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We consider the out-of-equilibrium behavior of a general class of mesoscopic devices composed of several
superconducting or/and normal metal leads separated by quantum dots. Starting from a microscopic Hamiltonian
description, we provide a nonperturbative approach to quantum electronic transport in the tunneling amplitudes
between dots and leads: using the equivalent of a path integral formulation, the lead degrees of freedom are
integrated out in order to compute both the current and the current correlations (noise) in this class of systems,
in terms of the dressed Green’s function matrix of the quantum dots. In order to illustrate the efficiency of this
formalism, we apply our results to the “all superconducting Cooper pair beam splitter,” a device composed of
three superconducting leads connected via two quantum dots, where crossed Andreev reflection operates Cooper
pair splitting. Commensurate voltage differences between the three leads allow us to obtain expressions for the
current and noise as a function of the Keldysh Nambu Floquet dressed Green’s function of the dot system.
This voltage configuration allows the occurrence of nonlocal processes involving multiple Cooper pairs which
ultimately lead to the presence of nonzero DC currents in an out-of-equilibrium situation. We investigate in
detail the results for the noise obtained numerically in the specific case of opposite voltages, where the transport
properties are dominated by the so called “quartet processes,” involving the coherent exchange of two Cooper
pairs among all three superconducting terminals. We show that these processes are noiseless in the nonresonant
case, and that this property is also observed for other voltage configurations. When the dots are in a resonant

regime, the noise characteristics change qualitatively, with the appearance of giant Fano factors.

DOI: 10.1103/PhysRevB.102.064510

I. INTRODUCTION

In a mesoscopic device involving superconducting
contacts/reservoirs, transport properties are largely influenced
by Andreev reflection in the subgap voltage regime [1]. This
fundamental process amounts to an electron being reflected
into a hole (or vice versa), the difference of charge being
absorbed by the creation (or destruction) of a Cooper pair
(CP) inside the BCS ground state of the superconductor. In a
Josephson junction between two superconductors [2], this mi-
croscopic process explains (i) the DC Josephson supercurrent,
an equilibrium dissipationless phenomenon which depends
on the phase difference between the two superconducting
reservoirs, (ii) the AC Josephson effect which depends on the
voltage applied across the junction and the Shapiro DC steps
obtained when adding an RF irradiation, and (iii) the pair-
assisted quasiparticle transport for subgap voltages, a phase
insensitive nonequilibrium dissipative phenomenon involving
multiple Andreev reflections (MAR) [3-6].

In more involved multiterminal superconducting hybrid
structures, a nonlocal version of this process may arise. This
has been intensively studied in the context of the Cooper pair
beam splitter (CPBS) [7-9], a three lead device composed
of a single superconducting lead connected via two quantum
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dots to two normal metal leads. There, in addition to (direct)
Andreev reflection, the two constituent electrons of a Cooper
pair can be transferred to the two normal metal leads as a
nonlocal entangled pair [10,11] via a process called crossed
Andreev reflection (CAR).

The first purpose of this paper is to present a general
theoretical framework for computing the current and noise
characteristics of a general class of mesoscopic devices com-
posed of an arbitrary number of biased superconducting or
normal metal leads, which are separated by quantum dots.
Upon integrating the quadratic degrees of freedom of the leads
and applying Wick’s theorem, analytical expressions for the
noise are obtained in terms of the dressed dot Green’s function
matrix in the Keldysh Nambu space. To our knowledge, such a
general theoretical framework has so far only been considered
for the computation of current, in a specific situation: the
“all superconducting Cooper pair beam splitter” (ASCPBS),
studied in Ref. [12], which is the equivalent of the CPBS
albeit with all three leads being superconductors. As is now
well established, a noise diagnosis allows us to gain further
information compared to the current characteristics: particu-
larly relevant is the monitoring of Fano factors (ratios between
the noise and the current). We stress that this formulation of
quantum transport in superconducting/normal metal hybrid
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devices can be readily used to study a vast class of systems, as
it only requires the (numerical) solution of the Dyson equation
of the dressed single particle Green’s function of the quantum
dot system—the quantum dot “array.”

In the second part of this paper, as an application of our
formalism, we consider the computation of the noise charac-
teristics of the ASCPBS, where in the subgap regime, Andreev
reflection, crossed Andreev reflection, and multiple Andreev
reflections constitute the basic transport processes. In addi-
tion, the voltage differences between the three leads of this
ASCPBS are tuned to a commensurate voltage configuration
dubbed “multiple Cooper pair resonance” (MCPR) [12], al-
lowing a dissipationless Josephson-like signal for the current
in the subgap regime, despite the fact that the system is driven
far from equilibrium. The application of the general formalism
developed here is thus to monitor the behavior of the noise
as the subgap voltage differences are decreased. In some
specific range of parameters where the quantum dot behaves
like a quantum point contact, we find that the low-temperature
noise vanishes. Conversely, in the resonant dot regime where
the dots operate as energy filters, we find that the subgap
voltage noise characteristics gives rise to anomalous giant
Fano factors.

The paper is organized as follows. Section II describes
the general class of models which we intend to describe,
and the equivalent of a path integral formulation [13] for
quantum transport is formulated, allowing us to compute
both the Josephson current and the current-current correla-
tions in a nonperturbative way in a generalized Fisher-Lee
formula [14] for both the current and noise. In Sec. III
we apply our formalism to MCPR in the ASCPBS. After
presenting a short historical perspective of selected works
dealing with multiterminal superconducting hybrid devices,
we derive the expressions for the current and noise using our
Nambu Keldysh Floquet formalism, and present numerical
results in two experimentally relevant regimes. The discussion
and conclusions are presented in Secs. IV and V.

We consider units in which Planck and Boltzmann con-
stants, together with the elementary charge are unity, i.e.,
h=1,kg=1e=1.

II. MICROSCOPIC FORMULATION

We consider a class of mesoscopic systems composed
of an arbitrary number of superconducting or normal metal
leads, which are coupled to an array of quantum dots. All
superconductors, labeled j = 1,2, ... are described by BCS
theory with a gap energy A; (when a given lead is chosen
to be a normal metal, this gap is chosen to be zero). Quantum
dots are identified with the label « = a, b, . .. and their energy
level is specified by the energy ¢,. There exists no restriction
about which quantum dot is coupled to which lead or dot.
The tunneling amplitude between lead j and QD « is denoted
as tjq, while the direct tunneling between dots is described
by the amplitude f,4 = 1. At first sight it may seem that a
direct coupling (not mediated by quantum dots) is ruled out
in this context. This is by no means the case, as we have
shown in previous work [15] that a system of two supercon-
ductors separated by a quantum dot can also describe an ad-
justable superconducting quantum point contact with arbitrary

FIG. 1. Sketch of a general multiterminal mesoscopic device
(with either superconducting or normal metal leads, or both) de-
scribed by the present formalism: superconducting or normal metal
leads are connected to an “array” of quantum dots. Electrons can
either hop from a quantum dot to one of the leads, or they can
alternatively tunnel to another dot. Although no direct tunneling
amplitude between the leads is present in this theoretical model,
we argue in the text that such processes can effectively be included
by tuning appropriately both the quantum dot level and its hopping
amplitude to the leads.

transmission, provided that the dot level is chosen outside the
gaps of the superconductors, and that the dot-superconductor
amplitudes are properly tuned. An example of such devices is
depicted in Fig. 1.

