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Cavity evolution and the Rayleigh-Plesset equation in superfluid helium
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Based on the two-fluid hydrodynamics, an analog of the famous Rayleigh-Plesset equation for the dynamics
of a spherical vapor bubble in superfluid helium is derived. The two-fluid nature of He II and the specific form of
the momentum flux density tensor give rise to a number of effects in the evolution of the boundary position R(t ),
absent in ordinary fluids. One of them is the abnormal attenuation of the boundary oscillation, which exceeds
the usual viscous damping by several orders of magnitude. There is also an additional term proportional to the
squared velocity of the normal component, which is independent of the derivative dR/dt , and therefore can
be included in the pressure drop. Its physical meaning is related to the dependence of pressure on the relative
velocity between the normal and superfluid components. One more effect renormalizes the coefficient in front
of (dR/dt )2. The dissipative part of the momentum flux tensor is also being upgraded to take into account the
two-fluid hydrodynamics. As an illustration of the stated theory, a numerical solution of the obtained master
equation for the evolution of a vapor film on spherical heaters in He II is presented. The obtained results declare
that some early issues and conclusions on the dynamics of the cavity in superfluid helium should be reviewed.
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I. INTRODUCTION AND SCIENTIFIC BACKGROUND

The study of the cavity dynamics is an important part of
the problems of continuum mechanics, including the hydro-
dynamics of superfluids. These may be problems related to
the evolution of bubbles created by electrons [1–3], bubbles
caused by sound [4], cavitation due to negative pressure [5],
collapse of bubbles [6,7], sonoluminescence [8], etc. Closely
important applications related to the formation of new phases
and the evolution of interphase surfaces are the quantum
kinetics of phase transitions at temperatures close to absolute
zero [9], and also the kinetics of nucleation and stratification
of dilute 3He - 4He solutions at low temperatures [10], or
the growth of helium crystal facets [11]. One more series
of examples is related to the heat transfer in He II and to
the possibility of utilizing superfluid helium as a coolant
in cryogenic systems, which has been discussed extensively
recently [12]. Knowledge of the laws governing the formation
and development of vapor films on the surfaces of heaters is
important for solving corresponding problems [13–16].

Studying the dynamics of the cavity, the authors of the
above-cited works appeal to the Rayleigh-Plesset problem
on the evolution and oscillations of an air or vapor bubble,
elaborated initially for an ordinary fluid (see, e.g., Ref. [17]
and references therein). Such treatment, however, is justified
in the case when superfluid helium behaves as an ordinary
fluid and moves as a whole with a mass velocity v = j/ρ (see
the notations below). This situation occurs when helium is
driven in the motion under the action of a pressure gradient (or
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gravity). However, whenever heat fluxes occur, a flow of the
normal component appears with a velocity vn, different from
the mass velocity v, and the problem requires a fundamentally
different treatment related to the two-fluid nature of He II.

In the present paper the problem of the evolution of a
spherically symmetric vapor bubble in superfluid helium is
considered. The equation playing the role of the famous
Rayleigh-Plesset problem in an ordinary fluid is derived. The
obtained equation results in a number of effects absent in
ordinary fluids. They include effects such as an abnormal
attenuation of the boundary oscillations, exceeding the usual
viscous damping by several orders, or additional pressure
caused by the relative velocity between normal and superfluid
components. These effects essentially influence the dynamics
of cavities and should be taken into account in the relevant
works.

Loosely speaking, the dynamics of a bubble is determined
by the inertia (mass) of ambient liquid and the elastic prop-
erties due to the pressure inside the cavity. The latter is the
result of many factors including surface tension, Coulomb
pressure, hydrostatic pressure, the viscous contribution into
the stress tensor, etc. The corresponding task is a complex
problem requiring a careful analysis of many ingredients.

In this work, we will focus on hydrodynamics processes
inside the fluid, not taking into account the involved phenom-
ena inside the bubble. In addition, for clarity and for deduc-
tive purposes, we take a pure two-fluid Landau-Khalatnikov
model, excluding more complex phenomena, such as quantum
turbulence [18,19] or the existence of a thermal boundary
layer near the interphase liquid-vapor boundary [20]. In ad-
dition, we omit the effects, related to the compressibility of
the fluid, and, respectively, we omit the radiation of sound
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[21–23]. We also do not consider radiation of the second
sound arising from nonzero relative velocity between the nor-
mal and superfluid components. Realizing the importance of
the above processes for the whole evolution of the cavities, we
nonetheless omit them in order to emphasize the fascinating
features of the two-fluid Landau-Khalatnikov model of super-
fluid hydrodynamics in the process under consideration. All
listed effects such as compressibility or quantum turbulence
should be introduced as further approximations to the master
equation (19).

