the permutation
Pσ using long-range SWAP operations.

Here, we focus on the simplest implementation: we use two
sets of qubits, a data register labeled by the set { j} and storing
the topological state |�({ j})〉, and a temporary register labeled
by the set { j′} storing a product state of zeros, i.e.,

⊗
j′ |0〉 j′ .

We can take the two sets of qubits to form a superlattice
structure in real space, such that corresponding qubits in the
two registers are nearest neighbors if j = j′. We then SWAP
all the information in the data register { j} to the temporary
register { j′}, according to the map j′ = σ ( j). We can then
just continue the computation in the new register { j′}, which
now becomes the data register, and will later SWAP the
data back to original data register { j} if another permutation
is needed. The qubits in the temporary register can also
serve as ancilla qubits for syndrome measurement during
the active error correction so extra resources may not be
required.

Assuming the errors that occur on individual SWAP op-
erations between the pair of sites j and j′ are independent
(uncorrelated), the errors that occur during this SWAP process
can again be captured by the Pauli noise channel [Eq. (71)]
on each site. Therefore, the noise property will be similar

to the case of moving qubits, and the operation is thus fault
tolerant.

A more complicated implementation will be making an
additional SWAP of the information in the temporary register
{ j′} back to the original data register { j}. This two-step SWAP
procedure makes the error analysis slightly more complicated,
but does not change the essence of the fault tolerance.

Some experimental platforms that can be used for such
long-range SWAP operations are listed below.

(I) Long-range connectivity in ion traps mediated by mo-
tional (phonon) modes of ions [61]. All the long-range SWAPs
can be performed in parallel and have uncorrelated noise if
there is a separate phonon mode mediating each individual
SWAP.

(II) Modular architecture of 3D superconducting cavities
[62–65]. The quantum information is stored in microwave
cavity photons. This architecture has reconfigurable long-
range connectivity between cavity nodes, routed by mi-
crowave circulators and superconducting cables [62]. One
possible scheme is through direct quantum state transfer be-
tween remote cavity nodes in a network, which is equivalent
to a long-range SWAP [63,64]. The noise is uncorrelated if
different cables are used for individual SWAP processes. An
alternative scheme is through remote entanglement generation
and teleportation [62,65], which also has uncorrelated noise
for individual teleportation channels.

(III) Circuit QED with cavity buses [66,67]. Here, long-
range interaction between superconducting qubits or semicon-
ductor spin qubits can be mediated by cavity array serving as
quantum buses [68–74].

(IV) Rydberg atoms. Here, long-range gates can be realized
via Rydberg-blockade mechanisms [75–78].

C. Additional time overhead to achieve full fault tolerance

So far, we have argued that our protocols for logical gates
are topologically protected and can be made fault tolerant
because they do not spread errors by more than a O(1) factor.
Fault-tolerant quantum error correction requires syndrome
measurements, decoders to deduce the error strings from
the syndrome measurements, and finally an error recovery
procedure.

Although the logical gate applied here is constant depth it-
self, dramatically differing from the situation of conventional
braiding, extra time overhead might be introduced due to the
error correction and decoding processes after the application
of the gate in order to achieve full fault tolerance. In the
absence of measurement error, the error syndrome can be
decoded immediately after the application of the gate since
the error string is only changed by an O(1) constant factor
independent of the code distance d , and hence remains cor-
rectable.

However, in the presence of faulty measurement, one is
expected to perform O(d ) rounds of measurements to decode
the error syndrome, similar to the case of surface code error
correction. In the context of transversal gates or constant depth
local quantum circuits [30], the error string either does not
change or is stretched at most linearly, and one hence expects
that only O(d ) rounds of measurements are needed for every
O(d ) times of the application of such logical gates. The
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(a) (b)

FIG. 41. Illustration of the propagation of error strings after a successive application of the instantaneous logical gates (Dehn twists) on
a torus (for the ZN toric code example). (a) A sequence of Dehn twists along the same α cycle (vertical) leads to a linear growing of error
strings. (b) An alternating sequence of Dehn twists along both cycles leads to an exponential growing of error strings.

overall time overhead is hence O(1) in these situations. In the
context of our logical gates, which are geometrically nonlocal,
the overall time overhead depends on the detailed property of
the logical circuits of the corresponding quantum algorithms.
We note that our protocols do not introduce plaquette or vertex
operators whose measurement outcomes are unknown (in
contrast to, for example, lattice surgery methods for surface
code). In other words, the eigenvalues of all new plaquette and
vertex operators in our protocols are predetermined from the
values of previously known plaquette and vertex operators.
Thus, while not studied explicitly here, we expect that the
space-time paths of the error syndromes can be fault tolerantly
decoded.