A. Total Hamiltonian

The total Hamiltonian of the system can be decomposed
into a contribution from the superconducting leads, the one
from the QDs (including interdot tunneling) and a final one
describing the tunneling between the QD and the leads,
namely

H =" Hj+Hp+Hr(). M
J

The superconducting leads, identified by the label j, are
represented by the standard BCS Hamiltonian

¥ k?
0= qjjzk[<% - u>oz " Ajax} Vi @
k

where the Pauli matrices o, and o, act in Nambu space and we
introduced Nambu spinors

ViK1 )
Wy = , 3
. <w;(k),¢ )

with 1//},“7 the creation operator for an electron with momen-
tum k and spin o =1, | in lead j.
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Introducing similarly the creation operator for an electron
with spin o =1, | on dot « as d;, the Hamiltonian Hp, of
quantum dot « reads

Hp, = €4 Y d}yduc )

and the tunneling Hamiltonian between the QDs a and b is
given by

Hp,p, = tap Z d;odbg + H.c. (®)]

Introducing Nambu spinors of the form

dyy
) e

and collecting them for each dot « into a 2Np-component
Nambu-dot spinor (Np is the number of quantum dots in the
system) as

d=14d.| ()

the Hamiltonian of the double QD can be conveniently rewrit-
ten as

Hp = ZHD,X + ZHDaDﬂ =d" hpo.d, (®)

a ap

where the Pauli matrix o acts in Nambu space and the matrix

fea leb € ... C))

is defined in dot space.
Finally, the tunneling Hamiltonian between leads and QDs
is written in terms of Nambu spinors according to

Hr(t) = ijk Tia(t)dy + Hee., (10)
Jka

where applying a Peierls substitution, we gauged the external
bias away from the lead Hamiltonian and into the tunneling

constants, therefore introducing ;4 (¢) = tj4 0, el = Vidt

B. Green’s functions in the Keldysh formalism

In order to calculate thermodynamic averages of operators
in an out-of-equilibrium system, the Keldysh time contour
C is introduced [16]: it goes from —oo to +oo (4 forward
branch) and goes back to —oo (— backward branch). The time
ordering operator along this contour is denoted as 7. We
introduce the 4Np-component Nambu-dot-Keldysh spinors
collecting Nambu-dot spinors (7) evaluated on the two dif-
ferent branches of the Keldysh time contour

i (?). (11)

The bare Green’s functions of the QDs (in the absence of
tunneling between dots and superconducting leads) reads

Go(t, 1) = —i{Te{d(1)d" ()})o. (12)

The quantum mechanical averaging is performed with respect
to the Hamiltonian without tunneling

_ Tr{e Pt ...}

(- )o= (e F where Hy = Zj:Hj+HD.

13)

QD and superconducting degrees of freedom are coupled
with the time-dependent tunneling Hamiltonian Hr(¢) and the
Green’s function dressed by this tunneling reads

G(t,1") = —i(Te{S(00) d(1)d (')} )o, (14)

where S(oco) is the evolution operator along the Keldysh
contour

S(00) = Tcexp{—i/dtHT(t)}. (15)
C

Note that for the general class of systems considered here,
this Greens function is a 4Np x 4Np matrix in Nambu-dot-
Keldysh space.

C. Self-energy of the quantum dots

The evolution operator when averaged over the lead de-
grees of freedom takes the form

+00  p4o00
(S(00))1eads = Tc exp [_l/ / dt; dn
-0 J-oc0

x d'(t)Er(t, rmﬁm} (16)

involving a total self-energy %, = Zi ) ; which also takes
the form of a matrix in Nambu-dot-Keldysh space. Each lead
self-energy ¥ ; can be viewed as a set of Nambu-Keldysh
matrices given by

[£1ap(t1, 12) = Tl ()2, — )T Tip(r),  (17)

and corresponding to the N7 possible matrix elements in
dot space. There, the new set of Pauli matrices t, . acts in
Keldysh space, and we introduced

gt — 1) =—=i Y (Te(Tu@P Mo (18)
k

as the bare local Green’s function of the superconducting lead
j at the site of tunneling. It involves the Nambu-Keldysh
spinors which collect the Nambu spinors (3) evaluated on the
two different branches of the Keldysh time contour as

- v
U, = ( ,)_ (19)
J lljjk

In order to carry out some of the upcoming calculations, it
is useful to perform a rotation in Keldysh space going from
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the +/— basis to the so-called RAK basis according to
0 8) - A7)
- =Lrg;L”", with L=— .
(0 4 e S22\
(20)
This defines a new set of Green’s functions corresponding to
the retarded (R), advanced (A), and Keldysh (K) components.

In the present case of BCS superconductors, these are given
by
Ajoy
£ (@) = mu(0) DI,
itfA ()
K) =1 -2 @] -] @D

where v(0) is the density of states of the lead in the normal
metal regime at the Fermi level, f(w) is the Fermi distribution,
and we introduced the functions

£ @) = Esgn(o),/w? — AT O(w| - A))
+i\ /AT — 0?2 O(A; — |]). (22)

D. Current statistics
1. Current operator and average
The current operator from QD « into the lead j reads
L) =i Z Wl 0. Tia(t)do + Hec. (23)
k

As the average current does not depend on the branch of the
Keldysh contour, it is convenient to introduce counting fields
1o (t) in the tunneling amplitudes according to

Tia(t) — Tia(t) T @2, 24)

so that the evolution operator becomes S(co) — S(oo, n).
The average current can then be computed through the func-
tional differentiation

where Z[n] = (S(oo, 1)),. Performing the differentiation ex-
plicitly, we obtain a Meir-Wingreen type formula [17] for the
average current as the following e diagonal element in dot
space:

{Tia) (1) = Tr(NK>{o 7. /

—3;(t, )G, z)]"‘“}, (26)

+00 . .
dr'[G(t, )X, 1)

o0

where Tr'™®) denotes the trace in Nambu-Keldysh space.

2. Current correlations

In full generality, we need to compute the unsymmetrized
current-current correlator defined as

Sia,jp(t 1) = (L) 1jp(t") — (Lia () (L(t)). 27

A convenient way of doing so consists in introducing new
counting fields [13] nj4s(f) where s = &= now specifies the
branch of the Keldysh contour. The tunneling amplitudes are
then redefined following this prescription as

i”z Ty jas()
Tolt) > Talt)e " =", (28)

where we defined the following matrices in Keldysh space to
project onto a given branch of the contour

T,+1
7

The current correlations are then computed through second
order functional differentiation as

1 82Znl
©ZI0] 8mia— (1) 84 (1) |,y

where Z[n] = (S(c0, n))-
Performing this differentiation, using Wick theorem, and

Ty = (29)

LI =

(30)

1 8ZIn carrying out the partial trace over Keldysh space, it can
Lig)(t) =i — (25) eventually be expressed in terms of RAK components as [18]
J s y p p
Z10] $nja(0) |,y ‘
Siajp(t, 1)
1 e e (N) K ~A R K A A R AR\2B
=—5Re » dr N dy TtV o, (EF G* + £7G" — B1G" + 76" [ )
SKAA | SRAK | SAFA  SRAR\ P
X UZ( J + E] + 2] - 21 G )(z’ £)o(ta,t)
SRARSK | 90K FASA | SRAKSA  SAFASDA | SRARSR\ OB K | /A R
— o (EFGEF + BFGIET + ZFGUE] - BIGUET + B ET) e 0e(G + G =G )

where o stands for a convolution product in time.