In the next section we perform a detailed derivation of
the Rayleigh-Plesset-like equation for the evolution of the
boundary position of a spherical bubble in superfluid helium.
The main features of the derived equation are also described
there. Remarks on the obtained results are made and possible
developments are discussed in the conclusion.

II. THE RAYLEIGH-PLESSET PROBLEM IN
SUPERFLUID HELIUM

A. Treatment of the momentum flux density tensor �rr

It is known from the solution of the Rayleigh-Plesset
problem in a classical fluid that the master variable, which
controls the whole process, is the mass flow velocity v(r, t ),
for the simple reason that in a spherical case the variable
v(r, t ) at the boundary points R(t ) coincides with the rate of
change dR/dt . The governing equation for R(t ) is derived
from the equation for momentum density, which, due to a
noncompressibility condition, is simply the Euler equation for
velocity v(r, t ).

In superfluid helium the situation is more complicated. The
momentum density ji = ρsvsi + ρnvni consists of two ingredi-
ents - superfluid and normal ones. The evolution equation for
the momentum density j reads

∂ ji
∂t

+ ∂�ik

∂xk
= 0. (1)

The momentum flux density tensor �ik has also two ingredi-
ents and it is equal to

�ik =ρsvsivsk + ρnvnivnk + δik p. (2)

It does not explicitly include the mass flow velocity v(r, t ) =
j/ρ, as it takes place in the case of ordinary fluids. In other
words, in superfluid helium, the momentum flux density ten-
sor �ik is not equal to ρvk∂vi/∂rk , as it is sometimes used or
implied in the relevant works. On the contrary, because of the
two-fluid hydrodynamics, the structure of the momentum flux
density tensor is more involved and should reflect the presence
of two ingredients, the superfluid and normal parts.

In fact, the superfluid and normal velocities vs, vn are not
convenient for solving our problems. More suitable variables
are the mass flow velocity and the velocity vn of the normal
component. Indeed, the mass flow velocity v(r, t ) is respon-
sible for the inertia of the fluid and the normal velocity vn is
tightly related to the thermal processes. Further, we assume
that the total density ρ, as well as the superfluid and normal
densities ρs and ρn are individually constant.

The next, crucial step is to treat the equation for momentum
density (1). We have to express the momentum flux density
tensor �ik via quantities v(r, t ) and vn(r, t ), which were

selected as the primary variables. To get rid of the velocity of
the superfluid component entering in Eq. (2) for �ik , we use
the relation known from classical superfluid hydrodynamics
[20,24],

vs = ρv
ρs

−ρn

ρs
vn. (3)

The momentum flux density tensor �ik [see Eq. (2)]
can be rewritten in terms of the chosen variables v(r, t )
and vn(r, t ) as

�ik = ρ2

ρs
vivk + ρ2

n

ρs
vnkvni − ρρn

ρs
vivnk

−ρρn

ρs
vkvni + ρnvnivnk + pδik . (4)

Now we have to transform the momentum flux density
tensor �ik (4) into spherical coordinates. The simplest way to
do this is as follows. We can represent expressions of the type
Ak∂Bi/∂xk as an i component of combination (A · ∇)B. In ac-
cordance with the well-known mathematical relation, we have
(A · ∇)B = ∇(A · B/2) [25]. The latter operation is possible,
since due to the spherical symmetry and incompressibility of
both components, ∇ · A = 0, ∇ × A = 0, and the same for
vector B. Using this rule we rewrite the radial component
of the momentum flux density tensor �rr (4) in spherical
coordinates as

�rr (r) = 1

2ρs

(
v2ρ2 − 2ρρnvvn + ρnρv2

n

)
. (5)

Then, the equation for the mass velocity v(r, t ), following
from (1), has the form

∂v

∂t
+ 1

ρ

∂ p

∂r
+ ρ

ρs
v
∂v

∂r
− ρn

ρs

(
vn

∂v

∂r
+v

∂vn

∂r

)
+ ρn

ρs
vn

∂vn

∂r
=0.

(6)

If vn = v (the coflow case), the momentum flux density
tensor �ik (5) transforms to

�rr = 1

2
v2 ρ

ρs
(ρ − ρn) = 1

2
ρv2, (7)

as it should be in the ordinary fluid.