In the cases when the error string is stretched linearly
with time, the overall time complexity is still O(1). We can
illustrate this situation with the ZN toric code supported on
a torus as shown in Fig. 41(a). Here, we apply a sequence
of Dehn twists along the α cycle of the torus, i.e., (Dα )n.
We use (lx, ly) to denote the length of error string. We can
see that for both types of error strings (e and m), the er-
ror string starting at the (1,0) configuration grows with the
following sequence (1, 0) → (1, 1) → (1, 2) → (1, 3) · · · →
(1, n − 1) → (1, n). We note that, in Fig. 41(a), we make the
illustration in a way that the position of the left anyon is fixed,
which occurs in the situation that the cut of the Dehn twist
goes through the left anyon. In the more general situations,
the left anyon will also be permuted, while the relative motion
of the right anyon and hence length of the anyon string
remains the same as illustrated in the figure. As one can easily
conclude, the error string is stretched linearly, similar to the
situation of constant depth local quantum circuit. Therefore,
O(d ) rounds of measurements are needed for applying every
O(d ) Dehn twists Dα . We note that the same conclusion
applies exactly to the more general family of Turaev-Viro
codes.

In the worst-case scenario, when certain sequence of
braids are repetitively applied in the same region and stretch
the error string exponentially with time which leads to it

growing to the code distance d in log d time steps. Therefore,
we expect that O(d ) rounds of syndrome measurements are
needed for every O(log d ) logical gates, giving rise to an
overall O(d/ log d ) time overhead. This type of situation can
be illustrated with Fig. 41(b). Here, we apply an alternating
sequence of Dehn twists along both cycles of a torus, i.e.,
DαDβDαDβ . . . . For an error string starting with the (1,0)
configuration, we end up with the following sequence of string
growing: (1, 0) → (1, 1) → (2, 1) → (2, 3) → (5, 3) →
(5, 8) . . . (lx, ly) → (lx + ly, ly) → (lx + ly, lx + 2ly) . . . . The
property of adding the length component along both directions
at the next round leads to an exponential growing the length
of the error string. We note that the estimate O(d/ log d ) is
not rigorous since there may be some other more complex
mechanisms which could potentially change the analysis of
the time overhead. More detailed analysis needs to be done in
the future works.

Finally, we remark that, since the logical gates in our cases
have bounded support in space, i.e., around a single handle or
pair of anyons, the logical gates applied in separate regions
may not stretch the error strings consecutively. Therefore,
for certain class of sequential logical circuits, we expect that
the additional average time overhead for the decoding is still
O(1).

Regarding the error recovery protocols, we note that these
protocols are trivial for Abelian surface codes because any
logical errors can be stored and corrected in software by
“updating the Pauli frame” of the computation. However,
for the non-Abelian Turaev-Viro codes, the error recovery
schemes are more sophisticated [55,56,58] and need further
exploration.

VII. DISCUSSION

We have demonstrated that braids and Dehn twists, which
are the generators of MCG(�g,p), can be achieved by a
constant depth local unitary circuit, followed by a permutation
on qubits. By utilizing long-range SWAP operations and

075105-40



INSTANTANEOUS BRAIDS AND DEHN TWISTS … PHYSICAL REVIEW B 102, 075105 (2020)

physical ancilla qubits, the permutations can also be achieved
through a constant depth quantum circuit. These results thus
imply that for topological codes with local interactions (local
syndromes) in Euclidean space (excluding the class of hy-
perbolic codes), the space-time overhead for implementing
a single logical operation on encoded qubits can be made
optimal, which scales as O(d2). Other proposed protocols
for realizing universal fault-tolerant gate sets, such as those
which use magic-state distillation, code switching, or other
measurement-based schemes, require a space-time cost for
a single logical gate that scales as O(d3), including a time
overhead that necessarily diverges with code distance when
classical computational resources are included. We note that
this estimate of the overhead cost is simply for implementing
logical gates on logical qubits encoded using QECCs with
code distance d . To estimate the total space-time overhead
for fault-tolerant computation, we should also include the
additional space-time overhead required for the error correc-
tion protocols, which include the syndrome measurements,
decoder, and error recovery procedures. We estimate that, in
the presence of measurement errors, an additional overhead
lower-bounded by O(d/ log d ) is introduced in the worst case
of the logical circuit (gate sequence) in order to decode the
space-time paths of the error syndromes, leading to an overall
O(d3/ log d ) space-time overhead. We leave a more detailed
study of this to future work.

In the previous section we discussed how the long-range
permutations are natural to implement in a number of differ-
ent experimental platforms. From a broader perspective, our
scheme demonstrates at a fundamental level the significant
advantage of long-range connectivity in quantum architec-
tures for implementing fault-tolerant quantum computation.
In addition, our study essentially provides a vision to bridge
ideas from quantum communication, such as robust quantum
state transfer and teleportation, and ideas from fault-tolerant
quantum computation.