Note that as the self-energies are proportional to squares
of tunneling amplitudes, the autocorrelation noise always
dominates with respect to the crossed correlation noise at low

GR+GK)(, o= GA+GR+GK)(”) o(—

~ ~ Ba
EtA + ER z:K)(z’ 1)}
(3D

(

transparencies: the §;; term is the dominant one in Eq. (31)
when lowest order perturbation theory is operated.

This concludes the first task of this paper. The current and
noise have been expressed in terms of the dressed Green’s
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FIG. 2. Three superconductors designed in an ASCPBS [12].
The central electrode S, is grounded while the lateral ones S, and
S, are biased with voltages V, and V. Two quantum dot nanowires
D, and Dy, with energies €, and €, which can be tuned by gates (in
gray), bridge the central superconductor to the two lateral ones. The
distance between the two dots is comparable to the coherence length.

function matrix elements, for an arbitrary mesoscopic system
composed of an array of quantum dots coupled in full gen-
erality to a set of superconducting or normal metal leads in
the spirit of a generalized Fisher-Lee formula [14] applicable
to (time dependent) superconducting systems. In order to
make further progress, one needs to solve the corresponding
Dyson’s equation numerically for a specific device.

If the system contains only a single superconductor, only
(single) Andreev reflection and quasiparticle transmission
to/from this superconductor can occur: a stationary current
flows in this system, and current correlations depend only
on the time difference t — ¢’. The spectral density of noise
at finite frequencies can be directly obtained by a Fourier
transform with respect to ¢ — #’. The results of Refs. [13,19],
which consider the noise crossed correlation, is the CPBS
belong to this category.

However, the next goal of this work is precisely to consider
systems with three superconductors, where the currents flow-
ing in the device contain AC and DC components, and where
the real time current correlator depends separately on the two
times 7 and #’.

III. APPLICATION TO MULTIPLE COOPER
PAIR RESONANCES

In this section we study the setup presented in Fig. 2 for
multiple Cooper pair splitting in a central superconductor,
and recombination (as Cooper pairs) in two other (voltage
biased) superconducting leads. We thus consider a central
grounded superconducting electrode Sy coupled to two lateral
superconducting leads S, and S;, via two quantum dots (QDs)
D, and Dy, as illustrated in Fig. 2. All superconductors labeled
j =0,a, b are described by BCS theory with a gap energy
Aj;. Each QD labeled a = a, b characterized by an energy
level €, is coupled to the central lead and to (only) one lateral
superconductor: the tunneling amplitude between lead j and

QD « is denoted as ¢, and the direct interdot coupling is
neglected (7,5 = t;, = 0) for simplicity, and to optimize CAR
processes. The two lateral leads are biased with a voltage V;
measured with respect to the chemical potential of the central
superconducting electrode with Vy = 0. The width of Sy is
assumed to be smaller than the superconducting coherence
length, so that CAR processes can operate, splitting pairs from
So and distributing electrons on both QDs (as Cooper pairs).

A. Historical perspective

Early works [20-23] attempting to describe the trans-
port properties of three-terminal all-superconducting junc-
tions have focused on the so-called incoherent regime [24].
Further investigations made clear that in the coherent regime,
CAR processes [25-29] would allow the correlated motion
of CPs originating from all three superconductors, leading
to interesting signatures in subgap transport [12]. It was
indeed realized that the interference of MAR processes tak-
ing place at different interfaces of the three-terminal device
would lead to the intriguing possibility of phase-sensitive
dissipative transport. The most fascinating feature, however, is
the appearance of so-called multiple Cooper pair resonances
(MCPR) which resemble some form of Andreev bound states
delocalized over all superconductors, leading to a dissipation-
less phase-dependent Josephson-like current in a nonequilib-
rium situation.

The lowest order MCPR results in the entanglement of
two CPs, a process referred to as the “quartet” process and
first envisioned (at least in these terms) in the equilibrium
calculations of Ref. [30]. In another formulation, these reso-
nances were predicted as voltage-induced (fractional) Shapiro
steps [31]. Anomalies observed recently in the electronic
subgap transport of an all-superconducting device [32,33]
could meet an interpretation in terms of quartet resonances.

Here we wish to determine the noise characteristics of
MCPR. Indeed, the correlations between currents flowing in
two different leads (noise crossed correlations) of a multi-
terminal setup can be measured in order to probe nonlocal
correlations, such as the ones resulting from CAR processes.
In particular, the sign of such current correlations has been
used as a way to sharpen our understanding of mesoscopic
devices involving superconductors from both the theoretical
and experimental point of view [20,23,26,27,34-36]. In a
setup where a single lead is biased, low voltage positive
noise crossed correlations were predicted and ascribed to
MARs [37]. In a setup consisting of a single quantum dot con-
nected to three terminals, noise crossed correlations were also
investigated using perturbative calculations [38] and quartets
were shown to have a decreasing noise signal at low subgap
voltages for a nonresonant dot, as opposed to the resonant
case where a phase-sensitive noise was predicted. The study
of out-of-equilibrium noise in multiterminal superconducting
junctions in the coherent regime is particularly interesting,
as there is still a need to quantify the evolution of current
correlations between different terminals, as a function of
the phase and the voltage biases. In fact, the measurement
of positive noise crossed correlations in three-terminal all-
superconducting devices [39] has been reported recently, in
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Vo =+V

FIG. 3. Energy diagram of the quartet production mechanism.
For opposite applied voltages V, = —V, =V, a process involving
two crossed Andreev reflections splits two Cooper pairs from the
central grounded electrode, leading to the formation of a four fermion
entangled state, with two pairs emitted in the lateral superconductors,
one in S, and one in S,.

agreement with the differential conductance anomaly ascribed
to quartets.

B. Short description of MCPR physics

Three-terminal devices involving a superconducting (S)
source connected to two normal (N) metallic leads have been
extensively studied [25-29,40], mostly because they offer the
possibility to generate two-particle entanglement [7,8,41,42]
by extracting a split Cooper pair from the BCS condensate,
which granted them the name “N-S-N Cooper pair splitters.”
Microscopically, Cooper pair splitting is ensured by the pro-
cess of crossed Andreev reflection (CAR) which allows an
ongoing hole in one normal lead to be reflected as an outgoing
electron in the other N lead, making use of the (evanescent)
quasiparticle states in S, provided that the separation between
the metallic reservoirs is smaller than the coherence length
of the superconducting material. Such devices were realized
experimentally, with convincing evidence of both nonlocal
current and noise [35,43-49].

The concept of Cooper pair splitting can be generalized to
an all-superconducting device [30] where an external voltage
bias is applied to the lateral superconducting leads, while
the central one is grounded. In such a system, single-particle
conduction inside the outgoing biased leads is prohibited for
subgap voltages. However, CAR processes can still operate
and, for properly selected applied voltages, lead to interesting
phenomena. Indeed, focusing first on the case of opposite
potential biases for simplicity, one can envision a process
by which two Cooper pairs originating from the central lead
are split into entangled nonlocal pairs by virtue of a double
crossed Andreev reflection, their constituent electrons ulti-
mately recombining as newly formed Cooper pairs in the
lateral leads. Such a process, shown schematically in Fig. 3,
therefore leads to the coherent transfer of two Cooper pairs,
relying on a combination of both direct and crossed Andreev
reflections. It ultimately corresponds to the formation of a
correlated four fermion state, an object sometimes referred

to as “nonlocal quartet.” More importantly, this is an energy-
conserving process which results in signatures in the DC
current, which turn out to bear a nontrivial phase and voltage
dependence.