B. Treatment of vn, flux of energy

Equation (6) is the basis for obtaining the equation for the
dynamics of the cavity boundary R(t ). However, this equation
is not closed. In addition to the main variable velocity v, the
equation also contains the velocity of the normal component
vn, and our goal now is to get rid of it. The simplest way to do
this is based on a consideration of the energy flux density W,
which is [20,24]

W =
(

μ + v2
s

2

)
j+ST vn + ρnvn[(vn − vs) · vn]. (8)

Here, S is the entropy density, and μ the chemical potential.
It should be noted at once that we observe a macroscopic
energy flux ST vn even in the case when the total mass flow
j is equal to zero (the so-called counterflow). Neglecting the
nonlinear effects of the third order and taking that the energy
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flux W in this case is simply the heat flux Q, we arrive at the
formula

Q =ST vn. (9)

In case vn = v, or, which is equivalent, vn = vs = v, that is,
the fluid moves as a whole (the so called co-flow), the energy
flux W has a form

W =
(

μ + v2
s

2

)
ρv + ST v =

(
h + v2

2

)
v (10)

(here, h = μ + T S is the enthalpy), as it should be in a one-
phase fluid or in the case of coflow [26].

A variant of the above approach was used in Ref. [16]
where the authors applied relation (9) to express vn via heat
flux Q, released by the heater. Since, however, the total mass
flow j is not equal to zero, part of the total energy released
by the heater is converted into mechanical energy, associated
with the motion of helium as a whole. Thus, if the flow is
not a pure counterflow, the normal velocity vn is not uniquely
determined by the heat flux Q and the situation requires a more
thorough investigation. We have to use the full expression for
the energy flux (8). Neglecting again nonlinear effects of the
third order as well as the irreversible energy flux Wirr, we
arrive at the following formula,

vn = W

ST
− μρ

ST
v (11)

(since we work for a purely spherically symmetric case we
omit the vector notations). The origin and nature of the energy
flow W can be different—for example, it can be a spherical
heater forming a (spherical) vapor region around itself, or it
can be an external pressure drop that causes the cavity to either
collapse or oscillate.

Substituting vn from (11) in the expression for the momen-
tum flux density tensor �rr (5), we obtain

�rr = ρ

2S2T 2ρs
(S2T 2v2ρ + 2ρnST v2μρ − 2ρnST vW

+ρnv
2μ2ρ2 − 2ρnvμρW + ρnW

2). (12)

Further, we will use the enthalpy h = μρ + ST instead of
the chemical potential μ, since the enthalpy h is more reliably
measured and tabulated quantity. After that, the expression for
�rr takes the form

�rr =
(

ρ

2S2T 2ρs
(h2ρn + S2T 2ρ − S2T 2ρn)

)
v2

−
(

ρρnh

S2T 2ρs

)
W v + ρρn

2S2T 2ρs
W 2. (13)

We grouped the terms as follows: The first term contains the
squared velocity v; the second term contains the cross term
W v; and, finally, the third term does not contain the mass
velocity v at all. Then, substituting (13) into Eq. (6), we get

∂v

∂t
+ 1

ρ

∂ p

∂r
+ Av

∂v

∂r
+ 1

2
Bv

∂W

∂r
+ 1

2
BW

∂v

∂r
+C

∂

∂r

1

2
W 2 = 0.

(14)

The coefficients A, B, and C are equal to

A = 1

S2T 2ρs
(h2ρn + S2T 2ρ − S2T 2ρn), (15)

B = − ρn

S2T 2ρs
h, C = 1

S2T 2

ρn

ρs
. (16)

We will discuss further the physical meaning of such
a grouping.

C. Equation for the boundary position R(t )

We proceed to derive equations for the boundary position
evolution R(t ). Due to the incompressibility condition, the
radial component of the mass flow velocity v = j/ρ with the
classical solution is

v(r, t ) = R2

r2

dR

dt
. (17)

To move further we have to work with the equation for the
radial mass flow velocity v(r, t ) (14). For definiteness, at this
stage we specify the problem and consider a purely thermal
case: the development of a vapor film created by a spherical
heater of the radius RH , immersed in superfluid helium. Then
the only source of energy is the heat released on the heater,
and the energy flux W (r) into the surrounding space has the
form

W = R2
H

r2
Q. (18)