With respect to systems with purely local interactions
between physical qubits, our results can still be of practical
relevance. Long-range SWAP operations can be implemented
through local operations together with a long-range entangled
Bell pair. Thus, we can envision a quantum architecture
where during the quantum computation, long-range Bell pairs
are continuously being created, perhaps with entirely local
operations, in parallel but independently of the quantum com-
putation. The logical gates then utilize these long-range Bell
pairs as a resource as part of the computation. This approach
also shares the spirit with distributed quantum computation
[79,80].

From a conceptual perspective, our results imply a different
view on braiding and Dehn twists. Conventionally, braiding
and Dehn twists are considered in terms of adiabatic pro-
cesses. In terms of ground states of gapped Hamiltonians,
braiding and Dehn twists are achieved by adiabatic evolution
with a local Hamiltonian, which takes a time that diverges
with system size or distance between anyons. This is mani-
fested in active error correction approaches to quantum com-
putation by requiring that braids of holes, twist defects, and
non-Abelian anyons to require either (a) a local unitary quan-
tum circuit whose depth grows with code distance, or (b) a

sequence of measurements, where fault tolerance requires that
the measurements be performed d times.6 Our results, on the
other hand, show that braiding and Dehn twists fundamentally
need not be thought of as an adiabatic process.

Rather, the essence of Dehn twists can in some sense
be thought of as actually an appropriate permutation on the
qubits, which effectively implements the appropriate large
diffeomorphism (diffeomorphism not continuously connected
to the identity) on the space. The constant depth local unitary
circuit can be thought of as a “trivial” diffeomorphism that,
while it changes the geometry of the space, can be thought of
in the continuum limit as being continuously connected to the
identity operation. However, this trivial operation is required
because we need to return the system after the permutation
back to the original subspace.

Our braid protocols that utilize the movement of punctures
(e.g., anyons) over large distances of the order of the code
distance can instead be interpreted as follows. Rather than
considering moving the anyon through the many-body state
by applying a string operator of length d , we leave the anyon
where it is and we “grow” the state to one side of the anyon
by a factor of 2 and “shrink” it to the other side by a factor
of 2, through a type of local entanglement renormalization
protocol. This allows us to effectively change the distance
between anyons by a factor of 2; if the anyons are separated
by a distance of order d , this effectively allows motion of the
anyon by d steps in essentially a single shot. A remarkable
consequence of this is that the number of steps required to
bring two anyons a distance � apart to the same location
goes like log � because our protocol only allows motion by
a distance that is bounded by the distance to the nearest
anyon.

Let us now compare our results to those of Ref. [31], where
it was shown that certain mapping class group elements can
be realized through a finite sequence of transveral SWAP
operations in a multilayer topological state with appropriate
boundary conditions and defects. The result of Ref. [31]
can, in our context, be stated as follows. Certain mapping
class group operations γ ∈ MCG(�g,p) that are of finite order
(i.e., γ k = 1 for some k, called torsion elements) can be
implemented purely in terms of a permutation on qubits.
Furthermore, the structure of the permutation is such that it
is an automorphism of the lattice (it keeps the lattice exactly
invariant). This allows us to consider folding the system
into a multilayer system (“quantum origami”) such that the
permutation reduces to SWAP operations between layers.
However, braids and Dehn twists are fundamentally different,
as they have infinite order. The permutations they require
are not automorphisms of the lattice, but rather more general
connectivity-preserving isomorphisms. It is intriguing that we
now have two classes of mapping class group operations that
can be achieved with constant time overhead: (1) braids and
Dehn twists, and (2) torsion elements.

6In certain cases in three-dimensional codes, fault tolerance with
a single round of measurements may be possible, but the classical
processing to determine the measurement outcome still grows with
the code distance.
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From the point of view of mathematics, our result demon-
strates how mapping class group elements can be achieved
as a map on the triangulation of a surface. Braids and Dehn
twists correspond to permutations of vertices of the trian-
gulation, followed by a finite sequence of Pachner moves
to recover the original triangulation. Crucially, the length of
the sequence of Pachner moves is independent of the length
of any noncontractible cycle and number of vertices in the
triangulation.

We have established our results for all nonchiral topo-
logically ordered states, which can be captured by Turaev-
Viro-Barrett-Westbury TQFTs. These include all of the Kitaev
quantum double models and Levin-Wen string-net models as
special cases. While we have not explicitly considered higher

dimensions, we expect analogous results to straightforwardly
apply in higher dimensions as well, as the TVBW TQFTs
have natural generalizations to higher dimensions in terms
of higher categories, such as the Crane-Yetter-Walker-Wang
TQFTs [9,81,82].
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