Such a process can be extended to involve any even number
of CAR processes, a key requirement for the split pairs
originating from the central electrode to get recombined in
the lateral leads. Quartets are thus easily generalizable to
higher-order multiple Cooper pair resonances (MCPR) impli-
cating the phase-coherent transport of n + m pairs from Sy
being transferred as n pairs to S, and m pairs to S,. This, in
turn, leads to the appearance of DC Josephson resonances at
commensurate voltages, thus satisfying

nV, +mV, = 0. (32)

The existence of the quartet resonance, and more generally
of the MCPR, can be inferred from a simple phase argument,
as proposed in Ref. [12], resulting in the commensurability
condition, Eq. (32), to be satisfied by the applied voltages.
In an equilibrium setup, the current-phase relation is ob-
tained from differentiating the Josephson free energy with
respect to the superconducting phases ¢; associated with each
lead S;.

When external voltages V, and V), are applied to the lat-
eral leads S; (j = a, b), the superconducting phases acquire
a time dependence, namely ¢,(t) = ¢, + 2V,t, and ¢,(t) =
op + 2Vpt, while we assumed ¢y = O for the grounded cen-
tral electrode, so that ¢o(z) = 0. It follows that focusing on
the currents /; in the lateral leads S; (j = a, b), one is left
with

L6) =Y 1 pgsinlpga(t) + qes(1)]. (33)
P.q€Z

In the special case where the applied voltages are commen-
surate, i.e., there exists a pair of integers (n, m) such that
nV, +mV, = 0, one readily sees that the currents /;(t) now
contain a term which is constant in time, corresponding to
the component {p = n, g = m} along with its higher order
harmonics. This results in a pure DC component, signaling
the existence of a multiple Cooper pair resonance. It depends
on the combination of the bare phases ng, + me,, which
corresponds to the transfer of n + m Cooper pairs from Sp,
outgoing as n pairs in S, and m in Sp.

The quartet resonance discussed in this study constitutes
the “lowest order” MCPR, observed for n = m = 1, which in
a truncated perturbative treatment in the tunnel amplitudes,
constitutes the dominant MCPR. Here our application to this
quartet process is by no means perturbative, and it allows us
to access transport regimes at high transparency through all
junctions. In Ref. [12] the authors performed a systematic
study of the amplitude of the DC Josephson current for
such higher order processes. However, when the integers m
and n identifying the MCPR are instead chosen to be large,
as well as when high transparencies are specified, one is
limited by numerical power. This is the reason why, as a first
application of our noise diagnosis, we focus on the quartet
case.
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C. Expressing the current and noise at a MCPR
1. Double Fourier representation and Dyson equation

When arbitrary voltages V, and V), are applied to the
lateral superconducting leads while keeping the central
superconducting electrode grounded, two Josephson
frequencies 2|V,| and 2|V;| govern the system. In general,
they are independent and the QD Green’s function is a
function of two times #; and #, or alternatively of T =t — 1,
and t = (¢t +1»)/2. However, when the applied voltages
are commensurate, nV, +mV, =0 with n, m integers, the
average time variable ¢ becomes periodic, with period
T =n|\m/V,| = x|n/Vy| = 27 /w; thus defining an effective
Josephson frequency w;. Note that this condition corresponds
precisely to the one allowing for the appearance of MCPR.
It then becomes possible to describe the bare and dressed
QD Green'’s functions Gy and G along with the self energies
by j» using a single frequency and two harmonics indexes
representing harmonics of the Josephson frequency wy, in
the spirit of Floquet theory [15]. This specific double Fourier
transform representation thus allows us to write all Green’s
functions as frequency-dependent matrices in harmonics
space (on top of their Nambu-dot-Keldysh structure)

v w . . .
Gun(w) = ﬁ/dtlel(tﬁ—nwj)tl /dlze_l(w+mwj)t2G(I1,l‘z).

(34)
|

[3(@)lm = F,(8

where I'; is a matrix in dot space with matrix elements I jop =

nv(O)t;atjﬁ, and where X ; and b4 ; are matrices in Keldysh

space, with components expressed in the RAK basis as

O(A; — O(lw| — A;
X;?/A(w) __9@Qj-feho T (lo] ,)le,
/A? — w? Jw? — A?

O(w| — A,

XK () = g el = Alel n B2 (40)

[w? — A? 2
XK ()
YA () = —A; L—F
w

In all generality, an exact description of the problem would
require an infinite number of harmonics. In practice, we
can restrict ourselves to a finite subset by introducing a
cutoff energy E., which needs to be much larger than any
relevant energy scale of the problem (typically a few times
the largest superconducting gap). The dressed dot Green’s
function G®4-K is then obtained numerically from Eq. (36),
through the inversion of large matrices. The typical size of
these objects is dictated by the applied voltage biases through
the Josephson frequency, as one needs N ~ E./w; frequency
domains of size w; to properly cover the range of energy
up to the cutoff E.. This makes the handling of low-voltage
situations particularly time consuming, and numerically
challenging because of resonances which require us to

Sum XJ(Q) +nw; — Vj)
n+2V;/w;m Y/((x) + nw; + V,)

This additional matrix structure in harmonics space offers
an important advantage over other formulations as it allows us
to write the Dyson equation as a simple matrix inversion (al-
beit in the rather large Nambu-dot-Keldysh-harmonics space)

Glw)™' = Go(w) ™! = Zr(w), (35)

which is translated into RAK components as
M) =G ) = £ W), (36)
G () = Gf (0) + G (@) Ef ()G (w).  (37)

The bare Green’s function is not only diagonal in Keldysh
space (expressed in the RAK basis) as G§ = 0, but also in
harmonics space as, when expressed in the time domain, it
only depends on the time difference t = #; — t,. These diago-
nal elements can be written as Nambu-dot matrices taking the
form

[Go A @)™, = bum (‘“ + ey — €0,

_tabaz
—1pa0;, o+ nw; — €0, )"

(38)

Similarly, the lead self-energies can be obtained in this en-
larged space using Eqgs. (17) and (21)—(34), and are given
by [50]

(39)

8,172\/‘,'/%,,, Yj(a) +nw; —V;)
8n171Xj(w+n0)]+V]') ’

(

perform integrals with a finer resolution on increasing size
intervals.

Note that all analytical results can directly be applied
to more general multiterminal superconducting devices, pro-
vided that the MCPR condition is satisfied between potential
differences with respect to the ground. This is also true for the
results of the section below, which are not sample specific.

2. Current harmonics and noise in frequency space

As argued earlier, multiple Cooper pair resonances ap-
pear when commensurate voltages are applied to the lateral
superconducting leads, a condition which also allows us to
recover a periodic behavior of the transport properties in
terms of a single (effective) Josephson frequency w;. When
the MCPR condition is satisfied, the current admits a Fourier
series expansion of the form

(Lia) (1) =Y e P T, (41)

pEZ

with Fourier coefficients given by [12]

7 = Lol / Y d—”Z[G(w)i(w)
je T e 2 4 !