Here, Q is the heat flux density, released on the surface
of the heater. Combining Eq. (18) with the expression for
mass velocity v(r, t ) (17), accomplishing (where appropriate)
differentiation with respect to r and integration over r in
limits from R to ∞, we obtain the following equation for the
evolution of the boundary position R(t ),

R
d2R

dt2
+

(
2 − A

2

)(
dR

dt

)2

− B

(
R2

H

R2
Q

)
dR

dt
− C

2

(
R2

H

R2
Q

)2

= 1

ρ
[p(R) − p(∞)]. (19)

The classical Rayleigh-Plesset equation includes the contri-
bution from the surface tension 2γ /R into the pressure p(R)
and the contribution in the momentum flux density tensor due
to the fluid viscosity η. In the case of superfluid helium, the
contribution from the surface tension retains its form. The
situation with a contribution from the viscous momentum flux
density tensor is a bit more complicated. To find it we have
put the expression for the radial velocity v(r) (17), as well as
the radial energy flux W (r) (18), in the dissipative momentum
flux tensor [20,24] and apply it at point r = R. Corresponding
calculations show that there is the viscous contribution into
pressure �diss p(R), equal to

�diss p(R) = 4ηn

(
μρ

ST

)
1

R

dR

dt
− 4ηn

1

ST

R2
H

R3
Q, (20)

which should be incorporated into Eq. (19).
Resuming this section, we conclude that the master equa-

tion for the evolution of the cavity boundary position in
superfluid helium, which plays the role of the Rayleigh-
Plesset equation, is Eq. (19), with the dissipative additives
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(20). We note again that we considered the basic variant
of the Landau-Khalatnikov two-fluid hydrodynamics, without
quantum turbulence [18] and a thermal boundary layer [20].
In this sense, Eq. (19) can be considered as the first step.

III. ANALYSIS OF THE MASTER EQUATION

A. Qualitative analysis

The resulting master equation (19) has a structure similar to
the structure of the Rayleigh equation for a classical fluid [17].
Namely, this is a nonlinear differential equation of the second
order describing decaying oscillations, or a relaxation-type
evolution to a stationary state. At the same time Eq. (19) is
very different from the classical Rayleigh-Plesset equation. It
includes additional terms, absent in the classical case. This
difference arises due to the two-fluid model and a specific
form of the momentum flux density tensor �rr (2). In the case
when the fluid moves as a whole, i.e., vn = vs = v, Eq. (19)
reduces to the classical equation. Indeed, if we use W = hv

[neglecting the nonlinear effects of third order—see Eq. (10)],
then the quantity �rr (13) transforms to its classical value
v2/2. As a result, the well-known problems such as isothermal
oscillations of the gas bubble, or the collapse of an empty
cavity, coincide (except for the dissipative terms—see the last
paragraph in this section) with the classical solution. The real
and essential difference appears when vn is not equal to vs.

The terms in the momentum flux tensor �rr (13) and hence
in Eq. (19) are combined into groups with different physical
meanings. In particular, the terms containing the derivative
dR/dt are important for nonstationary processes, such as a
transient process, or oscillatory motion. The remaining terms
that do not contain dR/dt determine the stationary solution
R(t → ∞), e.g., the thickness of the vapor film, or the size of
the vapor bubble. So, the third term on the right-hand side
of Eq. (19), which does not depend on the velocity of the
boundary position dR/dt , can be included into the pressure
term p(R). That can be additionally justified by the fact that
this term is proportional to squared velocities and, hence,
it is related to the dependence of pressure on the relative
velocity between the normal and superfluid components (see
also Refs. [20,24]). Further, we will call it a “Bernoulli-like”
pressure. In many cases, this additional pressure is small—for
example, in experiments [13,27] this Bernoulli-like pressure is
of the order of 10% of the hydrostatic pressure ρgh, however,
for smaller values of h, and especially under microgravity
conditions, it can be extremely important.

The second term on the right-hand side of Eq. (19) is of
particular interest. It has the same structure as the dissipative
viscous term (20), which is responsible for the attenuation of
bubble oscillations. At the same time it essentially (by several
orders of magnitude) exceeds this viscous damping. For this
reason, we will call it the “extra-damping” term. The extra-
damping term can be the source of the abnormally strong
attenuation of bubble oscillations, observed in many works
[13,27]. The authors of Ref. [14] called this phenomenon
the abnormal “suppression of oscillations of the vapor-liquid
phase boundary in superfluid helium.” To our knowledge, the
authors could not explain this phenomena and referred to
purely experimental obstacles.