-3 j(a))é(w)]gj;_p}. (42)
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Performing the partial trace over Keldysh space, it can be
expressed in terms of RAK components as

1 “dw = & ~ 5
_1-w R K K 4
I, = 3 Tr {a fo gan[c (@)X} (@)+6" (@) 2] (@)

— £ (@)G" (w) — EK(a))GA(w)]nn p} (43)

From the definition of the current-current correlations,
Eq. (27), one can introduce the finite-frequency noise, calcu-
lating the Fourier transform with respect to the time difference
as

400 .
S 5 (2, z)_/ dt e Sy jp(t, t + 1),  (44)

o0

+o00 .
Si;’jﬂ(gz, t) = / dt EIQTSm’jﬁ(l +1,1), (45)

o0

which correspond to the emission and absorption noise. In
inductive coupling schemes for the detection of noise [51,52],
at low temperatures for both the device under study and the
detector, the emission noise typically dominates.

Sia,jp (2 = 0)

271)3
_ ! ’2” Re/ do T {0 (SXGA + SRGK -
0

— 0.(SRGRSF 4+ SXGIEA 4 SRGREA -
27t8ij

0

SAGA + SRGR) o, (SKCA + ERGK + £4G1 —
SAGAS + BEGRS

wy
Re / do TN o (S8~ £F— £5)P5(G* — GF+ GK)* + 0, G+ G*+ GF )P o (- £+ SR - £F)P),

Under the MCPR condition these Fourier-transformed cor-
relators recover a periodicity in their average time variable.
Like the currents, they contain all harmonics of the Josephson
frequency, which motivates the computation of the following
time averages [5] corresponding to the emission and absorp-
tion noise:

27‘[/&)]
S 5@ = /O dr S7, 5(Q.1), (46)

Cl)] 27[/0)] _
Saip(Q) = o dr Sy, 45(.1). (47)
0

It is clear from these expressions that emission and absorption
noises are trivially related when ﬂipping the sign of the
probing frequency, namely S}, + 5(82) = 5(—$2). A theory
for the detection of phot0a551sted finite frequency shot noise
has been presented in Ref. [53] with an application to the
fractional quantum Hall effect, and it is directly applicable to
superconducting systems.

Substituting the expression for the current correlator,
Eq. (31), in terms of the dots Green’s functions and leads
self-energies back into Eqgs. (46) and (47), and focusing on
the behavior at zero frequency, one obtains, after performing
all four time integrals explicitly

~ R =R\ Ba
® EfGR)w

;e)zt)ﬂaz(ék +6A = GR)f)a}

w

(43)

where we dropped the superscript +/— for Sq, js since the two lead to the same result at zero frequency and we introduced

Tr'™ as the trace in Nambu-harmonics space.

It is also possible to obtain compact expressions when the noise is evaluated at harmonics /w; (I integer) of the Josephson

frequency

S iplwy)

+ 0,(=G* + GF + GF)2Frrlo (S8 + EF —

Equations (43) and (49) for the Josephson current and
the noise deserve some attention. They are not specific to
the dot geometry, lead configuration, or tunnel amplitudes
whatsoever. The self-energies are known [see Eq. (39)], and
the matrix elements of the dot Green’s function need “only”

2 3 wy o . L o o B . . o
_O) Re > / doTi™| o, (EXG* 4 SRGK — £2GH + ERGR)P" o (SKGH + SRGK 4 £46

Elparnty (49)

(

to be solved via Dyson’s equation, with a recursive scheme,
or by a direct matrix inversion.

For the application of this study, our priority is to investi-
gate both signals at zero frequency. Nevertheless, we stress out
that in past works [15] the Josephson current harmonics have
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provided a useful test for the presence of decoherence effects.
Indeed, in a superconducting junction with an embedded
quantum dot side coupled to a normal metal reservoir (a
source of decoherence) nonzero harmonics of the Josephson
current are suppressed when the coupling to this normal metal
reservoir is increased. Here we point out that we can achieve
a further characterization of the transport characteristics of
the device via the noise harmonics, with the potential to
incorporate the monitoring of decoherence effects.

D. Noise characteristics of the quartet resonance

To be more specific, we focus on the quartet resonance
V, = =V, =V > 0. Moreover, we adopt an antisymmetric
position for the dots €, = —¢;, = € > 0 to optimize CP split-
ting [13]. We assume identical superconducting gap for all
leads, A; = A, and symmetric couplings between supercon-
ductors and dots I"jop = I" while forbidding interdot tunnel-
ing t; = 0. The quartet phase ¢y = ¢, + @5 — 2¢p is moni-
tored through ¢}, = ¢, the two others being set to zero, ¢y =
¢, = 0. We present results for the DC currents in the leads
I, =10, and I, = T)), [cf. Eq. (43)] as well as for the zero-
frequency correlations of these currents Sy, = Suq.4a(2 = 0),
Sob = Stp,pp(§2 = 0), and Sy = Sua,0p($2 = 0) [cf. Eq. (48)].
S.a and Sy, are referred to as noise autocorrelations, whereas
S, are the noise crossed correlations. Fano factors for the
lateral leads are given by the standard definition:

S..
Fi== for

i = a, b. 50
2, Jj=a (50)

Similarly, a Fano factor can be defined for the central lead
from the sum of the currents, leading to meaningful informa-
tion about noise crossed correlations

Saa + Sbb + 2Sab
Fp = 20a T 20T Wb
21, + 1Ip)

The properties of the current in this system were studied by
some of the authors in Ref. [12]. It was shown that the current
can be broken down into three qualitatively different compo-
nents. First the quasiparticle current /%, due to the multiple
Andreev processes, which is independent of the quartet phase.
It is an odd function of voltage, and thus contributes to the
currents I, and I, with an opposite sign since the voltages of
leads a and b satisfy V, = —Vj,. Then the “phase-MAR” com-
ponent IP"MAR "\which is due to interference effects between
multiple Andreev reflection and phase dependent processes.
While it is odd in voltage like the quasiparticle current, /PhMAR
is, as suggested by its name, phase dependent, and an even
function of the quartet phase. Finally, the multipair coherent
current /MP, which is carried by the exchange of multiple
pairs between superconducting leads, is an odd function of the
quartet phase. This component is however an even function of
the voltages, and thus contributes equally to 7, and I;,.

When the voltage V becomes small enough, the contribu-
tions 1% and IP"™MAR become small compared with the co-
herent multipair current, which thus dominates for a nonzero
quartet phase. This explains why the two currents [, and I,
become equal in the low-voltage regime, and the current phase
relation /,(pg) is that of a  junction, which can be justified
by the spin singlet nature of CP pairing. When the voltage

(5D

0.30
0.20
0.10
0.00

-0.100 - <p§ n

FIG. 4. Current I, (in units of A) as a function of the phase ¢,
in the QPC regime, for voltages V = 0.65A, 0.55A, 0.45A, 0.35A,
0.17A (in order of decreasing amplitude). Current I, can be deduced
from I,(—¢g) = —L.(¢g).

is increased, the multiple Andreev processes become more
important, and the two currents I, and J, start deviating from
each other. Within the symmetries that result from the choice
of parameters we have used, we always have I,(—¢p) =
_Ia((pQ)-

In what follows, we investigate two different regimes:
(i) the “quantum point contact” (QPC) regime which is ob-
tained for dot energy levels placed outside the gap of the
central superconductor € > A and for large couplings I > A,
which imply weak energy filtering from the quantum dots; and
(ii) the resonant dots regime which is obtained for QD energy
levels within the gap € < A and moderate couplings I' < A
which imply efficient energy filtering by the quantum dots.

1. QPC regime

When the quantum dot energy levels are placed outside the
gap of the central superconductor and the effective linewidths
of the quantum dots are large compared with this gap, the
two S-dot-S junctions behave like adjustable tunnel barri-
ers, which justifies the nomenclature “quantum point contact
regime.” This regime constitutes a natural starting point of
our investigation as it provides an interesting insight into the
physics at play in more complex situations. The results shown
here in Figs. 4-9 were obtained for the choice of parameters
€ =6Aand I =4A.

The current I, in units of A, as a function of the phase ¢ is
shown in Fig. 4 for different values of the voltage V [the cur-
rent I, can be deduced from I,(—@g) = —1,(¢p)]. For large
values of the voltage (the largest here being V = 0.65A), the
current 1, is positive for all phases, with a nonsymmetric phase
dependence. As the voltage is lowered, the current decreases
in amplitude and tends towards a sinusoidal ~sin(¢p + )
dependence. This change of behavior can be understood by
decomposing the current into its three contributions [12]:

1 2w
JP — E/o doo 1(pg), (52)
1
JPIMAR _ E[I@Q) +1(—¢pg)] — I, (53)
1
M = ZlI(go) — I(=¢o)l. (54)
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FIG. 5. Decomposition of the current /, in terms of the quasi-
particle current /%, the phase-MAR current /P"™MAR "and the coherent
multipair current /M (all in units of A), as a function of the phase ¢,
in the QPC regime, for voltages V = 0.65A (top) and V = 0.35A
(bottom). For V = 0.65A, the three contributions are of the same
order of magnitude. For V = 0.35A, the voltage is low enough to
have I™P strongly dominate over the other two contributions.

where we recall that /% is the quasiparticle current due to
multiple Andreev processes, IP"™AR s the phase-MAR current
due to the interference between MAR processes and phase
dependent processes, and I™MP is the coherent multipair current
associated with multiple Cooper pair resonance. Figure 5
shows the decomposition of the current I, for two different
values of the applied voltage: V = 0.65A andV = 0.35A. For
the larger applied voltage, the three components are roughly
of the same magnitude, which explains the overall positive
current, and its nonsymmetric phase dependence. However,
when V is lowered, the 1% and IP"™MAR contributions decrease
rapidly to zero, while the MP component converges to a
nonzero value, as shown for V = 0.35A. Eventually, for low
enough voltage, the current is fully due to the multipair
component, which tends to a ~ sin(¢g + ) behavior. By the
very nature of these multipair processes (which involve the
same number of electrons being transferred from Sy to S, and
from Sy to Sj) the currents I, and I, are simply equal.

The noise as a function of the quartet phase is shown in
Fig. 6 for different voltages. The autocorrelation noise S,, is
naturally positive, and its amplitude decreases rapidly as the
voltage is lowered. The crossed correlation noise S, is mainly
negative except for ¢p close to 0 (and 7 at low voltage),
and its amplitude shows a similar decrease as a function of
voltage. Note that the amplitude of the crossed correlations

-0.05}
-0.10
@
-0.15 ‘ al
0 7T 277

FIG. 6. Autocorrelation noise S,, (top) and crossed correlation
noise S, (bottom), given in units of A, as a function of the phase
@ for voltages V = 0.65A,0.55A,0.45A,0.35A,0.17A (in order
of decreasing amplitude), in the QPC regime. Autocorrelations Sy,
can be deduced from Sy, (¢) = Sua(—¢0).

is smaller than that of the autocorrelations, a phenomenon
which can be attributed to the local quasiparticle currents.
Indeed, the local quasiparticle component of /,, due to local
MAR processes between electrodes a and 0, yields a finite
contribution to the autocorrelations S,,, while in the crossed
correlations S, the local quasiparticle current in I, and the
one in [, are uncorrelated and thus do not contribute.

0.2 0.3 0.4 0.5 0.6 0.7

FIG. 7. Fano factors F, (red, full line) and F; (blue, dotted line)
in the QPC regime, as a function of voltage, for ¢y = 4. Vertical lines
indicate the location of the MAR onsets (V = 2A/n).
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FIG. 8. Current component /P"™AR (red, full curve), and noise
crossed correlations S, (blue, dashed curve), in units of A, as a
function of the phase ¢y, for voltages V = 0.65A (top) and V =
0.35A (bottom).

Comparing the results of Figs. 4 and 6, it is interesting to
point out that as one lowers the external voltage bias, the cur-
rent assumes a finite value (for nonzero phase ¢p) while the
noise correlations tend to zero, so that the DC current becomes
effectively noiseless at small voltage, a feature generally
attributed to Josephson physics in standard two-terminal su-
perconducting devices at equilibrium. Indeed, as argued above
when studying the current, the low-bias transport properties
rely uniquely on the exchange of CPs rather than dissipative
processes (such as MAR or quasiparticle tunneling) which
involve the continuum spectrum of the superconductors, thus
explaining the strong similarities with a conventional Joseph-
son junction. This is better illustrated in Fig. 7 which shows
the Fano factors F, (for current I,) and JF{ (for the total
current I, + 1) as a function of the voltage bias for a generic
phase ¢p = 4. The logarithmic scale clearly shows the rapid
decrease of the Fano factor as V. — 0. Interestingly, the results
of Fig. 7 also indicate the existence of peaks in the Fano
factors near the MAR onsets V = 2A/n (vertical dashed
lines). While the presence of such structures is reminiscent of
what is observed in a biased two-terminal junction separated
by a QPC, the overall voltage dependence is in sharp contrast
with this situation as, instead of vanishing, the Fano factor of
such a device increases dramatically as 1 4+ Int(2A/V') at low
voltages for low transparency [5], reflecting the increase in
the transmitted charge through MAR processes. The observed
drop of the Fano factor in our three-superconductor system

107"

1072}

V

0.05 0.10 0.15 0.20 0.25 0.30 0.35

FIG. 9. Fano factor F, in the QPC regime, as a function
of voltage, with ¢, =0 and ¢, = 4, for three different voltages
configurations.

thus constitutes direct evidence that the DC signal of quartets
is noiseless when lowering the voltage.

Further understanding of the noise behavior as a function
of voltage can be obtained using the current decomposition
in terms of quasiparticle, phase-MAR, and multipair contri-
butions. As argued above, in the low-voltage limit, the noise
(both autocorrelations and crossed correlations) goes to zero
while the current reduces to its coherent multipair component
IMP_ From this, it is clear that the multipair component of
the current is noiseless. As a result, we can thus expect that
the small noise contribution at small to moderate voltage is
directly related to the other two components of the current.
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This is confirmed in Fig. 8, which shows the crossed correla-
tions S,;, together with the phase-MAR component /P"MAR of
the current, for V. = 0.65A (top) and V = 0.35A (bottom).
Quite strikingly, the phase dependence of the IP"MAR apd
of S, are directly correlated, which shows that the crossed
correlations are indeed associated with IP"™AR at Jeast as far as
the phase dependence goes (since /% is phase independent).
One can also see that the amplitudes of the current compo-
nent and of the crossed correlations are somewhat similar.
Crossed correlations decrease slower than IP"™MAR an effect
that may be attributed to the quasiparticle current /9, which
does contribute to the crossed correlations (through processes
involving all three superconducting leads).