The second term on the left-hand side of Eq. (19) differs
from the classical case in that the coefficient 3/2 is replaced
with the quantity 2 − A/2. In the limit of an Euler fluid when
ρn = 0, the quantity A = 1 and the classical Rayleigh case are
recovered. A preliminary numerical analysis of the solution of
Eq. (19) shows that this term does not greatly affect the final
results.

The dissipative additive (20) to the pressure p(R) at the
interface requires a special comment. In the case of thermal
problems, this addition is much smaller than the cross extra-
damping term and it can be neglected. In the case of a mechan-
ical flow, when the coflow regime is realized, for example,
with the collapse of the cavity, the dissipative additive (20) in
the pressure at the boundary can play a significant role. How-
ever, it should be noted that the corresponding contribution
differs from the quantity 4ηn

1
R

dR
dt , which is sometimes used in

the relevant works.

B. Simple example: Evolution of the vapor film
on the spherical heater

As a simple illustration to the qualitative analysis, outlined
above, we will apply the approach developed in this paper
to discuss a series of works on boiling superfluid helium
on spherical heaters [13,14,16,27]. In the listed works, both
experimental studies and theoretical calculations based on the
classical equation Rayleigh-Plesset are performed. In prin-
ciple, for some special cases, the Rayleigh-Plesset equation
has an analytical solution. For example, in Ref. [28], such a
solution was found for the Rayleigh equation when the gas
in the bubble was an ideal and obeyed the polytropic law. In
general cases, the pressure inside the bubble obeys a more
complex law, so we use a numerical solution.

One of the principal and delicate questions for studying the
dynamics of a vapor film concerns the value of the pressure
near the boundary R(t ). As discussed earlier, there are many
factors which contribute to the quantity p(R). In addition
to the surface tension pressure 2γ /R, and the contribution
to the stress tensor arising from the viscosity of the normal
component, which is already present in Eq. (19), there should
be also contributions due to the thermal processes inside the
film. The corresponding pressure has to be determined from
energy equations [7,16,17,29]. There is also the Bernoulli-
like pressure, proportional to the squared normal velocity
[the fourth term on the left-hand side of Eq. (19)]. A very
important contribution to pressure can appear from processes
of evaporation (condensation) at the boundary.

Resuming the above discussion, we conclude that the pres-
sure inside the bubble p(R) is a poorly controlled quantity that
should be determined from a separate thorough analysis. That
problem certainly goes beyond the scope of the task posed
in our work. Our goal is to highlight the specific feature of
the superfluid hydrodynamics in the evolution of a vapor film.
Therefore, with the aim to find the difference in the dynamics
of the cavity in a normal liquid and superfluid helium, we
simply use the expression for the pressure that has been used
in the above-cited articles [13,14,16,27]. The authors of these
articles accept that the main ingredient in vapor pressure p(R)
arises due to nonequilibrium vaporization and condensation
of helium at the interphase boundary. According to the theory,
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t

R t

2

1

FIG. 1. Long-time behavior of R(t ) (in cm). See explanations in
the text.

the relationship between pressure and heat flux, obtained by
solving the Boltzmann kinetic equation, has the form

p(R) =
√

π

4

Qh√
2RHeT

R2
h

R(t )2
. (21)

Here, Rh is the radius of a spherical heater, Qh is the heat flux
density released, and RHe the individual gas constant.

To compare our approach with the results on He II boiling
on a sphere, we take the parameters used in Ref. [13]: The
radius of the spherical heater is Rh = 3.0 mm, the averaged
immersion depth h = 90 mm, and the heat flux density re-
leased on the heater is Q̇h = 30.5 kW/m2. As for the initial
condition for velocity of the interphase boundary dR/dt , it
can be obtained from the following considerations. Let us
assume that the formation of a film and the motion of the
interface at the initial moment are associated with evaporation.
Then, comparing the applied heat load 4πR2

hQ̇h with the latent
heat L per unit volume, we estimate the initial speed as Ṙ(0) =
Q̇h/L ≈ 1 cm/s. It should be noted, however, that the final
results are not very sensitive to the choice of initial condition
(except of the initial period).