Finally, the significant drop of the Fano factor at very low
voltage, which shows that the multipair process is noiseless,
is not restricted to the quartet configuration. This is illustrated
in Fig. 9, which presents the Fano factor F, as a function
of the voltage bias, for three different voltage configurations:
Vy, =V,,V, = =2V,,and V}, = —3V,. For each plot, the choice
of phase is ¢, = 0 and ¢, = 4 (this choice does not impact
qualitatively the results). As in Fig. 7 obtained for the quartet
configuration, results are shown on a logarithmic scale, and
one clearly sees that the Fano factor is strongly reduced at low
enough voltage. As noticed for the quartet configuration, this
is due to the existence of a finite DC current as V — 0, while
the noise vanishes for V. — 0.

2. Resonant dots regime

We now present results obtained for the set of parameters
€ =0.6A and I' = 0.3A which constitutes a regime of effi-
cient energy filtering from the dots in the gap of the central su-
perconductor, albeit still allowing multiple Andreev processes
to be identified. The main qualitative difference with the QPC
regime, which is common for all the investigations led in the
resonant dots regime, is the presence of phase sensitive and
voltage sensitive giant Fano factors even at low voltage when
the Josephson current is fully ascribed to quartet processes.

Figure 10 shows the phase dependence of the current /, and
the noise crossed correlations S, for different voltages be-
tween V = 0.65A and V = 0.16A. In all generality, the cur-
rent /,(¢g) can be readily deduced from I,(—¢g) = —1.(¢g),
but except for the largest voltage considered, our results
show that I,(¢p) =~ I,(¢g), which means that the current is
largely dominated by quartet processes. Similarly, the noises
Saa(©0), Spr(9p), and S, (¢p) are nearly equal, except again
for V.= 0.65A where there is a small but notable difference
(which further increases for larger values of the voltage).
In particular, this implies that the crossed correlation noise
is positive for most of the voltage range, which constitutes
yet another indication of the dominant character of quartet
processes. This property of the currents and noises ultimately
justifies our concentrating on I, and S, in this regime.

Focusing on the results for the current (left column of
Fig. 10), we see that for large and intermediate voltages (top
and middle plots), the current-phase relation is quite complex
and clearly nonharmonic. This is most marked around the
value V = 0.60A which is the voltage at which the dot level
positions coincide with the chemical potentials of the left
and right electrodes. As the voltage is lowered, the amplitude

of the current oscillations decreases, ultimately reaching a
m-shifted sinusoidal relation for low-enough voltage (bottom
plot), typical of a pure quartet process far from resonance.

The behavior of the noise S, in the resonant dots case
(right column of Fig. 10) is qualitatively quite different from
its counterpart from the QPC regime. We observe two strik-
ing characteristics. First, the noise shows a highly sensitive
phase dependence, with marked peaks at values of the phase
which depend on the voltage bias. Second, the amplitude of
the noise varies quite strongly and nonmonotonically with
voltage, reaching huge values, order of magnitudes larger than
the corresponding maximum current at the same voltage. This
last property, combined with the decrease in amplitude of the
current as one lowers the external voltage bias, leads to a
giant Fano factor in the low-voltage regime. This behavior
is in stark contrast with the one described in the previous
section for the QPC regime: while in both cases the current is
largely dominated by quartet processes, here it is accompanied
by large current fluctuations, which are thus enhanced by the
resonant nature of the quantum dots.

It is instructive to consider the overall amplitude of both
current and noise, leaving aside the details of the phase depen-
dence, as phase dependent measurements typically require a
squid geometry, and we aim at computing quantities which are
more directly accessible. To this aim, we consider the current
amplitude at a given voltage defined as

Inax — Inin = maXxey, [Ia((pQ)] - min(pQ [Ia(¢Q)]s (55)

and similarly for the noise

Smax — Smin = maXe, [Sab((pQ)] - min(pQ [Sab((pQ)]- (56)

These two quantities are shown in Figs. 11 and 12, respec-
tively. Ignoring the fine structure, the general qualitative be-
havior for the current shows a broad maximum around V = €
(corresponding here to V = 0.6A), and a slow decrease at
lower voltage. This scale corresponds to the voltage where
the energy level of both dots coincides with the chemical
potential of the lateral electrode each of them is connected
to. Note that the current amplitude is at most of the order
of 1 (in units of A) and decreases to ~0.1 for the smallest
voltages considered. The noise amplitude, however, shows a
radically different behavior, with sudden bursts which become
more marked as the voltage gets smaller. Remarkably, while
these fluctuations can make the noise reach values as high as
~100 (in units of A), there are some wide regions of voltage
(for example near V = 0.3A) where the noise amplitude is
several orders of magnitude smaller. Note that the details
of the amplitude of the noise vary importantly when the
parameters € and I" are varied (even within the resonant dots
regime). Huge noise varying strongly with voltage has been
observed [54] by some of the authors in a different context (a
system of three one-dimensional topological superconductors
which bear Majorana fermions at their extremities) and has
been attributed to a different underlying physical mechanism:
the presence of a zero Majorana mode.

IV. DISCUSSION

One of the main goals of this application of the present
formalism has been to address whether, upon decreasing
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FIG. 10. Current and noise correlations (in units of A) as a function of the phase ¢, for different values of voltage (from V = 0.65 to
V = 0.16) in the resonant dots regime. The left column shows the current /,, with the value of the voltage noted near each curve. The right
column shows the crossed correlations S, for the same values of voltages. Two curves for the S,;, have been scaled to fit inside the plot: the
one for V = 0.26 (middle plot, factor 0.1) and the one for V = 0.18 (bottom plot, factor 1/3).

the bias voltage, the noise signal of MCPR decreases, and
goes to zero despite a nonequilibrium situation, in the same
manner that a DC Josephson junction can bear only thermal
fluctuations at equilibrium. In this sense, our results seem to
be in qualitative agreement with Ref. [38], which deals with
a three superconducting lead device, while also surpassing it
for the following reasons.

First, the formalism we have developed here is general
enough to allow us to treat the nonequilibrium current and
noise characteristics of a large class of mesoscopic systems (as
exposed in the first part of this paper). Reference [38] focused
on a given geometry—a central dot system connected to all
three superconducting leads—and all presented calculations
were specific to this context. Moreover, the geometry chosen
in Ref. [38] does not optimize CAR processes, which are
indispensable for the optimal detection of MCPR. In past
works on the CPBS [13,19], the authors showed that the

optimization of CAR processes is achieved by considering a
device where the two quantum dots connected to the normal
metal leads have energy levels which are opposite with re-
spect to the central grounded superconductor. This motivated,
concerning the study of the ASCPBS [12], the same choice
of an antisymmetric dot configuration, so that direct Andreev
processes are also filtered out. In this respect, the present
work achieves a more rigorous diagnosis of noise for MCPR
because CAR processes are optimized from the start.

Second, our approach is nonperturbative, taking into ac-
count the coupling to/from dots and leads to all orders, for an
arbitrary superconducting device. The authors of Ref. [38],
however, resorted to a truncated perturbative expansion to
compute the transport properties. Beyond the obvious in-
herent limitations of perturbation theory when it comes to
dealing with high junction transmission or resonant situa-
tions, such an approach also imposes the introduction of a
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FIG. 11. Amplitude of the current ,(¢) (in units of A), defined
in Eq. (55), as a function of the voltage V, in the resonant dot regime
(e =0.6A, I' =0.3A). The current is maximum near the voltage

where the dot levels coincide with the lateral electrode chemical
potentials (V = €).

phenomenological dot parameter intended to regularize the
perturbative treatment. This small parameter corresponds to
a finite intrinsic linewidth broadening which needs to be
systematically added “by hand” to the bare dot Green’s
function from the start. The bare dot constitutes an isolated,
coherent system, and adding such an infinitesimal in the
bare dot Green’s function cannot be justified from a rigorous
microscopic model. It is typically introduced to simulate the
coupling to a (dissipative) electrodynamic environment, to
describe a source of decoherence for the quantum dots. The
addition of such an extra phenomenological parameter may
have unforeseen repercussions on the transport properties at a
MCPR, which were not thoroughly explored in Ref. [38], cast-
ing a shadow on the generality of their results. In our present
work, an infinitesimal parameter enters the advanced/retarded
lead Green’s function only, and this infinitesimal is of course
rendered finite for numerical calculations. This is the norm,
and subtleties about the interplay between this infinitesimal
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FIG. 12. Amplitude of the crossed correlation noise S,;(¢g) (in
units of A), defined in Eq. (56), as a function of the voltage V, in the
resonant dot regime (¢ = 0.6A, I' = 0.3A). The noise shows strong
variations at small voltages, with maximum values which are several
orders of magnitude larger than the current.

and the (adiabatic) voltage have been addressed in Ref. [4].
We checked systematically that the current and noise com-
puted within our formalism were not affected when this
infinitesimal (associated with the lead Green’s functions) was
further reduced, converging toward the same results, while the
bare dots Green’s functions are systematically treated as fully
coherent entities, devoid of any phenomenological linewidth
for the dot system.

V. CONCLUSION

We have studied a general class of multiterminal super-
conducting devices composed of superconducting and nor-
mal metal leads arbitrarily connected to a quantum dot sys-
tem. Expressions for the nonequilibrium current and noise
have been cast into matrix products of self-energies and
dressed single particle Green’s function. The numerical so-
lution of the latter via Dyson’s equation allows us to char-
acterize the transport properties of a vast class of systems.
This work constitutes a Hamiltonian formulation of quantum
transport in the same spirit as the Landauer-Buttiker-Imry
multichannel /multiterminal formalism [55-58], extended to
superconducting hybrid systems.

We applied our formalism to the ASCPBS, a three-terminal
superconducting device designed with a central grounded
electrode contacted to two other leads via two QD nanowires.
When CAR processes are operating on the central super-
conductor and the voltages applied to the lateral leads are
commensurate, the partial currents are known to depend
on the bare superconducting phase differences, leading to
a Josephson-like signature, albeit in out-of-equilibrium con-
ditions [12,30]. This has been confirmed by experimental
signatures for the differential conductance [32] and more
recently explored for the noise [39]. Such a phenomenon
is referred to as a MCPR since the underlying explanation
involves the correlated motion of several CPs between the
three superconducting reservoirs, with split Cooper pairs from
the central lead.

Within the out-of-equilibrium Keldysh framework, the
equivalent of a path integral approach leads to a Dyson equa-
tion which relates bare and dressed QD Green’s functions, in-
troducing a self-energy term which accounts for the coupling
to superconductors in a nonperturbative way. The statistics
of the current operator have been derived using counting
fields [13] which allow generalizations to full counting statis-
tics in principle. The commensurability of the voltages, which
is assumed here for computational reasons and because it is a
requirement for the observation of MCPR, allows the use of a
double Fourier transformation leading to a convenient matrix
representation. As a result, all observables of this system (cur-
rent, noise autocorrelations, and noise crossed correlations),
are expressed in terms of the dressed Green’s function of the
dots, a procedure which requires a (large) matrix inversion of
the Dyson equation.

More specifically, we have focused on the quartet reso-
nance where the voltages imposed on the two lateral leads are
opposite, and two regimes have been numerically investigated.
In the QPC junction limit, where the dot energy levels are
placed outside the gap of the central superconductor, and
energy filtering of the dots is not effective, we have found that
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the noise correlations decrease when the voltage is lowered,
so that the Fano factors take very low values in the adiabatic
limit. We have also demonstrated that the decrease of the Fano
factor is not specific to the quartet resonance, by showing
similar behaviors for three other voltage configurations.

This observation is in sharp contrast with the case of a two-
terminal junction where the Fano factor varies as ~1/V at low
voltage. In this regime, negative noise crossed correlations
are generally observed at all voltages, except for fine-tuned
values of the quartet phase. In the resonant dots regime,
where the dot energy filtering is sharper and occurs within
the gap of the central superconductor, only positive values of
the noise crossed correlations are obtained, an indication of
the dominance of the quartet process. Compared to the QPC
regime, large values of the noise have been obtained together
with a strong sensitivity on both phase and voltage due to the
acute energy filtering. The appearance of giant Fano factors
constitutes an important signature of this regime.

We therefore believe that the present noise diagnosis of our
three-superconductor setup sheds further light on the physics
of multiple Cooper pair processes, with potential repercus-
sions on experimental detection.

Possible extensions of this work could follow several di-
rections including:

(1) The investigation of lower voltages in the resonant dots
regime which would require more efficient integration tools in
order to further probe the noise reduction.

(ii) A thorough analysis of other voltages associated with
MCPR (mV, + nV,, = 0), for larger integers m and n, which
differ from the specific quartet process studied in this applica-
tion of our formalism. Higher fractions have been extensively
studied, albeit only for the DC Josephson current, in both
nonequilibrium and equilibrium setups [12,59]: to each higher
order MCPR corresponds an Andreev bound state described
by a combination of CAR and direct Andreev processes in
the ASCPBS which describe a closed orbit in energy space.
Basic transport processes are the same, but they involve more
CAR processes necessarily. We have shown that, in the QPC
regime, the Fano factor decreases for voltage configurations
other than the quartet resonance. While the behavior is qual-
itatively the same for all voltage configurations, a detailed
exploration of the latter could provide precious insight on
these systems.

(iii) The influence of interdot tunneling, which may spoil
the efficiency of CAR processes in the ASCPBS: this was
indeed the case for the CPBS in Ref. [13], and we expect the
MCPR signal to be decreased in the presence of such tunnel-
ing. On general grounds, strong interdot tunneling should be
taken into account in a general, large quantum dot array, with
the goal to describe a specific mesoscopic device or molecule
with many sites/orbitals.

(iv) The inclusion of different injection regions in the leads
when a superconductor is connected to several quantum dots.
We aware that dimensionality and kr oscillations can lead to
a modification of the coupling parameters that we have used
here, in the same spirit as in Ref. [60], where the reduction
of CAR over large points of injections was taken into account
effectively.

(v) The influence of the QD Coulomb on-site energy, which
could be done using either a Hubbard-Stratonovich treatment
(followed by a standard approximation such as a saddle point
method [60]) or a self-consistent perturbative approach [19].

(vi) The investigation of finite frequency noise at multi-
ples of the Josephson frequency (as well as the Josephson
frequency current harmonics), for which we have available
analytic expressions, but which would require a challenging
experimental detection scheme similar to that of Shapiro
steps. Particularly relevant would be to study the effect of
decoherence (due to the coupling of the dot system to a normal
metal lead for instance) on the amplitude of the higher noise
harmonics.

(vii) The investigation of electron-hole decoherence effects
on the zero frequency noise, using methods borrowed from
quasiclassical circuit theory [61-63].
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