The results of the calculations on the evolution of the radius
of the vapor film R(t ), formed after the stepwise switching
on of the heat load on the spherical heater, are shown in
Figs. 1–3. Figure 1 shows the behavior of the function R(t )

t

R t

2

1

FIG. 2. Middle-time behavior of R(t ) (in cm). See explanations
in the text.

t

R t

FIG. 3. initial behavior of R(t ) (in cm). See explanations in the
text.

over a long period of time, about 5000 s. It can be seen that
the solution based on the classical Rayleigh-Plesset equation
(curve 1) represents very slowly damping oscillations (with
decrements of the order of 1/2000 s−1), which is associated
with the very low viscosity of the normal component νn. Curve
2 corresponds to Eq. (19) for the motion of interface R(t ) in
superfluid helium. It can be seen that, on a long-term scale,
the size of the vapor film reaches a stationary state almost
instantly. The asymptotic stationary states for these two curves
are different, since in superfluid helium there is an additional
pressure associated with the fourth term in Eq. (19).

Figure 2 shows the same curves over a short period of
time (about 0.5 s). Curve 1, corresponding to the classical
Rayleigh-Plesset equation, represents (practically) undamped
oscillations. This is consistent with the numerical results of
some works (see Fig. 7 in Ref. [13] and Fig. 2 in Ref. [14]).
Curve 2, corresponding to the case investigated in our work,
describes a fast approach to a stationary solution. The time
to reach a stationary solution (about 0.2 s) agrees with the
experimental results (see, for example, Fig. 6 in Ref. [13]),
except for the oscillations, absent in the experiment. However,
as stated by the authors of Ref. [13], “such oscillations were
not registered in our experiments, possibly, because of the low
frequency of video.”

Finally, Fig. 3 shows the initial period of vapor film
development. The evolutionary curves R(t ) for the classical
Rayleigh-Plesset equation and for Eq. (19) are close to each
other. This is due to the fact that the mechanisms specific to
superfluid helium require more time.

The performed numerical solution of the problem demon-
strates that the approach developed in the present paper (i)
explains the abnormal suppression of oscillations, (ii) gives
a correct quantitative description of the relaxation of the
film to a stationary state, and (iii) predicts a change in the
stationary film thickness associated with additional pressures
in the superfluid liquid.

IV. CONCLUSION

The problem of the cavity dynamics in superfluid helium
is considered on the basis of Landau-Khalatnikov two-fluid
hydrodynamics. The equation governing the evolution of the
boundary position (19) significantly differs from the classical

064511-5



SERGEY K. NEMIROVSKII PHYSICAL REVIEW B 102, 064511 (2020)

Rayleigh-Plesset equation. The difference arises from the spe-
cial form of the momentum flux density tensor, including its
dissipative part. Due to the two-fluid nature of superfluids, the
developed approach generates several different effects, such
as the Bernoulli-like pressure term, the extra-damping term, or
the dissipative additive (20) into the boundary pressure p(R).
These effects essentially influence the dynamics of cavities in
comparison with ordinary fluids and can influence the results
and conclusions made in the relevant works.

Equation (19) with dissipative additives (20) is intended
to investigate the problems associated with the evolution of
cavities in superfluids. Once again we would like to emphasize
that this hydrodynamic description is part of the general
problem and maybe not the primary part. Probably the more
important ingredient is the correct analysis of the pressure
drop, due to the involved thermal or/and electric processes
inside the bubbles.

Thus, in works on boiling helium [13,27] the authors
determine the vapor pressure p(R) from the Boltzmann kinetic
equation for evaporation and condensation processes. Study-
ing multielectron bubbles in liquid helium [1–3], the authors
find the electron density and its contribution to the pressure
inside the bubble using the Poisson equation.

The study of corresponding processes is a separate in-
volved problem that goes beyond the scope of this work.
Therefore, we deliberately limited ourselves to the hydrody-
namic part, since our goal was to emphasize the role of two-
fluid hydrodynamics. Moreover, consequently pursuing that
goal, we simplified the situation by taking the pure two-fluid

Landau-Khalatnikov model and omitting other hydrodynamic
phenomena such as the quantum turbulence [18].

Resuming, just as the classical Rayleigh-Plesset equation
was a starting point for the study of a large a number
of various application, Eq. (19) should be the basic rela-
tion for investigations on the problems of cavity evolution
in quantum fluids. Any modifications of this equation, de-
signed to investigate specific problems, taking into account
the specific features of quantum fluids, such as a radiation
of the first and/or second sound, or the appearance of a
tangle of vortex filaments (quantum turbulence), should be in-
cluded as further approximations and should be studied in the
future.
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